blob: 4e840a3a28ecf5434b98a54069c19ad62d82acf6 [file] [log] [blame]
/***************************************************************************\
|* *|
|* Copyright 1993-1999 NVIDIA, Corporation. All rights reserved. *|
|* *|
|* NOTICE TO USER: The source code is copyrighted under U.S. and *|
|* international laws. Users and possessors of this source code are *|
|* hereby granted a nonexclusive, royalty-free copyright license to *|
|* use this code in individual and commercial software. *|
|* *|
|* Any use of this source code must include, in the user documenta- *|
|* tion and internal comments to the code, notices to the end user *|
|* as follows: *|
|* *|
|* Copyright 1993-1999 NVIDIA, Corporation. All rights reserved. *|
|* *|
|* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *|
|* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *|
|* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *|
|* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *|
|* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *|
|* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *|
|* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *|
|* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *|
|* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *|
|* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *|
|* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *|
|* *|
|* U.S. Government End Users. This source code is a "commercial *|
|* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *|
|* consisting of "commercial computer software" and "commercial *|
|* computer software documentation," as such terms are used in *|
|* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *|
|* ment only as a commercial end item. Consistent with 48 C.F.R. *|
|* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *|
|* all U.S. Government End Users acquire the source code with only *|
|* those rights set forth herein. *|
|* *|
\***************************************************************************/
/*
* GPL licensing note -- nVidia is allowing a liberal interpretation of
* the documentation restriction above, to merely say that this nVidia's
* copyright and disclaimer should be included with all code derived
* from this source. -- Jeff Garzik <jgarzik@pobox.com>, 01/Nov/99
*/
/* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/nv/riva_hw.c,v 1.8 2000/02/08 17:19:11 dawes Exp $ */
#include <linux/pci_ids.h>
#include <linux/pci.h>
#include "riva_hw.h"
#include "riva_tbl.h"
#include "nv_type.h"
/*
* This file is an OS-agnostic file used to make RIVA 128 and RIVA TNT
* operate identically (except TNT has more memory and better 3D quality.
*/
static int nv3Busy
(
RIVA_HW_INST *chip
)
{
return ((chip->Rop->FifoFree < chip->FifoEmptyCount) || (chip->PGRAPH[0x000006B0/4] & 0x01));
}
static int nv4Busy
(
RIVA_HW_INST *chip
)
{
return ((chip->Rop->FifoFree < chip->FifoEmptyCount) || (chip->PGRAPH[0x00000700/4] & 0x01));
}
static int nv10Busy
(
RIVA_HW_INST *chip
)
{
return ((chip->Rop->FifoFree < chip->FifoEmptyCount) || (chip->PGRAPH[0x00000700/4] & 0x01));
}
static void vgaLockUnlock
(
RIVA_HW_INST *chip,
int Lock
)
{
U008 cr11;
VGA_WR08(chip->PCIO, 0x3D4, 0x11);
cr11 = VGA_RD08(chip->PCIO, 0x3D5);
if(Lock) cr11 |= 0x80;
else cr11 &= ~0x80;
VGA_WR08(chip->PCIO, 0x3D5, cr11);
}
static void nv3LockUnlock
(
RIVA_HW_INST *chip,
int Lock
)
{
VGA_WR08(chip->PVIO, 0x3C4, 0x06);
VGA_WR08(chip->PVIO, 0x3C5, Lock ? 0x99 : 0x57);
vgaLockUnlock(chip, Lock);
}
static void nv4LockUnlock
(
RIVA_HW_INST *chip,
int Lock
)
{
VGA_WR08(chip->PCIO, 0x3D4, 0x1F);
VGA_WR08(chip->PCIO, 0x3D5, Lock ? 0x99 : 0x57);
vgaLockUnlock(chip, Lock);
}
static int ShowHideCursor
(
RIVA_HW_INST *chip,
int ShowHide
)
{
int cursor;
cursor = chip->CurrentState->cursor1;
chip->CurrentState->cursor1 = (chip->CurrentState->cursor1 & 0xFE) |
(ShowHide & 0x01);
VGA_WR08(chip->PCIO, 0x3D4, 0x31);
VGA_WR08(chip->PCIO, 0x3D5, chip->CurrentState->cursor1);
return (cursor & 0x01);
}
/****************************************************************************\
* *
* The video arbitration routines calculate some "magic" numbers. Fixes *
* the snow seen when accessing the framebuffer without it. *
* It just works (I hope). *
* *
\****************************************************************************/
#define DEFAULT_GR_LWM 100
#define DEFAULT_VID_LWM 100
#define DEFAULT_GR_BURST_SIZE 256
#define DEFAULT_VID_BURST_SIZE 128
#define VIDEO 0
#define GRAPHICS 1
#define MPORT 2
#define ENGINE 3
#define GFIFO_SIZE 320
#define GFIFO_SIZE_128 256
#define MFIFO_SIZE 120
#define VFIFO_SIZE 256
#define ABS(a) (a>0?a:-a)
typedef struct {
int gdrain_rate;
int vdrain_rate;
int mdrain_rate;
int gburst_size;
int vburst_size;
char vid_en;
char gr_en;
int wcmocc, wcgocc, wcvocc, wcvlwm, wcglwm;
int by_gfacc;
char vid_only_once;
char gr_only_once;
char first_vacc;
char first_gacc;
char first_macc;
int vocc;
int gocc;
int mocc;
char cur;
char engine_en;
char converged;
int priority;
} nv3_arb_info;
typedef struct {
int graphics_lwm;
int video_lwm;
int graphics_burst_size;
int video_burst_size;
int graphics_hi_priority;
int media_hi_priority;
int rtl_values;
int valid;
} nv3_fifo_info;
typedef struct {
char pix_bpp;
char enable_video;
char gr_during_vid;
char enable_mp;
int memory_width;
int video_scale;
int pclk_khz;
int mclk_khz;
int mem_page_miss;
int mem_latency;
char mem_aligned;
} nv3_sim_state;
typedef struct {
int graphics_lwm;
int video_lwm;
int graphics_burst_size;
int video_burst_size;
int valid;
} nv4_fifo_info;
typedef struct {
int pclk_khz;
int mclk_khz;
int nvclk_khz;
char mem_page_miss;
char mem_latency;
int memory_width;
char enable_video;
char gr_during_vid;
char pix_bpp;
char mem_aligned;
char enable_mp;
} nv4_sim_state;
typedef struct {
int graphics_lwm;
int video_lwm;
int graphics_burst_size;
int video_burst_size;
int valid;
} nv10_fifo_info;
typedef struct {
int pclk_khz;
int mclk_khz;
int nvclk_khz;
char mem_page_miss;
char mem_latency;
int memory_type;
int memory_width;
char enable_video;
char gr_during_vid;
char pix_bpp;
char mem_aligned;
char enable_mp;
} nv10_sim_state;
static int nv3_iterate(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo)
{
int iter = 0;
int tmp;
int vfsize, mfsize, gfsize;
int mburst_size = 32;
int mmisses, gmisses, vmisses;
int misses;
int vlwm, glwm, mlwm;
int last, next, cur;
int max_gfsize ;
long ns;
vlwm = 0;
glwm = 0;
mlwm = 0;
vfsize = 0;
gfsize = 0;
cur = ainfo->cur;
mmisses = 2;
gmisses = 2;
vmisses = 2;
if (ainfo->gburst_size == 128) max_gfsize = GFIFO_SIZE_128;
else max_gfsize = GFIFO_SIZE;
max_gfsize = GFIFO_SIZE;
while (1)
{
if (ainfo->vid_en)
{
if (ainfo->wcvocc > ainfo->vocc) ainfo->wcvocc = ainfo->vocc;
if (ainfo->wcvlwm > vlwm) ainfo->wcvlwm = vlwm ;
ns = 1000000 * ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz;
vfsize = ns * ainfo->vdrain_rate / 1000000;
vfsize = ainfo->wcvlwm - ainfo->vburst_size + vfsize;
}
if (state->enable_mp)
{
if (ainfo->wcmocc > ainfo->mocc) ainfo->wcmocc = ainfo->mocc;
}
if (ainfo->gr_en)
{
if (ainfo->wcglwm > glwm) ainfo->wcglwm = glwm ;
if (ainfo->wcgocc > ainfo->gocc) ainfo->wcgocc = ainfo->gocc;
ns = 1000000 * (ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz;
gfsize = (ns * (long) ainfo->gdrain_rate)/1000000;
gfsize = ainfo->wcglwm - ainfo->gburst_size + gfsize;
}
mfsize = 0;
if (!state->gr_during_vid && ainfo->vid_en)
if (ainfo->vid_en && (ainfo->vocc < 0) && !ainfo->vid_only_once)
next = VIDEO;
else if (ainfo->mocc < 0)
next = MPORT;
else if (ainfo->gocc< ainfo->by_gfacc)
next = GRAPHICS;
else return (0);
else switch (ainfo->priority)
{
case VIDEO:
if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once)
next = VIDEO;
else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once)
next = GRAPHICS;
else if (ainfo->mocc<0)
next = MPORT;
else return (0);
break;
case GRAPHICS:
if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once)
next = GRAPHICS;
else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once)
next = VIDEO;
else if (ainfo->mocc<0)
next = MPORT;
else return (0);
break;
default:
if (ainfo->mocc<0)
next = MPORT;
else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once)
next = GRAPHICS;
else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once)
next = VIDEO;
else return (0);
break;
}
last = cur;
cur = next;
iter++;
switch (cur)
{
case VIDEO:
if (last==cur) misses = 0;
else if (ainfo->first_vacc) misses = vmisses;
else misses = 1;
ainfo->first_vacc = 0;
if (last!=cur)
{
ns = 1000000 * (vmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz;
vlwm = ns * ainfo->vdrain_rate/ 1000000;
vlwm = ainfo->vocc - vlwm;
}
ns = 1000000*(misses*state->mem_page_miss + ainfo->vburst_size)/(state->memory_width/8)/state->mclk_khz;
ainfo->vocc = ainfo->vocc + ainfo->vburst_size - ns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gocc - ns*ainfo->gdrain_rate/1000000;
ainfo->mocc = ainfo->mocc - ns*ainfo->mdrain_rate/1000000;
break;
case GRAPHICS:
if (last==cur) misses = 0;
else if (ainfo->first_gacc) misses = gmisses;
else misses = 1;
ainfo->first_gacc = 0;
if (last!=cur)
{
ns = 1000000*(gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz ;
glwm = ns * ainfo->gdrain_rate/1000000;
glwm = ainfo->gocc - glwm;
}
ns = 1000000*(misses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz;
ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gocc + ainfo->gburst_size - ns*ainfo->gdrain_rate/1000000;
ainfo->mocc = ainfo->mocc + 0 - ns*ainfo->mdrain_rate/1000000;
break;
default:
if (last==cur) misses = 0;
else if (ainfo->first_macc) misses = mmisses;
else misses = 1;
ainfo->first_macc = 0;
ns = 1000000*(misses*state->mem_page_miss + mburst_size/(state->memory_width/8))/state->mclk_khz;
ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gocc + 0 - ns*ainfo->gdrain_rate/1000000;
ainfo->mocc = ainfo->mocc + mburst_size - ns*ainfo->mdrain_rate/1000000;
break;
}
if (iter>100)
{
ainfo->converged = 0;
return (1);
}
ns = 1000000*ainfo->gburst_size/(state->memory_width/8)/state->mclk_khz;
tmp = ns * ainfo->gdrain_rate/1000000;
if (ABS(ainfo->gburst_size) + ((ABS(ainfo->wcglwm) + 16 ) & ~0x7) - tmp > max_gfsize)
{
ainfo->converged = 0;
return (1);
}
ns = 1000000*ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz;
tmp = ns * ainfo->vdrain_rate/1000000;
if (ABS(ainfo->vburst_size) + (ABS(ainfo->wcvlwm + 32) & ~0xf) - tmp> VFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
if (ABS(ainfo->gocc) > max_gfsize)
{
ainfo->converged = 0;
return (1);
}
if (ABS(ainfo->vocc) > VFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
if (ABS(ainfo->mocc) > MFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
if (ABS(vfsize) > VFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
if (ABS(gfsize) > max_gfsize)
{
ainfo->converged = 0;
return (1);
}
if (ABS(mfsize) > MFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
}
}
static char nv3_arb(nv3_fifo_info * res_info, nv3_sim_state * state, nv3_arb_info *ainfo)
{
long ens, vns, mns, gns;
int mmisses, gmisses, vmisses, eburst_size, mburst_size;
int refresh_cycle;
refresh_cycle = 0;
refresh_cycle = 2*(state->mclk_khz/state->pclk_khz) + 5;
mmisses = 2;
if (state->mem_aligned) gmisses = 2;
else gmisses = 3;
vmisses = 2;
eburst_size = state->memory_width * 1;
mburst_size = 32;
gns = 1000000 * (gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz;
ainfo->by_gfacc = gns*ainfo->gdrain_rate/1000000;
ainfo->wcmocc = 0;
ainfo->wcgocc = 0;
ainfo->wcvocc = 0;
ainfo->wcvlwm = 0;
ainfo->wcglwm = 0;
ainfo->engine_en = 1;
ainfo->converged = 1;
if (ainfo->engine_en)
{
ens = 1000000*(state->mem_page_miss + eburst_size/(state->memory_width/8) +refresh_cycle)/state->mclk_khz;
ainfo->mocc = state->enable_mp ? 0-ens*ainfo->mdrain_rate/1000000 : 0;
ainfo->vocc = ainfo->vid_en ? 0-ens*ainfo->vdrain_rate/1000000 : 0;
ainfo->gocc = ainfo->gr_en ? 0-ens*ainfo->gdrain_rate/1000000 : 0;
ainfo->cur = ENGINE;
ainfo->first_vacc = 1;
ainfo->first_gacc = 1;
ainfo->first_macc = 1;
nv3_iterate(res_info, state,ainfo);
}
if (state->enable_mp)
{
mns = 1000000 * (mmisses*state->mem_page_miss + mburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz;
ainfo->mocc = state->enable_mp ? 0 : mburst_size - mns*ainfo->mdrain_rate/1000000;
ainfo->vocc = ainfo->vid_en ? 0 : 0- mns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gr_en ? 0: 0- mns*ainfo->gdrain_rate/1000000;
ainfo->cur = MPORT;
ainfo->first_vacc = 1;
ainfo->first_gacc = 1;
ainfo->first_macc = 0;
nv3_iterate(res_info, state,ainfo);
}
if (ainfo->gr_en)
{
ainfo->first_vacc = 1;
ainfo->first_gacc = 0;
ainfo->first_macc = 1;
gns = 1000000*(gmisses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz;
ainfo->gocc = ainfo->gburst_size - gns*ainfo->gdrain_rate/1000000;
ainfo->vocc = ainfo->vid_en? 0-gns*ainfo->vdrain_rate/1000000 : 0;
ainfo->mocc = state->enable_mp ? 0-gns*ainfo->mdrain_rate/1000000: 0;
ainfo->cur = GRAPHICS;
nv3_iterate(res_info, state,ainfo);
}
if (ainfo->vid_en)
{
ainfo->first_vacc = 0;
ainfo->first_gacc = 1;
ainfo->first_macc = 1;
vns = 1000000*(vmisses*state->mem_page_miss + ainfo->vburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz;
ainfo->vocc = ainfo->vburst_size - vns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gr_en? (0-vns*ainfo->gdrain_rate/1000000) : 0;
ainfo->mocc = state->enable_mp? 0-vns*ainfo->mdrain_rate/1000000 :0 ;
ainfo->cur = VIDEO;
nv3_iterate(res_info, state, ainfo);
}
if (ainfo->converged)
{
res_info->graphics_lwm = (int)ABS(ainfo->wcglwm) + 16;
res_info->video_lwm = (int)ABS(ainfo->wcvlwm) + 32;
res_info->graphics_burst_size = ainfo->gburst_size;
res_info->video_burst_size = ainfo->vburst_size;
res_info->graphics_hi_priority = (ainfo->priority == GRAPHICS);
res_info->media_hi_priority = (ainfo->priority == MPORT);
if (res_info->video_lwm > 160)
{
res_info->graphics_lwm = 256;
res_info->video_lwm = 128;
res_info->graphics_burst_size = 64;
res_info->video_burst_size = 64;
res_info->graphics_hi_priority = 0;
res_info->media_hi_priority = 0;
ainfo->converged = 0;
return (0);
}
if (res_info->video_lwm > 128)
{
res_info->video_lwm = 128;
}
return (1);
}
else
{
res_info->graphics_lwm = 256;
res_info->video_lwm = 128;
res_info->graphics_burst_size = 64;
res_info->video_burst_size = 64;
res_info->graphics_hi_priority = 0;
res_info->media_hi_priority = 0;
return (0);
}
}
static char nv3_get_param(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo)
{
int done, g,v, p;
done = 0;
for (p=0; p < 2; p++)
{
for (g=128 ; g > 32; g= g>> 1)
{
for (v=128; v >=32; v = v>> 1)
{
ainfo->priority = p;
ainfo->gburst_size = g;
ainfo->vburst_size = v;
done = nv3_arb(res_info, state,ainfo);
if (done && (g==128))
if ((res_info->graphics_lwm + g) > 256)
done = 0;
if (done)
goto Done;
}
}
}
Done:
return done;
}
static void nv3CalcArbitration
(
nv3_fifo_info * res_info,
nv3_sim_state * state
)
{
nv3_fifo_info save_info;
nv3_arb_info ainfo;
char res_gr, res_vid;
ainfo.gr_en = 1;
ainfo.vid_en = state->enable_video;
ainfo.vid_only_once = 0;
ainfo.gr_only_once = 0;
ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8);
ainfo.vdrain_rate = (int) state->pclk_khz * 2;
if (state->video_scale != 0)
ainfo.vdrain_rate = ainfo.vdrain_rate/state->video_scale;
ainfo.mdrain_rate = 33000;
res_info->rtl_values = 0;
if (!state->gr_during_vid && state->enable_video)
{
ainfo.gr_only_once = 1;
ainfo.gr_en = 1;
ainfo.gdrain_rate = 0;
res_vid = nv3_get_param(res_info, state, &ainfo);
res_vid = ainfo.converged;
save_info.video_lwm = res_info->video_lwm;
save_info.video_burst_size = res_info->video_burst_size;
ainfo.vid_en = 1;
ainfo.vid_only_once = 1;
ainfo.gr_en = 1;
ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8);
ainfo.vdrain_rate = 0;
res_gr = nv3_get_param(res_info, state, &ainfo);
res_gr = ainfo.converged;
res_info->video_lwm = save_info.video_lwm;
res_info->video_burst_size = save_info.video_burst_size;
res_info->valid = res_gr & res_vid;
}
else
{
if (!ainfo.gr_en) ainfo.gdrain_rate = 0;
if (!ainfo.vid_en) ainfo.vdrain_rate = 0;
res_gr = nv3_get_param(res_info, state, &ainfo);
res_info->valid = ainfo.converged;
}
}
static void nv3UpdateArbitrationSettings
(
unsigned VClk,
unsigned pixelDepth,
unsigned *burst,
unsigned *lwm,
RIVA_HW_INST *chip
)
{
nv3_fifo_info fifo_data;
nv3_sim_state sim_data;
unsigned int M, N, P, pll, MClk;
pll = chip->PRAMDAC[0x00000504/4];
M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F;
MClk = (N * chip->CrystalFreqKHz / M) >> P;
sim_data.pix_bpp = (char)pixelDepth;
sim_data.enable_video = 0;
sim_data.enable_mp = 0;
sim_data.video_scale = 1;
sim_data.memory_width = (chip->PEXTDEV[0x00000000/4] & 0x10) ? 128 : 64;
sim_data.memory_width = 128;
sim_data.mem_latency = 9;
sim_data.mem_aligned = 1;
sim_data.mem_page_miss = 11;
sim_data.gr_during_vid = 0;
sim_data.pclk_khz = VClk;
sim_data.mclk_khz = MClk;
nv3CalcArbitration(&fifo_data, &sim_data);
if (fifo_data.valid)
{
int b = fifo_data.graphics_burst_size >> 4;
*burst = 0;
while (b >>= 1) (*burst)++;
*lwm = fifo_data.graphics_lwm >> 3;
}
else
{
*lwm = 0x24;
*burst = 0x2;
}
}
static void nv4CalcArbitration
(
nv4_fifo_info *fifo,
nv4_sim_state *arb
)
{
int data, pagemiss, cas,width, video_enable, color_key_enable, bpp, align;
int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs;
int found, mclk_extra, mclk_loop, cbs, m1, p1;
int mclk_freq, pclk_freq, nvclk_freq, mp_enable;
int us_m, us_n, us_p, video_drain_rate, crtc_drain_rate;
int vpm_us, us_video, vlwm, video_fill_us, cpm_us, us_crt,clwm;
int craw, vraw;
fifo->valid = 1;
pclk_freq = arb->pclk_khz;
mclk_freq = arb->mclk_khz;
nvclk_freq = arb->nvclk_khz;
pagemiss = arb->mem_page_miss;
cas = arb->mem_latency;
width = arb->memory_width >> 6;
video_enable = arb->enable_video;
color_key_enable = arb->gr_during_vid;
bpp = arb->pix_bpp;
align = arb->mem_aligned;
mp_enable = arb->enable_mp;
clwm = 0;
vlwm = 0;
cbs = 128;
pclks = 2;
nvclks = 2;
nvclks += 2;
nvclks += 1;
mclks = 5;
mclks += 3;
mclks += 1;
mclks += cas;
mclks += 1;
mclks += 1;
mclks += 1;
mclks += 1;
mclk_extra = 3;
nvclks += 2;
nvclks += 1;
nvclks += 1;
nvclks += 1;
if (mp_enable)
mclks+=4;
nvclks += 0;
pclks += 0;
found = 0;
vbs = 0;
while (found != 1)
{
fifo->valid = 1;
found = 1;
mclk_loop = mclks+mclk_extra;
us_m = mclk_loop *1000*1000 / mclk_freq;
us_n = nvclks*1000*1000 / nvclk_freq;
us_p = nvclks*1000*1000 / pclk_freq;
if (video_enable)
{
video_drain_rate = pclk_freq * 2;
crtc_drain_rate = pclk_freq * bpp/8;
vpagemiss = 2;
vpagemiss += 1;
crtpagemiss = 2;
vpm_us = (vpagemiss * pagemiss)*1000*1000/mclk_freq;
if (nvclk_freq * 2 > mclk_freq * width)
video_fill_us = cbs*1000*1000 / 16 / nvclk_freq ;
else
video_fill_us = cbs*1000*1000 / (8 * width) / mclk_freq;
us_video = vpm_us + us_m + us_n + us_p + video_fill_us;
vlwm = us_video * video_drain_rate/(1000*1000);
vlwm++;
vbs = 128;
if (vlwm > 128) vbs = 64;
if (vlwm > (256-64)) vbs = 32;
if (nvclk_freq * 2 > mclk_freq * width)
video_fill_us = vbs *1000*1000/ 16 / nvclk_freq ;
else
video_fill_us = vbs*1000*1000 / (8 * width) / mclk_freq;
cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq;
us_crt =
us_video
+video_fill_us
+cpm_us
+us_m + us_n +us_p
;
clwm = us_crt * crtc_drain_rate/(1000*1000);
clwm++;
}
else
{
crtc_drain_rate = pclk_freq * bpp/8;
crtpagemiss = 2;
crtpagemiss += 1;
cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq;
us_crt = cpm_us + us_m + us_n + us_p ;
clwm = us_crt * crtc_drain_rate/(1000*1000);
clwm++;
}
m1 = clwm + cbs - 512;
p1 = m1 * pclk_freq / mclk_freq;
p1 = p1 * bpp / 8;
if ((p1 < m1) && (m1 > 0))
{
fifo->valid = 0;
found = 0;
if (mclk_extra ==0) found = 1;
mclk_extra--;
}
else if (video_enable)
{
if ((clwm > 511) || (vlwm > 255))
{
fifo->valid = 0;
found = 0;
if (mclk_extra ==0) found = 1;
mclk_extra--;
}
}
else
{
if (clwm > 519)
{
fifo->valid = 0;
found = 0;
if (mclk_extra ==0) found = 1;
mclk_extra--;
}
}
craw = clwm;
vraw = vlwm;
if (clwm < 384) clwm = 384;
if (vlwm < 128) vlwm = 128;
data = (int)(clwm);
fifo->graphics_lwm = data;
fifo->graphics_burst_size = 128;
data = (int)((vlwm+15));
fifo->video_lwm = data;
fifo->video_burst_size = vbs;
}
}
static void nv4UpdateArbitrationSettings
(
unsigned VClk,
unsigned pixelDepth,
unsigned *burst,
unsigned *lwm,
RIVA_HW_INST *chip
)
{
nv4_fifo_info fifo_data;
nv4_sim_state sim_data;
unsigned int M, N, P, pll, MClk, NVClk, cfg1;
pll = chip->PRAMDAC[0x00000504/4];
M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F;
MClk = (N * chip->CrystalFreqKHz / M) >> P;
pll = chip->PRAMDAC[0x00000500/4];
M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F;
NVClk = (N * chip->CrystalFreqKHz / M) >> P;
cfg1 = chip->PFB[0x00000204/4];
sim_data.pix_bpp = (char)pixelDepth;
sim_data.enable_video = 0;
sim_data.enable_mp = 0;
sim_data.memory_width = (chip->PEXTDEV[0x00000000/4] & 0x10) ? 128 : 64;
sim_data.mem_latency = (char)cfg1 & 0x0F;
sim_data.mem_aligned = 1;
sim_data.mem_page_miss = (char)(((cfg1 >> 4) &0x0F) + ((cfg1 >> 31) & 0x01));
sim_data.gr_during_vid = 0;
sim_data.pclk_khz = VClk;
sim_data.mclk_khz = MClk;
sim_data.nvclk_khz = NVClk;
nv4CalcArbitration(&fifo_data, &sim_data);
if (fifo_data.valid)
{
int b = fifo_data.graphics_burst_size >> 4;
*burst = 0;
while (b >>= 1) (*burst)++;
*lwm = fifo_data.graphics_lwm >> 3;
}
}
static void nv10CalcArbitration
(
nv10_fifo_info *fifo,
nv10_sim_state *arb
)
{
int data, pagemiss, cas,width, video_enable, color_key_enable, bpp, align;
int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs;
int nvclk_fill, us_extra;
int found, mclk_extra, mclk_loop, cbs, m1;
int mclk_freq, pclk_freq, nvclk_freq, mp_enable;
int us_m, us_m_min, us_n, us_p, video_drain_rate, crtc_drain_rate;
int vus_m, vus_n, vus_p;
int vpm_us, us_video, vlwm, cpm_us, us_crt,clwm;
int clwm_rnd_down;
int craw, m2us, us_pipe, us_pipe_min, vus_pipe, p1clk, p2;
int pclks_2_top_fifo, min_mclk_extra;
int us_min_mclk_extra;
fifo->valid = 1;
pclk_freq = arb->pclk_khz; /* freq in KHz */
mclk_freq = arb->mclk_khz;
nvclk_freq = arb->nvclk_khz;
pagemiss = arb->mem_page_miss;
cas = arb->mem_latency;
width = arb->memory_width/64;
video_enable = arb->enable_video;
color_key_enable = arb->gr_during_vid;
bpp = arb->pix_bpp;
align = arb->mem_aligned;
mp_enable = arb->enable_mp;
clwm = 0;
vlwm = 1024;
cbs = 512;
vbs = 512;
pclks = 4; /* lwm detect. */
nvclks = 3; /* lwm -> sync. */
nvclks += 2; /* fbi bus cycles (1 req + 1 busy) */
mclks = 1; /* 2 edge sync. may be very close to edge so just put one. */
mclks += 1; /* arb_hp_req */
mclks += 5; /* ap_hp_req tiling pipeline */
mclks += 2; /* tc_req latency fifo */
mclks += 2; /* fb_cas_n_ memory request to fbio block */
mclks += 7; /* sm_d_rdv data returned from fbio block */
/* fb.rd.d.Put_gc need to accumulate 256 bits for read */
if (arb->memory_type == 0)
if (arb->memory_width == 64) /* 64 bit bus */
mclks += 4;
else
mclks += 2;
else
if (arb->memory_width == 64) /* 64 bit bus */
mclks += 2;
else
mclks += 1;
if ((!video_enable) && (arb->memory_width == 128))
{
mclk_extra = (bpp == 32) ? 31 : 42; /* Margin of error */
min_mclk_extra = 17;
}
else
{
mclk_extra = (bpp == 32) ? 8 : 4; /* Margin of error */
/* mclk_extra = 4; */ /* Margin of error */
min_mclk_extra = 18;
}
nvclks += 1; /* 2 edge sync. may be very close to edge so just put one. */
nvclks += 1; /* fbi_d_rdv_n */
nvclks += 1; /* Fbi_d_rdata */
nvclks += 1; /* crtfifo load */
if(mp_enable)
mclks+=4; /* Mp can get in with a burst of 8. */
/* Extra clocks determined by heuristics */
nvclks += 0;
pclks += 0;
found = 0;
while(found != 1) {
fifo->valid = 1;
found = 1;
mclk_loop = mclks+mclk_extra;
us_m = mclk_loop *1000*1000 / mclk_freq; /* Mclk latency in us */
us_m_min = mclks * 1000*1000 / mclk_freq; /* Minimum Mclk latency in us */
us_min_mclk_extra = min_mclk_extra *1000*1000 / mclk_freq;
us_n = nvclks*1000*1000 / nvclk_freq;/* nvclk latency in us */
us_p = pclks*1000*1000 / pclk_freq;/* nvclk latency in us */
us_pipe = us_m + us_n + us_p;
us_pipe_min = us_m_min + us_n + us_p;
us_extra = 0;
vus_m = mclk_loop *1000*1000 / mclk_freq; /* Mclk latency in us */
vus_n = (4)*1000*1000 / nvclk_freq;/* nvclk latency in us */
vus_p = 0*1000*1000 / pclk_freq;/* pclk latency in us */
vus_pipe = vus_m + vus_n + vus_p;
if(video_enable) {
video_drain_rate = pclk_freq * 4; /* MB/s */
crtc_drain_rate = pclk_freq * bpp/8; /* MB/s */
vpagemiss = 1; /* self generating page miss */
vpagemiss += 1; /* One higher priority before */
crtpagemiss = 2; /* self generating page miss */
if(mp_enable)
crtpagemiss += 1; /* if MA0 conflict */
vpm_us = (vpagemiss * pagemiss)*1000*1000/mclk_freq;
us_video = vpm_us + vus_m; /* Video has separate read return path */
cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq;
us_crt =
us_video /* Wait for video */
+cpm_us /* CRT Page miss */
+us_m + us_n +us_p /* other latency */
;
clwm = us_crt * crtc_drain_rate/(1000*1000);
clwm++; /* fixed point <= float_point - 1. Fixes that */
} else {
crtc_drain_rate = pclk_freq * bpp/8; /* bpp * pclk/8 */
crtpagemiss = 1; /* self generating page miss */
crtpagemiss += 1; /* MA0 page miss */
if(mp_enable)
crtpagemiss += 1; /* if MA0 conflict */
cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq;
us_crt = cpm_us + us_m + us_n + us_p ;
clwm = us_crt * crtc_drain_rate/(1000*1000);
clwm++; /* fixed point <= float_point - 1. Fixes that */
/*
//
// Another concern, only for high pclks so don't do this
// with video:
// What happens if the latency to fetch the cbs is so large that
// fifo empties. In that case we need to have an alternate clwm value
// based off the total burst fetch
//
us_crt = (cbs * 1000 * 1000)/ (8*width)/mclk_freq ;
us_crt = us_crt + us_m + us_n + us_p + (4 * 1000 * 1000)/mclk_freq;
clwm_mt = us_crt * crtc_drain_rate/(1000*1000);
clwm_mt ++;
if(clwm_mt > clwm)
clwm = clwm_mt;
*/
/* Finally, a heuristic check when width == 64 bits */
if(width == 1){
nvclk_fill = nvclk_freq * 8;
if(crtc_drain_rate * 100 >= nvclk_fill * 102)
clwm = 0xfff; /*Large number to fail */
else if(crtc_drain_rate * 100 >= nvclk_fill * 98) {
clwm = 1024;
cbs = 512;
us_extra = (cbs * 1000 * 1000)/ (8*width)/mclk_freq ;
}
}
}
/*
Overfill check:
*/
clwm_rnd_down = ((int)clwm/8)*8;
if (clwm_rnd_down < clwm)
clwm += 8;
m1 = clwm + cbs - 1024; /* Amount of overfill */
m2us = us_pipe_min + us_min_mclk_extra;
pclks_2_top_fifo = (1024-clwm)/(8*width);
/* pclk cycles to drain */
p1clk = m2us * pclk_freq/(1000*1000);
p2 = p1clk * bpp / 8; /* bytes drained. */
if((p2 < m1) && (m1 > 0)) {
fifo->valid = 0;
found = 0;
if(min_mclk_extra == 0) {
if(cbs <= 32) {
found = 1; /* Can't adjust anymore! */
} else {
cbs = cbs/2; /* reduce the burst size */
}
} else {
min_mclk_extra--;
}
} else {
if (clwm > 1023){ /* Have some margin */
fifo->valid = 0;
found = 0;
if(min_mclk_extra == 0)
found = 1; /* Can't adjust anymore! */
else
min_mclk_extra--;
}
}
craw = clwm;
if(clwm < (1024-cbs+8)) clwm = 1024-cbs+8;
data = (int)(clwm);
/* printf("CRT LWM: %f bytes, prog: 0x%x, bs: 256\n", clwm, data ); */
fifo->graphics_lwm = data; fifo->graphics_burst_size = cbs;
/* printf("VID LWM: %f bytes, prog: 0x%x, bs: %d\n, ", vlwm, data, vbs ); */
fifo->video_lwm = 1024; fifo->video_burst_size = 512;
}
}
static void nv10UpdateArbitrationSettings
(
unsigned VClk,
unsigned pixelDepth,
unsigned *burst,
unsigned *lwm,
RIVA_HW_INST *chip
)
{
nv10_fifo_info fifo_data;
nv10_sim_state sim_data;
unsigned int M, N, P, pll, MClk, NVClk, cfg1;
pll = chip->PRAMDAC[0x00000504/4];
M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F;
MClk = (N * chip->CrystalFreqKHz / M) >> P;
pll = chip->PRAMDAC[0x00000500/4];
M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F;
NVClk = (N * chip->CrystalFreqKHz / M) >> P;
cfg1 = chip->PFB[0x00000204/4];
sim_data.pix_bpp = (char)pixelDepth;
sim_data.enable_video = 0;
sim_data.enable_mp = 0;
sim_data.memory_type = (chip->PFB[0x00000200/4] & 0x01) ? 1 : 0;
sim_data.memory_width = (chip->PEXTDEV[0x00000000/4] & 0x10) ? 128 : 64;
sim_data.mem_latency = (char)cfg1 & 0x0F;
sim_data.mem_aligned = 1;
sim_data.mem_page_miss = (char)(((cfg1 >> 4) &0x0F) + ((cfg1 >> 31) & 0x01));
sim_data.gr_during_vid = 0;
sim_data.pclk_khz = VClk;
sim_data.mclk_khz = MClk;
sim_data.nvclk_khz = NVClk;
nv10CalcArbitration(&fifo_data, &sim_data);
if (fifo_data.valid)
{
int b = fifo_data.graphics_burst_size >> 4;
*burst = 0;
while (b >>= 1) (*burst)++;
*lwm = fifo_data.graphics_lwm >> 3;
}
}
/****************************************************************************\
* *
* RIVA Mode State Routines *
* *
\****************************************************************************/
/*
* Calculate the Video Clock parameters for the PLL.
*/
static int CalcVClock
(
int clockIn,
int *clockOut,
int *mOut,
int *nOut,
int *pOut,
RIVA_HW_INST *chip
)
{
unsigned lowM, highM, highP;
unsigned DeltaNew, DeltaOld;
unsigned VClk, Freq;
unsigned M, N, P;
DeltaOld = 0xFFFFFFFF;
VClk = (unsigned)clockIn;
if (chip->CrystalFreqKHz == 13500)
{
lowM = 7;
highM = 13 - (chip->Architecture == NV_ARCH_03);
}
else
{
lowM = 8;
highM = 14 - (chip->Architecture == NV_ARCH_03);
}
highP = 4 - (chip->Architecture == NV_ARCH_03);
for (P = 0; P <= highP; P ++)
{
Freq = VClk << P;
if ((Freq >= 128000) && (Freq <= chip->MaxVClockFreqKHz))
{
for (M = lowM; M <= highM; M++)
{
N = (VClk << P) * M / chip->CrystalFreqKHz;
if(N <= 255) {
Freq = (chip->CrystalFreqKHz * N / M) >> P;
if (Freq > VClk)
DeltaNew = Freq - VClk;
else
DeltaNew = VClk - Freq;
if (DeltaNew < DeltaOld)
{
*mOut = M;
*nOut = N;
*pOut = P;
*clockOut = Freq;
DeltaOld = DeltaNew;
}
}
}
}
}
return (DeltaOld != 0xFFFFFFFF);
}
/*
* Calculate extended mode parameters (SVGA) and save in a
* mode state structure.
*/
static void CalcStateExt
(
RIVA_HW_INST *chip,
RIVA_HW_STATE *state,
int bpp,
int width,
int hDisplaySize,
int height,
int dotClock
)
{
int pixelDepth, VClk, m, n, p;
/*
* Save mode parameters.
*/
state->bpp = bpp;
state->width = width;
state->height = height;
/*
* Extended RIVA registers.
*/
pixelDepth = (bpp + 1)/8;
CalcVClock(dotClock, &VClk, &m, &n, &p, chip);
switch (chip->Architecture)
{
case NV_ARCH_03:
nv3UpdateArbitrationSettings(VClk,
pixelDepth * 8,
&(state->arbitration0),
&(state->arbitration1),
chip);
state->cursor0 = 0x00;
state->cursor1 = 0x78;
state->cursor2 = 0x00000000;
state->pllsel = 0x10010100;
state->config = ((width + 31)/32)
| (((pixelDepth > 2) ? 3 : pixelDepth) << 8)
| 0x1000;
state->general = 0x00100100;
state->repaint1 = hDisplaySize < 1280 ? 0x06 : 0x02;
break;
case NV_ARCH_04:
nv4UpdateArbitrationSettings(VClk,
pixelDepth * 8,
&(state->arbitration0),
&(state->arbitration1),
chip);
state->cursor0 = 0x00;
state->cursor1 = 0xFC;
state->cursor2 = 0x00000000;
state->pllsel = 0x10000700;
state->config = 0x00001114;
state->general = bpp == 16 ? 0x00101100 : 0x00100100;
state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00;
break;
case NV_ARCH_10:
nv10UpdateArbitrationSettings(VClk,
pixelDepth * 8,
&(state->arbitration0),
&(state->arbitration1),
chip);
state->cursor0 = 0x00;
state->cursor1 = 0xFC;
state->cursor2 = 0x00000000;
state->pllsel = 0x10000700;
state->config = chip->PFB[0x00000200/4];
state->general = bpp == 16 ? 0x00101100 : 0x00100100;
state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00;
break;
}
state->vpll = (p << 16) | (n << 8) | m;
state->repaint0 = (((width/8)*pixelDepth) & 0x700) >> 3;
state->pixel = pixelDepth > 2 ? 3 : pixelDepth;
state->offset0 =
state->offset1 =
state->offset2 =
state->offset3 = 0;
state->pitch0 =
state->pitch1 =
state->pitch2 =
state->pitch3 = pixelDepth * width;
}
/*
* Load fixed function state and pre-calculated/stored state.
*/
#define LOAD_FIXED_STATE(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev)/8; i++) \
chip->dev[tbl##Table##dev[i][0]] = tbl##Table##dev[i][1]
#define LOAD_FIXED_STATE_8BPP(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev##_8BPP)/8; i++) \
chip->dev[tbl##Table##dev##_8BPP[i][0]] = tbl##Table##dev##_8BPP[i][1]
#define LOAD_FIXED_STATE_15BPP(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev##_15BPP)/8; i++) \
chip->dev[tbl##Table##dev##_15BPP[i][0]] = tbl##Table##dev##_15BPP[i][1]
#define LOAD_FIXED_STATE_16BPP(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev##_16BPP)/8; i++) \
chip->dev[tbl##Table##dev##_16BPP[i][0]] = tbl##Table##dev##_16BPP[i][1]
#define LOAD_FIXED_STATE_32BPP(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev##_32BPP)/8; i++) \
chip->dev[tbl##Table##dev##_32BPP[i][0]] = tbl##Table##dev##_32BPP[i][1]
static void UpdateFifoState
(
RIVA_HW_INST *chip
)
{
int i;
switch (chip->Architecture)
{
case NV_ARCH_04:
LOAD_FIXED_STATE(nv4,FIFO);
chip->Tri03 = 0L;
chip->Tri05 = (RivaTexturedTriangle05 *)&(chip->FIFO[0x0000E000/4]);
break;
case NV_ARCH_10:
case NV_ARCH_20:
/*
* Initialize state for the RivaTriangle3D05 routines.
*/
LOAD_FIXED_STATE(nv10tri05,PGRAPH);
LOAD_FIXED_STATE(nv10,FIFO);
chip->Tri03 = 0L;
chip->Tri05 = (RivaTexturedTriangle05 *)&(chip->FIFO[0x0000E000/4]);
break;
}
}
static void LoadStateExt
(
RIVA_HW_INST *chip,
RIVA_HW_STATE *state
)
{
int i;
/*
* Load HW fixed function state.
*/
LOAD_FIXED_STATE(Riva,PMC);
LOAD_FIXED_STATE(Riva,PTIMER);
switch (chip->Architecture)
{
case NV_ARCH_03:
/*
* Make sure frame buffer config gets set before loading PRAMIN.
*/
chip->PFB[0x00000200/4] = state->config;
LOAD_FIXED_STATE(nv3,PFIFO);
LOAD_FIXED_STATE(nv3,PRAMIN);
LOAD_FIXED_STATE(nv3,PGRAPH);
switch (state->bpp)
{
case 15:
case 16:
LOAD_FIXED_STATE_15BPP(nv3,PRAMIN);
LOAD_FIXED_STATE_15BPP(nv3,PGRAPH);
chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000/4]);
break;
case 24:
case 32:
LOAD_FIXED_STATE_32BPP(nv3,PRAMIN);
LOAD_FIXED_STATE_32BPP(nv3,PGRAPH);
chip->Tri03 = 0L;
break;
case 8:
default:
LOAD_FIXED_STATE_8BPP(nv3,PRAMIN);
LOAD_FIXED_STATE_8BPP(nv3,PGRAPH);
chip->Tri03 = 0L;
break;
}
for (i = 0x00000; i < 0x00800; i++)
chip->PRAMIN[0x00000502 + i] = (i << 12) | 0x03;
chip->PGRAPH[0x00000630/4] = state->offset0;
chip->PGRAPH[0x00000634/4] = state->offset1;
chip->PGRAPH[0x00000638/4] = state->offset2;
chip->PGRAPH[0x0000063C/4] = state->offset3;
chip->PGRAPH[0x00000650/4] = state->pitch0;
chip->PGRAPH[0x00000654/4] = state->pitch1;
chip->PGRAPH[0x00000658/4] = state->pitch2;
chip->PGRAPH[0x0000065C/4] = state->pitch3;
break;
case NV_ARCH_04:
/*
* Make sure frame buffer config gets set before loading PRAMIN.
*/
chip->PFB[0x00000200/4] = state->config;
LOAD_FIXED_STATE(nv4,PFIFO);
LOAD_FIXED_STATE(nv4,PRAMIN);
LOAD_FIXED_STATE(nv4,PGRAPH);
switch (state->bpp)
{
case 15:
LOAD_FIXED_STATE_15BPP(nv4,PRAMIN);
LOAD_FIXED_STATE_15BPP(nv4,PGRAPH);
chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000/4]);
break;
case 16:
LOAD_FIXED_STATE_16BPP(nv4,PRAMIN);
LOAD_FIXED_STATE_16BPP(nv4,PGRAPH);
chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000/4]);
break;
case 24:
case 32:
LOAD_FIXED_STATE_32BPP(nv4,PRAMIN);
LOAD_FIXED_STATE_32BPP(nv4,PGRAPH);
chip->Tri03 = 0L;
break;
case 8:
default:
LOAD_FIXED_STATE_8BPP(nv4,PRAMIN);
LOAD_FIXED_STATE_8BPP(nv4,PGRAPH);
chip->Tri03 = 0L;
break;
}
chip->PGRAPH[0x00000640/4] = state->offset0;
chip->PGRAPH[0x00000644/4] = state->offset1;
chip->PGRAPH[0x00000648/4] = state->offset2;
chip->PGRAPH[0x0000064C/4] = state->offset3;
chip->PGRAPH[0x00000670/4] = state->pitch0;
chip->PGRAPH[0x00000674/4] = state->pitch1;
chip->PGRAPH[0x00000678/4] = state->pitch2;
chip->PGRAPH[0x0000067C/4] = state->pitch3;
break;
case NV_ARCH_10:
LOAD_FIXED_STATE(nv10,PFIFO);
LOAD_FIXED_STATE(nv10,PRAMIN);
LOAD_FIXED_STATE(nv10,PGRAPH);
switch (state->bpp)
{
case 15:
LOAD_FIXED_STATE_15BPP(nv10,PRAMIN);
LOAD_FIXED_STATE_15BPP(nv10,PGRAPH);
chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000/4]);
break;
case 16:
LOAD_FIXED_STATE_16BPP(nv10,PRAMIN);
LOAD_FIXED_STATE_16BPP(nv10,PGRAPH);
chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000/4]);
break;
case 24:
case 32:
LOAD_FIXED_STATE_32BPP(nv10,PRAMIN);
LOAD_FIXED_STATE_32BPP(nv10,PGRAPH);
chip->Tri03 = 0L;
break;
case 8:
default:
LOAD_FIXED_STATE_8BPP(nv10,PRAMIN);
LOAD_FIXED_STATE_8BPP(nv10,PGRAPH);
chip->Tri03 = 0L;
break;
}
chip->PGRAPH[0x00000640/4] = state->offset0;
chip->PGRAPH[0x00000644/4] = state->offset1;
chip->PGRAPH[0x00000648/4] = state->offset2;
chip->PGRAPH[0x0000064C/4] = state->offset3;
chip->PGRAPH[0x00000670/4] = state->pitch0;
chip->PGRAPH[0x00000674/4] = state->pitch1;
chip->PGRAPH[0x00000678/4] = state->pitch2;
chip->PGRAPH[0x0000067C/4] = state->pitch3;
chip->PGRAPH[0x00000680/4] = state->pitch3;
chip->PGRAPH[0x00000B00/4] = chip->PFB[0x00000240/4];
chip->PGRAPH[0x00000B04/4] = chip->PFB[0x00000244/4];
chip->PGRAPH[0x00000B08/4] = chip->PFB[0x00000248/4];
chip->PGRAPH[0x00000B0C/4] = chip->PFB[0x0000024C/4];
chip->PGRAPH[0x00000B10/4] = chip->PFB[0x00000250/4];
chip->PGRAPH[0x00000B14/4] = chip->PFB[0x00000254/4];
chip->PGRAPH[0x00000B18/4] = chip->PFB[0x00000258/4];
chip->PGRAPH[0x00000B1C/4] = chip->PFB[0x0000025C/4];
chip->PGRAPH[0x00000B20/4] = chip->PFB[0x00000260/4];
chip->PGRAPH[0x00000B24/4] = chip->PFB[0x00000264/4];
chip->PGRAPH[0x00000B28/4] = chip->PFB[0x00000268/4];
chip->PGRAPH[0x00000B2C/4] = chip->PFB[0x0000026C/4];
chip->PGRAPH[0x00000B30/4] = chip->PFB[0x00000270/4];
chip->PGRAPH[0x00000B34/4] = chip->PFB[0x00000274/4];
chip->PGRAPH[0x00000B38/4] = chip->PFB[0x00000278/4];
chip->PGRAPH[0x00000B3C/4] = chip->PFB[0x0000027C/4];
chip->PGRAPH[0x00000B40/4] = chip->PFB[0x00000280/4];
chip->PGRAPH[0x00000B44/4] = chip->PFB[0x00000284/4];
chip->PGRAPH[0x00000B48/4] = chip->PFB[0x00000288/4];
chip->PGRAPH[0x00000B4C/4] = chip->PFB[0x0000028C/4];
chip->PGRAPH[0x00000B50/4] = chip->PFB[0x00000290/4];
chip->PGRAPH[0x00000B54/4] = chip->PFB[0x00000294/4];
chip->PGRAPH[0x00000B58/4] = chip->PFB[0x00000298/4];
chip->PGRAPH[0x00000B5C/4] = chip->PFB[0x0000029C/4];
chip->PGRAPH[0x00000B60/4] = chip->PFB[0x000002A0/4];
chip->PGRAPH[0x00000B64/4] = chip->PFB[0x000002A4/4];
chip->PGRAPH[0x00000B68/4] = chip->PFB[0x000002A8/4];
chip->PGRAPH[0x00000B6C/4] = chip->PFB[0x000002AC/4];
chip->PGRAPH[0x00000B70/4] = chip->PFB[0x000002B0/4];
chip->PGRAPH[0x00000B74/4] = chip->PFB[0x000002B4/4];
chip->PGRAPH[0x00000B78/4] = chip->PFB[0x000002B8/4];
chip->PGRAPH[0x00000B7C/4] = chip->PFB[0x000002BC/4];
chip->PGRAPH[0x00000F40/4] = 0x10000000;
chip->PGRAPH[0x00000F44/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00000040;
chip->PGRAPH[0x00000F54/4] = 0x00000008;
chip->PGRAPH[0x00000F50/4] = 0x00000200;
for (i = 0; i < (3*16); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00000040;
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00000800;
for (i = 0; i < (16*16); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F40/4] = 0x30000000;
chip->PGRAPH[0x00000F44/4] = 0x00000004;
chip->PGRAPH[0x00000F50/4] = 0x00006400;
for (i = 0; i < (59*4); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00006800;
for (i = 0; i < (47*4); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00006C00;
for (i = 0; i < (3*4); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00007000;
for (i = 0; i < (19*4); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00007400;
for (i = 0; i < (12*4); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00007800;
for (i = 0; i < (12*4); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00004400;
for (i = 0; i < (8*4); i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00000000;
for (i = 0; i < 16; i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
chip->PGRAPH[0x00000F50/4] = 0x00000040;
for (i = 0; i < 4; i++)
chip->PGRAPH[0x00000F54/4] = 0x00000000;
break;
}
LOAD_FIXED_STATE(Riva,FIFO);
UpdateFifoState(chip);
/*
* Load HW mode state.
*/
VGA_WR08(chip->PCIO, 0x03D4, 0x19);
VGA_WR08(chip->PCIO, 0x03D5, state->repaint0);
VGA_WR08(chip->PCIO, 0x03D4, 0x1A);
VGA_WR08(chip->PCIO, 0x03D5, state->repaint1);
VGA_WR08(chip->PCIO, 0x03D4, 0x25);
VGA_WR08(chip->PCIO, 0x03D5, state->screen);
VGA_WR08(chip->PCIO, 0x03D4, 0x28);
VGA_WR08(chip->PCIO, 0x03D5, state->pixel);
VGA_WR08(chip->PCIO, 0x03D4, 0x2D);
VGA_WR08(chip->PCIO, 0x03D5, state->horiz);
VGA_WR08(chip->PCIO, 0x03D4, 0x1B);
VGA_WR08(chip->PCIO, 0x03D5, state->arbitration0);
VGA_WR08(chip->PCIO, 0x03D4, 0x20);
VGA_WR08(chip->PCIO, 0x03D5, state->arbitration1);
VGA_WR08(chip->PCIO, 0x03D4, 0x30);
VGA_WR08(chip->PCIO, 0x03D5, state->cursor0);
VGA_WR08(chip->PCIO, 0x03D4, 0x31);
VGA_WR08(chip->PCIO, 0x03D5, state->cursor1);
chip->PRAMDAC[0x00000300/4] = state->cursor2;
chip->PRAMDAC[0x00000508/4] = state->vpll;
chip->PRAMDAC[0x0000050C/4] = state->pllsel;
chip->PRAMDAC[0x00000600/4] = state->general;
/*
* Turn off VBlank enable and reset.
*/
chip->PCRTC[0x00000140/4] = 0;
chip->PCRTC[0x00000100/4] = chip->VBlankBit;
/*
* Set interrupt enable.
*/
chip->PMC[0x00000140/4] = chip->EnableIRQ & 0x01;
/*
* Set current state pointer.
*/
chip->CurrentState = state;
/*
* Reset FIFO free and empty counts.
*/
chip->FifoFreeCount = 0;
/* Free count from first subchannel */
chip->FifoEmptyCount = chip->Rop->FifoFree;
}
static void UnloadStateExt
(
RIVA_HW_INST *chip,
RIVA_HW_STATE *state
)
{
/*
* Save current HW state.
*/
VGA_WR08(chip->PCIO, 0x03D4, 0x19);
state->repaint0 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x1A);
state->repaint1 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x25);
state->screen = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x28);
state->pixel = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x2D);
state->horiz = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x1B);
state->arbitration0 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x20);
state->arbitration1 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x30);
state->cursor0 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x31);
state->cursor1 = VGA_RD08(chip->PCIO, 0x03D5);
state->cursor2 = chip->PRAMDAC[0x00000300/4];
state->vpll = chip->PRAMDAC[0x00000508/4];
state->pllsel = chip->PRAMDAC[0x0000050C/4];
state->general = chip->PRAMDAC[0x00000600/4];
state->config = chip->PFB[0x00000200/4];
switch (chip->Architecture)
{
case NV_ARCH_03:
state->offset0 = chip->PGRAPH[0x00000630/4];
state->offset1 = chip->PGRAPH[0x00000634/4];
state->offset2 = chip->PGRAPH[0x00000638/4];
state->offset3 = chip->PGRAPH[0x0000063C/4];
state->pitch0 = chip->PGRAPH[0x00000650/4];
state->pitch1 = chip->PGRAPH[0x00000654/4];
state->pitch2 = chip->PGRAPH[0x00000658/4];
state->pitch3 = chip->PGRAPH[0x0000065C/4];
break;
case NV_ARCH_04:
state->offset0 = chip->PGRAPH[0x00000640/4];
state->offset1 = chip->PGRAPH[0x00000644/4];
state->offset2 = chip->PGRAPH[0x00000648/4];
state->offset3 = chip->PGRAPH[0x0000064C/4];
state->pitch0 = chip->PGRAPH[0x00000670/4];
state->pitch1 = chip->PGRAPH[0x00000674/4];
state->pitch2 = chip->PGRAPH[0x00000678/4];
state->pitch3 = chip->PGRAPH[0x0000067C/4];
break;
case NV_ARCH_10:
state->offset0 = chip->PGRAPH[0x00000640/4];
state->offset1 = chip->PGRAPH[0x00000644/4];
state->offset2 = chip->PGRAPH[0x00000648/4];
state->offset3 = chip->PGRAPH[0x0000064C/4];
state->pitch0 = chip->PGRAPH[0x00000670/4];
state->pitch1 = chip->PGRAPH[0x00000674/4];
state->pitch2 = chip->PGRAPH[0x00000678/4];
state->pitch3 = chip->PGRAPH[0x0000067C/4];
break;
}
}
static void SetStartAddress
(
RIVA_HW_INST *chip,
unsigned start
)
{
int offset = start >> 2;
int pan = (start & 3) << 1;
unsigned char tmp;
/*
* Unlock extended registers.
*/
chip->LockUnlock(chip, 0);
/*
* Set start address.
*/
VGA_WR08(chip->PCIO, 0x3D4, 0x0D); VGA_WR08(chip->PCIO, 0x3D5, offset);
offset >>= 8;
VGA_WR08(chip->PCIO, 0x3D4, 0x0C); VGA_WR08(chip->PCIO, 0x3D5, offset);
offset >>= 8;
VGA_WR08(chip->PCIO, 0x3D4, 0x19); tmp = VGA_RD08(chip->PCIO, 0x3D5);
VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x01F) | (tmp & ~0x1F));
VGA_WR08(chip->PCIO, 0x3D4, 0x2D); tmp = VGA_RD08(chip->PCIO, 0x3D5);
VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x60) | (tmp & ~0x60));
/*
* 4 pixel pan register.
*/
offset = VGA_RD08(chip->PCIO, chip->IO + 0x0A);
VGA_WR08(chip->PCIO, 0x3C0, 0x13);
VGA_WR08(chip->PCIO, 0x3C0, pan);
}
static void nv3SetSurfaces2D
(
RIVA_HW_INST *chip,
unsigned surf0,
unsigned surf1
)
{
RivaSurface *Surface = (RivaSurface *)&(chip->FIFO[0x0000E000/4]);
RIVA_FIFO_FREE(*chip,Tri03,5);
chip->FIFO[0x00003800] = 0x80000003;
Surface->Offset = surf0;
chip->FIFO[0x00003800] = 0x80000004;
Surface->Offset = surf1;
chip->FIFO[0x00003800] = 0x80000013;
}
static void nv4SetSurfaces2D
(
RIVA_HW_INST *chip,
unsigned surf0,
unsigned surf1
)
{
RivaSurface *Surface = (RivaSurface *)&(chip->FIFO[0x0000E000/4]);
chip->FIFO[0x00003800] = 0x80000003;
Surface->Offset = surf0;
chip->FIFO[0x00003800] = 0x80000004;
Surface->Offset = surf1;
chip->FIFO[0x00003800] = 0x80000014;
}
static void nv10SetSurfaces2D
(
RIVA_HW_INST *chip,
unsigned surf0,
unsigned surf1
)
{
RivaSurface *Surface = (RivaSurface *)&(chip->FIFO[0x0000E000/4]);
chip->FIFO[0x00003800] = 0x80000003;
Surface->Offset = surf0;
chip->FIFO[0x00003800] = 0x80000004;
Surface->Offset = surf1;
chip->FIFO[0x00003800] = 0x80000014;
}
static void nv3SetSurfaces3D
(
RIVA_HW_INST *chip,
unsigned surf0,
unsigned surf1
)
{
RivaSurface *Surface = (RivaSurface *)&(chip->FIFO[0x0000E000/4]);
RIVA_FIFO_FREE(*chip,Tri03,5);
chip->FIFO[0x00003800] = 0x80000005;
Surface->Offset = surf0;
chip->FIFO[0x00003800] = 0x80000006;
Surface->Offset = surf1;
chip->FIFO[0x00003800] = 0x80000013;
}
static void nv4SetSurfaces3D
(
RIVA_HW_INST *chip,
unsigned surf0,
unsigned surf1
)
{
RivaSurface *Surface = (RivaSurface *)&(chip->FIFO[0x0000E000/4]);
chip->FIFO[0x00003800] = 0x80000005;
Surface->Offset = surf0;
chip->FIFO[0x00003800] = 0x80000006;
Surface->Offset = surf1;
chip->FIFO[0x00003800] = 0x80000014;
}
static void nv10SetSurfaces3D
(
RIVA_HW_INST *chip,
unsigned surf0,
unsigned surf1
)
{
RivaSurface3D *Surfaces3D = (RivaSurface3D *)&(chip->FIFO[0x0000E000/4]);
RIVA_FIFO_FREE(*chip,Tri03,4);
chip->FIFO[0x00003800] = 0x80000007;
Surfaces3D->RenderBufferOffset = surf0;
Surfaces3D->ZBufferOffset = surf1;
chip->FIFO[0x00003800] = 0x80000014;
}
/****************************************************************************\
* *
* Probe RIVA Chip Configuration *
* *
\****************************************************************************/
static void nv3GetConfig
(
RIVA_HW_INST *chip
)
{
/*
* Fill in chip configuration.
*/
if (chip->PFB[0x00000000/4] & 0x00000020)
{
if (((chip->PMC[0x00000000/4] & 0xF0) == 0x20)
&& ((chip->PMC[0x00000000/4] & 0x0F) >= 0x02))
{
/*
* SDRAM 128 ZX.
*/
chip->RamBandwidthKBytesPerSec = 800000;
switch (chip->PFB[0x00000000/4] & 0x03)
{
case 2:
chip->RamAmountKBytes = 1024 * 4;
break;
case 1:
chip->RamAmountKBytes = 1024 * 2;
break;
default:
chip->RamAmountKBytes = 1024 * 8;
break;
}
}
else
{
chip->RamBandwidthKBytesPerSec = 1000000;
chip->RamAmountKBytes = 1024 * 8;
}
}
else
{
/*
* SGRAM 128.
*/
chip->RamBandwidthKBytesPerSec = 1000000;
switch (chip->PFB[0x00000000/4] & 0x00000003)
{
case 0:
chip->RamAmountKBytes = 1024 * 8;
break;
case 2:
chip->RamAmountKBytes = 1024 * 4;
break;
default:
chip->RamAmountKBytes = 1024 * 2;
break;
}
}
chip->CrystalFreqKHz = (chip->PEXTDEV[0x00000000/4] & 0x00000020) ? 14318 : 13500;
chip->CURSOR = &(chip->PRAMIN[0x00008000/4 - 0x0800/4]);
chip->VBlankBit = 0x00000100;
chip->MaxVClockFreqKHz = 256000;
/*
* Set chip functions.
*/
chip->Busy = nv3Busy;
chip->ShowHideCursor = ShowHideCursor;
chip->CalcStateExt = CalcStateExt;
chip->LoadStateExt = LoadStateExt;
chip->UnloadStateExt = UnloadStateExt;
chip->SetStartAddress = SetStartAddress;
chip->SetSurfaces2D = nv3SetSurfaces2D;
chip->SetSurfaces3D = nv3SetSurfaces3D;
chip->LockUnlock = nv3LockUnlock;
}
static void nv4GetConfig
(
RIVA_HW_INST *chip
)
{
/*
* Fill in chip configuration.
*/
if (chip->PFB[0x00000000/4] & 0x00000100)
{
chip->RamAmountKBytes = ((chip->PFB[0x00000000/4] >> 12) & 0x0F) * 1024 * 2
+ 1024 * 2;
}
else
{
switch (chip->PFB[0x00000000/4] & 0x00000003)
{
case 0:
chip->RamAmountKBytes = 1024 * 32;
break;
case 1:
chip->RamAmountKBytes = 1024 * 4;
break;
case 2:
chip->RamAmountKBytes = 1024 * 8;
break;
case 3:
default:
chip->RamAmountKBytes = 1024 * 16;
break;
}
}
switch ((chip->PFB[0x00000000/4] >> 3) & 0x00000003)
{
case 3:
chip->RamBandwidthKBytesPerSec = 800000;
break;
default:
chip->RamBandwidthKBytesPerSec = 1000000;
break;
}
chip->CrystalFreqKHz = (chip->PEXTDEV[0x00000000/4] & 0x00000040) ? 14318 : 13500;
chip->CURSOR = &(chip->PRAMIN[0x00010000/4 - 0x0800/4]);
chip->VBlankBit = 0x00000001;
chip->MaxVClockFreqKHz = 350000;
/*
* Set chip functions.
*/
chip->Busy = nv4Busy;
chip->ShowHideCursor = ShowHideCursor;
chip->CalcStateExt = CalcStateExt;
chip->LoadStateExt = LoadStateExt;
chip->UnloadStateExt = UnloadStateExt;
chip->SetStartAddress = SetStartAddress;
chip->SetSurfaces2D = nv4SetSurfaces2D;
chip->SetSurfaces3D = nv4SetSurfaces3D;
chip->LockUnlock = nv4LockUnlock;
}
static void nv10GetConfig
(
RIVA_HW_INST *chip,
unsigned int chipset
)
{
struct pci_dev* dev;
int amt;
#ifdef __BIG_ENDIAN
/* turn on big endian register access */
chip->PMC[0x00000004/4] = 0x01000001;
#endif
/*
* Fill in chip configuration.
*/
if(chipset == NV_CHIP_IGEFORCE2) {
dev = pci_find_slot(0, 1);
pci_read_config_dword(dev, 0x7C, &amt);
chip->RamAmountKBytes = (((amt >> 6) & 31) + 1) * 1024;
} else if(chipset == NV_CHIP_0x01F0) {
dev = pci_find_slot(0, 1);
pci_read_config_dword(dev, 0x84, &amt);
chip->RamAmountKBytes = (((amt >> 4) & 127) + 1) * 1024;
} else {
switch ((chip->PFB[0x0000020C/4] >> 20) & 0x000000FF)
{
case 0x02:
chip->RamAmountKBytes = 1024 * 2;
break;
case 0x04:
chip->RamAmountKBytes = 1024 * 4;
break;
case 0x08:
chip->RamAmountKBytes = 1024 * 8;
break;
case 0x10:
chip->RamAmountKBytes = 1024 * 16;
break;
case 0x20:
chip->RamAmountKBytes = 1024 * 32;
break;
case 0x40:
chip->RamAmountKBytes = 1024 * 64;
break;
case 0x80:
chip->RamAmountKBytes = 1024 * 128;
break;
default:
chip->RamAmountKBytes = 1024 * 16;
break;
}
}
switch ((chip->PFB[0x00000000/4] >> 3) & 0x00000003)
{
case 3:
chip->RamBandwidthKBytesPerSec = 800000;
break;
default:
chip->RamBandwidthKBytesPerSec = 1000000;
break;
}
chip->CrystalFreqKHz = (chip->PEXTDEV[0x00000000/4] & 0x00000040) ? 14318 : 13500;
chip->CURSOR = &(chip->PRAMIN[0x00010000/4 - 0x0800/4]);
chip->VBlankBit = 0x00000001;
chip->MaxVClockFreqKHz = 350000;
/*
* Set chip functions.
*/
chip->Busy = nv10Busy;
chip->ShowHideCursor = ShowHideCursor;
chip->CalcStateExt = CalcStateExt;
chip->LoadStateExt = LoadStateExt;
chip->UnloadStateExt = UnloadStateExt;
chip->SetStartAddress = SetStartAddress;
chip->SetSurfaces2D = nv10SetSurfaces2D;
chip->SetSurfaces3D = nv10SetSurfaces3D;
chip->LockUnlock = nv4LockUnlock;
}
int RivaGetConfig
(
RIVA_HW_INST *chip,
unsigned int chipset
)
{
/*
* Save this so future SW know whats it's dealing with.
*/
chip->Version = RIVA_SW_VERSION;
/*
* Chip specific configuration.
*/
switch (chip->Architecture)
{
case NV_ARCH_03:
nv3GetConfig(chip);
break;
case NV_ARCH_04:
nv4GetConfig(chip);
break;
case NV_ARCH_10:
case NV_ARCH_20:
nv10GetConfig(chip, chipset);
break;
default:
return (-1);
}
chip->Chipset = chipset;
/*
* Fill in FIFO pointers.
*/
chip->Rop = (RivaRop *)&(chip->FIFO[0x00000000/4]);
chip->Clip = (RivaClip *)&(chip->FIFO[0x00002000/4]);
chip->Patt = (RivaPattern *)&(chip->FIFO[0x00004000/4]);
chip->Pixmap = (RivaPixmap *)&(chip->FIFO[0x00006000/4]);
chip->Blt = (RivaScreenBlt *)&(chip->FIFO[0x00008000/4]);
chip->Bitmap = (RivaBitmap *)&(chip->FIFO[0x0000A000/4]);
chip->Line = (RivaLine *)&(chip->FIFO[0x0000C000/4]);
chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000/4]);
return (0);
}