blob: 190984c2e2872f84810e7b84bc90b687d2ea4a61 [file] [log] [blame]
/*
* PMac DBDMA lowlevel functions
*
* Copyright (c) by Takashi Iwai <tiwai@suse.de>
* code based on dmasound.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <sound/core.h>
#include "pmac.h"
#include <sound/pcm_params.h>
#ifdef CONFIG_PPC_HAS_FEATURE_CALLS
#include <asm/pmac_feature.h>
#else
#include <asm/feature.h>
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0)
#define pmu_suspend() /**/
#define pmu_resume() /**/
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,4,18)
#define request_OF_resource(io,num,str) 1
#define release_OF_resource(io,num) /**/
#endif
#define chip_t pmac_t
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
static int snd_pmac_register_sleep_notifier(pmac_t *chip);
static int snd_pmac_unregister_sleep_notifier(pmac_t *chip);
static int snd_pmac_set_power_state(snd_card_t *card, unsigned int power_state);
#endif
/* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
static int awacs_freqs[8] = {
44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
};
/* fixed frequency table for tumbler */
static int tumbler_freqs[2] = {
48000, 44100
};
/*
* allocate DBDMA command arrays
*/
static int snd_pmac_dbdma_alloc(pmac_dbdma_t *rec, int size)
{
rec->space = kmalloc(sizeof(struct dbdma_cmd) * (size + 1), GFP_KERNEL);
if (rec->space == NULL)
return -ENOMEM;
rec->size = size;
memset(rec->space, 0, sizeof(struct dbdma_cmd) * (size + 1));
rec->cmds = (void*)DBDMA_ALIGN(rec->space);
rec->addr = virt_to_bus(rec->cmds);
return 0;
}
static void snd_pmac_dbdma_free(pmac_dbdma_t *rec)
{
if (rec && rec->space)
kfree(rec->space);
}
/*
* pcm stuff
*/
/*
* look up frequency table
*/
static unsigned int snd_pmac_rate_index(pmac_t *chip, pmac_stream_t *rec, unsigned int rate)
{
int i, ok, found;
ok = rec->cur_freqs;
if (rate > chip->freq_table[0])
return 0;
found = 0;
for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
if (! (ok & 1)) continue;
found = i;
if (rate >= chip->freq_table[i])
break;
}
return found;
}
/*
* check whether another stream is active
*/
static inline int another_stream(int stream)
{
return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
}
/*
* allocate buffers
*/
static int snd_pmac_pcm_hw_params(snd_pcm_substream_t *subs,
snd_pcm_hw_params_t *hw_params)
{
return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
}
/*
* release buffers
*/
static int snd_pmac_pcm_hw_free(snd_pcm_substream_t *subs)
{
snd_pcm_lib_free_pages(subs);
return 0;
}
/*
* get a stream of the opposite direction
*/
static pmac_stream_t *snd_pmac_get_stream(pmac_t *chip, int stream)
{
switch (stream) {
case SNDRV_PCM_STREAM_PLAYBACK:
return &chip->playback;
case SNDRV_PCM_STREAM_CAPTURE:
return &chip->capture;
default:
snd_BUG();
return NULL;
}
}
/*
* wait while run status is on
*/
inline static void
snd_pmac_wait_ack(pmac_stream_t *rec)
{
int timeout = 50000;
while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
udelay(1);
}
/*
* set the format and rate to the chip.
* call the lowlevel function if defined (e.g. for AWACS).
*/
static void snd_pmac_pcm_set_format(pmac_t *chip)
{
/* set up frequency and format */
out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
if (chip->set_format)
chip->set_format(chip);
}
/*
* stop the DMA transfer
*/
inline static void snd_pmac_dma_stop(pmac_stream_t *rec)
{
out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
snd_pmac_wait_ack(rec);
}
/*
* set the command pointer address
*/
inline static void snd_pmac_dma_set_command(pmac_stream_t *rec, pmac_dbdma_t *cmd)
{
out_le32(&rec->dma->cmdptr, cmd->addr);
}
/*
* start the DMA
*/
inline static void snd_pmac_dma_run(pmac_stream_t *rec, int status)
{
out_le32(&rec->dma->control, status | (status << 16));
}
/*
* prepare playback/capture stream
*/
static int snd_pmac_pcm_prepare(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
int i;
volatile struct dbdma_cmd *cp;
unsigned long flags;
snd_pcm_runtime_t *runtime = subs->runtime;
int rate_index;
long offset;
pmac_stream_t *astr;
rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
rec->period_size = snd_pcm_lib_period_bytes(subs);
rec->nperiods = rec->dma_size / rec->period_size;
rec->cur_period = 0;
rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
/* set up constraints */
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
snd_runtime_check(astr, return -EINVAL);
astr->cur_freqs = 1 << rate_index;
astr->cur_formats = 1 << runtime->format;
chip->rate_index = rate_index;
chip->format = runtime->format;
/* We really want to execute a DMA stop command, after the AWACS
* is initialized.
* For reasons I don't understand, it stops the hissing noise
* common to many PowerBook G3 systems (like mine :-).
*/
spin_lock_irqsave(&chip->reg_lock, flags);
snd_pmac_dma_stop(rec);
if (rec->stream == SNDRV_PCM_STREAM_PLAYBACK) {
st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
snd_pmac_dma_set_command(rec, &chip->extra_dma);
snd_pmac_dma_run(rec, RUN);
}
/* continuous DMA memory type doesn't provide the physical address,
* so we need to resolve the address here...
*/
offset = virt_to_bus(runtime->dma_area);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
st_le32(&cp->phy_addr, offset);
st_le16(&cp->req_count, rec->period_size);
/*st_le16(&cp->res_count, 0);*/
st_le16(&cp->xfer_status, 0);
offset += rec->period_size;
}
/* make loop */
st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
st_le32(&cp->cmd_dep, rec->cmd.addr);
snd_pmac_dma_stop(rec);
snd_pmac_dma_set_command(rec, &rec->cmd);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return 0;
}
/*
* stop beep if running (no spinlock!)
*/
static void snd_pmac_beep_stop(pmac_t *chip)
{
pmac_beep_t *beep = chip->beep;
if (beep && beep->running) {
beep->running = 0;
del_timer(&beep->timer);
snd_pmac_dma_stop(&chip->playback);
st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
}
}
/*
* PCM trigger/stop
*/
static int snd_pmac_pcm_trigger(pmac_t *chip, pmac_stream_t *rec,
snd_pcm_substream_t *subs, int cmd)
{
unsigned long flags;
volatile struct dbdma_cmd *cp;
int i, command;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (rec->running)
return -EBUSY;
command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
spin_lock_irqsave(&chip->reg_lock, flags);
snd_pmac_beep_stop(chip);
snd_pmac_pcm_set_format(chip);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
out_le16(&cp->command, command);
snd_pmac_dma_set_command(rec, &rec->cmd);
(void)in_le32(&rec->dma->status);
snd_pmac_dma_run(rec, RUN|WAKE);
rec->running = 1;
spin_unlock_irqrestore(&chip->reg_lock, flags);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
spin_lock_irqsave(&chip->reg_lock, flags);
rec->running = 0;
/*printk("stopped!!\n");*/
snd_pmac_dma_stop(rec);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
out_le16(&cp->command, DBDMA_STOP);
spin_unlock_irqrestore(&chip->reg_lock, flags);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* return the current pointer
*/
inline
static snd_pcm_uframes_t snd_pmac_pcm_pointer(pmac_t *chip, pmac_stream_t *rec,
snd_pcm_substream_t *subs)
{
int count = 0;
#if 1 /* hmm.. how can we get the current dma pointer?? */
int stat;
volatile struct dbdma_cmd *cp = &rec->cmd.cmds[rec->cur_period];
stat = ld_le16(&cp->xfer_status);
if (stat & (ACTIVE|DEAD)) {
count = in_le16(&cp->res_count);
count = rec->period_size - count;
}
#endif
count += rec->cur_period * rec->period_size;
/*printk("pointer=%d\n", count);*/
return bytes_to_frames(subs->runtime, count);
}
/*
* playback
*/
static int snd_pmac_playback_prepare(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
}
static int snd_pmac_playback_trigger(snd_pcm_substream_t *subs,
int cmd)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
}
static snd_pcm_uframes_t snd_pmac_playback_pointer(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
}
/*
* capture
*/
static int snd_pmac_capture_prepare(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
}
static int snd_pmac_capture_trigger(snd_pcm_substream_t *subs,
int cmd)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
}
static snd_pcm_uframes_t snd_pmac_capture_pointer(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
}
/*
* update playback/capture pointer from interrupts
*/
static void snd_pmac_pcm_update(pmac_t *chip, pmac_stream_t *rec)
{
volatile struct dbdma_cmd *cp;
int c;
int stat;
spin_lock(&chip->reg_lock);
if (rec->running) {
cp = &rec->cmd.cmds[rec->cur_period];
for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
stat = ld_le16(&cp->xfer_status);
if (! (stat & ACTIVE))
break;
/*printk("update frag %d\n", rec->cur_period);*/
st_le16(&cp->xfer_status, 0);
st_le16(&cp->req_count, rec->period_size);
/*st_le16(&cp->res_count, 0);*/
rec->cur_period++;
if (rec->cur_period >= rec->nperiods) {
rec->cur_period = 0;
cp = rec->cmd.cmds;
} else
cp++;
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(rec->substream);
spin_lock(&chip->reg_lock);
}
}
spin_unlock(&chip->reg_lock);
}
/*
* hw info
*/
static snd_pcm_hardware_t snd_pmac_playback =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_44100,
.rate_min = 7350,
.rate_max = 44100,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 32768,
.period_bytes_min = 256,
.period_bytes_max = 16384,
.periods_min = 1,
.periods_max = PMAC_MAX_FRAGS,
};
static snd_pcm_hardware_t snd_pmac_capture =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_44100,
.rate_min = 7350,
.rate_max = 44100,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 32768,
.period_bytes_min = 256,
.period_bytes_max = 16384,
.periods_min = 1,
.periods_max = PMAC_MAX_FRAGS,
};
#if 0 // NYI
static int snd_pmac_hw_rule_rate(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
pmac_t *chip = rule->private;
pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]);
int i, freq_table[8], num_freqs;
snd_runtime_check(rec, return -EINVAL);
num_freqs = 0;
for (i = chip->num_freqs - 1; i >= 0; i--) {
if (rec->cur_freqs & (1 << i))
freq_table[num_freqs++] = chip->freq_table[i];
}
return snd_interval_list(hw_param_interval(params, rule->var),
num_freqs, freq_table, 0);
}
static int snd_pmac_hw_rule_format(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
pmac_t *chip = rule->private;
pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]);
snd_runtime_check(rec, return -EINVAL);
return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
rec->cur_formats);
}
#endif // NYI
static int snd_pmac_pcm_open(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
snd_pcm_runtime_t *runtime = subs->runtime;
int i, j, fflags;
static int typical_freqs[] = {
48000,
44100,
22050,
11025,
0,
};
static int typical_freq_flags[] = {
SNDRV_PCM_RATE_48000,
SNDRV_PCM_RATE_44100,
SNDRV_PCM_RATE_22050,
SNDRV_PCM_RATE_11025,
0,
};
/* look up frequency table and fill bit mask */
runtime->hw.rates = 0;
fflags = chip->freqs_ok;
for (i = 0; typical_freqs[i]; i++) {
for (j = 0; j < chip->num_freqs; j++) {
if ((chip->freqs_ok & (1 << j)) &&
chip->freq_table[j] == typical_freqs[i]) {
runtime->hw.rates |= typical_freq_flags[i];
fflags &= ~(1 << j);
break;
}
}
}
if (fflags) /* rest */
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
/* check for minimum and maximum rates */
for (i = 0; i < chip->num_freqs; i++) {
if (chip->freqs_ok & (1 << i)) {
runtime->hw.rate_max = chip->freq_table[i];
break;
}
}
for (i = chip->num_freqs - 1; i >= 0; i--) {
if (chip->freqs_ok & (1 << i)) {
runtime->hw.rate_min = chip->freq_table[i];
break;
}
}
runtime->hw.formats = chip->formats_ok;
if (chip->can_capture) {
if (! chip->can_duplex)
runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
}
runtime->private_data = rec;
rec->substream = subs;
#if 0 /* FIXME: still under development.. */
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
snd_pmac_hw_rule_rate, chip, rec->stream, -1);
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
snd_pmac_hw_rule_format, chip, rec->stream, -1);
#endif
runtime->hw.periods_max = rec->cmd.size - 1;
if (chip->can_duplex)
snd_pcm_set_sync(subs);
return 0;
}
static int snd_pmac_pcm_close(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
pmac_stream_t *astr;
snd_pmac_dma_stop(rec);
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
snd_runtime_check(astr, return -EINVAL);
/* reset constraints */
astr->cur_freqs = chip->freqs_ok;
astr->cur_formats = chip->formats_ok;
return 0;
}
static int snd_pmac_playback_open(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
subs->runtime->hw = snd_pmac_playback;
return snd_pmac_pcm_open(chip, &chip->playback, subs);
}
static int snd_pmac_capture_open(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
subs->runtime->hw = snd_pmac_capture;
return snd_pmac_pcm_open(chip, &chip->capture, subs);
}
static int snd_pmac_playback_close(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_close(chip, &chip->playback, subs);
}
static int snd_pmac_capture_close(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_close(chip, &chip->capture, subs);
}
/*
*/
static snd_pcm_ops_t snd_pmac_playback_ops = {
.open = snd_pmac_playback_open,
.close = snd_pmac_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_pmac_pcm_hw_params,
.hw_free = snd_pmac_pcm_hw_free,
.prepare = snd_pmac_playback_prepare,
.trigger = snd_pmac_playback_trigger,
.pointer = snd_pmac_playback_pointer,
};
static snd_pcm_ops_t snd_pmac_capture_ops = {
.open = snd_pmac_capture_open,
.close = snd_pmac_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_pmac_pcm_hw_params,
.hw_free = snd_pmac_pcm_hw_free,
.prepare = snd_pmac_capture_prepare,
.trigger = snd_pmac_capture_trigger,
.pointer = snd_pmac_capture_pointer,
};
static void pmac_pcm_free(snd_pcm_t *pcm)
{
snd_pcm_lib_preallocate_free_for_all(pcm);
}
int __init snd_pmac_pcm_new(pmac_t *chip)
{
snd_pcm_t *pcm;
int err;
int num_captures = 1;
if (! chip->can_capture)
num_captures = 0;
err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
if (chip->can_capture)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
pcm->private_data = chip;
pcm->private_free = pmac_pcm_free;
pcm->info_flags = 0;
strcpy(pcm->name, chip->card->shortname);
chip->pcm = pcm;
chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
if (chip->can_byte_swap)
chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
chip->playback.cur_formats = chip->formats_ok;
chip->capture.cur_formats = chip->formats_ok;
chip->playback.cur_freqs = chip->freqs_ok;
chip->capture.cur_freqs = chip->freqs_ok;
/* preallocate 64k buffer */
snd_pcm_lib_preallocate_pages_for_all(pcm, 64 * 1024, 64 * 1024, GFP_KERNEL);
return 0;
}
/*
* beep stuff
*/
/*
* Stuff for outputting a beep. The values range from -327 to +327
* so we can multiply by an amplitude in the range 0..100 to get a
* signed short value to put in the output buffer.
*/
static short beep_wform[256] = {
0, 40, 79, 117, 153, 187, 218, 245,
269, 288, 304, 316, 323, 327, 327, 324,
318, 310, 299, 288, 275, 262, 249, 236,
224, 213, 204, 196, 190, 186, 183, 182,
182, 183, 186, 189, 192, 196, 200, 203,
206, 208, 209, 209, 209, 207, 204, 201,
197, 193, 188, 183, 179, 174, 170, 166,
163, 161, 160, 159, 159, 160, 161, 162,
164, 166, 168, 169, 171, 171, 171, 170,
169, 167, 163, 159, 155, 150, 144, 139,
133, 128, 122, 117, 113, 110, 107, 105,
103, 103, 103, 103, 104, 104, 105, 105,
105, 103, 101, 97, 92, 86, 78, 68,
58, 45, 32, 18, 3, -11, -26, -41,
-55, -68, -79, -88, -95, -100, -102, -102,
-99, -93, -85, -75, -62, -48, -33, -16,
0, 16, 33, 48, 62, 75, 85, 93,
99, 102, 102, 100, 95, 88, 79, 68,
55, 41, 26, 11, -3, -18, -32, -45,
-58, -68, -78, -86, -92, -97, -101, -103,
-105, -105, -105, -104, -104, -103, -103, -103,
-103, -105, -107, -110, -113, -117, -122, -128,
-133, -139, -144, -150, -155, -159, -163, -167,
-169, -170, -171, -171, -171, -169, -168, -166,
-164, -162, -161, -160, -159, -159, -160, -161,
-163, -166, -170, -174, -179, -183, -188, -193,
-197, -201, -204, -207, -209, -209, -209, -208,
-206, -203, -200, -196, -192, -189, -186, -183,
-182, -182, -183, -186, -190, -196, -204, -213,
-224, -236, -249, -262, -275, -288, -299, -310,
-318, -324, -327, -327, -323, -316, -304, -288,
-269, -245, -218, -187, -153, -117, -79, -40,
};
#define BEEP_SRATE 22050 /* 22050 Hz sample rate */
#define BEEP_BUFLEN 512
#define BEEP_VOLUME 15 /* 0 - 100 */
static void snd_pmac_beep_stop_callback(unsigned long data)
{
pmac_t *chip = snd_magic_cast(pmac_t, (void*)data,);
spin_lock(&chip->reg_lock);
snd_pmac_beep_stop(chip);
snd_pmac_pcm_set_format(chip);
spin_unlock(&chip->reg_lock);
}
/* because mksound callback takes no private argument, we must keep
the chip pointer here as static variable.
This means that only one chip can beep. Well, it's ok -
anyway we don't like hearing loud beeps from every chip
at the same time :)
*/
static pmac_t *beeping_chip = NULL;
static void snd_pmac_mksound(unsigned int hz, unsigned int ticks)
{
pmac_t *chip;
pmac_stream_t *rec;
pmac_beep_t *beep;
unsigned long flags;
int beep_speed = 0;
int srate;
int period, ncycles, nsamples;
int i, j, f;
short *p;
if ((chip = beeping_chip) == NULL || (beep = chip->beep) == NULL)
return;
rec = &chip->playback;
beep_speed = snd_pmac_rate_index(chip, rec, BEEP_SRATE);
srate = chip->freq_table[beep_speed];
if (hz <= srate / BEEP_BUFLEN || hz > srate / 2) {
/* this is a hack for broken X server code */
hz = 750;
ticks = 12;
}
spin_lock_irqsave(&chip->reg_lock, flags);
if (chip->playback.running || chip->capture.running || beep->running) {
spin_unlock_irqrestore(&chip->reg_lock, flags);
return;
}
beep->running = 1;
spin_unlock_irqrestore(&chip->reg_lock, flags);
if (hz == beep->hz && beep->volume == beep->volume_play) {
nsamples = beep->nsamples;
} else {
period = srate * 256 / hz; /* fixed point */
ncycles = BEEP_BUFLEN * 256 / period;
nsamples = (period * ncycles) >> 8;
f = ncycles * 65536 / nsamples;
j = 0;
p = beep->buf;
for (i = 0; i < nsamples; ++i, p += 2) {
p[0] = p[1] = beep_wform[j >> 8] * beep->volume;
j = (j + f) & 0xffff;
}
beep->hz = hz;
beep->volume_play = beep->volume;
beep->nsamples = nsamples;
}
spin_lock_irqsave(&chip->reg_lock, flags);
if (beep->running) {
if (ticks <= 0)
ticks = 1;
del_timer(&beep->timer);
beep->timer.expires = jiffies + ticks;
beep->timer.function = snd_pmac_beep_stop_callback;
beep->timer.data = (unsigned long)chip;
add_timer(&beep->timer);
snd_pmac_dma_stop(rec);
st_le16(&chip->extra_dma.cmds->req_count, nsamples * 4);
st_le16(&chip->extra_dma.cmds->xfer_status, 0);
st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
st_le32(&chip->extra_dma.cmds->phy_addr, beep->addr);
st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
out_le32(&chip->awacs->control,
(in_le32(&chip->awacs->control) & ~0x1f00)
| (beep_speed << 8));
out_le32(&chip->awacs->byteswap, 0);
snd_pmac_dma_set_command(rec, &chip->extra_dma);
snd_pmac_dma_run(rec, RUN);
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
/*
* beep volume mixer
*/
static int snd_pmac_info_beep(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 100;
return 0;
}
static int snd_pmac_get_beep(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
snd_runtime_check(chip->beep, return -ENXIO);
ucontrol->value.integer.value[0] = chip->beep->volume;
return 0;
}
static int snd_pmac_put_beep(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
int oval;
snd_runtime_check(chip->beep, return -ENXIO);
oval = chip->beep->volume;
chip->beep->volume = ucontrol->value.integer.value[0];
return oval != chip->beep->volume;
}
static snd_kcontrol_new_t snd_pmac_beep_mixer = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Beep Playback Volume",
.index = 0,
.info = snd_pmac_info_beep,
.get = snd_pmac_get_beep,
.put = snd_pmac_put_beep,
};
static void snd_pmac_beep_free(snd_kcontrol_t *control)
{
pmac_t *chip = snd_magic_cast(pmac_t, _snd_kcontrol_chip(control),);
if (chip->beep) {
/* restore */
kd_mksound = chip->beep->orig_mksound;
kfree(chip->beep->buf);
kfree(chip->beep);
chip->beep = NULL;
}
}
/* Initialize beep stuff */
int __init snd_pmac_attach_beep(pmac_t *chip)
{
pmac_beep_t *beep;
int err;
beep = kmalloc(sizeof(*beep), GFP_KERNEL);
if (! beep)
return -ENOMEM;
beep->buf = (short *) kmalloc(BEEP_BUFLEN * 4, GFP_KERNEL);
if (! beep->buf) {
kfree(beep);
return -ENOMEM;
}
beep->addr = virt_to_bus(beep->buf);
init_timer(&beep->timer);
beep->timer.function = snd_pmac_beep_stop_callback;
beep->timer.data = (unsigned long) chip;
beep->orig_mksound = kd_mksound;
beep->volume = BEEP_VOLUME;
beep->running = 0;
beep->control = snd_ctl_new1(&snd_pmac_beep_mixer, chip);
if (beep->control == NULL) {
kfree(beep);
return -ENOMEM;
}
beep->control->private_free = snd_pmac_beep_free;
if ((err = snd_ctl_add(chip->card, beep->control)) < 0) {
kfree(beep);
return err;
}
/* hook */
beeping_chip = chip;
chip->beep = beep;
kd_mksound = snd_pmac_mksound;
return 0;
}
static void snd_pmac_dbdma_reset(pmac_t *chip)
{
out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
snd_pmac_wait_ack(&chip->playback);
out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
snd_pmac_wait_ack(&chip->capture);
}
/*
* interrupt handlers
*/
static void
snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = snd_magic_cast(pmac_t, devid, return);
snd_pmac_pcm_update(chip, &chip->playback);
}
static void
snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = snd_magic_cast(pmac_t, devid, return);
snd_pmac_pcm_update(chip, &chip->capture);
}
static void
snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = snd_magic_cast(pmac_t, devid, return);
int ctrl = in_le32(&chip->awacs->control);
/*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
if (ctrl & MASK_PORTCHG) {
/* do something when headphone is plugged/unplugged? */
if (chip->update_automute)
chip->update_automute(chip, 1);
}
if (ctrl & MASK_CNTLERR) {
int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
if (err && chip->model <= PMAC_SCREAMER)
snd_printk(KERN_DEBUG "error %x\n", err);
}
/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
out_le32(&chip->awacs->control, ctrl);
}
/*
* a wrapper to feature call for compatibility
*/
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
static void snd_pmac_sound_feature(pmac_t *chip, int enable)
{
#ifdef CONFIG_PPC_HAS_FEATURE_CALLS
ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
#else
if (chip->is_pbook_G3) {
pmu_suspend();
feature_clear(chip->node, FEATURE_Sound_power);
feature_clear(chip->node, FEATURE_Sound_CLK_enable);
mdelay(1000); /* XXX */
pmu_resume();
}
if (chip->is_pbook_3400) {
feature_set(chip->node, FEATURE_IOBUS_enable);
udelay(10);
}
#endif
}
#else /* CONFIG_PM && CONFIG_PMAC_PBOOK */
#define snd_pmac_sound_feature(chip,enable) /**/
#endif /* CONFIG_PM && CONFIG_PMAC_PBOOK */
/*
* release resources
*/
static int snd_pmac_free(pmac_t *chip)
{
int i;
/* stop sounds */
if (chip->initialized) {
snd_pmac_dbdma_reset(chip);
/* disable interrupts from awacs interface */
out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
}
snd_pmac_sound_feature(chip, 0);
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
snd_pmac_unregister_sleep_notifier(chip);
#endif
/* clean up mixer if any */
if (chip->mixer_free)
chip->mixer_free(chip);
/* release resources */
if (chip->irq >= 0)
free_irq(chip->irq, (void*)chip);
if (chip->tx_irq >= 0)
free_irq(chip->tx_irq, (void*)chip);
if (chip->rx_irq >= 0)
free_irq(chip->rx_irq, (void*)chip);
snd_pmac_dbdma_free(&chip->playback.cmd);
snd_pmac_dbdma_free(&chip->capture.cmd);
snd_pmac_dbdma_free(&chip->extra_dma);
if (chip->macio_base)
iounmap(chip->macio_base);
if (chip->latch_base)
iounmap(chip->latch_base);
if (chip->awacs)
iounmap((void*)chip->awacs);
if (chip->playback.dma)
iounmap((void*)chip->playback.dma);
if (chip->capture.dma)
iounmap((void*)chip->capture.dma);
if (chip->node) {
for (i = 0; i < 3; i++) {
if (chip->of_requested & (1 << i))
release_OF_resource(chip->node, i);
}
}
snd_magic_kfree(chip);
return 0;
}
/*
* free the device
*/
static int snd_pmac_dev_free(snd_device_t *device)
{
pmac_t *chip = snd_magic_cast(pmac_t, device->device_data, return -ENXIO);
return snd_pmac_free(chip);
}
/*
* check the machine support byteswap (little-endian)
*/
static void __init detect_byte_swap(pmac_t *chip)
{
struct device_node *mio;
/* if seems that Keylargo can't byte-swap */
for (mio = chip->node->parent; mio; mio = mio->parent) {
if (strcmp(mio->name, "mac-io") == 0) {
if (device_is_compatible(mio, "Keylargo"))
chip->can_byte_swap = 0;
break;
}
}
/* it seems the Pismo & iBook can't byte-swap in hardware. */
if (machine_is_compatible("PowerBook3,1") ||
machine_is_compatible("PowerBook2,1"))
chip->can_byte_swap = 0 ;
if (machine_is_compatible("PowerBook2,1"))
chip->can_duplex = 0;
}
/*
* detect a sound chip
*/
static int __init snd_pmac_detect(pmac_t *chip)
{
struct device_node *sound;
unsigned int *prop, l;
if (_machine != _MACH_Pmac)
return -ENODEV;
chip->subframe = 0;
chip->revision = 0;
chip->freqs_ok = 0xff; /* all ok */
chip->model = PMAC_AWACS;
chip->can_byte_swap = 1;
chip->can_duplex = 1;
chip->can_capture = 1;
chip->num_freqs = 8;
chip->freq_table = awacs_freqs;
chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
/* check machine type */
if (machine_is_compatible("AAPL,3400/2400")
|| machine_is_compatible("AAPL,3500"))
chip->is_pbook_3400 = 1;
else if (machine_is_compatible("PowerBook1,1")
|| machine_is_compatible("AAPL,PowerBook1998"))
chip->is_pbook_G3 = 1;
chip->node = find_devices("awacs");
if (chip->node)
return 0; /* ok */
/*
* powermac G3 models have a node called "davbus"
* with a child called "sound".
*/
chip->node = find_devices("davbus");
/*
* if we didn't find a davbus device, try 'i2s-a' since
* this seems to be what iBooks have
*/
if (! chip->node)
chip->node = find_devices("i2s-a");
if (! chip->node)
return -ENODEV;
sound = find_devices("sound");
while (sound && sound->parent != chip->node)
sound = sound->next;
if (! sound)
return -ENODEV;
prop = (unsigned int *) get_property(sound, "sub-frame", 0);
if (prop && *prop < 16)
chip->subframe = *prop;
/* This should be verified on older screamers */
if (device_is_compatible(sound, "screamer")) {
chip->model = PMAC_SCREAMER;
// chip->can_byte_swap = 0; /* FIXME: check this */
}
if (device_is_compatible(sound, "burgundy")) {
chip->model = PMAC_BURGUNDY;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "daca")) {
chip->model = PMAC_DACA;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "tumbler")) {
chip->model = PMAC_TUMBLER;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->num_freqs = 2;
chip->freq_table = tumbler_freqs;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "snapper")) {
chip->model = PMAC_SNAPPER;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->num_freqs = 2;
chip->freq_table = tumbler_freqs;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
prop = (unsigned int *)get_property(sound, "device-id", 0);
if (prop)
chip->device_id = *prop;
chip->has_iic = (find_devices("perch") != NULL);
detect_byte_swap(chip);
/* look for a property saying what sample rates
are available */
prop = (unsigned int *) get_property(sound, "sample-rates", &l);
if (! prop)
prop = (unsigned int *) get_property(sound, "output-frame-rates", &l);
if (prop) {
int i;
chip->freqs_ok = 0;
for (l /= sizeof(int); l > 0; --l) {
unsigned int r = *prop++;
/* Apple 'Fixed' format */
if (r >= 0x10000)
r >>= 16;
for (i = 0; i < chip->num_freqs; ++i) {
if (r == chip->freq_table[i]) {
chip->freqs_ok |= (1 << i);
break;
}
}
}
} else {
/* assume only 44.1khz */
chip->freqs_ok = 1;
}
return 0;
}
/*
* exported - boolean info callbacks for ease of programming
*/
int snd_pmac_boolean_stereo_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
int snd_pmac_boolean_mono_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
#ifdef PMAC_SUPPORT_AUTOMUTE
/*
* auto-mute
*/
static int pmac_auto_mute_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = chip->auto_mute;
return 0;
}
static int pmac_auto_mute_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] != chip->auto_mute) {
chip->auto_mute = ucontrol->value.integer.value[0];
if (chip->update_automute)
chip->update_automute(chip, 1);
return 1;
}
return 0;
}
static int pmac_hp_detect_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
if (chip->detect_headphone)
ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
else
ucontrol->value.integer.value[0] = 0;
return 0;
}
static snd_kcontrol_new_t auto_mute_controls[] __initdata = {
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Auto Mute Switch",
.info = snd_pmac_boolean_mono_info,
.get = pmac_auto_mute_get,
.put = pmac_auto_mute_put,
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Detection",
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_pmac_boolean_mono_info,
.get = pmac_hp_detect_get,
},
};
int __init snd_pmac_add_automute(pmac_t *chip)
{
int err;
chip->auto_mute = 1;
err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
if (err < 0)
return err;
chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
return snd_ctl_add(chip->card, chip->hp_detect_ctl);
}
#endif /* PMAC_SUPPORT_AUTOMUTE */
/*
* create and detect a pmac chip record
*/
int __init snd_pmac_new(snd_card_t *card, pmac_t **chip_return)
{
pmac_t *chip;
struct device_node *np;
int i, err;
static snd_device_ops_t ops = {
.dev_free = snd_pmac_dev_free,
};
snd_runtime_check(chip_return, return -EINVAL);
*chip_return = NULL;
chip = snd_magic_kcalloc(pmac_t, 0, GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
chip->card = card;
spin_lock_init(&chip->reg_lock);
chip->irq = chip->tx_irq = chip->rx_irq = -1;
chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
if ((err = snd_pmac_detect(chip)) < 0)
goto __error;
if (snd_pmac_dbdma_alloc(&chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
snd_pmac_dbdma_alloc(&chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
snd_pmac_dbdma_alloc(&chip->extra_dma, 2) < 0) {
err = -ENOMEM;
goto __error;
}
np = chip->node;
if (np->n_addrs < 3 || np->n_intrs < 3) {
err = -ENODEV;
goto __error;
}
for (i = 0; i < 3; i++) {
static char *name[3] = { NULL, "- Tx DMA", "- Rx DMA" };
if (! request_OF_resource(np, i, name[i])) {
snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
err = -ENODEV;
goto __error;
}
chip->of_requested |= (1 << i);
}
chip->awacs = (volatile struct awacs_regs *) ioremap(np->addrs[0].address, 0x1000);
chip->playback.dma = (volatile struct dbdma_regs *) ioremap(np->addrs[1].address, 0x100);
chip->capture.dma = (volatile struct dbdma_regs *) ioremap(np->addrs[2].address, 0x100);
if (chip->model <= PMAC_BURGUNDY) {
if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0,
"PMac", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line);
err = -EBUSY;
goto __error;
}
chip->irq = np->intrs[0].line;
}
if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0,
"PMac Output", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line);
err = -EBUSY;
goto __error;
}
chip->tx_irq = np->intrs[1].line;
if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0,
"PMac Input", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line);
err = -EBUSY;
goto __error;
}
chip->rx_irq = np->intrs[2].line;
snd_pmac_sound_feature(chip, 1);
/* reset */
out_le32(&chip->awacs->control, 0x11);
/* Powerbooks have odd ways of enabling inputs such as
an expansion-bay CD or sound from an internal modem
or a PC-card modem. */
if (chip->is_pbook_3400) {
/* Enable CD and PC-card sound inputs. */
/* This is done by reading from address
* f301a000, + 0x10 to enable the expansion-bay
* CD sound input, + 0x80 to enable the PC-card
* sound input. The 0x100 enables the SCSI bus
* terminator power.
*/
chip->latch_base = (unsigned char *) ioremap (0xf301a000, 0x1000);
in_8(chip->latch_base + 0x190);
} else if (chip->is_pbook_G3) {
struct device_node* mio;
for (mio = chip->node->parent; mio; mio = mio->parent) {
if (strcmp(mio->name, "mac-io") == 0
&& mio->n_addrs > 0) {
chip->macio_base = (unsigned char *) ioremap
(mio->addrs[0].address, 0x40);
break;
}
}
/* Enable CD sound input. */
/* The relevant bits for writing to this byte are 0x8f.
* I haven't found out what the 0x80 bit does.
* For the 0xf bits, writing 3 or 7 enables the CD
* input, any other value disables it. Values
* 1, 3, 5, 7 enable the microphone. Values 0, 2,
* 4, 6, 8 - f enable the input from the modem.
*/
if (chip->macio_base)
out_8(chip->macio_base + 0x37, 3);
}
/* Reset dbdma channels */
snd_pmac_dbdma_reset(chip);
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
/* add sleep notifier */
snd_pmac_register_sleep_notifier(chip);
card->set_power_state = snd_pmac_set_power_state;
card->power_state_private_data = chip;
#endif
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
goto __error;
*chip_return = chip;
return 0;
__error:
snd_pmac_free(chip);
return err;
}
/*
* sleep notify for powerbook
*/
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
/*
* Save state when going to sleep, restore it afterwards.
*/
static void snd_pmac_suspend(pmac_t *chip)
{
unsigned long flags;
snd_card_t *card = chip->card;
snd_power_lock(card);
if (card->power_state == SNDRV_CTL_POWER_D3hot)
goto __skip;
if (chip->suspend)
chip->suspend(chip);
snd_pcm_suspend_all(chip->pcm);
spin_lock_irqsave(&chip->reg_lock, flags);
if (chip->beep && chip->beep->running)
snd_pmac_beep_stop(chip);
spin_unlock_irqrestore(&chip->reg_lock, flags);
disable_irq(chip->irq);
disable_irq(chip->tx_irq);
disable_irq(chip->rx_irq);
snd_pmac_sound_feature(chip, 0);
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
__skip:
snd_power_unlock(card);
}
static void snd_pmac_resume(pmac_t *chip)
{
snd_card_t *card = chip->card;
snd_power_lock(card);
if (card->power_state == SNDRV_CTL_POWER_D0)
goto __skip;
snd_pmac_sound_feature(chip, 1);
if (chip->resume)
chip->resume(chip);
/* enable CD sound input */
if (chip->macio_base && chip->is_pbook_G3) {
out_8(chip->macio_base + 0x37, 3);
} else if (chip->is_pbook_3400) {
in_8(chip->latch_base + 0x190);
}
snd_pmac_pcm_set_format(chip);
enable_irq(chip->irq);
enable_irq(chip->tx_irq);
enable_irq(chip->rx_irq);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
__skip:
snd_power_unlock(card);
}
/* the chip is stored statically by snd_pmac_register_sleep_notifier
* because we can't have any private data for notify callback.
*/
static pmac_t *sleeping_pmac = NULL;
static int snd_pmac_sleep_notify(struct pmu_sleep_notifier *self, int when)
{
pmac_t *chip;
chip = sleeping_pmac;
snd_runtime_check(chip, return 0);
switch (when) {
case PBOOK_SLEEP_NOW:
snd_pmac_suspend(chip);
break;
case PBOOK_WAKE:
snd_pmac_resume(chip);
break;
}
return PBOOK_SLEEP_OK;
}
static struct pmu_sleep_notifier snd_pmac_sleep_notifier = {
snd_pmac_sleep_notify, SLEEP_LEVEL_SOUND,
};
static int __init snd_pmac_register_sleep_notifier(pmac_t *chip)
{
/* should be protected here.. */
if (sleeping_pmac) {
snd_printd("sleep notifier already reigistered\n");
return -EBUSY;
}
sleeping_pmac = chip;
pmu_register_sleep_notifier(&snd_pmac_sleep_notifier);
chip->sleep_registered = 1;
return 0;
}
static int snd_pmac_unregister_sleep_notifier(pmac_t *chip)
{
if (! chip->sleep_registered)
return 0;
/* should be protected here.. */
if (sleeping_pmac != chip)
return -ENODEV;
pmu_unregister_sleep_notifier(&snd_pmac_sleep_notifier);
sleeping_pmac = NULL;
return 0;
}
/* callback */
static int snd_pmac_set_power_state(snd_card_t *card, unsigned int power_state)
{
pmac_t *chip = snd_magic_cast(pmac_t, card->power_state_private_data, return -ENXIO);
switch (power_state) {
case SNDRV_CTL_POWER_D0:
case SNDRV_CTL_POWER_D1:
case SNDRV_CTL_POWER_D2:
snd_pmac_resume(chip);
break;
case SNDRV_CTL_POWER_D3hot:
case SNDRV_CTL_POWER_D3cold:
snd_pmac_suspend(chip);
break;
default:
return -EINVAL;
}
return 0;
}
#endif /* CONFIG_PM && CONFIG_PMAC_PBOOK */