blob: f26b2069e5b2bc27e805b99043b2dd3271008c27 [file] [log] [blame]
/*
* usbmidi.c - ALSA USB MIDI driver
*
* Copyright (c) 2002 Clemens Ladisch
* All rights reserved.
*
* Based on the OSS usb-midi driver by NAGANO Daisuke,
* NetBSD's umidi driver by Takuya SHIOZAKI,
* the "USB Device Class Definition for MIDI Devices" by Roland
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed and/or modified under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sound/driver.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <sound/core.h>
#include <sound/minors.h>
#include <sound/rawmidi.h>
#include "usbaudio.h"
struct usb_ms_header_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bcdMSC[2];
__u16 wTotalLength;
} __attribute__ ((packed));
struct usb_ms_endpoint_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bNumEmbMIDIJack;
__u8 baAssocJackID[0];
} __attribute__ ((packed));
typedef struct snd_usb_midi snd_usb_midi_t;
typedef struct snd_usb_midi_endpoint snd_usb_midi_endpoint_t;
typedef struct snd_usb_midi_out_endpoint snd_usb_midi_out_endpoint_t;
typedef struct snd_usb_midi_in_endpoint snd_usb_midi_in_endpoint_t;
typedef struct usbmidi_out_port usbmidi_out_port_t;
typedef struct usbmidi_in_port usbmidi_in_port_t;
struct snd_usb_midi {
snd_usb_audio_t *chip;
struct usb_interface *iface;
const snd_usb_audio_quirk_t *quirk;
snd_rawmidi_t* rmidi;
struct snd_usb_midi_endpoint {
snd_usb_midi_out_endpoint_t *out;
snd_usb_midi_in_endpoint_t *in;
} endpoints[MIDI_MAX_ENDPOINTS];
};
struct snd_usb_midi_out_endpoint {
snd_usb_midi_t* umidi;
struct urb* urb;
int max_transfer; /* size of urb buffer */
struct tasklet_struct tasklet;
spinlock_t buffer_lock;
struct usbmidi_out_port {
snd_usb_midi_out_endpoint_t* ep;
snd_rawmidi_substream_t* substream;
int active;
uint8_t cable; /* cable number << 4 */
uint8_t state;
#define STATE_UNKNOWN 0
#define STATE_1PARAM 1
#define STATE_2PARAM_1 2
#define STATE_2PARAM_2 3
#define STATE_SYSEX_0 4
#define STATE_SYSEX_1 5
#define STATE_SYSEX_2 6
uint8_t data[2];
} ports[0x10];
};
struct snd_usb_midi_in_endpoint {
snd_usb_midi_t* umidi;
struct urb* urb;
struct usbmidi_in_port {
snd_rawmidi_substream_t* substream;
int active;
} ports[0x10];
};
static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep);
static const uint8_t snd_usbmidi_cin_length[] = {
0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
};
/*
* Submits the URB, with error handling.
*/
static int snd_usbmidi_submit_urb(struct urb* urb, int flags)
{
int err = usb_submit_urb(urb, flags);
if (err < 0 && err != -ENODEV)
printk(KERN_ERR "snd-usb-midi: usb_submit_urb: %d\n", err);
return err;
}
/*
* Error handling for URB completion functions.
*/
static int snd_usbmidi_urb_error(int status)
{
if (status == -ENOENT)
return status; /* killed */
if (status == -ENODEV ||
status == -EILSEQ ||
status == -ETIMEDOUT)
return -ENODEV; /* device removed */
printk(KERN_ERR "snd-usb-midi: urb status %d\n", status);
return 0; /* continue */
}
/*
* Receives a USB MIDI packet.
*/
static void snd_usbmidi_input_packet(snd_usb_midi_in_endpoint_t* ep,
uint8_t packet[4])
{
int cable = packet[0] >> 4;
usbmidi_in_port_t* port = &ep->ports[cable];
if (!port->active)
return;
snd_rawmidi_receive(port->substream, &packet[1],
snd_usbmidi_cin_length[packet[0] & 0x0f]);
}
/*
* Processes the data read from the device.
*/
static void snd_usbmidi_in_urb_complete(struct urb* urb)
{
snd_usb_midi_in_endpoint_t* ep = snd_magic_cast(snd_usb_midi_in_endpoint_t, urb->context, return);
if (urb->status == 0) {
uint8_t* buffer = (uint8_t*)ep->urb->transfer_buffer;
int i;
for (i = 0; i + 4 <= urb->actual_length; i += 4)
if (buffer[i] != 0)
snd_usbmidi_input_packet(ep, &buffer[i]);
} else {
if (snd_usbmidi_urb_error(urb->status) < 0)
return;
}
urb->dev = ep->umidi->chip->dev;
snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
}
/*
* Converts the data read from a Midiman device to standard USB MIDI packets.
*/
static void snd_usbmidi_in_midiman_complete(struct urb* urb)
{
if (urb->status == 0) {
uint8_t* buffer = (uint8_t*)urb->transfer_buffer;
int i;
for (i = 0; i + 4 <= urb->actual_length; i += 4) {
if (buffer[i + 3] != 0) {
/*
* snd_usbmidi_input_packet() doesn't check the
* contents of the message, so we simply use
* some random CIN with the desired length.
*/
static const uint8_t cin[4] = {
0x0, 0xf, 0x2, 0x3
};
uint8_t ctl = buffer[i + 3];
buffer[i + 3] = buffer[i + 2];
buffer[i + 2] = buffer[i + 1];
buffer[i + 1] = buffer[i + 0];
buffer[i + 0] = (ctl & 0xf0) | cin[ctl & 3];
} else {
buffer[i + 0] = 0;
}
}
}
snd_usbmidi_in_urb_complete(urb);
}
static void snd_usbmidi_out_urb_complete(struct urb* urb)
{
snd_usb_midi_out_endpoint_t* ep = snd_magic_cast(snd_usb_midi_out_endpoint_t, urb->context, return);
if (urb->status < 0) {
if (snd_usbmidi_urb_error(urb->status) < 0)
return;
}
snd_usbmidi_do_output(ep);
}
/*
* Converts standard USB MIDI packets to what Midman devices expect.
*/
static void snd_usbmidi_convert_to_midiman(struct urb* urb)
{
uint8_t* buffer = (uint8_t*)urb->transfer_buffer;
int i;
for (i = 0; i + 4 <= urb->transfer_buffer_length; i += 4) {
uint8_t cin = buffer[i];
buffer[i + 0] = buffer[i + 1];
buffer[i + 1] = buffer[i + 2];
buffer[i + 2] = buffer[i + 3];
buffer[i + 3] = (cin & 0xf0) | snd_usbmidi_cin_length[cin & 0x0f];
}
}
/*
* Adds one USB MIDI packet to the output buffer.
*/
static inline void output_packet(struct urb* urb,
uint8_t p0, uint8_t p1, uint8_t p2, uint8_t p3)
{
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p0;
buf[1] = p1;
buf[2] = p2;
buf[3] = p3;
urb->transfer_buffer_length += 4;
}
/*
* Converts MIDI commands to USB MIDI packets.
*/
static void snd_usbmidi_transmit_byte(usbmidi_out_port_t* port,
uint8_t b, struct urb* urb)
{
uint8_t p0 = port->cable;
if (b >= 0xf8) {
output_packet(urb, p0 | 0x0f, b, 0, 0);
} else if (b >= 0xf0) {
switch (b) {
case 0xf0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case 0xf1:
case 0xf3:
port->data[0] = b;
port->state = STATE_1PARAM;
break;
case 0xf2:
port->data[0] = b;
port->state = STATE_2PARAM_1;
break;
case 0xf4:
case 0xf5:
port->state = STATE_UNKNOWN;
break;
case 0xf6:
output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
port->state = STATE_UNKNOWN;
break;
case 0xf7:
switch (port->state) {
case STATE_SYSEX_0:
output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
break;
case STATE_SYSEX_1:
output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
break;
}
port->state = STATE_UNKNOWN;
break;
}
} else if (b >= 0x80) {
port->data[0] = b;
if (b >= 0xc0 && b <= 0xdf)
port->state = STATE_1PARAM;
else
port->state = STATE_2PARAM_1;
} else { /* b < 0x80 */
switch (port->state) {
case STATE_1PARAM:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
} else {
p0 |= 0x02;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], b, 0);
break;
case STATE_2PARAM_1:
port->data[1] = b;
port->state = STATE_2PARAM_2;
break;
case STATE_2PARAM_2:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
port->state = STATE_2PARAM_1;
} else {
p0 |= 0x03;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], port->data[1], b);
break;
case STATE_SYSEX_0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case STATE_SYSEX_1:
port->data[1] = b;
port->state = STATE_SYSEX_2;
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
port->state = STATE_SYSEX_0;
break;
}
}
}
/*
* Moves data from one substream buffer to the URB transfer buffer.
*/
static void snd_usbmidi_transmit(snd_usb_midi_out_endpoint_t* ep, int port_idx)
{
struct urb* urb = ep->urb;
usbmidi_out_port_t* port = &ep->ports[port_idx];
while (urb->transfer_buffer_length < ep->max_transfer) {
uint8_t b;
if (snd_rawmidi_transmit_peek(port->substream, &b, 1) != 1) {
port->active = 0;
break;
}
snd_usbmidi_transmit_byte(port, b, urb);
snd_rawmidi_transmit_ack(port->substream, 1);
}
}
/*
* This is called when some data should be transferred to the device
* (from one or more substreams).
*/
static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep)
{
int p;
struct urb* urb = ep->urb;
unsigned long flags;
spin_lock_irqsave(&ep->buffer_lock, flags);
if (urb->status == -EINPROGRESS) {
spin_unlock_irqrestore(&ep->buffer_lock, flags);
return;
}
urb->transfer_buffer_length = 0;
for (p= 0; p < 0x10; ++p)
if (ep->ports[p].active)
snd_usbmidi_transmit(ep, p);
if (urb->transfer_buffer_length > 0) {
if (ep->umidi->quirk && ep->umidi->quirk->type == QUIRK_MIDI_MIDIMAN)
snd_usbmidi_convert_to_midiman(urb);
urb->dev = ep->umidi->chip->dev;
snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
}
spin_unlock_irqrestore(&ep->buffer_lock, flags);
}
static void snd_usbmidi_out_tasklet(unsigned long data)
{
snd_usb_midi_out_endpoint_t* ep = snd_magic_cast(snd_usb_midi_out_endpoint_t, (void*)data, return);
snd_usbmidi_do_output(ep);
}
static int snd_usbmidi_output_open(snd_rawmidi_substream_t* substream)
{
snd_usb_midi_t* umidi = snd_magic_cast(snd_usb_midi_t, substream->rmidi->private_data, return -ENXIO);
usbmidi_out_port_t* port = NULL;
int i, j;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
if (umidi->endpoints[i].out)
for (j = 0; j < 0x10; ++j)
if (umidi->endpoints[i].out->ports[j].substream == substream) {
port = &umidi->endpoints[i].out->ports[j];
break;
}
if (!port)
return -ENXIO;
substream->runtime->private_data = port;
port->state = STATE_UNKNOWN;
return 0;
}
static int snd_usbmidi_output_close(snd_rawmidi_substream_t* substream)
{
return 0;
}
static void snd_usbmidi_output_trigger(snd_rawmidi_substream_t* substream, int up)
{
usbmidi_out_port_t* port = (usbmidi_out_port_t*)substream->runtime->private_data;
port->active = up;
if (up)
tasklet_hi_schedule(&port->ep->tasklet);
}
static int snd_usbmidi_input_open(snd_rawmidi_substream_t* substream)
{
snd_usb_midi_t* umidi = snd_magic_cast(snd_usb_midi_t, substream->rmidi->private_data, return -ENXIO);
usbmidi_in_port_t* port = NULL;
int i, j;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
if (umidi->endpoints[i].in)
for (j = 0; j < 0x10; ++j)
if (umidi->endpoints[i].in->ports[j].substream == substream) {
port = &umidi->endpoints[i].in->ports[j];
break;
}
if (!port)
return -ENXIO;
substream->runtime->private_data = port;
return 0;
}
static int snd_usbmidi_input_close(snd_rawmidi_substream_t* substream)
{
return 0;
}
static void snd_usbmidi_input_trigger(snd_rawmidi_substream_t* substream, int up)
{
usbmidi_in_port_t* port = (usbmidi_in_port_t*)substream->runtime->private_data;
port->active = up;
}
static snd_rawmidi_ops_t snd_usbmidi_output_ops = {
.open = snd_usbmidi_output_open,
.close = snd_usbmidi_output_close,
.trigger = snd_usbmidi_output_trigger,
};
static snd_rawmidi_ops_t snd_usbmidi_input_ops = {
.open = snd_usbmidi_input_open,
.close = snd_usbmidi_input_close,
.trigger = snd_usbmidi_input_trigger
};
/*
* Frees an input endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_in_endpoint_delete(snd_usb_midi_in_endpoint_t* ep)
{
if (ep->urb) {
if (ep->urb->transfer_buffer) {
usb_unlink_urb(ep->urb);
kfree(ep->urb->transfer_buffer);
}
usb_free_urb(ep->urb);
}
snd_magic_kfree(ep);
}
/*
* For Roland devices, use the alternate setting which uses interrupt
* transfers for input.
*/
static struct usb_endpoint_descriptor* snd_usbmidi_get_int_epd(snd_usb_midi_t* umidi)
{
struct usb_interface* intf;
struct usb_host_interface* intfd;
if (umidi->chip->dev->descriptor.idVendor != 0x0582)
return NULL;
intf = umidi->iface;
if (!intf || intf->num_altsetting != 2)
return NULL;
intfd = &intf->altsetting[0];
if (intfd->desc.bNumEndpoints != 2 ||
(intfd->endpoint[0].desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
(intfd->endpoint[1].desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK)
return NULL;
intfd = &intf->altsetting[1];
if (intfd->desc.bNumEndpoints != 2 ||
(intfd->endpoint[0].desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
(intfd->endpoint[1].desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
return NULL;
usb_set_interface(umidi->chip->dev, intfd->desc.bInterfaceNumber,
intfd->desc.bAlternateSetting);
return &intfd->endpoint[1].desc;
}
static struct usb_endpoint_descriptor* snd_usbmidi_get_midiman_int_epd(snd_usb_midi_t* umidi)
{
struct usb_interface* intf = umidi->iface;
if (!intf || intf->altsetting[0].desc.bNumEndpoints < 1)
return NULL;
return &intf->altsetting[0].endpoint[0].desc;
}
/*
* Creates an input endpoint.
*/
static int snd_usbmidi_in_endpoint_create(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* ep_info,
snd_usb_midi_endpoint_t* rep)
{
snd_usb_midi_in_endpoint_t* ep;
struct usb_endpoint_descriptor* int_epd;
void* buffer;
unsigned int pipe;
int length;
rep->in = NULL;
ep = snd_magic_kcalloc(snd_usb_midi_in_endpoint_t, 0, GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
if (umidi->quirk && umidi->quirk->type == QUIRK_MIDI_MIDIMAN)
int_epd = snd_usbmidi_get_midiman_int_epd(umidi);
else
int_epd = snd_usbmidi_get_int_epd(umidi);
ep->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urb) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (int_epd)
pipe = usb_rcvintpipe(umidi->chip->dev, ep_info->epnum);
else
pipe = usb_rcvbulkpipe(umidi->chip->dev, ep_info->epnum);
length = usb_maxpacket(umidi->chip->dev, pipe, 0);
buffer = kmalloc(length, GFP_KERNEL);
if (!buffer) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (int_epd)
usb_fill_int_urb(ep->urb, umidi->chip->dev, pipe, buffer, length,
snd_usbmidi_in_urb_complete, ep, int_epd->bInterval);
else
usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer, length,
snd_usbmidi_in_urb_complete, ep);
rep->in = ep;
return 0;
}
static int snd_usbmidi_count_bits(uint16_t x)
{
int i, bits = 0;
for (i = 0; i < 16; ++i)
bits += (x & (1 << i)) != 0;
return bits;
}
/*
* Frees an output endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_out_endpoint_delete(snd_usb_midi_out_endpoint_t* ep)
{
if (ep->tasklet.func)
tasklet_kill(&ep->tasklet);
if (ep->urb) {
if (ep->urb->transfer_buffer) {
usb_unlink_urb(ep->urb);
kfree(ep->urb->transfer_buffer);
}
usb_free_urb(ep->urb);
}
snd_magic_kfree(ep);
}
/*
* Creates an output endpoint, and initializes output ports.
*/
static int snd_usbmidi_out_endpoint_create(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* ep_info,
snd_usb_midi_endpoint_t* rep)
{
snd_usb_midi_out_endpoint_t* ep;
int i;
unsigned int pipe;
void* buffer;
rep->out = NULL;
ep = snd_magic_kcalloc(snd_usb_midi_out_endpoint_t, 0, GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
ep->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urb) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
pipe = usb_sndbulkpipe(umidi->chip->dev, ep_info->epnum);
ep->max_transfer = usb_maxpacket(umidi->chip->dev, pipe, 1) & ~3;
buffer = kmalloc(ep->max_transfer, GFP_KERNEL);
if (!buffer) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer,
ep->max_transfer, snd_usbmidi_out_urb_complete, ep);
spin_lock_init(&ep->buffer_lock);
tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
for (i = 0; i < 0x10; ++i)
if (ep_info->out_cables & (1 << i)) {
ep->ports[i].ep = ep;
ep->ports[i].cable = i << 4;
}
rep->out = ep;
return 0;
}
/*
* Frees everything.
*/
static void snd_usbmidi_free(snd_usb_midi_t* umidi)
{
int i;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i];
if (ep->out)
snd_usbmidi_out_endpoint_delete(ep->out);
if (ep->in)
snd_usbmidi_in_endpoint_delete(ep->in);
}
snd_magic_kfree(umidi);
}
static void snd_usbmidi_rawmidi_free(snd_rawmidi_t* rmidi)
{
snd_usb_midi_t* umidi = snd_magic_cast(snd_usb_midi_t, rmidi->private_data, return);
snd_usbmidi_free(umidi);
}
static snd_rawmidi_substream_t* snd_usbmidi_find_substream(snd_usb_midi_t* umidi,
int stream, int number)
{
struct list_head* list;
list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
snd_rawmidi_substream_t* substream = list_entry(list, snd_rawmidi_substream_t, list);
if (substream->number == number)
return substream;
}
return NULL;
}
static void snd_usbmidi_init_substream(snd_usb_midi_t* umidi,
int stream, int number,
snd_rawmidi_substream_t** rsubstream)
{
snd_rawmidi_substream_t* substream = snd_usbmidi_find_substream(umidi, stream, number);
if (!substream) {
snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
return;
}
/* TODO: read port name from jack descriptor */
snprintf(substream->name, sizeof(substream->name),
"%s Port %d", umidi->chip->card->shortname, number);
*rsubstream = substream;
}
/*
* Creates the endpoints and their ports.
*/
static int snd_usbmidi_create_endpoints(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoints)
{
int i, j, err;
int out_ports = 0, in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (!endpoints[i].epnum)
continue;
if (endpoints[i].out_cables) {
err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
if (endpoints[i].in_cables) {
err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
for (j = 0; j < 0x10; ++j) {
if (endpoints[i].out_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
&umidi->endpoints[i].out->ports[j].substream);
++out_ports;
}
if (endpoints[i].in_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
&umidi->endpoints[i].in->ports[j].substream);
++in_ports;
}
}
}
printk(KERN_INFO "snd-usb-midi: created %d output and %d input ports\n",
out_ports, in_ports);
return 0;
}
/*
* Returns MIDIStreaming device capabilities.
*/
static int snd_usbmidi_get_ms_info(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoints)
{
struct usb_interface* intf;
struct usb_host_interface* intfd;
struct usb_ms_header_descriptor* ms_header;
struct usb_host_endpoint* ep;
struct usb_ms_endpoint_descriptor* ms_ep;
int i, epidx;
intf = umidi->iface;
if (!intf)
return -ENXIO;
intfd = &intf->altsetting[0];
ms_header = (struct usb_ms_header_descriptor*)intfd->extra;
if (intfd->extralen >= 7 &&
ms_header->bLength >= 7 &&
ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
ms_header->bDescriptorSubtype == HEADER)
printk(KERN_INFO "snd-usb-midi: MIDIStreaming version %02x.%02x\n",
ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
else
printk(KERN_WARNING "snd-usb-midi: MIDIStreaming interface descriptor not found\n");
epidx = 0;
for (i = 0; i < intfd->desc.bNumEndpoints; ++i) {
ep = &intfd->endpoint[i];
if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK)
continue;
ms_ep = (struct usb_ms_endpoint_descriptor*)ep->extra;
if (ep->extralen < 4 ||
ms_ep->bLength < 4 ||
ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
ms_ep->bDescriptorSubtype != MS_GENERAL)
continue;
if (endpoints[epidx].epnum != 0 &&
endpoints[epidx].epnum != (ep->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK)) {
++epidx;
if (epidx >= MIDI_MAX_ENDPOINTS) {
printk(KERN_WARNING "snd-usb-midi: too many endpoints\n");
break;
}
}
endpoints[epidx].epnum = ep->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if (ep->desc.bEndpointAddress & USB_DIR_IN) {
endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
} else {
endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
}
printk(KERN_INFO "snd-usb-midi: detected %d %s jack(s) on endpoint %d\n",
ms_ep->bNumEmbMIDIJack,
ep->desc.bEndpointAddress & USB_DIR_IN ? "input" : "output",
endpoints[epidx].epnum);
}
return 0;
}
/*
* If the first endpoint isn't specified, use the first endpoint in the
* first alternate setting of the interface.
*/
static int snd_usbmidi_detect_endpoint(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoint)
{
struct usb_interface* intf;
struct usb_host_interface* intfd;
struct usb_endpoint_descriptor* epd;
if (endpoint->epnum == -1) {
intf = umidi->iface;
if (!intf || intf->num_altsetting < 1)
return -ENOENT;
intfd = intf->altsetting;
if (intfd->desc.bNumEndpoints < 1)
return -ENOENT;
epd = &intfd->endpoint [0].desc;
endpoint->epnum = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
}
return 0;
}
/*
* Detects the endpoints and ports of Yamaha devices.
*/
static int snd_usbmidi_detect_yamaha(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoint)
{
struct usb_interface* intf;
struct usb_host_interface* intfd;
uint8_t* cs_desc;
intf = umidi->iface;
if (!intf)
return -ENOENT;
intfd = intf->altsetting;
if (intfd->desc.bNumEndpoints < 1)
return -ENOENT;
for (cs_desc = intfd->extra;
cs_desc < intfd->extra + intfd->extralen && cs_desc[0] >= 2;
cs_desc += cs_desc[0]) {
if (cs_desc[1] == CS_AUDIO_INTERFACE) {
if (cs_desc[2] == MIDI_IN_JACK)
endpoint->in_cables = (endpoint->in_cables << 1) | 1;
else if (cs_desc[2] == MIDI_OUT_JACK)
endpoint->out_cables = (endpoint->out_cables << 1) | 1;
}
}
if (!endpoint->in_cables && !endpoint->out_cables)
return -ENOENT;
endpoint->epnum = -1;
return snd_usbmidi_detect_endpoint(umidi, endpoint);
}
/*
* Creates the endpoints and their ports for Midiman devices.
*/
static int snd_usbmidi_create_endpoints_midiman(snd_usb_midi_t* umidi, int ports)
{
snd_usb_midi_endpoint_info_t ep_info;
struct usb_interface* intf;
struct usb_host_interface* intfd;
struct usb_endpoint_descriptor* epd;
int cable, err;
intf = umidi->iface;
if (!intf)
return -ENOENT;
intfd = intf->altsetting;
if (intfd->desc.bNumEndpoints < (ports > 1 ? 5 : 3)) {
snd_printdd(KERN_ERR "not enough endpoints\n");
return -ENOENT;
}
epd = &intfd->endpoint[0].desc;
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) {
snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
return -ENXIO;
}
epd = &intfd->endpoint[2].desc;
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
return -ENXIO;
}
if (ports > 1) {
epd = &intfd->endpoint[4].desc;
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
return -ENXIO;
}
}
ep_info.epnum = intfd->endpoint[2].desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = 0x5555 & ((1 << ports) - 1);
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
if (err < 0)
return err;
ep_info.epnum = intfd->endpoint[0].desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.in_cables = (1 << ports) - 1;
err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
if (err < 0)
return err;
umidi->endpoints[0].in->urb->complete = snd_usbmidi_in_midiman_complete;
if (ports > 1) {
ep_info.epnum = intfd->endpoint[4].desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = 0xaaaa & ((1 << ports) - 1);
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
if (err < 0)
return err;
}
for (cable = 0; cable < ports; ++cable) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
&umidi->endpoints[cable & 1].out->ports[cable].substream);
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
&umidi->endpoints[0].in->ports[cable].substream);
}
return 0;
}
static int snd_usbmidi_create_rawmidi(snd_usb_midi_t* umidi,
int out_ports, int in_ports)
{
snd_rawmidi_t* rmidi;
int err;
err = snd_rawmidi_new(umidi->chip->card, "USB MIDI",
umidi->chip->next_midi_device++,
out_ports, in_ports, &rmidi);
if (err < 0)
return err;
strcpy(rmidi->name, umidi->chip->card->longname);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = umidi;
rmidi->private_free = snd_usbmidi_rawmidi_free;
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
umidi->rmidi = rmidi;
return 0;
}
/*
* Creates and registers everything needed for a MIDI streaming interface.
*/
int snd_usb_create_midi_interface(snd_usb_audio_t* chip,
struct usb_interface* iface,
const snd_usb_audio_quirk_t* quirk)
{
snd_usb_midi_t* umidi;
snd_usb_midi_endpoint_info_t endpoints[MIDI_MAX_ENDPOINTS];
int out_ports, in_ports;
int i, err;
umidi = snd_magic_kcalloc(snd_usb_midi_t, 0, GFP_KERNEL);
if (!umidi)
return -ENOMEM;
umidi->chip = chip;
umidi->iface = iface;
umidi->quirk = quirk;
/* detect the endpoint(s) to use */
memset(endpoints, 0, sizeof(endpoints));
if (!quirk) {
err = snd_usbmidi_get_ms_info(umidi, endpoints);
} else {
switch (quirk->type) {
case QUIRK_MIDI_FIXED_ENDPOINT:
memcpy(&endpoints[0], quirk->data,
sizeof(snd_usb_midi_endpoint_info_t));
err = snd_usbmidi_detect_endpoint(umidi, &endpoints[0]);
break;
case QUIRK_MIDI_YAMAHA:
err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
break;
case QUIRK_MIDI_MIDIMAN:
err = 0;
break;
default:
snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
err = -ENXIO;
break;
}
}
if (err < 0) {
snd_magic_kfree(umidi);
return err;
}
/* create rawmidi device */
if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) {
in_ports = out_ports = (int)quirk->data;
} else {
out_ports = 0;
in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
out_ports += snd_usbmidi_count_bits(endpoints[i].out_cables);
in_ports += snd_usbmidi_count_bits(endpoints[i].in_cables);
}
}
err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
if (err < 0) {
snd_magic_kfree(umidi);
return err;
}
/* create endpoint/port structures */
if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
err = snd_usbmidi_create_endpoints_midiman(umidi, (int)quirk->data);
else
err = snd_usbmidi_create_endpoints(umidi, endpoints);
if (err < 0) {
snd_usbmidi_free(umidi);
return err;
}
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
if (umidi->endpoints[i].in)
snd_usbmidi_submit_urb(umidi->endpoints[i].in->urb,
GFP_KERNEL);
return 0;
}