blob: b1bfe69e61ed124addb14057bfd7f617a0deb34e [file] [log] [blame]
/* SCTP kernel reference Implementation
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001 Intel Corp.
* Copyright (c) 2001-2003 International Business Machines Corp.
*
* This file is part of the SCTP kernel reference Implementation
*
* These functions implement the sctp_outq class. The outqueue handles
* bundling and queueing of outgoing SCTP chunks.
*
* The SCTP reference implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* The SCTP reference implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <lksctp-developers@lists.sourceforge.net>
*
* Or submit a bug report through the following website:
* http://www.sf.net/projects/lksctp
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Perry Melange <pmelange@null.cc.uic.edu>
* Xingang Guo <xingang.guo@intel.com>
* Hui Huang <hui.huang@nokia.com>
* Sridhar Samudrala <sri@us.ibm.com>
* Jon Grimm <jgrimm@us.ibm.com>
*
* Any bugs reported given to us we will try to fix... any fixes shared will
* be incorporated into the next SCTP release.
*/
#include <linux/types.h>
#include <linux/list.h> /* For struct list_head */
#include <linux/socket.h>
#include <linux/ip.h>
#include <net/sock.h> /* For skb_set_owner_w */
#include <net/sctp/sctp.h>
/* Declare internal functions here. */
static int sctp_acked(sctp_sackhdr_t *sack, __u32 tsn);
static void sctp_check_transmitted(struct sctp_outq *q,
struct list_head *transmitted_queue,
struct sctp_transport *transport,
sctp_sackhdr_t *sack,
__u32 highest_new_tsn);
/* Generate a new outqueue. */
struct sctp_outq *sctp_outq_new(sctp_association_t *asoc)
{
struct sctp_outq *q;
q = t_new(struct sctp_outq, GFP_KERNEL);
if (q) {
sctp_outq_init(asoc, q);
q->malloced = 1;
}
return q;
}
/* Initialize an existing sctp_outq. This does the boring stuff.
* You still need to define handlers if you really want to DO
* something with this structure...
*/
void sctp_outq_init(sctp_association_t *asoc, struct sctp_outq *q)
{
q->asoc = asoc;
skb_queue_head_init(&q->out);
skb_queue_head_init(&q->control);
INIT_LIST_HEAD(&q->retransmit);
INIT_LIST_HEAD(&q->sacked);
q->init_output = NULL;
q->config_output = NULL;
q->append_output = NULL;
q->build_output = NULL;
q->force_output = NULL;
q->outstanding_bytes = 0;
q->empty = 1;
q->malloced = 0;
}
/* Free the outqueue structure and any related pending chunks.
* FIXME: Add SEND_FAILED support.
*/
void sctp_outq_teardown(struct sctp_outq *q)
{
struct sctp_transport *transport;
struct list_head *lchunk, *pos, *temp;
sctp_chunk_t *chunk;
/* Throw away unacknowledged chunks. */
list_for_each(pos, &q->asoc->peer.transport_addr_list) {
transport = list_entry(pos, struct sctp_transport, transports);
while ((lchunk = sctp_list_dequeue(&transport->transmitted))) {
chunk = list_entry(lchunk, sctp_chunk_t,
transmitted_list);
sctp_free_chunk(chunk);
}
}
/* Throw away chunks that have been gap ACKed. */
list_for_each_safe(lchunk, temp, &q->sacked) {
list_del(lchunk);
chunk = list_entry(lchunk, sctp_chunk_t, transmitted_list);
sctp_free_chunk(chunk);
}
/* Throw away any chunks in the retransmit queue. */
list_for_each_safe(lchunk, temp, &q->retransmit) {
list_del(lchunk);
chunk = list_entry(lchunk, sctp_chunk_t, transmitted_list);
sctp_free_chunk(chunk);
}
/* Throw away any leftover data chunks. */
while ((chunk = (sctp_chunk_t *) skb_dequeue(&q->out)))
sctp_free_chunk(chunk);
/* Throw away any leftover control chunks. */
while ((chunk = (sctp_chunk_t *) skb_dequeue(&q->control)))
sctp_free_chunk(chunk);
}
/* Free the outqueue structure and any related pending chunks. */
void sctp_outq_free(struct sctp_outq *q)
{
/* Throw away leftover chunks. */
sctp_outq_teardown(q);
/* If we were kmalloc()'d, free the memory. */
if (q->malloced)
kfree(q);
}
/* Put a new chunk in an sctp_outq. */
int sctp_outq_tail(struct sctp_outq *q, sctp_chunk_t *chunk)
{
int error = 0;
SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
q, chunk, chunk && chunk->chunk_hdr ?
sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
: "Illegal Chunk");
/* If it is data, queue it up, otherwise, send it
* immediately.
*/
if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
/* Is it OK to queue data chunks? */
/* From 9. Termination of Association
*
* When either endpoint performs a shutdown, the
* association on each peer will stop accepting new
* data from its user and only deliver data in queue
* at the time of sending or receiving the SHUTDOWN
* chunk.
*/
switch (q->asoc->state) {
case SCTP_STATE_EMPTY:
case SCTP_STATE_CLOSED:
case SCTP_STATE_SHUTDOWN_PENDING:
case SCTP_STATE_SHUTDOWN_SENT:
case SCTP_STATE_SHUTDOWN_RECEIVED:
case SCTP_STATE_SHUTDOWN_ACK_SENT:
/* Cannot send after transport endpoint shutdown */
error = -ESHUTDOWN;
break;
default:
SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
q, chunk, chunk && chunk->chunk_hdr ?
sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
: "Illegal Chunk");
skb_queue_tail(&q->out, (struct sk_buff *) chunk);
q->empty = 0;
break;
};
} else
skb_queue_tail(&q->control, (struct sk_buff *) chunk);
if (error < 0)
return error;
error = sctp_outq_flush(q, 0);
return error;
}
/* Insert a chunk into the retransmit queue. Chunks on the retransmit
* queue are kept in order, based on the TSNs.
*/
void sctp_retransmit_insert(struct list_head *tlchunk, struct sctp_outq *q)
{
struct list_head *rlchunk;
sctp_chunk_t *tchunk, *rchunk;
__u32 ttsn, rtsn;
int done = 0;
tchunk = list_entry(tlchunk, sctp_chunk_t, transmitted_list);
ttsn = ntohl(tchunk->subh.data_hdr->tsn);
list_for_each(rlchunk, &q->retransmit) {
rchunk = list_entry(rlchunk, sctp_chunk_t, transmitted_list);
rtsn = ntohl(rchunk->subh.data_hdr->tsn);
if (TSN_lt(ttsn, rtsn)) {
list_add(tlchunk, rlchunk->prev);
done = 1;
break;
}
}
if (!done) {
list_add_tail(tlchunk, &q->retransmit);
}
}
/* Mark all the eligible packets on a transport for retransmission. */
void sctp_retransmit_mark(struct sctp_outq *q,
struct sctp_transport *transport,
__u8 fast_retransmit)
{
struct list_head *lchunk, *ltemp;
sctp_chunk_t *chunk;
/* Walk through the specified transmitted queue. */
list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
chunk = list_entry(lchunk, sctp_chunk_t, transmitted_list);
/* If we are doing retransmission due to a fast retransmit,
* only the chunk's that are marked for fast retransmit
* should be added to the retransmit queue. If we are doing
* retransmission due to a timeout or pmtu discovery, only the
* chunks that are not yet acked should be added to the
* retransmit queue.
*/
if ((fast_retransmit && chunk->fast_retransmit) ||
(!fast_retransmit && !chunk->tsn_gap_acked)) {
/* RFC 2960 6.2.1 Processing a Received SACK
*
* C) Any time a DATA chunk is marked for
* retransmission (via either T3-rtx timer expiration
* (Section 6.3.3) or via fast retransmit
* (Section 7.2.4)), add the data size of those
* chunks to the rwnd.
*/
q->asoc->peer.rwnd += sctp_data_size(chunk);
q->outstanding_bytes -= sctp_data_size(chunk);
transport->flight_size -= sctp_data_size(chunk);
/* sctpimpguide-05 Section 2.8.2
* M5) If a T3-rtx timer expires, the
* 'TSN.Missing.Report' of all affected TSNs is set
* to 0.
*/
chunk->tsn_missing_report = 0;
/* If a chunk that is being used for RTT measurement
* has to be retransmitted, we cannot use this chunk
* anymore for RTT measurements. Reset rto_pending so
* that a new RTT measurement is started when a new
* data chunk is sent.
*/
if (chunk->rtt_in_progress) {
chunk->rtt_in_progress = 0;
transport->rto_pending = 0;
}
/* Move the chunk to the retransmit queue. The chunks
* on the retransmit queue is always kept in order.
*/
list_del(lchunk);
sctp_retransmit_insert(lchunk, q);
}
}
SCTP_DEBUG_PRINTK("%s: transport: %p, fast_retransmit: %d, "
"cwnd: %d, ssthresh: %d, flight_size: %d, "
"pba: %d\n", __FUNCTION__,
transport, fast_retransmit,
transport->cwnd, transport->ssthresh,
transport->flight_size,
transport->partial_bytes_acked);
}
/* Mark all the eligible packets on a transport for retransmission and force
* one packet out.
*/
void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
sctp_retransmit_reason_t reason)
{
int error = 0;
__u8 fast_retransmit = 0;
switch(reason) {
case SCTP_RETRANSMIT_T3_RTX:
sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
break;
case SCTP_RETRANSMIT_FAST_RTX:
sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
fast_retransmit = 1;
break;
default:
break;
}
sctp_retransmit_mark(q, transport, fast_retransmit);
error = sctp_outq_flush(q, /* rtx_timeout */ 1);
if (error)
q->asoc->base.sk->err = -error;
}
/*
* Transmit DATA chunks on the retransmit queue. Upon return from
* sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
* need to be transmitted by the caller.
* We assume that pkt->transport has already been set.
*
* The return value is a normal kernel error return value.
*/
static int sctp_outq_flush_rtx(struct sctp_outq *q, sctp_packet_t *pkt,
int rtx_timeout, int *start_timer)
{
struct list_head *lqueue;
struct list_head *lchunk;
struct sctp_transport *transport = pkt->transport;
sctp_xmit_t status;
sctp_chunk_t *chunk;
sctp_association_t *asoc;
int error = 0;
asoc = q->asoc;
lqueue = &q->retransmit;
/* RFC 2960 6.3.3 Handle T3-rtx Expiration
*
* E3) Determine how many of the earliest (i.e., lowest TSN)
* outstanding DATA chunks for the address for which the
* T3-rtx has expired will fit into a single packet, subject
* to the MTU constraint for the path corresponding to the
* destination transport address to which the retransmission
* is being sent (this may be different from the address for
* which the timer expires [see Section 6.4]). Call this value
* K. Bundle and retransmit those K DATA chunks in a single
* packet to the destination endpoint.
*
* [Just to be painfully clear, if we are retransmitting
* because a timeout just happened, we should send only ONE
* packet of retransmitted data.]
*/
lchunk = sctp_list_dequeue(lqueue);
while (lchunk) {
chunk = list_entry(lchunk, sctp_chunk_t, transmitted_list);
#if 0
/* If a chunk has been tried for more than SCTP_DEF_MAX_SEND
* times, discard it, and check the empty flag of the outqueue.
*
* --xguo
*/
if (chunk->snd_count > SCTP_DEF_MAX_SEND) {
sctp_free_chunk(chunk);
continue;
}
#endif
/* Make sure that Gap Acked TSNs are not retransmitted. A
* simple approach is just to move such TSNs out of the
* way and into a 'transmitted' queue and skip to the
* next chunk.
*/
if (chunk->tsn_gap_acked) {
list_add_tail(lchunk, &transport->transmitted);
lchunk = sctp_list_dequeue(lqueue);
continue;
}
/* Attempt to append this chunk to the packet. */
status = (*q->append_output)(pkt, chunk);
switch (status) {
case SCTP_XMIT_PMTU_FULL:
/* Send this packet. */
if ((error = (*q->force_output)(pkt)) == 0)
*start_timer = 1;
/* If we are retransmitting, we should only
* send a single packet.
*/
if (rtx_timeout) {
list_add(lchunk, lqueue);
lchunk = NULL;
}
/* Bundle lchunk in the next round. */
break;
case SCTP_XMIT_RWND_FULL:
/* Send this packet. */
if ((error = (*q->force_output)(pkt)) == 0)
*start_timer = 1;
/* Stop sending DATA as there is no more room
* at the reciever.
*/
list_add(lchunk, lqueue);
lchunk = NULL;
break;
default:
/* The append was successful, so add this chunk to
* the transmitted list.
*/
list_add_tail(lchunk, &transport->transmitted);
*start_timer = 1;
q->empty = 0;
/* Retrieve a new chunk to bundle. */
lchunk = sctp_list_dequeue(lqueue);
break;
};
}
return error;
}
/* This routine either transmits the fragment or puts it on the output
* queue. 'pos' points to the next chunk in the output queue after the
* chunk that is currently in the process of fragmentation.
*/
void sctp_xmit_frag(struct sctp_outq *q, struct sk_buff *pos,
sctp_packet_t *packet, sctp_chunk_t *frag, __u32 tsn)
{
struct sctp_transport *transport = packet->transport;
struct sk_buff_head *queue = &q->out;
sctp_xmit_t status;
int error;
frag->subh.data_hdr->tsn = htonl(tsn);
frag->has_tsn = 1;
/* An inner fragment may be smaller than the earlier one and may get
* in if we call q->build_output. This ensures that all the fragments
* are sent in order.
*/
if (!skb_queue_empty(queue)) {
SCTP_DEBUG_PRINTK("sctp_xmit_frag: q not empty. "
"adding 0x%x to outqueue\n",
ntohl(frag->subh.data_hdr->tsn));
if (pos) {
skb_insert(pos, (struct sk_buff *) frag);
} else {
skb_queue_tail(queue, (struct sk_buff *) frag);
}
return;
}
/* Add the chunk fragment to the packet. */
status = (*q->build_output)(packet, frag);
switch (status) {
case SCTP_XMIT_RWND_FULL:
/* RWND is full, so put the chunk in the output queue. */
SCTP_DEBUG_PRINTK("sctp_xmit_frag: rwnd full. "
"adding 0x%x to outqueue\n",
ntohl(frag->subh.data_hdr->tsn));
if (pos) {
skb_insert(pos, (struct sk_buff *) frag);
} else {
skb_queue_tail(queue, (struct sk_buff *) frag);
}
break;
case SCTP_XMIT_OK:
error = (*q->force_output)(packet);
if (error < 0) {
/* Packet could not be transmitted, put the chunk in
* the output queue
*/
SCTP_DEBUG_PRINTK("sctp_xmit_frag: force output "
"failed. adding 0x%x to outqueue\n",
ntohl(frag->subh.data_hdr->tsn));
if (pos) {
skb_insert(pos, (struct sk_buff *) frag);
} else {
skb_queue_tail(queue, (struct sk_buff *) frag);
}
} else {
SCTP_DEBUG_PRINTK("sctp_xmit_frag: force output "
"success. 0x%x sent\n",
ntohl(frag->subh.data_hdr->tsn));
list_add_tail(&frag->transmitted_list,
&transport->transmitted);
sctp_transport_reset_timers(transport);
}
break;
default:
BUG();
};
}
/* This routine calls sctp_xmit_frag() for all the fragments of a message.
* The argument 'frag' point to the first fragment and it holds the list
* of all the other fragments in the 'frag_list' field.
*/
void sctp_xmit_fragmented_chunks(struct sctp_outq *q, sctp_packet_t *packet,
sctp_chunk_t *frag)
{
sctp_association_t *asoc = frag->asoc;
struct list_head *lfrag, *frag_list;
__u32 tsn;
int nfrags = 1;
struct sk_buff *pos;
/* Count the number of fragments. */
frag_list = &frag->frag_list;
list_for_each(lfrag, frag_list) {
nfrags++;
}
/* Get a TSN block of nfrags TSNs. */
tsn = __sctp_association_get_tsn_block(asoc, nfrags);
pos = skb_peek(&q->out);
/* Transmit the first fragment. */
sctp_xmit_frag(q, pos, packet, frag, tsn++);
/* Transmit the rest of fragments. */
frag_list = &frag->frag_list;
list_for_each(lfrag, frag_list) {
frag = list_entry(lfrag, sctp_chunk_t, frag_list);
sctp_xmit_frag(q, pos, packet, frag, tsn++);
}
}
/* This routine breaks the given chunk into 'max_frag_data_len' size
* fragments. It returns the first fragment with the frag_list field holding
* the remaining fragments.
*/
sctp_chunk_t *sctp_fragment_chunk(sctp_chunk_t *chunk,
size_t max_frag_data_len)
{
sctp_association_t *asoc = chunk->asoc;
void *data_ptr = chunk->subh.data_hdr;
struct sctp_sndrcvinfo *sinfo = &chunk->sinfo;
__u16 chunk_data_len = sctp_data_size(chunk);
__u16 ssn = ntohs(chunk->subh.data_hdr->ssn);
sctp_chunk_t *first_frag, *frag;
struct list_head *frag_list;
int nfrags;
__u8 old_flags, flags;
/* nfrags = no. of max size fragments + any smaller last fragment. */
nfrags = ((chunk_data_len / max_frag_data_len) +
((chunk_data_len % max_frag_data_len) ? 1 : 0));
/* Start of the data in the chunk. */
data_ptr += sizeof(sctp_datahdr_t);
/* Are we fragmenting an already fragmented large message? */
old_flags = chunk->chunk_hdr->flags;
if (old_flags & SCTP_DATA_FIRST_FRAG)
flags = SCTP_DATA_FIRST_FRAG;
else
flags = SCTP_DATA_MIDDLE_FRAG;
/* Make the first fragment. */
first_frag = sctp_make_datafrag(asoc, sinfo, max_frag_data_len,
data_ptr, flags, ssn);
if (!first_frag)
goto err;
first_frag->has_ssn = 1;
/* All the fragments are added to the frag_list of the first chunk. */
frag_list = &first_frag->frag_list;
chunk_data_len -= max_frag_data_len;
data_ptr += max_frag_data_len;
/* Make the middle fragments. */
while (chunk_data_len > max_frag_data_len) {
frag = sctp_make_datafrag(asoc, sinfo, max_frag_data_len,
data_ptr, SCTP_DATA_MIDDLE_FRAG,
ssn);
if (!frag)
goto err;
frag->has_ssn = 1;
/* Add the middle fragment to the first fragment's
* frag_list.
*/
list_add_tail(&frag->frag_list, frag_list);
chunk_data_len -= max_frag_data_len;
data_ptr += max_frag_data_len;
}
if (old_flags & SCTP_DATA_LAST_FRAG)
flags = SCTP_DATA_LAST_FRAG;
else
flags = SCTP_DATA_MIDDLE_FRAG;
/* Make the last fragment. */
frag = sctp_make_datafrag(asoc, sinfo, chunk_data_len, data_ptr,
flags, ssn);
if (!frag)
goto err;
frag->has_ssn = 1;
/* Add the last fragment to the first fragment's frag_list. */
list_add_tail(&frag->frag_list, frag_list);
/* Free the original chunk. */
sctp_free_chunk(chunk);
return first_frag;
err:
/* Free any fragments that are created before the failure. */
if (first_frag) {
struct list_head *flist, *lfrag;
/* Free all the fragments off the first one. */
flist = &first_frag->frag_list;
while (NULL != (lfrag = sctp_list_dequeue(flist))) {
frag = list_entry(lfrag, sctp_chunk_t, frag_list);
sctp_free_chunk(frag);
}
/* Free the first fragment. */
sctp_free_chunk(first_frag);
}
return NULL;
}
/*
* sctp_outq_flush - Try to flush an outqueue.
*
* Description: Send everything in q which we legally can, subject to
* congestion limitations.
*
* Note: This function can be called from multiple contexts so appropriate
* locking concerns must be made. Today we use the sock lock to protect
* this function.
*/
int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
{
sctp_packet_t *packet;
sctp_packet_t singleton;
sctp_association_t *asoc = q->asoc;
int ecn_capable = asoc->peer.ecn_capable;
__u16 sport = asoc->base.bind_addr.port;
__u16 dport = asoc->peer.port;
__u32 vtag = asoc->peer.i.init_tag;
/* This is the ECNE handler for singleton packets. */
sctp_packet_phandler_t *s_ecne_handler = NULL;
sctp_packet_phandler_t *ecne_handler = NULL;
struct sk_buff_head *queue;
struct sctp_transport *transport = NULL;
struct sctp_transport *new_transport;
sctp_chunk_t *chunk;
sctp_xmit_t status;
int error = 0;
int start_timer = 0;
/* These transports have chunks to send. */
struct list_head transport_list;
struct list_head *ltransport;
INIT_LIST_HEAD(&transport_list);
packet = NULL;
/*
* 6.10 Bundling
* ...
* When bundling control chunks with DATA chunks, an
* endpoint MUST place control chunks first in the outbound
* SCTP packet. The transmitter MUST transmit DATA chunks
* within a SCTP packet in increasing order of TSN.
* ...
*/
if (ecn_capable) {
s_ecne_handler = &sctp_get_no_prepend;
ecne_handler = &sctp_get_ecne_prepend;
}
queue = &q->control;
while (NULL != (chunk = (sctp_chunk_t *)skb_dequeue(queue))) {
/* Pick the right transport to use. */
new_transport = chunk->transport;
if (!new_transport) {
new_transport = asoc->peer.active_path;
} else if (!new_transport->active) {
/* If the chunk is Heartbeat, send it to
* chunk->transport, even it's inactive.
*/
if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT)
new_transport = asoc->peer.active_path;
}
/* Are we switching transports?
* Take care of transport locks.
*/
if (new_transport != transport) {
transport = new_transport;
if (list_empty(&transport->send_ready)) {
list_add_tail(&transport->send_ready,
&transport_list);
}
packet = &transport->packet;
(*q->config_output)(packet, vtag,
ecn_capable, ecne_handler);
}
switch (chunk->chunk_hdr->type) {
/*
* 6.10 Bundling
* ...
* An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
* COMPLETE with any other chunks. [Send them immediately.]
*/
case SCTP_CID_INIT:
case SCTP_CID_INIT_ACK:
case SCTP_CID_SHUTDOWN_COMPLETE:
(*q->init_output)(&singleton, transport, sport, dport);
(*q->config_output)(&singleton, vtag, ecn_capable,
s_ecne_handler);
(void) (*q->build_output)(&singleton, chunk);
error = (*q->force_output)(&singleton);
if (error < 0)
return error;
break;
case SCTP_CID_ABORT:
case SCTP_CID_SACK:
case SCTP_CID_HEARTBEAT:
case SCTP_CID_HEARTBEAT_ACK:
case SCTP_CID_SHUTDOWN:
case SCTP_CID_SHUTDOWN_ACK:
case SCTP_CID_ERROR:
case SCTP_CID_COOKIE_ECHO:
case SCTP_CID_COOKIE_ACK:
case SCTP_CID_ECN_ECNE:
case SCTP_CID_ECN_CWR:
(void) (*q->build_output)(packet, chunk);
break;
case SCTP_CID_ASCONF:
case SCTP_CID_ASCONF_ACK:
(void) (*q->build_output)(packet, chunk);
break;
default:
/* We built a chunk with an illegal type! */
BUG();
};
}
/* Is it OK to send data chunks? */
switch (asoc->state) {
case SCTP_STATE_COOKIE_ECHOED:
/* Only allow bundling when this packet has a COOKIE-ECHO
* chunk.
*/
if (!packet || !packet->has_cookie_echo)
break;
/* fallthru */
case SCTP_STATE_ESTABLISHED:
case SCTP_STATE_SHUTDOWN_PENDING:
case SCTP_STATE_SHUTDOWN_RECEIVED:
/*
* RFC 2960 6.1 Transmission of DATA Chunks
*
* C) When the time comes for the sender to transmit,
* before sending new DATA chunks, the sender MUST
* first transmit any outstanding DATA chunks which
* are marked for retransmission (limited by the
* current cwnd).
*/
if (!list_empty(&q->retransmit)) {
if (transport == asoc->peer.retran_path)
goto retran;
/* Switch transports & prepare the packet. */
transport = asoc->peer.retran_path;
if (list_empty(&transport->send_ready)) {
list_add_tail(&transport->send_ready,
&transport_list);
}
packet = &transport->packet;
(*q->config_output)(packet, vtag,
ecn_capable, ecne_handler);
retran:
error = sctp_outq_flush_rtx(q, packet,
rtx_timeout, &start_timer);
if (start_timer)
sctp_transport_reset_timers(transport);
/* This can happen on COOKIE-ECHO resend. Only
* one chunk can get bundled with a COOKIE-ECHO.
*/
if (packet->has_cookie_echo)
goto sctp_flush_out;
/* Don't send new data if there is still data
* waiting to retransmit.
*/
if (!list_empty(&q->retransmit))
goto sctp_flush_out;
}
/* Finally, transmit new packets. */
start_timer = 0;
queue = &q->out;
while (NULL != (chunk = (sctp_chunk_t *) skb_dequeue(queue))) {
/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
* stream identifier.
*/
if (chunk->sinfo.sinfo_stream >=
asoc->c.sinit_num_ostreams) {
struct sctp_ulpevent *ev;
/* Generate a SEND FAILED event. */
ev = sctp_ulpevent_make_send_failed(asoc,
chunk, SCTP_DATA_UNSENT,
SCTP_ERROR_INV_STRM, GFP_ATOMIC);
if (ev)
sctp_ulpq_tail_event(&asoc->ulpq, ev);
/* Free the chunk. This chunk is not on any
* list yet, just free it.
*/
sctp_free_chunk(chunk);
continue;
}
/* Now do delayed assignment of SSN. This will
* probably change again when we start supporting
* large (> approximately 2^16) size messages.
*/
sctp_chunk_assign_ssn(chunk);
/* If there is a specified transport, use it.
* Otherwise, we want to use the active path.
*/
new_transport = chunk->transport;
if (new_transport == NULL ||
!new_transport->active)
new_transport = asoc->peer.active_path;
/* Change packets if necessary. */
if (new_transport != transport) {
transport = new_transport;
/* Schedule to have this transport's
* packet flushed.
*/
if (list_empty(&transport->send_ready)) {
list_add_tail(&transport->send_ready,
&transport_list);
}
packet = &transport->packet;
(*q->config_output)(packet, vtag,
ecn_capable, ecne_handler);
}
SCTP_DEBUG_PRINTK("sctp_transmit_packet(%p, %p[%s]), ",
q, chunk,
chunk && chunk->chunk_hdr ?
sctp_cname(SCTP_ST_CHUNK(
chunk->chunk_hdr->type))
: "Illegal Chunk");
SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
"%p skb->users %d.\n",
ntohl(chunk->subh.data_hdr->tsn),
chunk->skb ?chunk->skb->head : 0,
chunk->skb ?
atomic_read(&chunk->skb->users) : -1);
/* Add the chunk to the packet. */
status = (*q->build_output)(packet, chunk);
switch (status) {
case SCTP_XMIT_PMTU_FULL:
case SCTP_XMIT_RWND_FULL:
/* We could not append this chunk, so put
* the chunk back on the output queue.
*/
SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
"not transmit TSN: 0x%x, status: %d\n",
ntohl(chunk->subh.data_hdr->tsn),
status);
skb_queue_head(queue, (struct sk_buff *)chunk);
goto sctp_flush_out;
break;
case SCTP_XMIT_MUST_FRAG: {
sctp_chunk_t *frag;
frag = sctp_fragment_chunk(chunk,
packet->transport->asoc->frag_point);
if (!frag) {
/* We could not fragment due to out of
* memory condition. Free the original
* chunk and return ENOMEM.
*/
sctp_free_chunk(chunk);
error = -ENOMEM;
return error;
}
sctp_xmit_fragmented_chunks(q, packet, frag);
goto sctp_flush_out;
break;
}
case SCTP_XMIT_OK:
break;
default:
BUG();
}
/* BUG: We assume that the (*q->force_output())
* call below will succeed all the time and add the
* chunk to the transmitted list and restart the
* timers.
* It is possible that the call can fail under OOM
* conditions.
*
* Is this really a problem? Won't this behave
* like a lost TSN?
*/
list_add_tail(&chunk->transmitted_list,
&transport->transmitted);
sctp_transport_reset_timers(transport);
q->empty = 0;
/* Only let one DATA chunk get bundled with a
* COOKIE-ECHO chunk.
*/
if (packet->has_cookie_echo)
goto sctp_flush_out;
}
break;
default:
/* Do nothing. */
break;
}
sctp_flush_out:
/* Before returning, examine all the transports touched in
* this call. Right now, we bluntly force clear all the
* transports. Things might change after we implement Nagle.
* But such an examination is still required.
*
* --xguo
*/
while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
struct sctp_transport *t = list_entry(ltransport,
struct sctp_transport,
send_ready);
if (t != transport)
transport = t;
packet = &transport->packet;
if (packet->size != SCTP_IP_OVERHEAD)
error = (*q->force_output)(packet);
}
return error;
}
/* Set the various output handling callbacks. */
int sctp_outq_set_output_handlers(struct sctp_outq *q,
sctp_outq_ohandler_init_t init,
sctp_outq_ohandler_config_t config,
sctp_outq_ohandler_t append,
sctp_outq_ohandler_t build,
sctp_outq_ohandler_force_t force)
{
q->init_output = init;
q->config_output = config;
q->append_output = append;
q->build_output = build;
q->force_output = force;
return 0;
}
/* Update unack_data based on the incoming SACK chunk */
static void sctp_sack_update_unack_data(sctp_association_t *assoc,
sctp_sackhdr_t *sack)
{
sctp_sack_variable_t *frags;
__u16 unack_data;
int i;
unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
frags = sack->variable;
for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
unack_data -= ((ntohs(frags[i].gab.end) -
ntohs(frags[i].gab.start) + 1));
}
assoc->unack_data = unack_data;
}
/* Return the highest new tsn that is acknowledged by the given SACK chunk. */
static __u32 sctp_highest_new_tsn(sctp_sackhdr_t *sack,
sctp_association_t *asoc)
{
struct list_head *ltransport, *lchunk;
struct sctp_transport *transport;
sctp_chunk_t *chunk;
__u32 highest_new_tsn, tsn;
struct list_head *transport_list = &asoc->peer.transport_addr_list;
highest_new_tsn = ntohl(sack->cum_tsn_ack);
list_for_each(ltransport, transport_list) {
transport = list_entry(ltransport, struct sctp_transport,
transports);
list_for_each(lchunk, &transport->transmitted) {
chunk = list_entry(lchunk, sctp_chunk_t,
transmitted_list);
tsn = ntohl(chunk->subh.data_hdr->tsn);
if (!chunk->tsn_gap_acked &&
TSN_lt(highest_new_tsn, tsn) &&
sctp_acked(sack, tsn))
highest_new_tsn = tsn;
}
}
return highest_new_tsn;
}
/* This is where we REALLY process a SACK.
*
* Process the SACK against the outqueue. Mostly, this just frees
* things off the transmitted queue.
*/
int sctp_outq_sack(struct sctp_outq *q, sctp_sackhdr_t *sack)
{
sctp_association_t *asoc = q->asoc;
struct sctp_transport *transport;
sctp_chunk_t *tchunk;
struct list_head *lchunk, *transport_list, *pos;
sctp_sack_variable_t *frags = sack->variable;
__u32 sack_ctsn, ctsn, tsn;
__u32 highest_tsn, highest_new_tsn;
__u32 sack_a_rwnd;
int outstanding;
/* Grab the association's destination address list. */
transport_list = &asoc->peer.transport_addr_list;
sack_ctsn = ntohl(sack->cum_tsn_ack);
/* Get the highest TSN in the sack. */
highest_tsn = sack_ctsn +
ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end);
if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
highest_new_tsn = highest_tsn;
asoc->highest_sacked = highest_tsn;
} else {
highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
}
/* Run through the retransmit queue. Credit bytes received
* and free those chunks that we can.
*/
sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
/* Run through the transmitted queue.
* Credit bytes received and free those chunks which we can.
*
* This is a MASSIVE candidate for optimization.
*/
list_for_each(pos, transport_list) {
transport = list_entry(pos, struct sctp_transport,
transports);
sctp_check_transmitted(q, &transport->transmitted,
transport, sack, highest_new_tsn);
}
/* Move the Cumulative TSN Ack Point if appropriate. */
if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
asoc->ctsn_ack_point = sack_ctsn;
/* Update unack_data field in the assoc. */
sctp_sack_update_unack_data(asoc, sack);
ctsn = asoc->ctsn_ack_point;
SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
__FUNCTION__, sack_ctsn);
SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association "
"%p is 0x%x.\n", __FUNCTION__, asoc, ctsn);
/* Throw away stuff rotting on the sack queue. */
list_for_each(lchunk, &q->sacked) {
tchunk = list_entry(lchunk, sctp_chunk_t, transmitted_list);
tsn = ntohl(tchunk->subh.data_hdr->tsn);
if (TSN_lte(tsn, ctsn)) {
lchunk = lchunk->prev;
sctp_free_chunk(tchunk);
}
}
/* ii) Set rwnd equal to the newly received a_rwnd minus the
* number of bytes still outstanding after processing the
* Cumulative TSN Ack and the Gap Ack Blocks.
*/
sack_a_rwnd = ntohl(sack->a_rwnd);
outstanding = q->outstanding_bytes;
if (outstanding < sack_a_rwnd) {
sack_a_rwnd -= outstanding;
} else {
sack_a_rwnd = 0;
}
asoc->peer.rwnd = sack_a_rwnd;
/* See if all chunks are acked.
* Make sure the empty queue handler will get run later.
*/
q->empty = skb_queue_empty(&q->out) && list_empty(&q->retransmit);
if (!q->empty)
goto finish;
list_for_each(pos, transport_list) {
transport = list_entry(pos, struct sctp_transport,
transports);
q->empty = q->empty && list_empty(&transport->transmitted);
if (!q->empty)
goto finish;
}
SCTP_DEBUG_PRINTK("sack queue is empty.\n");
finish:
return q->empty;
}
/* Is the outqueue empty? */
int sctp_outq_is_empty(const struct sctp_outq *q)
{
return q->empty;
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
/* Go through a transport's transmitted list or the assocication's retransmit
* list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
* The retransmit list will not have an associated transport. In case of a
* transmitted list with a transport, the transport's congestion, rto and fast
* retransmit parameters are also updated and if needed a fast retransmit
* process is started.
*
* I added coherent debug information output. --xguo
*
* Instead of printing 'sacked' or 'kept' for each TSN on the
* transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
* KEPT TSN6-TSN7, etc.
*/
static void sctp_check_transmitted(struct sctp_outq *q,
struct list_head *transmitted_queue,
struct sctp_transport *transport,
sctp_sackhdr_t *sack,
__u32 highest_new_tsn_in_sack)
{
struct list_head *lchunk;
sctp_chunk_t *tchunk;
struct list_head tlist;
__u32 tsn;
__u32 sack_ctsn;
__u32 rtt;
__u8 restart_timer = 0;
__u8 do_fast_retransmit = 0;
int bytes_acked = 0;
/* These state variables are for coherent debug output. --xguo */
#if SCTP_DEBUG
__u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */
__u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */
__u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */
__u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */
/* 0 : The last TSN was ACKed.
* 1 : The last TSN was NOT ACKed (i.e. KEPT).
* -1: We need to initialize.
*/
int dbg_prt_state = -1;
#endif /* SCTP_DEBUG */
sack_ctsn = ntohl(sack->cum_tsn_ack);
INIT_LIST_HEAD(&tlist);
/* The while loop will skip empty transmitted queues. */
while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
tchunk = list_entry(lchunk, sctp_chunk_t, transmitted_list);
tsn = ntohl(tchunk->subh.data_hdr->tsn);
if (sctp_acked(sack, tsn)) {
/* If this queue is the retransmit queue, the
* retransmit timer has already reclaimed
* the outstanding bytes for this chunk, so only
* count bytes associated with a transport.
*/
if (transport) {
/* If this chunk is being used for RTT
* measurement, calculate the RTT and update
* the RTO using this value.
*
* 6.3.1 C5) Karn's algorithm: RTT measurements
* MUST NOT be made using packets that were
* retransmitted (and thus for which it is
* ambiguous whether the reply was for the
* first instance of the packet or a later
* instance).
*/
if ((!tchunk->tsn_gap_acked) &&
(1 == tchunk->num_times_sent) &&
(tchunk->rtt_in_progress)) {
rtt = jiffies - tchunk->sent_at;
sctp_transport_update_rto(transport,
rtt);
}
}
if (TSN_lte(tsn, sack_ctsn)) {
/* RFC 2960 6.3.2 Retransmission Timer Rules
*
* R3) Whenever a SACK is received
* that acknowledges the DATA chunk
* with the earliest outstanding TSN
* for that address, restart T3-rtx
* timer for that address with its
* current RTO.
*/
restart_timer = 1;
if (!tchunk->tsn_gap_acked) {
tchunk->tsn_gap_acked = 1;
bytes_acked += sctp_data_size(tchunk);
}
list_add_tail(&tchunk->transmitted_list,
&q->sacked);
} else {
/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
* M2) Each time a SACK arrives reporting
* 'Stray DATA chunk(s)' record the highest TSN
* reported as newly acknowledged, call this
* value 'HighestTSNinSack'. A newly
* acknowledged DATA chunk is one not
* previously acknowledged in a SACK.
*
* When the SCTP sender of data receives a SACK
* chunk that acknowledges, for the first time,
* the receipt of a DATA chunk, all the still
* unacknowledged DATA chunks whose TSN is
* older than that newly acknowledged DATA
* chunk, are qualified as 'Stray DATA chunks'.
*/
if (!tchunk->tsn_gap_acked) {
tchunk->tsn_gap_acked = 1;
bytes_acked += sctp_data_size(tchunk);
}
list_add_tail(lchunk, &tlist);
}
#if SCTP_DEBUG
switch (dbg_prt_state) {
case 0: /* last TSN was ACKed */
if (dbg_last_ack_tsn + 1 == tsn) {
/* This TSN belongs to the
* current ACK range.
*/
break;
}
if (dbg_last_ack_tsn != dbg_ack_tsn) {
/* Display the end of the
* current range.
*/
SCTP_DEBUG_PRINTK("-%08x",
dbg_last_ack_tsn);
}
/* Start a new range. */
SCTP_DEBUG_PRINTK(",%08x", tsn);
dbg_ack_tsn = tsn;
break;
case 1: /* The last TSN was NOT ACKed. */
if (dbg_last_kept_tsn != dbg_kept_tsn) {
/* Display the end of current range. */
SCTP_DEBUG_PRINTK("-%08x",
dbg_last_kept_tsn);
}
SCTP_DEBUG_PRINTK("\n");
/* FALL THROUGH... */
default:
/* This is the first-ever TSN we examined. */
/* Start a new range of ACK-ed TSNs. */
SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
dbg_prt_state = 0;
dbg_ack_tsn = tsn;
};
dbg_last_ack_tsn = tsn;
#endif /* SCTP_DEBUG */
} else {
if (tchunk->tsn_gap_acked) {
SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
"data TSN: 0x%x\n",
__FUNCTION__,
tsn);
tchunk->tsn_gap_acked = 0;
bytes_acked -= sctp_data_size(tchunk);
/* RFC 2960 6.3.2 Retransmission Timer Rules
*
* R4) Whenever a SACK is received missing a
* TSN that was previously acknowledged via a
* Gap Ack Block, start T3-rtx for the
* destination address to which the DATA
* chunk was originally
* transmitted if it is not already running.
*/
restart_timer = 1;
}
list_add_tail(lchunk, &tlist);
#if SCTP_DEBUG
/* See the above comments on ACK-ed TSNs. */
switch (dbg_prt_state) {
case 1:
if (dbg_last_kept_tsn + 1 == tsn)
break;
if (dbg_last_kept_tsn != dbg_kept_tsn)
SCTP_DEBUG_PRINTK("-%08x",
dbg_last_kept_tsn);
SCTP_DEBUG_PRINTK(",%08x", tsn);
dbg_kept_tsn = tsn;
break;
case 0:
if (dbg_last_ack_tsn != dbg_ack_tsn)
SCTP_DEBUG_PRINTK("-%08x",
dbg_last_ack_tsn);
SCTP_DEBUG_PRINTK("\n");
/* FALL THROUGH... */
default:
SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
dbg_prt_state = 1;
dbg_kept_tsn = tsn;
};
dbg_last_kept_tsn = tsn;
#endif /* SCTP_DEBUG */
}
}
#if SCTP_DEBUG
/* Finish off the last range, displaying its ending TSN. */
switch (dbg_prt_state) {
case 0:
if (dbg_last_ack_tsn != dbg_ack_tsn) {
SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
} else {
SCTP_DEBUG_PRINTK("\n");
}
break;
case 1:
if (dbg_last_kept_tsn != dbg_kept_tsn) {
SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
} else {
SCTP_DEBUG_PRINTK("\n");
}
};
#endif /* SCTP_DEBUG */
if (transport) {
if (bytes_acked) {
/* 8.2. When an outstanding TSN is acknowledged,
* the endpoint shall clear the error counter of
* the destination transport address to which the
* DATA chunk was last sent.
* The association's overall error counter is
* also cleared.
*/
transport->error_count = 0;
transport->asoc->overall_error_count = 0;
/* Mark the destination transport address as
* active if it is not so marked.
*/
if (!transport->active) {
sctp_assoc_control_transport(
transport->asoc,
transport,
SCTP_TRANSPORT_UP,
SCTP_RECEIVED_SACK);
}
sctp_transport_raise_cwnd(transport, sack_ctsn,
bytes_acked);
transport->flight_size -= bytes_acked;
q->outstanding_bytes -= bytes_acked;
} else {
/* RFC 2960 6.1, sctpimpguide-06 2.15.2
* When a sender is doing zero window probing, it
* should not timeout the association if it continues
* to receive new packets from the receiver. The
* reason is that the receiver MAY keep its window
* closed for an indefinite time.
* A sender is doing zero window probing when the
* receiver's advertised window is zero, and there is
* only one data chunk in flight to the receiver.
*/
if ((0 == q->asoc->peer.rwnd) &&
(!list_empty(&tlist)) &&
(sack_ctsn+2 == q->asoc->next_tsn)) {
SCTP_DEBUG_PRINTK("%s: SACK received for zero "
"window probe: %u\n",
__FUNCTION__, sack_ctsn);
q->asoc->overall_error_count = 0;
transport->error_count = 0;
}
}
/* RFC 2960 6.3.2 Retransmission Timer Rules
*
* R2) Whenever all outstanding data sent to an address have
* been acknowledged, turn off the T3-rtx timer of that
* address.
*/
if (!transport->flight_size) {
if (timer_pending(&transport->T3_rtx_timer) &&
del_timer(&transport->T3_rtx_timer)) {
sctp_transport_put(transport);
}
} else if (restart_timer) {
if (!mod_timer(&transport->T3_rtx_timer,
jiffies + transport->rto))
sctp_transport_hold(transport);
}
}
/* Reconstruct the transmitted list with chunks that are not yet
* acked by the Cumulative TSN Ack.
*/
while (NULL != (lchunk = sctp_list_dequeue(&tlist))) {
tchunk = list_entry(lchunk, sctp_chunk_t, transmitted_list);
tsn = ntohl(tchunk->subh.data_hdr->tsn);
/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
* 'Unacknowledged TSN's', if the TSN number of an
* 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
* value, increment the 'TSN.Missing.Report' count on that
* chunk if it has NOT been fast retransmitted or marked for
* fast retransmit already.
*
* M4) If any DATA chunk is found to have a
* 'TSN.Missing.Report'
* value larger than or equal to 4, mark that chunk for
* retransmission and start the fast retransmit procedure.
*/
if ((!tchunk->fast_retransmit) &&
(!tchunk->tsn_gap_acked) &&
(TSN_lt(tsn, highest_new_tsn_in_sack))) {
tchunk->tsn_missing_report++;
SCTP_DEBUG_PRINTK("%s: TSN 0x%x missing counter: %d\n",
__FUNCTION__, tsn,
tchunk->tsn_missing_report);
}
if (tchunk->tsn_missing_report >= 4) {
tchunk->fast_retransmit = 1;
do_fast_retransmit = 1;
}
list_add_tail(lchunk, transmitted_queue);
}
if (transport) {
if (do_fast_retransmit)
sctp_retransmit(q, transport, SCTP_RETRANSMIT_FAST_RTX);
SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
"ssthresh: %d, flight_size: %d, pba: %d\n",
__FUNCTION__, transport, transport->cwnd,
transport->ssthresh, transport->flight_size,
transport->partial_bytes_acked);
}
}
/* Is the given TSN acked by this packet? */
static int sctp_acked(sctp_sackhdr_t *sack, __u32 tsn)
{
int i;
sctp_sack_variable_t *frags;
__u16 gap;
__u32 ctsn = ntohl(sack->cum_tsn_ack);
if (TSN_lte(tsn, ctsn))
goto pass;
/* 3.3.4 Selective Acknowledgement (SACK) (3):
*
* Gap Ack Blocks:
* These fields contain the Gap Ack Blocks. They are repeated
* for each Gap Ack Block up to the number of Gap Ack Blocks
* defined in the Number of Gap Ack Blocks field. All DATA
* chunks with TSNs greater than or equal to (Cumulative TSN
* Ack + Gap Ack Block Start) and less than or equal to
* (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
* Block are assumed to have been received correctly.
*/
frags = sack->variable;
gap = tsn - ctsn;
for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
TSN_lte(gap, ntohs(frags[i].gab.end)))
goto pass;
}
return 0;
pass:
return 1;
}