blob: 9ee3562c285c59d28e3930d68107c81381a54ece [file] [log] [blame]
/*
* Copyright 1996 The Board of Trustees of The Leland Stanford
* Junior University. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this
* software and its documentation for any purpose and without
* fee is hereby granted, provided that the above copyright
* notice appear in all copies. Stanford University
* makes no representations about the suitability of this
* software for any purpose. It is provided "as is" without
* express or implied warranty.
*
* strip.c This module implements Starmode Radio IP (STRIP)
* for kernel-based devices like TTY. It interfaces between a
* raw TTY, and the kernel's INET protocol layers (via DDI).
*
* Version: @(#)strip.c 1.3 July 1997
*
* Author: Stuart Cheshire <cheshire@cs.stanford.edu>
*
* Fixes: v0.9 12th Feb 1996 (SC)
* New byte stuffing (2+6 run-length encoding)
* New watchdog timer task
* New Protocol key (SIP0)
*
* v0.9.1 3rd March 1996 (SC)
* Changed to dynamic device allocation -- no more compile
* time (or boot time) limit on the number of STRIP devices.
*
* v0.9.2 13th March 1996 (SC)
* Uses arp cache lookups (but doesn't send arp packets yet)
*
* v0.9.3 17th April 1996 (SC)
* Fixed bug where STR_ERROR flag was getting set unneccessarily
* (causing otherwise good packets to be unneccessarily dropped)
*
* v0.9.4 27th April 1996 (SC)
* First attempt at using "&COMMAND" Starmode AT commands
*
* v0.9.5 29th May 1996 (SC)
* First attempt at sending (unicast) ARP packets
*
* v0.9.6 5th June 1996 (Elliot)
* Put "message level" tags in every "printk" statement
*
* v0.9.7 13th June 1996 (laik)
* Added support for the /proc fs
*
* v0.9.8 July 1996 (Mema)
* Added packet logging
*
* v1.0 November 1996 (SC)
* Fixed (severe) memory leaks in the /proc fs code
* Fixed race conditions in the logging code
*
* v1.1 January 1997 (SC)
* Deleted packet logging (use tcpdump instead)
* Added support for Metricom Firmware v204 features
* (like message checksums)
*
* v1.2 January 1997 (SC)
* Put portables list back in
*
* v1.3 July 1997 (SC)
* Made STRIP driver set the radio's baud rate automatically.
* It is no longer necessarily to manually set the radio's
* rate permanently to 115200 -- the driver handles setting
* the rate automatically.
*/
#ifdef MODULE
static const char StripVersion[] = "1.3-STUART.CHESHIRE-MODULAR";
#else
static const char StripVersion[] = "1.3-STUART.CHESHIRE";
#endif
#define TICKLE_TIMERS 0
#define EXT_COUNTERS 1
/************************************************************************/
/* Header files */
#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/init.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/bitops.h>
/*
* isdigit() and isspace() use the ctype[] array, which is not available
* to kernel modules. If compiling as a module, use a local definition
* of isdigit() and isspace() until _ctype is added to ksyms.
*/
#ifdef MODULE
# define isdigit(c) ('0' <= (c) && (c) <= '9')
# define isspace(c) ((c) == ' ' || (c) == '\t')
#else
# include <linux/ctype.h>
#endif
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/tty.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/if_strip.h>
#include <linux/proc_fs.h>
#include <linux/serial.h>
#include <linux/serialP.h>
#include <net/arp.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/time.h>
/************************************************************************/
/* Useful structures and definitions */
/*
* A MetricomKey identifies the protocol being carried inside a Metricom
* Starmode packet.
*/
typedef union
{
__u8 c[4];
__u32 l;
} MetricomKey;
/*
* An IP address can be viewed as four bytes in memory (which is what it is) or as
* a single 32-bit long (which is convenient for assignment, equality testing etc.)
*/
typedef union
{
__u8 b[4];
__u32 l;
} IPaddr;
/*
* A MetricomAddressString is used to hold a printable representation of
* a Metricom address.
*/
typedef struct
{
__u8 c[24];
} MetricomAddressString;
/* Encapsulation can expand packet of size x to 65/64x + 1
* Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
* 1 1 1-18 1 4 ? 1
* eg. <CR>*0000-1234*SIP0<encaps payload><CR>
* We allow 31 bytes for the stars, the key, the address and the <CR>s
*/
#define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
/*
* A STRIP_Header is never really sent over the radio, but making a dummy
* header for internal use within the kernel that looks like an Ethernet
* header makes certain other software happier. For example, tcpdump
* already understands Ethernet headers.
*/
typedef struct
{
MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */
MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */
unsigned short protocol; /* The protocol type, using Ethernet codes */
} STRIP_Header;
typedef struct
{
char c[60];
} MetricomNode;
#define NODE_TABLE_SIZE 32
typedef struct
{
struct timeval timestamp;
int num_nodes;
MetricomNode node[NODE_TABLE_SIZE];
} MetricomNodeTable;
enum { FALSE = 0, TRUE = 1 };
/*
* Holds the radio's firmware version.
*/
typedef struct
{
char c[50];
} FirmwareVersion;
/*
* Holds the radio's serial number.
*/
typedef struct
{
char c[18];
} SerialNumber;
/*
* Holds the radio's battery voltage.
*/
typedef struct
{
char c[11];
} BatteryVoltage;
typedef struct
{
char c[8];
} char8;
enum
{
NoStructure = 0, /* Really old firmware */
StructuredMessages = 1, /* Parsable AT response msgs */
ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
} FirmwareLevel;
struct strip
{
int magic;
/*
* These are pointers to the malloc()ed frame buffers.
*/
unsigned char *rx_buff; /* buffer for received IP packet*/
unsigned char *sx_buff; /* buffer for received serial data*/
int sx_count; /* received serial data counter */
int sx_size; /* Serial buffer size */
unsigned char *tx_buff; /* transmitter buffer */
unsigned char *tx_head; /* pointer to next byte to XMIT */
int tx_left; /* bytes left in XMIT queue */
int tx_size; /* Serial buffer size */
/*
* STRIP interface statistics.
*/
unsigned long rx_packets; /* inbound frames counter */
unsigned long tx_packets; /* outbound frames counter */
unsigned long rx_errors; /* Parity, etc. errors */
unsigned long tx_errors; /* Planned stuff */
unsigned long rx_dropped; /* No memory for skb */
unsigned long tx_dropped; /* When MTU change */
unsigned long rx_over_errors; /* Frame bigger then STRIP buf. */
unsigned long pps_timer; /* Timer to determine pps */
unsigned long rx_pps_count; /* Counter to determine pps */
unsigned long tx_pps_count; /* Counter to determine pps */
unsigned long sx_pps_count; /* Counter to determine pps */
unsigned long rx_average_pps; /* rx packets per second * 8 */
unsigned long tx_average_pps; /* tx packets per second * 8 */
unsigned long sx_average_pps; /* sent packets per second * 8 */
#ifdef EXT_COUNTERS
unsigned long rx_bytes; /* total received bytes */
unsigned long tx_bytes; /* total received bytes */
unsigned long rx_rbytes; /* bytes thru radio i/f */
unsigned long tx_rbytes; /* bytes thru radio i/f */
unsigned long rx_sbytes; /* tot bytes thru serial i/f */
unsigned long tx_sbytes; /* tot bytes thru serial i/f */
unsigned long rx_ebytes; /* tot stat/err bytes */
unsigned long tx_ebytes; /* tot stat/err bytes */
#endif
/*
* Internal variables.
*/
struct strip *next; /* The next struct in the list */
struct strip **referrer; /* The pointer that points to us*/
int discard; /* Set if serial error */
int working; /* Is radio working correctly? */
int firmware_level; /* Message structuring level */
int next_command; /* Next periodic command */
unsigned int user_baud; /* The user-selected baud rate */
int mtu; /* Our mtu (to spot changes!) */
long watchdog_doprobe; /* Next time to test the radio */
long watchdog_doreset; /* Time to do next reset */
long gratuitous_arp; /* Time to send next ARP refresh*/
long arp_interval; /* Next ARP interval */
struct timer_list idle_timer; /* For periodic wakeup calls */
MetricomAddress true_dev_addr; /* True address of radio */
int manual_dev_addr; /* Hack: See note below */
FirmwareVersion firmware_version; /* The radio's firmware version */
SerialNumber serial_number; /* The radio's serial number */
BatteryVoltage battery_voltage; /* The radio's battery voltage */
/*
* Other useful structures.
*/
struct tty_struct *tty; /* ptr to TTY structure */
struct net_device dev; /* Our device structure */
/*
* Neighbour radio records
*/
MetricomNodeTable portables;
MetricomNodeTable poletops;
};
/*
* Note: manual_dev_addr hack
*
* It is not possible to change the hardware address of a Metricom radio,
* or to send packets with a user-specified hardware source address, thus
* trying to manually set a hardware source address is a questionable
* thing to do. However, if the user *does* manually set the hardware
* source address of a STRIP interface, then the kernel will believe it,
* and use it in certain places. For example, the hardware address listed
* by ifconfig will be the manual address, not the true one.
* (Both addresses are listed in /proc/net/strip.)
* Also, ARP packets will be sent out giving the user-specified address as
* the source address, not the real address. This is dangerous, because
* it means you won't receive any replies -- the ARP replies will go to
* the specified address, which will be some other radio. The case where
* this is useful is when that other radio is also connected to the same
* machine. This allows you to connect a pair of radios to one machine,
* and to use one exclusively for inbound traffic, and the other
* exclusively for outbound traffic. Pretty neat, huh?
*
* Here's the full procedure to set this up:
*
* 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
* and st1 for incoming packets
*
* 2. "ifconfig" st0 (outbound radio) to have the hardware address
* which is the real hardware address of st1 (inbound radio).
* Now when it sends out packets, it will masquerade as st1, and
* replies will be sent to that radio, which is exactly what we want.
*
* 3. Set the route table entry ("route add default ..." or
* "route add -net ...", as appropriate) to send packets via the st0
* interface (outbound radio). Do not add any route which sends packets
* out via the st1 interface -- that radio is for inbound traffic only.
*
* 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
* This tells the STRIP driver to "shut down" that interface and not
* send any packets through it. In particular, it stops sending the
* periodic gratuitous ARP packets that a STRIP interface normally sends.
* Also, when packets arrive on that interface, it will search the
* interface list to see if there is another interface who's manual
* hardware address matches its own real address (i.e. st0 in this
* example) and if so it will transfer ownership of the skbuff to
* that interface, so that it looks to the kernel as if the packet
* arrived on that interface. This is necessary because when the
* kernel sends an ARP packet on st0, it expects to get a reply on
* st0, and if it sees the reply come from st1 then it will ignore
* it (to be accurate, it puts the entry in the ARP table, but
* labelled in such a way that st0 can't use it).
*
* Thanks to Petros Maniatis for coming up with the idea of splitting
* inbound and outbound traffic between two interfaces, which turned
* out to be really easy to implement, even if it is a bit of a hack.
*
* Having set a manual address on an interface, you can restore it
* to automatic operation (where the address is automatically kept
* consistent with the real address of the radio) by setting a manual
* address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
* This 'turns off' manual override mode for the device address.
*
* Note: The IEEE 802 headers reported in tcpdump will show the *real*
* radio addresses the packets were sent and received from, so that you
* can see what is really going on with packets, and which interfaces
* they are really going through.
*/
/************************************************************************/
/* Constants */
/*
* CommandString1 works on all radios
* Other CommandStrings are only used with firmware that provides structured responses.
*
* ats319=1 Enables Info message for node additions and deletions
* ats319=2 Enables Info message for a new best node
* ats319=4 Enables checksums
* ats319=8 Enables ACK messages
*/
static const int MaxCommandStringLength = 32;
static const int CompatibilityCommand = 1;
static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */
static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */
static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */
static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */
typedef struct { const char *string; long length; } StringDescriptor;
static const StringDescriptor CommandString[] =
{
{ CommandString0, sizeof(CommandString0)-1 },
{ CommandString1, sizeof(CommandString1)-1 },
{ CommandString2, sizeof(CommandString2)-1 },
{ CommandString3, sizeof(CommandString3)-1 },
{ CommandString4, sizeof(CommandString4)-1 },
{ CommandString5, sizeof(CommandString5)-1 }
};
#define GOT_ALL_RADIO_INFO(S) \
((S)->firmware_version.c[0] && \
(S)->battery_voltage.c[0] && \
memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
static const char hextable[16] = "0123456789ABCDEF";
static const MetricomAddress zero_address;
static const MetricomAddress broadcast_address = { { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF } };
static const MetricomKey SIP0Key = { { "SIP0" } };
static const MetricomKey ARP0Key = { { "ARP0" } };
static const MetricomKey ATR_Key = { { "ATR " } };
static const MetricomKey ACK_Key = { { "ACK_" } };
static const MetricomKey INF_Key = { { "INF_" } };
static const MetricomKey ERR_Key = { { "ERR_" } };
static const long MaxARPInterval = 60 * HZ; /* One minute */
/*
* Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
* protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
* for STRIP encoding, that translates to a maximum payload MTU of 1155.
* Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
* long, including IP header, UDP header, and NFS header. Setting the STRIP
* MTU to 1152 allows us to send default sized NFS packets without fragmentation.
*/
static const unsigned short MAX_SEND_MTU = 1152;
static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */
static const unsigned short DEFAULT_STRIP_MTU = 1152;
static const int STRIP_MAGIC = 0x5303;
static const long LongTime = 0x7FFFFFFF;
/************************************************************************/
/* Global variables */
static struct strip *struct_strip_list;
/************************************************************************/
/* Macros */
/* Returns TRUE if text T begins with prefix P */
#define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
/* Returns TRUE if text T of length L is equal to string S */
#define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
#define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
(X)>='a' && (X)<='f' ? (X)-'a'+10 : \
(X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
#define READHEX16(X) ((__u16)(READHEX(X)))
#define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
#define ELEMENTS_OF(X) (sizeof(X) / sizeof((X)[0]))
#define ARRAY_END(X) (&((X)[ELEMENTS_OF(X)]))
#define JIFFIE_TO_SEC(X) ((X) / HZ)
/************************************************************************/
/* Utility routines */
typedef unsigned long InterruptStatus;
static inline InterruptStatus DisableInterrupts(void)
{
InterruptStatus x;
save_flags(x);
cli();
return(x);
}
static inline void RestoreInterrupts(InterruptStatus x)
{
restore_flags(x);
}
static int arp_query(unsigned char *haddr, u32 paddr, struct net_device * dev)
{
struct neighbour *neighbor_entry;
neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
if (neighbor_entry != NULL)
{
neighbor_entry->used = jiffies;
if (neighbor_entry->nud_state & NUD_VALID)
{
memcpy(haddr, neighbor_entry->ha, dev->addr_len);
return 1;
}
}
return 0;
}
static void DumpData(char *msg, struct strip *strip_info, __u8 *ptr, __u8 *end)
{
static const int MAX_DumpData = 80;
__u8 pkt_text[MAX_DumpData], *p = pkt_text;
*p++ = '\"';
while (ptr<end && p < &pkt_text[MAX_DumpData-4])
{
if (*ptr == '\\')
{
*p++ = '\\';
*p++ = '\\';
}
else
{
if (*ptr >= 32 && *ptr <= 126)
{
*p++ = *ptr;
}
else
{
sprintf(p, "\\%02X", *ptr);
p+= 3;
}
}
ptr++;
}
if (ptr == end)
{
*p++ = '\"';
}
*p++ = 0;
printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev.name, msg, pkt_text);
}
#if 0
static void HexDump(char *msg, struct strip *strip_info, __u8 *start, __u8 *end)
{
__u8 *ptr = start;
printk(KERN_INFO "%s: %s: %d bytes\n", strip_info->dev.name, msg, end-ptr);
while (ptr < end)
{
long offset = ptr - start;
__u8 text[80], *p = text;
while (ptr < end && p < &text[16*3])
{
*p++ = hextable[*ptr >> 4];
*p++ = hextable[*ptr++ & 0xF];
*p++ = ' ';
}
p[-1] = 0;
printk(KERN_INFO "%s: %4lX %s\n", strip_info->dev.name, offset, text);
}
}
#endif
/************************************************************************/
/* Byte stuffing/unstuffing routines */
/* Stuffing scheme:
* 00 Unused (reserved character)
* 01-3F Run of 2-64 different characters
* 40-7F Run of 1-64 different characters plus a single zero at the end
* 80-BF Run of 1-64 of the same character
* C0-FF Run of 1-64 zeroes (ASCII 0)
*/
typedef enum
{
Stuff_Diff = 0x00,
Stuff_DiffZero = 0x40,
Stuff_Same = 0x80,
Stuff_Zero = 0xC0,
Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */
Stuff_CodeMask = 0xC0,
Stuff_CountMask = 0x3F,
Stuff_MaxCount = 0x3F,
Stuff_Magic = 0x0D /* The value we are eliminating */
} StuffingCode;
/* StuffData encodes the data starting at "src" for "length" bytes.
* It writes it to the buffer pointed to by "dst" (which must be at least
* as long as 1 + 65/64 of the input length). The output may be up to 1.6%
* larger than the input for pathological input, but will usually be smaller.
* StuffData returns the new value of the dst pointer as its result.
* "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
* between calls, allowing an encoded packet to be incrementally built up
* from small parts. On the first call, the "__u8 *" pointed to should be
* initialized to NULL; between subsequent calls the calling routine should
* leave the value alone and simply pass it back unchanged so that the
* encoder can recover its current state.
*/
#define StuffData_FinishBlock(X) \
(*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
static __u8 *StuffData(__u8 *src, __u32 length, __u8 *dst, __u8 **code_ptr_ptr)
{
__u8 *end = src + length;
__u8 *code_ptr = *code_ptr_ptr;
__u8 code = Stuff_NoCode, count = 0;
if (!length)
return(dst);
if (code_ptr)
{
/*
* Recover state from last call, if applicable
*/
code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
}
while (src < end)
{
switch (code)
{
/* Stuff_NoCode: If no current code, select one */
case Stuff_NoCode:
/* Record where we're going to put this code */
code_ptr = dst++;
count = 0; /* Reset the count (zero means one instance) */
/* Tentatively start a new block */
if (*src == 0)
{
code = Stuff_Zero;
src++;
}
else
{
code = Stuff_Same;
*dst++ = *src++ ^ Stuff_Magic;
}
/* Note: We optimistically assume run of same -- */
/* which will be fixed later in Stuff_Same */
/* if it turns out not to be true. */
break;
/* Stuff_Zero: We already have at least one zero encoded */
case Stuff_Zero:
/* If another zero, count it, else finish this code block */
if (*src == 0)
{
count++;
src++;
}
else
{
StuffData_FinishBlock(Stuff_Zero + count);
}
break;
/* Stuff_Same: We already have at least one byte encoded */
case Stuff_Same:
/* If another one the same, count it */
if ((*src ^ Stuff_Magic) == code_ptr[1])
{
count++;
src++;
break;
}
/* else, this byte does not match this block. */
/* If we already have two or more bytes encoded, finish this code block */
if (count)
{
StuffData_FinishBlock(Stuff_Same + count);
break;
}
/* else, we only have one so far, so switch to Stuff_Diff code */
code = Stuff_Diff;
/* and fall through to Stuff_Diff case below
* Note cunning cleverness here: case Stuff_Diff compares
* the current character with the previous two to see if it
* has a run of three the same. Won't this be an error if
* there aren't two previous characters stored to compare with?
* No. Because we know the current character is *not* the same
* as the previous one, the first test below will necessarily
* fail and the send half of the "if" won't be executed.
*/
/* Stuff_Diff: We have at least two *different* bytes encoded */
case Stuff_Diff:
/* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
if (*src == 0)
{
StuffData_FinishBlock(Stuff_DiffZero + count);
}
/* else, if we have three in a row, it is worth starting a Stuff_Same block */
else if ((*src ^ Stuff_Magic)==dst[-1] && dst[-1]==dst[-2])
{
/* Back off the last two characters we encoded */
code += count-2;
/* Note: "Stuff_Diff + 0" is an illegal code */
if (code == Stuff_Diff + 0)
{
code = Stuff_Same + 0;
}
StuffData_FinishBlock(code);
code_ptr = dst-2;
/* dst[-1] already holds the correct value */
count = 2; /* 2 means three bytes encoded */
code = Stuff_Same;
}
/* else, another different byte, so add it to the block */
else
{
*dst++ = *src ^ Stuff_Magic;
count++;
}
src++; /* Consume the byte */
break;
}
if (count == Stuff_MaxCount)
{
StuffData_FinishBlock(code + count);
}
}
if (code == Stuff_NoCode)
{
*code_ptr_ptr = NULL;
}
else
{
*code_ptr_ptr = code_ptr;
StuffData_FinishBlock(code + count);
}
return(dst);
}
/*
* UnStuffData decodes the data at "src", up to (but not including) "end".
* It writes the decoded data into the buffer pointed to by "dst", up to a
* maximum of "dst_length", and returns the new value of "src" so that a
* follow-on call can read more data, continuing from where the first left off.
*
* There are three types of results:
* 1. The source data runs out before extracting "dst_length" bytes:
* UnStuffData returns NULL to indicate failure.
* 2. The source data produces exactly "dst_length" bytes:
* UnStuffData returns new_src = end to indicate that all bytes were consumed.
* 3. "dst_length" bytes are extracted, with more remaining.
* UnStuffData returns new_src < end to indicate that there are more bytes
* to be read.
*
* Note: The decoding may be destructive, in that it may alter the source
* data in the process of decoding it (this is necessary to allow a follow-on
* call to resume correctly).
*/
static __u8 *UnStuffData(__u8 *src, __u8 *end, __u8 *dst, __u32 dst_length)
{
__u8 *dst_end = dst + dst_length;
/* Sanity check */
if (!src || !end || !dst || !dst_length)
return(NULL);
while (src < end && dst < dst_end)
{
int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
switch ((*src ^ Stuff_Magic) & Stuff_CodeMask)
{
case Stuff_Diff:
if (src+1+count >= end)
return(NULL);
do
{
*dst++ = *++src ^ Stuff_Magic;
}
while(--count >= 0 && dst < dst_end);
if (count < 0)
src += 1;
else
{
if (count == 0)
*src = Stuff_Same ^ Stuff_Magic;
else
*src = (Stuff_Diff + count) ^ Stuff_Magic;
}
break;
case Stuff_DiffZero:
if (src+1+count >= end)
return(NULL);
do
{
*dst++ = *++src ^ Stuff_Magic;
}
while(--count >= 0 && dst < dst_end);
if (count < 0)
*src = Stuff_Zero ^ Stuff_Magic;
else
*src = (Stuff_DiffZero + count) ^ Stuff_Magic;
break;
case Stuff_Same:
if (src+1 >= end)
return(NULL);
do
{
*dst++ = src[1] ^ Stuff_Magic;
}
while(--count >= 0 && dst < dst_end);
if (count < 0)
src += 2;
else
*src = (Stuff_Same + count) ^ Stuff_Magic;
break;
case Stuff_Zero:
do
{
*dst++ = 0;
}
while(--count >= 0 && dst < dst_end);
if (count < 0)
src += 1;
else
*src = (Stuff_Zero + count) ^ Stuff_Magic;
break;
}
}
if (dst < dst_end)
return(NULL);
else
return(src);
}
/************************************************************************/
/* General routines for STRIP */
/*
* get_baud returns the current baud rate, as one of the constants defined in
* termbits.h
* If the user has issued a baud rate override using the 'setserial' command
* and the logical current rate is set to 38.4, then the true baud rate
* currently in effect (57.6 or 115.2) is returned.
*/
static unsigned int get_baud(struct tty_struct *tty)
{
if (!tty || !tty->termios) return(0);
if ((tty->termios->c_cflag & CBAUD) == B38400 && tty->driver_data)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI ) return(B57600);
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) return(B115200);
}
return(tty->termios->c_cflag & CBAUD);
}
/*
* set_baud sets the baud rate to the rate defined by baudcode
* Note: The rate B38400 should be avoided, because the user may have
* issued a 'setserial' speed override to map that to a different speed.
* We could achieve a true rate of 38400 if we needed to by cancelling
* any user speed override that is in place, but that might annoy the
* user, so it is simplest to just avoid using 38400.
*/
static void set_baud(struct tty_struct *tty, unsigned int baudcode)
{
struct termios old_termios = *(tty->termios);
tty->termios->c_cflag &= ~CBAUD; /* Clear the old baud setting */
tty->termios->c_cflag |= baudcode; /* Set the new baud setting */
tty->driver.set_termios(tty, &old_termios);
}
/*
* Convert a string to a Metricom Address.
*/
#define IS_RADIO_ADDRESS(p) ( \
isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
(p)[4] == '-' && \
isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
static int string_to_radio_address(MetricomAddress *addr, __u8 *p)
{
if (!IS_RADIO_ADDRESS(p)) return(1);
addr->c[0] = 0;
addr->c[1] = 0;
addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
return(0);
}
/*
* Convert a Metricom Address to a string.
*/
static __u8 *radio_address_to_string(const MetricomAddress *addr, MetricomAddressString *p)
{
sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3], addr->c[4], addr->c[5]);
return(p->c);
}
/*
* Note: Must make sure sx_size is big enough to receive a stuffed
* MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
* big enough to receive a large radio neighbour list (currently 4K).
*/
static int allocate_buffers(struct strip *strip_info)
{
struct net_device *dev = &strip_info->dev;
int sx_size = MAX(STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
int tx_size = STRIP_ENCAP_SIZE(dev->mtu) + MaxCommandStringLength;
__u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
__u8 *s = kmalloc(sx_size, GFP_ATOMIC);
__u8 *t = kmalloc(tx_size, GFP_ATOMIC);
if (r && s && t)
{
strip_info->rx_buff = r;
strip_info->sx_buff = s;
strip_info->tx_buff = t;
strip_info->sx_size = sx_size;
strip_info->tx_size = tx_size;
strip_info->mtu = dev->mtu;
return(1);
}
if (r) kfree(r);
if (s) kfree(s);
if (t) kfree(t);
return(0);
}
/*
* MTU has been changed by the IP layer. Unfortunately we are not told
* about this, but we spot it ourselves and fix things up. We could be in
* an upcall from the tty driver, or in an ip packet queue.
*/
static void strip_changedmtu(struct strip *strip_info)
{
int old_mtu = strip_info->mtu;
struct net_device *dev = &strip_info->dev;
unsigned char *orbuff = strip_info->rx_buff;
unsigned char *osbuff = strip_info->sx_buff;
unsigned char *otbuff = strip_info->tx_buff;
InterruptStatus intstat;
if (dev->mtu > MAX_SEND_MTU)
{
printk(KERN_ERR "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
strip_info->dev.name, MAX_SEND_MTU);
dev->mtu = old_mtu;
return;
}
/*
* Have to disable interrupts here because we're reallocating and resizing
* the serial buffers, and we can't have data arriving in them while we're
* moving them around in memory. This may cause data to be lost on the serial
* port, but hopefully people won't change MTU that often.
* Also note, this may not work on a symmetric multi-processor system.
*/
intstat = DisableInterrupts();
if (!allocate_buffers(strip_info))
{
RestoreInterrupts(intstat);
printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
strip_info->dev.name);
dev->mtu = old_mtu;
return;
}
if (strip_info->sx_count)
{
if (strip_info->sx_count <= strip_info->sx_size)
memcpy(strip_info->sx_buff, osbuff, strip_info->sx_count);
else
{
strip_info->discard = strip_info->sx_count;
strip_info->rx_over_errors++;
}
}
if (strip_info->tx_left)
{
if (strip_info->tx_left <= strip_info->tx_size)
memcpy(strip_info->tx_buff, strip_info->tx_head, strip_info->tx_left);
else
{
strip_info->tx_left = 0;
strip_info->tx_dropped++;
}
}
strip_info->tx_head = strip_info->tx_buff;
RestoreInterrupts(intstat);
printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
strip_info->dev.name, old_mtu, strip_info->mtu);
if (orbuff) kfree(orbuff);
if (osbuff) kfree(osbuff);
if (otbuff) kfree(otbuff);
}
static void strip_unlock(struct strip *strip_info)
{
/*
* Set the timer to go off in one second.
*/
strip_info->idle_timer.expires = jiffies + 1*HZ;
add_timer(&strip_info->idle_timer);
netif_wake_queue(&strip_info->dev);
}
/************************************************************************/
/* Callback routines for exporting information through /proc */
/*
* This function updates the total amount of data printed so far. It then
* determines if the amount of data printed into a buffer has reached the
* offset requested. If it hasn't, then the buffer is shifted over so that
* the next bit of data can be printed over the old bit. If the total
* amount printed so far exceeds the total amount requested, then this
* function returns 1, otherwise 0.
*/
static int
shift_buffer(char *buffer, int requested_offset, int requested_len,
int *total, int *slop, char **buf)
{
int printed;
/* printk(KERN_DEBUG "shift: buffer: %d o: %d l: %d t: %d buf: %d\n",
(int) buffer, requested_offset, requested_len, *total,
(int) *buf); */
printed = *buf - buffer;
if (*total + printed <= requested_offset) {
*total += printed;
*buf = buffer;
}
else {
if (*total < requested_offset) {
*slop = requested_offset - *total;
}
*total = requested_offset + printed - *slop;
}
if (*total > requested_offset + requested_len) {
return 1;
}
else {
return 0;
}
}
/*
* This function calculates the actual start of the requested data
* in the buffer. It also calculates actual length of data returned,
* which could be less that the amount of data requested.
*/
static int
calc_start_len(char *buffer, char **start, int requested_offset,
int requested_len, int total, char *buf)
{
int return_len, buffer_len;
buffer_len = buf - buffer;
if (buffer_len >= 4095) {
printk(KERN_ERR "STRIP: exceeded /proc buffer size\n");
}
/*
* There may be bytes before and after the
* chunk that was actually requested.
*/
return_len = total - requested_offset;
if (return_len < 0) {
return_len = 0;
}
*start = buf - return_len;
if (return_len > requested_len) {
return_len = requested_len;
}
/* printk(KERN_DEBUG "return_len: %d\n", return_len); */
return return_len;
}
/*
* If the time is in the near future, time_delta prints the number of
* seconds to go into the buffer and returns the address of the buffer.
* If the time is not in the near future, it returns the address of the
* string "Not scheduled" The buffer must be long enough to contain the
* ascii representation of the number plus 9 charactes for the " seconds"
* and the null character.
*/
static char *time_delta(char buffer[], long time)
{
time -= jiffies;
if (time > LongTime / 2) return("Not scheduled");
if(time < 0) time = 0; /* Don't print negative times */
sprintf(buffer, "%ld seconds", time / HZ);
return(buffer);
}
static int sprintf_neighbours(char *buffer, MetricomNodeTable *table, char *title)
{
/* We wrap this in a do/while loop, so if the table changes */
/* while we're reading it, we just go around and try again. */
struct timeval t;
char *ptr;
do
{
int i;
t = table->timestamp;
ptr = buffer;
if (table->num_nodes) ptr += sprintf(ptr, "\n %s\n", title);
for (i=0; i<table->num_nodes; i++)
{
InterruptStatus intstat = DisableInterrupts();
MetricomNode node = table->node[i];
RestoreInterrupts(intstat);
ptr += sprintf(ptr, " %s\n", node.c);
}
} while (table->timestamp.tv_sec != t.tv_sec || table->timestamp.tv_usec != t.tv_usec);
return ptr - buffer;
}
/*
* This function prints radio status information into the specified buffer.
* I think the buffer size is 4K, so this routine should never print more
* than 4K of data into it. With the maximum of 32 portables and 32 poletops
* reported, the routine outputs 3107 bytes into the buffer.
*/
static int
sprintf_status_info(char *buffer, struct strip *strip_info)
{
char temp[32];
char *p = buffer;
MetricomAddressString addr_string;
/* First, we must copy all of our data to a safe place, */
/* in case a serial interrupt comes in and changes it. */
InterruptStatus intstat = DisableInterrupts();
int tx_left = strip_info->tx_left;
unsigned long rx_average_pps = strip_info->rx_average_pps;
unsigned long tx_average_pps = strip_info->tx_average_pps;
unsigned long sx_average_pps = strip_info->sx_average_pps;
int working = strip_info->working;
int firmware_level = strip_info->firmware_level;
long watchdog_doprobe = strip_info->watchdog_doprobe;
long watchdog_doreset = strip_info->watchdog_doreset;
long gratuitous_arp = strip_info->gratuitous_arp;
long arp_interval = strip_info->arp_interval;
FirmwareVersion firmware_version = strip_info->firmware_version;
SerialNumber serial_number = strip_info->serial_number;
BatteryVoltage battery_voltage = strip_info->battery_voltage;
char* if_name = strip_info->dev.name;
MetricomAddress true_dev_addr = strip_info->true_dev_addr;
MetricomAddress dev_dev_addr = *(MetricomAddress*)strip_info->dev.dev_addr;
int manual_dev_addr = strip_info->manual_dev_addr;
#ifdef EXT_COUNTERS
unsigned long rx_bytes = strip_info->rx_bytes;
unsigned long tx_bytes = strip_info->tx_bytes;
unsigned long rx_rbytes = strip_info->rx_rbytes;
unsigned long tx_rbytes = strip_info->tx_rbytes;
unsigned long rx_sbytes = strip_info->rx_sbytes;
unsigned long tx_sbytes = strip_info->tx_sbytes;
unsigned long rx_ebytes = strip_info->rx_ebytes;
unsigned long tx_ebytes = strip_info->tx_ebytes;
#endif
RestoreInterrupts(intstat);
p += sprintf(p, "\nInterface name\t\t%s\n", if_name);
p += sprintf(p, " Radio working:\t\t%s\n", working ? "Yes" : "No");
radio_address_to_string(&true_dev_addr, &addr_string);
p += sprintf(p, " Radio address:\t\t%s\n", addr_string.c);
if (manual_dev_addr)
{
radio_address_to_string(&dev_dev_addr, &addr_string);
p += sprintf(p, " Device address:\t%s\n", addr_string.c);
}
p += sprintf(p, " Firmware version:\t%s", !working ? "Unknown" :
!firmware_level ? "Should be upgraded" :
firmware_version.c);
if (firmware_level >= ChecksummedMessages) p += sprintf(p, " (Checksums Enabled)");
p += sprintf(p, "\n");
p += sprintf(p, " Serial number:\t\t%s\n", serial_number.c);
p += sprintf(p, " Battery voltage:\t%s\n", battery_voltage.c);
p += sprintf(p, " Transmit queue (bytes):%d\n", tx_left);
p += sprintf(p, " Receive packet rate: %ld packets per second\n", rx_average_pps / 8);
p += sprintf(p, " Transmit packet rate: %ld packets per second\n", tx_average_pps / 8);
p += sprintf(p, " Sent packet rate: %ld packets per second\n", sx_average_pps / 8);
p += sprintf(p, " Next watchdog probe:\t%s\n", time_delta(temp, watchdog_doprobe));
p += sprintf(p, " Next watchdog reset:\t%s\n", time_delta(temp, watchdog_doreset));
p += sprintf(p, " Next gratuitous ARP:\t");
if (!memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)))
p += sprintf(p, "Disabled\n");
else
{
p += sprintf(p, "%s\n", time_delta(temp, gratuitous_arp));
p += sprintf(p, " Next ARP interval:\t%ld seconds\n", JIFFIE_TO_SEC(arp_interval));
}
if (working)
{
#ifdef EXT_COUNTERS
p += sprintf(p, "\n");
p += sprintf(p, " Total bytes: \trx:\t%lu\ttx:\t%lu\n", rx_bytes, tx_bytes);
p += sprintf(p, " thru radio: \trx:\t%lu\ttx:\t%lu\n", rx_rbytes, tx_rbytes);
p += sprintf(p, " thru serial port: \trx:\t%lu\ttx:\t%lu\n", rx_sbytes, tx_sbytes);
p += sprintf(p, " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n", rx_ebytes, tx_ebytes);
#endif
p += sprintf_neighbours(p, &strip_info->poletops, "Poletops:");
p += sprintf_neighbours(p, &strip_info->portables, "Portables:");
}
return p - buffer;
}
/*
* This function is exports status information from the STRIP driver through
* the /proc file system.
*/
static int get_status_info(char *buffer, char **start, off_t req_offset, int req_len)
{
int total = 0, slop = 0;
struct strip *strip_info = struct_strip_list;
char *buf = buffer;
buf += sprintf(buf, "strip_version: %s\n", StripVersion);
if (shift_buffer(buffer, req_offset, req_len, &total, &slop, &buf)) goto exit;
while (strip_info != NULL)
{
buf += sprintf_status_info(buf, strip_info);
if (shift_buffer(buffer, req_offset, req_len, &total, &slop, &buf)) break;
strip_info = strip_info->next;
}
exit:
return(calc_start_len(buffer, start, req_offset, req_len, total, buf));
}
/************************************************************************/
/* Sending routines */
static void ResetRadio(struct strip *strip_info)
{
struct tty_struct *tty = strip_info->tty;
static const char init[] = "ate0q1dt**starmode\r**";
StringDescriptor s = { init, sizeof(init)-1 };
/*
* If the radio isn't working anymore,
* we should clear the old status information.
*/
if (strip_info->working)
{
printk(KERN_INFO "%s: No response: Resetting radio.\n", strip_info->dev.name);
strip_info->firmware_version.c[0] = '\0';
strip_info->serial_number.c[0] = '\0';
strip_info->battery_voltage.c[0] = '\0';
strip_info->portables.num_nodes = 0;
do_gettimeofday(&strip_info->portables.timestamp);
strip_info->poletops.num_nodes = 0;
do_gettimeofday(&strip_info->poletops.timestamp);
}
strip_info->pps_timer = jiffies;
strip_info->rx_pps_count = 0;
strip_info->tx_pps_count = 0;
strip_info->sx_pps_count = 0;
strip_info->rx_average_pps = 0;
strip_info->tx_average_pps = 0;
strip_info->sx_average_pps = 0;
/* Mark radio address as unknown */
*(MetricomAddress*)&strip_info->true_dev_addr = zero_address;
if (!strip_info->manual_dev_addr)
*(MetricomAddress*)strip_info->dev.dev_addr = zero_address;
strip_info->working = FALSE;
strip_info->firmware_level = NoStructure;
strip_info->next_command = CompatibilityCommand;
strip_info->watchdog_doprobe = jiffies + 10 * HZ;
strip_info->watchdog_doreset = jiffies + 1 * HZ;
/* If the user has selected a baud rate above 38.4 see what magic we have to do */
if (strip_info->user_baud > B38400)
{
/*
* Subtle stuff: Pay attention :-)
* If the serial port is currently at the user's selected (>38.4) rate,
* then we temporarily switch to 19.2 and issue the ATS304 command
* to tell the radio to switch to the user's selected rate.
* If the serial port is not currently at that rate, that means we just
* issued the ATS304 command last time through, so this time we restore
* the user's selected rate and issue the normal starmode reset string.
*/
if (strip_info->user_baud == get_baud(tty))
{
static const char b0[] = "ate0q1s304=57600\r";
static const char b1[] = "ate0q1s304=115200\r";
static const StringDescriptor baudstring[2] =
{ { b0, sizeof(b0)-1 }, { b1, sizeof(b1)-1 } };
set_baud(tty, B19200);
if (strip_info->user_baud == B57600 ) s = baudstring[0];
else if (strip_info->user_baud == B115200) s = baudstring[1];
else s = baudstring[1]; /* For now */
}
else set_baud(tty, strip_info->user_baud);
}
tty->driver.write(tty, 0, s.string, s.length);
#ifdef EXT_COUNTERS
strip_info->tx_ebytes += s.length;
#endif
}
/*
* Called by the driver when there's room for more data. If we have
* more packets to send, we send them here.
*/
static void strip_write_some_more(struct tty_struct *tty)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
/* First make sure we're connected. */
if (!strip_info || strip_info->magic != STRIP_MAGIC ||
!netif_running(&strip_info->dev))
return;
if (strip_info->tx_left > 0)
{
/*
* If some data left, send it
* Note: There's a kernel design bug here. The write_wakeup routine has to
* know how many bytes were written in the previous call, but the number of
* bytes written is returned as the result of the tty->driver.write call,
* and there's no guarantee that the tty->driver.write routine will have
* returned before the write_wakeup routine is invoked. If the PC has fast
* Serial DMA hardware, then it's quite possible that the write could complete
* almost instantaneously, meaning that my write_wakeup routine could be
* called immediately, before tty->driver.write has had a chance to return
* the number of bytes that it wrote. In an attempt to guard against this,
* I disable interrupts around the call to tty->driver.write, although even
* this might not work on a symmetric multi-processor system.
*/
InterruptStatus intstat = DisableInterrupts();
int num_written = tty->driver.write(tty, 0, strip_info->tx_head, strip_info->tx_left);
strip_info->tx_left -= num_written;
strip_info->tx_head += num_written;
#ifdef EXT_COUNTERS
strip_info->tx_sbytes += num_written;
#endif
RestoreInterrupts(intstat);
}
else /* Else start transmission of another packet */
{
tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
strip_unlock(strip_info);
}
}
static __u8 *add_checksum(__u8 *buffer, __u8 *end)
{
__u16 sum = 0;
__u8 *p = buffer;
while (p < end) sum += *p++;
end[3] = hextable[sum & 0xF]; sum >>= 4;
end[2] = hextable[sum & 0xF]; sum >>= 4;
end[1] = hextable[sum & 0xF]; sum >>= 4;
end[0] = hextable[sum & 0xF];
return(end+4);
}
static unsigned char *strip_make_packet(unsigned char *buffer, struct strip *strip_info, struct sk_buff *skb)
{
__u8 *ptr = buffer;
__u8 *stuffstate = NULL;
STRIP_Header *header = (STRIP_Header *)skb->data;
MetricomAddress haddr = header->dst_addr;
int len = skb->len - sizeof(STRIP_Header);
MetricomKey key;
/*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len);*/
if (header->protocol == htons(ETH_P_IP)) key = SIP0Key;
else if (header->protocol == htons(ETH_P_ARP)) key = ARP0Key;
else
{
printk(KERN_ERR "%s: strip_make_packet: Unknown packet type 0x%04X\n",
strip_info->dev.name, ntohs(header->protocol));
return(NULL);
}
if (len > strip_info->mtu)
{
printk(KERN_ERR "%s: Dropping oversized transmit packet: %d bytes\n",
strip_info->dev.name, len);
return(NULL);
}
/*
* If we're sending to ourselves, discard the packet.
* (Metricom radios choke if they try to send a packet to their own address.)
*/
if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
{
printk(KERN_ERR "%s: Dropping packet addressed to self\n", strip_info->dev.name);
return(NULL);
}
/*
* If this is a broadcast packet, send it to our designated Metricom
* 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
*/
if (haddr.c[0] == 0xFF)
{
u32 brd = 0;
struct in_device *in_dev = in_dev_get(&strip_info->dev);
if (in_dev == NULL)
return NULL;
read_lock(&in_dev->lock);
if (in_dev->ifa_list)
brd = in_dev->ifa_list->ifa_broadcast;
read_unlock(&in_dev->lock);
in_dev_put(in_dev);
/* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
if (!arp_query(haddr.c, brd, &strip_info->dev))
{
printk(KERN_ERR "%s: Unable to send packet (no broadcast hub configured)\n",
strip_info->dev.name);
return(NULL);
}
/*
* If we are the broadcast hub, don't bother sending to ourselves.
* (Metricom radios choke if they try to send a packet to their own address.)
*/
if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) return(NULL);
}
*ptr++ = 0x0D;
*ptr++ = '*';
*ptr++ = hextable[haddr.c[2] >> 4];
*ptr++ = hextable[haddr.c[2] & 0xF];
*ptr++ = hextable[haddr.c[3] >> 4];
*ptr++ = hextable[haddr.c[3] & 0xF];
*ptr++ = '-';
*ptr++ = hextable[haddr.c[4] >> 4];
*ptr++ = hextable[haddr.c[4] & 0xF];
*ptr++ = hextable[haddr.c[5] >> 4];
*ptr++ = hextable[haddr.c[5] & 0xF];
*ptr++ = '*';
*ptr++ = key.c[0];
*ptr++ = key.c[1];
*ptr++ = key.c[2];
*ptr++ = key.c[3];
ptr = StuffData(skb->data + sizeof(STRIP_Header), len, ptr, &stuffstate);
if (strip_info->firmware_level >= ChecksummedMessages) ptr = add_checksum(buffer+1, ptr);
*ptr++ = 0x0D;
return(ptr);
}
static void strip_send(struct strip *strip_info, struct sk_buff *skb)
{
MetricomAddress haddr;
unsigned char *ptr = strip_info->tx_buff;
int doreset = (long)jiffies - strip_info->watchdog_doreset >= 0;
int doprobe = (long)jiffies - strip_info->watchdog_doprobe >= 0 && !doreset;
u32 addr, brd;
/*
* 1. If we have a packet, encapsulate it and put it in the buffer
*/
if (skb)
{
char *newptr = strip_make_packet(ptr, strip_info, skb);
strip_info->tx_pps_count++;
if (!newptr) strip_info->tx_dropped++;
else
{
ptr = newptr;
strip_info->sx_pps_count++;
strip_info->tx_packets++; /* Count another successful packet */
#ifdef EXT_COUNTERS
strip_info->tx_bytes += skb->len;
strip_info->tx_rbytes += ptr - strip_info->tx_buff;
#endif
/*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr);*/
/*HexDump("Sending", strip_info, strip_info->tx_buff, ptr);*/
}
}
/*
* 2. If it is time for another tickle, tack it on, after the packet
*/
if (doprobe)
{
StringDescriptor ts = CommandString[strip_info->next_command];
#if TICKLE_TIMERS
{
struct timeval tv;
do_gettimeofday(&tv);
printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n",
strip_info->next_command, tv.tv_sec % 100, tv.tv_usec);
}
#endif
if (ptr == strip_info->tx_buff) *ptr++ = 0x0D;
*ptr++ = '*'; /* First send "**" to provoke an error message */
*ptr++ = '*';
/* Then add the command */
memcpy(ptr, ts.string, ts.length);
/* Add a checksum ? */
if (strip_info->firmware_level < ChecksummedMessages) ptr += ts.length;
else ptr = add_checksum(ptr, ptr + ts.length);
*ptr++ = 0x0D; /* Terminate the command with a <CR> */
/* Cycle to next periodic command? */
if (strip_info->firmware_level >= StructuredMessages)
if (++strip_info->next_command >= ELEMENTS_OF(CommandString))
strip_info->next_command = 0;
#ifdef EXT_COUNTERS
strip_info->tx_ebytes += ts.length;
#endif
strip_info->watchdog_doprobe = jiffies + 10 * HZ;
strip_info->watchdog_doreset = jiffies + 1 * HZ;
/*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev.name);*/
}
/*
* 3. Set up the strip_info ready to send the data (if any).
*/
strip_info->tx_head = strip_info->tx_buff;
strip_info->tx_left = ptr - strip_info->tx_buff;
strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP);
/*
* 4. Debugging check to make sure we're not overflowing the buffer.
*/
if (strip_info->tx_size - strip_info->tx_left < 20)
printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n", strip_info->dev.name,
strip_info->tx_left, strip_info->tx_size - strip_info->tx_left);
/*
* 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
* the buffer, strip_write_some_more will send it after the reset has finished
*/
if (doreset) { ResetRadio(strip_info); return; }
if (1) {
struct in_device *in_dev = in_dev_get(&strip_info->dev);
brd = addr = 0;
if (in_dev) {
read_lock(&in_dev->lock);
if (in_dev->ifa_list) {
brd = in_dev->ifa_list->ifa_broadcast;
addr = in_dev->ifa_list->ifa_local;
}
read_unlock(&in_dev->lock);
in_dev_put(in_dev);
}
}
/*
* 6. If it is time for a periodic ARP, queue one up to be sent.
* We only do this if:
* 1. The radio is working
* 2. It's time to send another periodic ARP
* 3. We really know what our address is (and it is not manually set to zero)
* 4. We have a designated broadcast address configured
* If we queue up an ARP packet when we don't have a designated broadcast
* address configured, then the packet will just have to be discarded in
* strip_make_packet. This is not fatal, but it causes misleading information
* to be displayed in tcpdump. tcpdump will report that periodic APRs are
* being sent, when in fact they are not, because they are all being dropped
* in the strip_make_packet routine.
*/
if (strip_info->working && (long)jiffies - strip_info->gratuitous_arp >= 0 &&
memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)) &&
arp_query(haddr.c, brd, &strip_info->dev))
{
/*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
strip_info->dev.name, strip_info->arp_interval / HZ);*/
strip_info->gratuitous_arp = jiffies + strip_info->arp_interval;
strip_info->arp_interval *= 2;
if (strip_info->arp_interval > MaxARPInterval)
strip_info->arp_interval = MaxARPInterval;
if (addr)
arp_send(
ARPOP_REPLY, ETH_P_ARP,
addr, /* Target address of ARP packet is our address */
&strip_info->dev, /* Device to send packet on */
addr, /* Source IP address this ARP packet comes from */
NULL, /* Destination HW address is NULL (broadcast it) */
strip_info->dev.dev_addr, /* Source HW address is our HW address */
strip_info->dev.dev_addr); /* Target HW address is our HW address (redundant) */
}
/*
* 7. All ready. Start the transmission
*/
strip_write_some_more(strip_info->tty);
}
/* Encapsulate a datagram and kick it into a TTY queue. */
static int strip_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct strip *strip_info = (struct strip *)(dev->priv);
if (!netif_running(dev))
{
printk(KERN_ERR "%s: xmit call when iface is down\n", dev->name);
return(1);
}
netif_stop_queue(dev);
del_timer(&strip_info->idle_timer);
/* See if someone has been ifconfigging */
if (strip_info->mtu != strip_info->dev.mtu)
strip_changedmtu(strip_info);
if (jiffies - strip_info->pps_timer > HZ)
{
unsigned long t = jiffies - strip_info->pps_timer;
unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t/2) / t;
unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t/2) / t;
unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t/2) / t;
strip_info->pps_timer = jiffies;
strip_info->rx_pps_count = 0;
strip_info->tx_pps_count = 0;
strip_info->sx_pps_count = 0;
strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
if (rx_pps_count / 8 >= 10)
printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
strip_info->dev.name, rx_pps_count / 8);
if (tx_pps_count / 8 >= 10)
printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n",
strip_info->dev.name, tx_pps_count / 8);
if (sx_pps_count / 8 >= 10)
printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n",
strip_info->dev.name, sx_pps_count / 8);
}
strip_send(strip_info, skb);
if (skb)
dev_kfree_skb(skb);
return(0);
}
/*
* IdleTask periodically calls strip_xmit, so even when we have no IP packets
* to send for an extended period of time, the watchdog processing still gets
* done to ensure that the radio stays in Starmode
*/
static void strip_IdleTask(unsigned long parameter)
{
strip_xmit(NULL, (struct net_device *)parameter);
}
/*
* Create the MAC header for an arbitrary protocol layer
*
* saddr!=NULL means use this specific address (n/a for Metricom)
* saddr==NULL means use default device source address
* daddr!=NULL means use this destination address
* daddr==NULL means leave destination address alone
* (e.g. unresolved arp -- kernel will call
* rebuild_header later to fill in the address)
*/
static int strip_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr, unsigned len)
{
struct strip *strip_info = (struct strip *)(dev->priv);
STRIP_Header *header = (STRIP_Header *)skb_push(skb, sizeof(STRIP_Header));
/*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : "");*/
header->src_addr = strip_info->true_dev_addr;
header->protocol = htons(type);
/*HexDump("strip_header", (struct strip *)(dev->priv), skb->data, skb->data + skb->len);*/
if (!daddr) return(-dev->hard_header_len);
header->dst_addr = *(MetricomAddress*)daddr;
return(dev->hard_header_len);
}
/*
* Rebuild the MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
* I think this should return zero if packet is ready to send,
* or non-zero if it needs more time to do an address lookup
*/
static int strip_rebuild_header(struct sk_buff *skb)
{
#ifdef CONFIG_INET
STRIP_Header *header = (STRIP_Header *) skb->data;
/* Arp find returns zero if if knows the address, */
/* or if it doesn't know the address it sends an ARP packet and returns non-zero */
return arp_find(header->dst_addr.c, skb)? 1 : 0;
#else
return 0;
#endif
}
/************************************************************************/
/* Receiving routines */
static int strip_receive_room(struct tty_struct *tty)
{
return 0x10000; /* We can handle an infinite amount of data. :-) */
}
/*
* This function parses the response to the ATS300? command,
* extracting the radio version and serial number.
*/
static void get_radio_version(struct strip *strip_info, __u8 *ptr, __u8 *end)
{
__u8 *p, *value_begin, *value_end;
int len;
/* Determine the beginning of the second line of the payload */
p = ptr;
while (p < end && *p != 10) p++;
if (p >= end) return;
p++;
value_begin = p;
/* Determine the end of line */
while (p < end && *p != 10) p++;
if (p >= end) return;
value_end = p;
p++;
len = value_end - value_begin;
len = MIN(len, sizeof(FirmwareVersion) - 1);
if (strip_info->firmware_version.c[0] == 0)
printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
strip_info->dev.name, len, value_begin);
sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
/* Look for the first colon */
while (p < end && *p != ':') p++;
if (p >= end) return;
/* Skip over the space */
p += 2;
len = sizeof(SerialNumber) - 1;
if (p + len <= end) {
sprintf(strip_info->serial_number.c, "%.*s", len, p);
}
else {
printk(KERN_DEBUG "STRIP: radio serial number shorter (%d) than expected (%d)\n",
end - p, len);
}
}
/*
* This function parses the response to the ATS325? command,
* extracting the radio battery voltage.
*/
static void get_radio_voltage(struct strip *strip_info, __u8 *ptr, __u8 *end)
{
int len;
len = sizeof(BatteryVoltage) - 1;
if (ptr + len <= end) {
sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
}
else {
printk(KERN_DEBUG "STRIP: radio voltage string shorter (%d) than expected (%d)\n",
end - ptr, len);
}
}
/*
* This function parses the responses to the AT~LA and ATS311 commands,
* which list the radio's neighbours.
*/
static void get_radio_neighbours(MetricomNodeTable *table, __u8 *ptr, __u8 *end)
{
table->num_nodes = 0;
while (ptr < end && table->num_nodes < NODE_TABLE_SIZE)
{
MetricomNode *node = &table->node[table->num_nodes++];
char *dst = node->c, *limit = dst + sizeof(*node) - 1;
while (ptr < end && *ptr <= 32) ptr++;
while (ptr < end && dst < limit && *ptr != 10) *dst++ = *ptr++;
*dst++ = 0;
while (ptr < end && ptr[-1] != 10) ptr++;
}
do_gettimeofday(&table->timestamp);
}
static int get_radio_address(struct strip *strip_info, __u8 *p)
{
MetricomAddress addr;
if (string_to_radio_address(&addr, p)) return(1);
/* See if our radio address has changed */
if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr)))
{
MetricomAddressString addr_string;
radio_address_to_string(&addr, &addr_string);
printk(KERN_INFO "%s: Radio address = %s\n", strip_info->dev.name, addr_string.c);
strip_info->true_dev_addr = addr;
if (!strip_info->manual_dev_addr) *(MetricomAddress*)strip_info->dev.dev_addr = addr;
/* Give the radio a few seconds to get its head straight, then send an arp */
strip_info->gratuitous_arp = jiffies + 15 * HZ;
strip_info->arp_interval = 1 * HZ;
}
return(0);
}
static int verify_checksum(struct strip *strip_info)
{
__u8 *p = strip_info->sx_buff;
__u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
u_short sum = (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
(READHEX16(end[2]) << 4) | (READHEX16(end[3]));
while (p < end) sum -= *p++;
if (sum == 0 && strip_info->firmware_level == StructuredMessages)
{
strip_info->firmware_level = ChecksummedMessages;
printk(KERN_INFO "%s: Radio provides message checksums\n", strip_info->dev.name);
}
return(sum == 0);
}
static void RecvErr(char *msg, struct strip *strip_info)
{
__u8 *ptr = strip_info->sx_buff;
__u8 *end = strip_info->sx_buff + strip_info->sx_count;
DumpData(msg, strip_info, ptr, end);
strip_info->rx_errors++;
}
static void RecvErr_Message(struct strip *strip_info, __u8 *sendername, const __u8 *msg, u_long len)
{
if (has_prefix(msg, len, "001")) /* Not in StarMode! */
{
RecvErr("Error Msg:", strip_info);
printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
strip_info->dev.name, sendername);
}
else if (has_prefix(msg, len, "002")) /* Remap handle */
{
/* We ignore "Remap handle" messages for now */
}
else if (has_prefix(msg, len, "003")) /* Can't resolve name */
{
RecvErr("Error Msg:", strip_info);
printk(KERN_INFO "%s: Destination radio name is unknown\n",
strip_info->dev.name);
}
else if (has_prefix(msg, len, "004")) /* Name too small or missing */
{
strip_info->watchdog_doreset = jiffies + LongTime;
#if TICKLE_TIMERS
{
struct timeval tv;
do_gettimeofday(&tv);
printk(KERN_INFO "**** Got ERR_004 response at %02d.%06d\n",
tv.tv_sec % 100, tv.tv_usec);
}
#endif
if (!strip_info->working)
{
strip_info->working = TRUE;
printk(KERN_INFO "%s: Radio now in starmode\n", strip_info->dev.name);
/*
* If the radio has just entered a working state, we should do our first
* probe ASAP, so that we find out our radio address etc. without delay.
*/
strip_info->watchdog_doprobe = jiffies;
}
if (strip_info->firmware_level == NoStructure && sendername)
{
strip_info->firmware_level = StructuredMessages;
strip_info->next_command = 0; /* Try to enable checksums ASAP */
printk(KERN_INFO "%s: Radio provides structured messages\n", strip_info->dev.name);
}
if (strip_info->firmware_level >= StructuredMessages)
{
/*
* If this message has a valid checksum on the end, then the call to verify_checksum
* will elevate the firmware_level to ChecksummedMessages for us. (The actual return
* code from verify_checksum is ignored here.)
*/
verify_checksum(strip_info);
/*
* If the radio has structured messages but we don't yet have all our information about it,
* we should do probes without delay, until we have gathered all the information
*/
if (!GOT_ALL_RADIO_INFO(strip_info)) strip_info->watchdog_doprobe = jiffies;
}
}
else if (has_prefix(msg, len, "005")) /* Bad count specification */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "006")) /* Header too big */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "007")) /* Body too big */
{
RecvErr("Error Msg:", strip_info);
printk(KERN_ERR "%s: Error! Packet size too big for radio.\n",
strip_info->dev.name);
}
else if (has_prefix(msg, len, "008")) /* Bad character in name */
{
RecvErr("Error Msg:", strip_info);
printk(KERN_ERR "%s: Radio name contains illegal character\n",
strip_info->dev.name);
}
else if (has_prefix(msg, len, "009")) /* No count or line terminator */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "010")) /* Invalid checksum */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "011")) /* Checksum didn't match */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */
RecvErr("Error Msg:", strip_info);
else
RecvErr("Error Msg:", strip_info);
}
static void process_AT_response(struct strip *strip_info, __u8 *ptr, __u8 *end)
{
u_long len;
__u8 *p = ptr;
while (p < end && p[-1] != 10) p++; /* Skip past first newline character */
/* Now ptr points to the AT command, and p points to the text of the response. */
len = p-ptr;
#if TICKLE_TIMERS
{
struct timeval tv;
do_gettimeofday(&tv);
printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n",
ptr, tv.tv_sec % 100, tv.tv_usec);
}
#endif
if (has_prefix(ptr, len, "ATS300?" )) get_radio_version(strip_info, p, end);
else if (has_prefix(ptr, len, "ATS305?" )) get_radio_address(strip_info, p);
else if (has_prefix(ptr, len, "ATS311?" )) get_radio_neighbours(&strip_info->poletops, p, end);
else if (has_prefix(ptr, len, "ATS319=7")) verify_checksum(strip_info);
else if (has_prefix(ptr, len, "ATS325?" )) get_radio_voltage(strip_info, p, end);
else if (has_prefix(ptr, len, "AT~LA" )) get_radio_neighbours(&strip_info->portables, p, end);
else RecvErr("Unknown AT Response:", strip_info);
}
static void process_ACK(struct strip *strip_info, __u8 *ptr, __u8 *end)
{
/* Currently we don't do anything with ACKs from the radio */
}
static void process_Info(struct strip *strip_info, __u8 *ptr, __u8 *end)
{
if (ptr+16 > end) RecvErr("Bad Info Msg:", strip_info);
}
static struct net_device *get_strip_dev(struct strip *strip_info)
{
/* If our hardware address is *manually set* to zero, and we know our */
/* real radio hardware address, try to find another strip device that has been */
/* manually set to that address that we can 'transfer ownership' of this packet to */
if (strip_info->manual_dev_addr &&
!memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)) &&
memcmp(&strip_info->true_dev_addr, zero_address.c, sizeof(zero_address)))
{
struct net_device *dev;
read_lock_bh(&dev_base_lock);
dev = dev_base;
while (dev)
{
if (dev->type == strip_info->dev.type &&
!memcmp(dev->dev_addr, &strip_info->true_dev_addr, sizeof(MetricomAddress)))
{
printk(KERN_INFO "%s: Transferred packet ownership to %s.\n",
strip_info->dev.name, dev->name);
read_unlock_bh(&dev_base_lock);
return(dev);
}
dev = dev->next;
}
read_unlock_bh(&dev_base_lock);
}
return(&strip_info->dev);
}
/*
* Send one completely decapsulated datagram to the next layer.
*/
static void deliver_packet(struct strip *strip_info, STRIP_Header *header, __u16 packetlen)
{
struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
if (!skb)
{
printk(KERN_ERR "%s: memory squeeze, dropping packet.\n", strip_info->dev.name);
strip_info->rx_dropped++;
}
else
{
memcpy(skb_put(skb, sizeof(STRIP_Header)), header, sizeof(STRIP_Header));
memcpy(skb_put(skb, packetlen), strip_info->rx_buff, packetlen);
skb->dev = get_strip_dev(strip_info);
skb->protocol = header->protocol;
skb->mac.raw = skb->data;
/* Having put a fake header on the front of the sk_buff for the */
/* benefit of tools like tcpdump, skb_pull now 'consumes' that */
/* fake header before we hand the packet up to the next layer. */
skb_pull(skb, sizeof(STRIP_Header));
/* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
strip_info->rx_packets++;
strip_info->rx_pps_count++;
#ifdef EXT_COUNTERS
strip_info->rx_bytes += packetlen;
#endif
skb->dev->last_rx = jiffies;
netif_rx(skb);
}
}
static void process_IP_packet(struct strip *strip_info, STRIP_Header *header, __u8 *ptr, __u8 *end)
{
__u16 packetlen;
/* Decode start of the IP packet header */
ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
if (!ptr)
{
RecvErr("IP Packet too short", strip_info);
return;
}
packetlen = ((__u16)strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
if (packetlen > MAX_RECV_MTU)
{
printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
strip_info->dev.name, packetlen);
strip_info->rx_dropped++;
return;
}
/*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev.name, packetlen);*/
/* Decode remainder of the IP packet */
ptr = UnStuffData(ptr, end, strip_info->rx_buff+4, packetlen-4);
if (!ptr)
{
RecvErr("IP Packet too short", strip_info);
return;
}
if (ptr < end)
{
RecvErr("IP Packet too long", strip_info);
return;
}
header->protocol = htons(ETH_P_IP);
deliver_packet(strip_info, header, packetlen);
}
static void process_ARP_packet(struct strip *strip_info, STRIP_Header *header, __u8 *ptr, __u8 *end)
{
__u16 packetlen;
struct arphdr *arphdr = (struct arphdr *)strip_info->rx_buff;
/* Decode start of the ARP packet */
ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
if (!ptr)
{
RecvErr("ARP Packet too short", strip_info);
return;
}
packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
if (packetlen > MAX_RECV_MTU)
{
printk(KERN_INFO "%s: Dropping oversized received ARP packet: %d bytes\n",
strip_info->dev.name, packetlen);
strip_info->rx_dropped++;
return;
}
/*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
strip_info->dev.name, packetlen,
ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply");*/
/* Decode remainder of the ARP packet */
ptr = UnStuffData(ptr, end, strip_info->rx_buff+8, packetlen-8);
if (!ptr)
{
RecvErr("ARP Packet too short", strip_info);
return;
}
if (ptr < end)
{
RecvErr("ARP Packet too long", strip_info);
return;
}
header->protocol = htons(ETH_P_ARP);
deliver_packet(strip_info, header, packetlen);
}
/*
* process_text_message processes a <CR>-terminated block of data received
* from the radio that doesn't begin with a '*' character. All normal
* Starmode communication messages with the radio begin with a '*',
* so any text that does not indicates a serial port error, a radio that
* is in Hayes command mode instead of Starmode, or a radio with really
* old firmware that doesn't frame its Starmode responses properly.
*/
static void process_text_message(struct strip *strip_info)
{
__u8 *msg = strip_info->sx_buff;
int len = strip_info->sx_count;
/* Check for anything that looks like it might be our radio name */
/* (This is here for backwards compatibility with old firmware) */
if (len == 9 && get_radio_address(strip_info, msg) == 0) return;
if (text_equal(msg, len, "OK" )) return; /* Ignore 'OK' responses from prior commands */
if (text_equal(msg, len, "ERROR" )) return; /* Ignore 'ERROR' messages */
if (has_prefix(msg, len, "ate0q1" )) return; /* Ignore character echo back from the radio */
/* Catch other error messages */
/* (This is here for backwards compatibility with old firmware) */
if (has_prefix(msg, len, "ERR_")) { RecvErr_Message(strip_info, NULL, &msg[4], len-4); return; }
RecvErr("No initial *", strip_info);
}
/*
* process_message processes a <CR>-terminated block of data received
* from the radio. If the radio is not in Starmode or has old firmware,
* it may be a line of text in response to an AT command. Ideally, with
* a current radio that's properly in Starmode, all data received should
* be properly framed and checksummed radio message blocks, containing
* either a starmode packet, or a other communication from the radio
* firmware, like "INF_" Info messages and &COMMAND responses.
*/
static void process_message(struct strip *strip_info)
{
STRIP_Header header = { zero_address, zero_address, 0 };
__u8 *ptr = strip_info->sx_buff;
__u8 *end = strip_info->sx_buff + strip_info->sx_count;
__u8 sendername[32], *sptr = sendername;
MetricomKey key;
/*HexDump("Receiving", strip_info, ptr, end);*/
/* Check for start of address marker, and then skip over it */
if (*ptr == '*') ptr++;
else { process_text_message(strip_info); return; }
/* Copy out the return address */
while (ptr < end && *ptr != '*' && sptr < ARRAY_END(sendername)-1) *sptr++ = *ptr++;
*sptr = 0; /* Null terminate the sender name */
/* Check for end of address marker, and skip over it */
if (ptr >= end || *ptr != '*')
{
RecvErr("No second *", strip_info);
return;
}
ptr++; /* Skip the second '*' */
/* If the sender name is "&COMMAND", ignore this 'packet' */
/* (This is here for backwards compatibility with old firmware) */
if (!strcmp(sendername, "&COMMAND"))
{
strip_info->firmware_level = NoStructure;
strip_info->next_command = CompatibilityCommand;
return;
}
if (ptr+4 > end)
{
RecvErr("No proto key", strip_info);
return;
}
/* Get the protocol key out of the buffer */
key.c[0] = *ptr++;
key.c[1] = *ptr++;
key.c[2] = *ptr++;
key.c[3] = *ptr++;
/* If we're using checksums, verify the checksum at the end of the packet */
if (strip_info->firmware_level >= ChecksummedMessages)
{
end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */
if (ptr > end)
{
RecvErr("Missing Checksum", strip_info);
return;
}
if (!verify_checksum(strip_info))
{
RecvErr("Bad Checksum", strip_info);
return;
}
}
/*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev.name, sendername);*/
/*
* Fill in (pseudo) source and destination addresses in the packet.
* We assume that the destination address was our address (the radio does not
* tell us this). If the radio supplies a source address, then we use it.
*/
header.dst_addr = strip_info->true_dev_addr;
string_to_radio_address(&header.src_addr, sendername);
#ifdef EXT_COUNTERS
if (key.l == SIP0Key.l) {
strip_info->rx_rbytes += (end - ptr);
process_IP_packet(strip_info, &header, ptr, end);
} else if (key.l == ARP0Key.l) {
strip_info->rx_rbytes += (end - ptr);
process_ARP_packet(strip_info, &header, ptr, end);
} else if (key.l == ATR_Key.l) {
strip_info->rx_ebytes += (end - ptr);
process_AT_response(strip_info, ptr, end);
} else if (key.l == ACK_Key.l) {
strip_info->rx_ebytes += (end - ptr);
process_ACK(strip_info, ptr, end);
} else if (key.l == INF_Key.l) {
strip_info->rx_ebytes += (end - ptr);
process_Info(strip_info, ptr, end);
} else if (key.l == ERR_Key.l) {
strip_info->rx_ebytes += (end - ptr);
RecvErr_Message(strip_info, sendername, ptr, end-ptr);
} else RecvErr("Unrecognized protocol key", strip_info);
#else
if (key.l == SIP0Key.l) process_IP_packet (strip_info, &header, ptr, end);
else if (key.l == ARP0Key.l) process_ARP_packet (strip_info, &header, ptr, end);
else if (key.l == ATR_Key.l) process_AT_response(strip_info, ptr, end);
else if (key.l == ACK_Key.l) process_ACK (strip_info, ptr, end);
else if (key.l == INF_Key.l) process_Info (strip_info, ptr, end);
else if (key.l == ERR_Key.l) RecvErr_Message (strip_info, sendername, ptr, end-ptr);
else RecvErr("Unrecognized protocol key", strip_info);
#endif
}
#define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
(X) == TTY_FRAME ? "Framing Error" : \
(X) == TTY_PARITY ? "Parity Error" : \
(X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
/*
* Handle the 'receiver data ready' interrupt.
* This function is called by the 'tty_io' module in the kernel when
* a block of STRIP data has been received, which can now be decapsulated
* and sent on to some IP layer for further processing.
*/
static void
strip_receive_buf(struct tty_struct *tty, const unsigned char *cp, char *fp, int count)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
const unsigned char *end = cp + count;
if (!strip_info || strip_info->magic != STRIP_MAGIC
|| !netif_running(&strip_info->dev))
return;
/* Argh! mtu change time! - costs us the packet part received at the change */
if (strip_info->mtu != strip_info->dev.mtu)
strip_changedmtu(strip_info);
#if 0
{
struct timeval tv;
do_gettimeofday(&tv);
printk(KERN_INFO "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
count, tv.tv_sec % 100, tv.tv_usec);
}
#endif
#ifdef EXT_COUNTERS
strip_info->rx_sbytes += count;
#endif
/* Read the characters out of the buffer */
while (cp < end)
{
if (fp && *fp) printk(KERN_INFO "%s: %s on serial port\n", strip_info->dev.name, TTYERROR(*fp));
if (fp && *fp++ && !strip_info->discard) /* If there's a serial error, record it */
{
/* If we have some characters in the buffer, discard them */
strip_info->discard = strip_info->sx_count;
strip_info->rx_errors++;
}
/* Leading control characters (CR, NL, Tab, etc.) are ignored */
if (strip_info->sx_count > 0 || *cp >= ' ')
{
if (*cp == 0x0D) /* If end of packet, decide what to do with it */
{
if (strip_info->sx_count > 3000)
printk(KERN_INFO "%s: Cut a %d byte packet (%d bytes remaining)%s\n",
strip_info->dev.name, strip_info->sx_count, end-cp-1,
strip_info->discard ? " (discarded)" : "");
if (strip_info->sx_count > strip_info->sx_size)
{
strip_info->rx_over_errors++;
printk(KERN_INFO "%s: sx_buff overflow (%d bytes total)\n",
strip_info->dev.name, strip_info->sx_count);
}
else if (strip_info->discard)
printk(KERN_INFO "%s: Discarding bad packet (%d/%d)\n",
strip_info->dev.name, strip_info->discard, strip_info->sx_count);
else process_message(strip_info);
strip_info->discard = 0;
strip_info->sx_count = 0;
}
else
{
/* Make sure we have space in the buffer */
if (strip_info->sx_count < strip_info->sx_size)
strip_info->sx_buff[strip_info->sx_count] = *cp;
strip_info->sx_count++;
}
}
cp++;
}
}
/************************************************************************/
/* General control routines */
static int set_mac_address(struct strip *strip_info, MetricomAddress *addr)
{
/*
* We're using a manually specified address if the address is set
* to anything other than all ones. Setting the address to all ones
* disables manual mode and goes back to automatic address determination
* (tracking the true address that the radio has).
*/
strip_info->manual_dev_addr = memcmp(addr->c, broadcast_address.c, sizeof(broadcast_address));
if (strip_info->manual_dev_addr)
*(MetricomAddress*)strip_info->dev.dev_addr = *addr;
else *(MetricomAddress*)strip_info->dev.dev_addr = strip_info->true_dev_addr;
return 0;
}
static int dev_set_mac_address(struct net_device *dev, void *addr)
{
struct strip *strip_info = (struct strip *)(dev->priv);
struct sockaddr *sa = addr;
printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
set_mac_address(strip_info, (MetricomAddress *)sa->sa_data);
return 0;
}
static struct net_device_stats *strip_get_stats(struct net_device *dev)
{
static struct net_device_stats stats;
struct strip *strip_info = (struct strip *)(dev->priv);
memset(&stats, 0, sizeof(struct net_device_stats));
stats.rx_packets = strip_info->rx_packets;
stats.tx_packets = strip_info->tx_packets;
stats.rx_dropped = strip_info->rx_dropped;
stats.tx_dropped = strip_info->tx_dropped;
stats.tx_errors = strip_info->tx_errors;
stats.rx_errors = strip_info->rx_errors;
stats.rx_over_errors = strip_info->rx_over_errors;
return(&stats);
}
/************************************************************************/
/* Opening and closing */
/*
* Here's the order things happen:
* When the user runs "slattach -p strip ..."
* 1. The TTY module calls strip_open
* 2. strip_open calls strip_alloc
* 3. strip_alloc calls register_netdev
* 4. register_netdev calls strip_dev_init
* 5. then strip_open finishes setting up the strip_info
*
* When the user runs "ifconfig st<x> up address netmask ..."
* 6. strip_open_low gets called
*
* When the user runs "ifconfig st<x> down"
* 7. strip_close_low gets called
*
* When the user kills the slattach process
* 8. strip_close gets called
* 9. strip_close calls dev_close
* 10. if the device is still up, then dev_close calls strip_close_low
* 11. strip_close calls strip_free
*/
/* Open the low-level part of the STRIP channel. Easy! */
static int strip_open_low(struct net_device *dev)
{
struct strip *strip_info = (struct strip *)(dev->priv);
#if 0
struct in_device *in_dev = dev->ip_ptr;
#endif
if (strip_info->tty == NULL)
return(-ENODEV);
if (!allocate_buffers(strip_info))
return(-ENOMEM);
strip_info->sx_count = 0;
strip_info->tx_left = 0;
strip_info->discard = 0;
strip_info->working = FALSE;
strip_info->firmware_level = NoStructure;
strip_info->next_command = CompatibilityCommand;
strip_info->user_baud = get_baud(strip_info->tty);
#if 0
/*
* Needed because address '0' is special
*
* --ANK Needed it or not needed, it does not matter at all.
* Make it at user level, guys.
*/
if (in_dev->ifa_list->ifa_address == 0)
in_dev->ifa_list->ifa_address = ntohl(0xC0A80001);
#endif
printk(KERN_INFO "%s: Initializing Radio.\n", strip_info->dev.name);
ResetRadio(strip_info);
strip_info->idle_timer.expires = jiffies + 1*HZ;
add_timer(&strip_info->idle_timer);
netif_wake_queue(dev);
return(0);
}
/*
* Close the low-level part of the STRIP channel. Easy!
*/
static int strip_close_low(struct net_device *dev)
{
struct strip *strip_info = (struct strip *)(dev->priv);
if (strip_info->tty == NULL)
return -EBUSY;
strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
netif_stop_queue(dev);
/*
* Free all STRIP frame buffers.
*/
if (strip_info->rx_buff)
{
kfree(strip_info->rx_buff);
strip_info->rx_buff = NULL;
}
if (strip_info->sx_buff)
{
kfree(strip_info->sx_buff);
strip_info->sx_buff = NULL;
}
if (strip_info->tx_buff)
{
kfree(strip_info->tx_buff);
strip_info->tx_buff = NULL;
}
del_timer(&strip_info->idle_timer);
return 0;
}
/*
* This routine is called by DDI when the
* (dynamically assigned) device is registered
*/
static int strip_dev_init(struct net_device *dev)
{
/*
* Finish setting up the DEVICE info.
*/
dev->trans_start = 0;
dev->last_rx = 0;
dev->tx_queue_len = 30; /* Drop after 30 frames queued */
dev->flags = 0;
dev->mtu = DEFAULT_STRIP_MTU;
dev->type = ARPHRD_METRICOM; /* dtang */
dev->hard_header_len = sizeof(STRIP_Header);
/*
* dev->priv Already holds a pointer to our struct strip
*/
*(MetricomAddress*)&dev->broadcast = broadcast_address;
dev->dev_addr[0] = 0;
dev->addr_len = sizeof(MetricomAddress);
/*
* Pointers to interface service routines.
*/
dev->open = strip_open_low;
dev->stop = strip_close_low;
dev->hard_start_xmit = strip_xmit;
dev->hard_header = strip_header;
dev->rebuild_header = strip_rebuild_header;
dev->set_mac_address = dev_set_mac_address;
dev->get_stats = strip_get_stats;
return 0;
}
/*
* Free a STRIP channel.
*/
static void strip_free(struct strip *strip_info)
{
*(strip_info->referrer) = strip_info->next;
if (strip_info->next)
strip_info->next->referrer = strip_info->referrer;
strip_info->magic = 0;
kfree(strip_info);
}
/*
* Allocate a new free STRIP channel
*/
static struct strip *strip_alloc(void)
{
int channel_id = 0;
struct strip **s = &struct_strip_list;
struct strip *strip_info = (struct strip *)
kmalloc(sizeof(struct strip), GFP_KERNEL);
if (!strip_info)
return(NULL); /* If no more memory, return */
/*
* Clear the allocated memory
*/
memset(strip_info, 0, sizeof(struct strip));
/*
* Search the list to find where to put our new entry
* (and in the process decide what channel number it is
* going to be)
*/
while (*s && (*s)->dev.base_addr == channel_id)
{
channel_id++;
s = &(*s)->next;
}
/*
* Fill in the link pointers
*/
strip_info->next = *s;
if (*s)
(*s)->referrer = &strip_info->next;
strip_info->referrer = s;
*s = strip_info;
strip_info->magic = STRIP_MAGIC;
strip_info->tty = NULL;
strip_info->gratuitous_arp = jiffies + LongTime;
strip_info->arp_interval = 0;
init_timer(&strip_info->idle_timer);
strip_info->idle_timer.data = (long)&strip_info->dev;
strip_info->idle_timer.function = strip_IdleTask;
/* Note: strip_info->if_name is currently 8 characters long */
sprintf(strip_info->dev.name, "st%d", channel_id);
strip_info->dev.base_addr = channel_id;
strip_info->dev.priv = (void*)strip_info;
strip_info->dev.next = NULL;
strip_info->dev.init = strip_dev_init;
return(strip_info);
}
/*
* Open the high-level part of the STRIP channel.
* This function is called by the TTY module when the
* STRIP line discipline is called for. Because we are
* sure the tty line exists, we only have to link it to
* a free STRIP channel...
*/
static int strip_open(struct tty_struct *tty)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
/*
* First make sure we're not already connected.
*/
if (strip_info && strip_info->magic == STRIP_MAGIC)
return -EEXIST;
/*
* OK. Find a free STRIP channel to use.
*/
if ((strip_info = strip_alloc()) == NULL)
return -ENFILE;
/*
* Register our newly created device so it can be ifconfig'd
* strip_dev_init() will be called as a side-effect
*/
if (register_netdev(&strip_info->dev) != 0)
{
printk(KERN_ERR "strip: register_netdev() failed.\n");
strip_free(strip_info);
return -ENFILE;
}
strip_info->tty = tty;
tty->disc_data = strip_info;
if (tty->driver.flush_buffer)
tty->driver.flush_buffer(tty);
if (tty->ldisc.flush_buffer)
tty->ldisc.flush_buffer(tty);
/*
* Restore default settings
*/
strip_info->dev.type = ARPHRD_METRICOM; /* dtang */
/*
* Set tty options
*/
tty->termios->c_iflag |= IGNBRK |IGNPAR;/* Ignore breaks and parity errors. */
tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */
tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */
MOD_INC_USE_COUNT;
printk(KERN_INFO "STRIP: device \"%s\" activated\n", strip_info->dev.name);
/*
* Done. We have linked the TTY line to a channel.
*/
return(strip_info->dev.base_addr);
}
/*
* Close down a STRIP channel.
* This means flushing out any pending queues, and then restoring the
* TTY line discipline to what it was before it got hooked to STRIP
* (which usually is TTY again).
*/
static void strip_close(struct tty_struct *tty)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
/*
* First make sure we're connected.
*/
if (!strip_info || strip_info->magic != STRIP_MAGIC)
return;
unregister_netdev(&strip_info->dev);
tty->disc_data = 0;
strip_info->tty = NULL;
printk(KERN_INFO "STRIP: device \"%s\" closed down\n", strip_info->dev.name);
strip_free(strip_info);
tty->disc_data = NULL;
MOD_DEC_USE_COUNT;
}
/************************************************************************/
/* Perform I/O control calls on an active STRIP channel. */
static int strip_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
/*
* First make sure we're connected.
*/
if (!strip_info || strip_info->magic != STRIP_MAGIC)
return -EINVAL;
switch(cmd)
{
case SIOCGIFNAME:
return copy_to_user((void*)arg, strip_info->dev.name,
strlen(strip_info->dev.name) + 1) ?
-EFAULT : 0;
break;
case SIOCSIFHWADDR:
{
MetricomAddress addr;
printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev.name);
return copy_from_user(&addr, (void*)arg, sizeof(MetricomAddress)) ?
-EFAULT : set_mac_address(strip_info, &addr);
break;
}
/*
* Allow stty to read, but not set, the serial port
*/
case TCGETS:
case TCGETA:
return n_tty_ioctl(tty, (struct file *) file, cmd,
(unsigned long) arg);
break;
default:
return -ENOIOCTLCMD;
break;
}
}
/************************************************************************/
/* Initialization */
static struct tty_ldisc strip_ldisc = {
.magic = TTY_LDISC_MAGIC,
.name = "strip",
.open = strip_open,
.close = strip_close,
.ioctl = strip_ioctl,
.receive_buf = strip_receive_buf,
.receive_room = strip_receive_room,
.write_wakeup = strip_write_some_more,
};
/*
* Initialize the STRIP driver.
* This routine is called at boot time, to bootstrap the multi-channel
* STRIP driver
*/
static char signon[] __initdata = KERN_INFO "STRIP: Version %s (unlimited channels)\n";
static int __init strip_init_driver(void)
{
int status;
printk(signon, StripVersion);
/*
* Fill in our line protocol discipline, and register it
*/
if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n", status);
/*
* Register the status file with /proc
*/
proc_net_create("strip", S_IFREG | S_IRUGO, get_status_info);
return status;
}
module_init(strip_init_driver);
static const char signoff[] __exitdata = KERN_INFO "STRIP: Module Unloaded\n";
static void __exit strip_exit_driver(void)
{
int i;
while (struct_strip_list)
strip_free(struct_strip_list);
/* Unregister with the /proc/net file here. */
proc_net_remove("strip");
if ((i = tty_register_ldisc(N_STRIP, NULL)))
printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
printk(signoff);
}
module_exit(strip_exit_driver);
MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");