blob: 431002eebb0a1f5200c9b07850d7d2e76bf30e36 [file] [log] [blame]
/*
* linux/kernel/posix_timers.c
*
*
* 2002-10-15 Posix Clocks & timers by George Anzinger
* Copyright (C) 2002 by MontaVista Software.
*/
/* These are all the functions necessary to implement
* POSIX clocks & timers
*/
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/idr.h>
#include <linux/posix-timers.h>
#include <linux/wait.h>
#ifndef div_long_long_rem
#include <asm/div64.h>
#define div_long_long_rem(dividend,divisor,remainder) ({ \
u64 result = dividend; \
*remainder = do_div(result,divisor); \
result; })
#endif
#define CLOCK_REALTIME_RES TICK_NSEC // In nano seconds.
static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
{
return (u64)mpy1 * mpy2;
}
/*
* Management arrays for POSIX timers. Timers are kept in slab memory
* Timer ids are allocated by an external routine that keeps track of the
* id and the timer. The external interface is:
*
* void *idr_find(struct idr *idp, int id); to find timer_id <id>
* int idr_get_new(struct idr *idp, void *ptr); to get a new id and
* related it to <ptr>
* void idr_remove(struct idr *idp, int id); to release <id>
* void idr_init(struct idr *idp); to initialize <idp>
* which we supply.
* The idr_get_new *may* call slab for more memory so it must not be
* called under a spin lock. Likewise idr_remore may release memory
* (but it may be ok to do this under a lock...).
* idr_find is just a memory look up and is quite fast. A -1 return
* indicates that the requested id does not exist.
*/
/*
* Lets keep our timers in a slab cache :-)
*/
static kmem_cache_t *posix_timers_cache;
static struct idr posix_timers_id;
static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
/*
* Just because the timer is not in the timer list does NOT mean it is
* inactive. It could be in the "fire" routine getting a new expire time.
*/
#define TIMER_INACTIVE 1
#define TIMER_RETRY 1
#ifdef CONFIG_SMP
# define timer_active(tmr) \
((tmr)->it_timer.entry.prev != (void *)TIMER_INACTIVE)
# define set_timer_inactive(tmr) \
do { \
(tmr)->it_timer.entry.prev = (void *)TIMER_INACTIVE; \
} while (0)
#else
# define timer_active(tmr) BARFY // error to use outside of SMP
# define set_timer_inactive(tmr) do { } while (0)
#endif
/*
* For some reason mips/mips64 define the SIGEV constants plus 128.
* Here we define a mask to get rid of the common bits. The
* optimizer should make this costless to all but mips.
* Note that no common bits (the non-mips case) will give 0xffffffff.
*/
#define MIPS_SIGEV ~(SIGEV_NONE & \
SIGEV_SIGNAL & \
SIGEV_THREAD & \
SIGEV_THREAD_ID)
#define REQUEUE_PENDING 1
/*
* The timer ID is turned into a timer address by idr_find().
* Verifying a valid ID consists of:
*
* a) checking that idr_find() returns other than -1.
* b) checking that the timer id matches the one in the timer itself.
* c) that the timer owner is in the callers thread group.
*/
/*
* CLOCKs: The POSIX standard calls for a couple of clocks and allows us
* to implement others. This structure defines the various
* clocks and allows the possibility of adding others. We
* provide an interface to add clocks to the table and expect
* the "arch" code to add at least one clock that is high
* resolution. Here we define the standard CLOCK_REALTIME as a
* 1/HZ resolution clock.
*
* CPUTIME & THREAD_CPUTIME: We are not, at this time, definding these
* two clocks (and the other process related clocks (Std
* 1003.1d-1999). The way these should be supported, we think,
* is to use large negative numbers for the two clocks that are
* pinned to the executing process and to use -pid for clocks
* pinned to particular pids. Calls which supported these clock
* ids would split early in the function.
*
* RESOLUTION: Clock resolution is used to round up timer and interval
* times, NOT to report clock times, which are reported with as
* much resolution as the system can muster. In some cases this
* resolution may depend on the underlaying clock hardware and
* may not be quantifiable until run time, and only then is the
* necessary code is written. The standard says we should say
* something about this issue in the documentation...
*
* FUNCTIONS: The CLOCKs structure defines possible functions to handle
* various clock functions. For clocks that use the standard
* system timer code these entries should be NULL. This will
* allow dispatch without the overhead of indirect function
* calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
* must supply functions here, even if the function just returns
* ENOSYS. The standard POSIX timer management code assumes the
* following: 1.) The k_itimer struct (sched.h) is used for the
* timer. 2.) The list, it_lock, it_clock, it_id and it_process
* fields are not modified by timer code.
*
* At this time all functions EXCEPT clock_nanosleep can be
* redirected by the CLOCKS structure. Clock_nanosleep is in
* there, but the code ignors it.
*
* Permissions: It is assumed that the clock_settime() function defined
* for each clock will take care of permission checks. Some
* clocks may be set able by any user (i.e. local process
* clocks) others not. Currently the only set able clock we
* have is CLOCK_REALTIME and its high res counter part, both of
* which we beg off on and pass to do_sys_settimeofday().
*/
static struct k_clock posix_clocks[MAX_CLOCKS];
#define if_clock_do(clock_fun,alt_fun,parms) \
(!clock_fun) ? alt_fun parms : clock_fun parms
#define p_timer_get(clock,a,b) \
if_clock_do((clock)->timer_get,do_timer_gettime, (a,b))
#define p_nsleep(clock,a,b,c) \
if_clock_do((clock)->nsleep, do_nsleep, (a,b,c))
#define p_timer_del(clock,a) \
if_clock_do((clock)->timer_del, do_timer_delete, (a))
void register_posix_clock(int clock_id, struct k_clock *new_clock);
static int do_posix_gettime(struct k_clock *clock, struct timespec *tp);
static u64 do_posix_clock_monotonic_gettime_parts(
struct timespec *tp, struct timespec *mo);
int do_posix_clock_monotonic_gettime(struct timespec *tp);
int do_posix_clock_monotonic_settime(struct timespec *tp);
static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags);
/*
* Initialize everything, well, just everything in Posix clocks/timers ;)
*/
static __init int init_posix_timers(void)
{
struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES };
struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
.clock_get = do_posix_clock_monotonic_gettime,
.clock_set = do_posix_clock_monotonic_settime
};
register_posix_clock(CLOCK_REALTIME, &clock_realtime);
register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
posix_timers_cache = kmem_cache_create("posix_timers_cache",
sizeof (struct k_itimer), 0, 0, 0, 0);
idr_init(&posix_timers_id);
return 0;
}
__initcall(init_posix_timers);
static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
{
long sec = tp->tv_sec;
long nsec = tp->tv_nsec + res - 1;
if (nsec > NSEC_PER_SEC) {
sec++;
nsec -= NSEC_PER_SEC;
}
/*
* The scaling constants are defined in <linux/time.h>
* The difference between there and here is that we do the
* res rounding and compute a 64-bit result (well so does that
* but it then throws away the high bits).
*/
*jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
(mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
static void schedule_next_timer(struct k_itimer *timr)
{
struct now_struct now;
/* Set up the timer for the next interval (if there is one) */
if (!timr->it_incr)
return;
posix_get_now(&now);
do {
posix_bump_timer(timr);
}while (posix_time_before(&timr->it_timer, &now));
timr->it_overrun_last = timr->it_overrun;
timr->it_overrun = -1;
++timr->it_requeue_pending;
add_timer(&timr->it_timer);
}
/*
* This function is exported for use by the signal deliver code. It is
* called just prior to the info block being released and passes that
* block to us. It's function is to update the overrun entry AND to
* restart the timer. It should only be called if the timer is to be
* restarted (i.e. we have flagged this in the sys_private entry of the
* info block).
*
* To protect aginst the timer going away while the interrupt is queued,
* we require that the it_requeue_pending flag be set.
*/
void do_schedule_next_timer(struct siginfo *info)
{
struct k_itimer *timr;
unsigned long flags;
timr = lock_timer(info->si_tid, &flags);
if (!timr || timr->it_requeue_pending != info->si_sys_private)
goto exit;
schedule_next_timer(timr);
info->si_overrun = timr->it_overrun_last;
exit:
if (timr)
unlock_timer(timr, flags);
}
/*
* Notify the task and set up the timer for the next expiration (if
* applicable). This function requires that the k_itimer structure
* it_lock is taken. This code will requeue the timer only if we get
* either an error return or a flag (ret > 0) from send_seg_info
* indicating that the signal was either not queued or was queued
* without an info block. In this case, we will not get a call back to
* do_schedule_next_timer() so we do it here. This should be rare...
* An interesting problem can occur if, while a signal, and thus a call
* back is pending, the timer is rearmed, i.e. stopped and restarted.
* We then need to sort out the call back and do the right thing. What
* we do is to put a counter in the info block and match it with the
* timers copy on the call back. If they don't match, we just ignore
* the call back. The counter is local to the timer and we use odd to
* indicate a call back is pending. Note that we do allow the timer to
* be deleted while a signal is pending. The standard says we can
* allow that signal to be delivered, and we do.
*/
static void timer_notify_task(struct k_itimer *timr)
{
int ret;
memset(&timr->sigq->info, 0, sizeof(siginfo_t));
/* Send signal to the process that owns this timer. */
timr->sigq->info.si_signo = timr->it_sigev_signo;
timr->sigq->info.si_errno = 0;
timr->sigq->info.si_code = SI_TIMER;
timr->sigq->info.si_tid = timr->it_id;
timr->sigq->info.si_value = timr->it_sigev_value;
if (timr->it_incr)
timr->sigq->info.si_sys_private = ++timr->it_requeue_pending;
if (timr->it_sigev_notify & SIGEV_THREAD_ID & MIPS_SIGEV)
ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
timr->it_process);
else
ret = send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
timr->it_process);
if (ret) {
/*
* signal was not sent because of sig_ignor
* we will not get a call back to restart it AND
* it should be restarted.
*/
schedule_next_timer(timr);
}
}
/*
* This function gets called when a POSIX.1b interval timer expires. It
* is used as a callback from the kernel internal timer. The
* run_timer_list code ALWAYS calls with interrutps on.
*/
static void posix_timer_fn(unsigned long __data)
{
struct k_itimer *timr = (struct k_itimer *) __data;
unsigned long flags;
spin_lock_irqsave(&timr->it_lock, flags);
set_timer_inactive(timr);
timer_notify_task(timr);
unlock_timer(timr, flags);
}
static inline struct task_struct * good_sigevent(sigevent_t * event)
{
struct task_struct *rtn = current;
if ((event->sigev_notify & SIGEV_THREAD_ID & MIPS_SIGEV) &&
(!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
rtn->tgid != current->tgid))
return NULL;
if ((event->sigev_notify & ~SIGEV_NONE & MIPS_SIGEV) &&
event->sigev_signo &&
((unsigned) (event->sigev_signo > SIGRTMAX)))
return NULL;
return rtn;
}
void register_posix_clock(int clock_id, struct k_clock *new_clock)
{
if ((unsigned) clock_id >= MAX_CLOCKS) {
printk("POSIX clock register failed for clock_id %d\n",
clock_id);
return;
}
posix_clocks[clock_id] = *new_clock;
}
static struct k_itimer * alloc_posix_timer(void)
{
struct k_itimer *tmr;
tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
memset(tmr, 0, sizeof (struct k_itimer));
tmr->it_id = (timer_t)-1;
if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
kmem_cache_free(posix_timers_cache, tmr);
tmr = 0;
}
return tmr;
}
static void release_posix_timer(struct k_itimer *tmr)
{
if (tmr->it_id != -1) {
spin_lock_irq(&idr_lock);
idr_remove(&posix_timers_id, tmr->it_id);
spin_unlock_irq(&idr_lock);
}
sigqueue_free(tmr->sigq);
kmem_cache_free(posix_timers_cache, tmr);
}
/* Create a POSIX.1b interval timer. */
asmlinkage long
sys_timer_create(clockid_t which_clock,
struct sigevent __user *timer_event_spec,
timer_t __user * created_timer_id)
{
int error = 0;
struct k_itimer *new_timer = NULL;
timer_t new_timer_id;
struct task_struct *process = 0;
sigevent_t event;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res)
return -EINVAL;
new_timer = alloc_posix_timer();
if (unlikely(!new_timer))
return -EAGAIN;
spin_lock_init(&new_timer->it_lock);
do {
if (unlikely(!idr_pre_get(&posix_timers_id))) {
error = -EAGAIN;
new_timer->it_id = (timer_t)-1;
goto out;
}
spin_lock_irq(&idr_lock);
new_timer_id = (timer_t) idr_get_new(&posix_timers_id,
(void *) new_timer);
spin_unlock_irq(&idr_lock);
} while (unlikely(new_timer_id == -1));
new_timer->it_id = new_timer_id;
/*
* return the timer_id now. The next step is hard to
* back out if there is an error.
*/
if (copy_to_user(created_timer_id,
&new_timer_id, sizeof (new_timer_id))) {
error = -EFAULT;
goto out;
}
if (timer_event_spec) {
if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
error = -EFAULT;
goto out;
}
read_lock(&tasklist_lock);
if ((process = good_sigevent(&event))) {
/*
* We may be setting up this process for another
* thread. It may be exiting. To catch this
* case the we check the PF_EXITING flag. If
* the flag is not set, the task_lock will catch
* him before it is too late (in exit_itimers).
*
* The exec case is a bit more invloved but easy
* to code. If the process is in our thread
* group (and it must be or we would not allow
* it here) and is doing an exec, it will cause
* us to be killed. In this case it will wait
* for us to die which means we can finish this
* linkage with our last gasp. I.e. no code :)
*/
task_lock(process);
if (!(process->flags & PF_EXITING)) {
list_add(&new_timer->list,
&process->posix_timers);
task_unlock(process);
} else {
task_unlock(process);
process = 0;
}
}
read_unlock(&tasklist_lock);
if (!process) {
error = -EINVAL;
goto out;
}
new_timer->it_sigev_notify = event.sigev_notify;
new_timer->it_sigev_signo = event.sigev_signo;
new_timer->it_sigev_value = event.sigev_value;
} else {
new_timer->it_sigev_notify = SIGEV_SIGNAL;
new_timer->it_sigev_signo = SIGALRM;
new_timer->it_sigev_value.sival_int = new_timer->it_id;
process = current;
task_lock(process);
list_add(&new_timer->list, &process->posix_timers);
task_unlock(process);
}
new_timer->it_clock = which_clock;
new_timer->it_incr = 0;
new_timer->it_overrun = -1;
init_timer(&new_timer->it_timer);
new_timer->it_timer.expires = 0;
new_timer->it_timer.data = (unsigned long) new_timer;
new_timer->it_timer.function = posix_timer_fn;
set_timer_inactive(new_timer);
/*
* Once we set the process, it can be found so do it last...
*/
new_timer->it_process = process;
out:
if (error)
release_posix_timer(new_timer);
return error;
}
/*
* good_timespec
*
* This function checks the elements of a timespec structure.
*
* Arguments:
* ts : Pointer to the timespec structure to check
*
* Return value:
* If a NULL pointer was passed in, or the tv_nsec field was less than 0
* or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
* this function returns 0. Otherwise it returns 1.
*/
static int good_timespec(const struct timespec *ts)
{
if ((!ts) || (ts->tv_sec < 0) ||
((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
return 0;
return 1;
}
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
spin_unlock_irqrestore(&timr->it_lock, flags);
}
/*
* Locking issues: We need to protect the result of the id look up until
* we get the timer locked down so it is not deleted under us. The
* removal is done under the idr spinlock so we use that here to bridge
* the find to the timer lock. To avoid a dead lock, the timer id MUST
* be release with out holding the timer lock.
*/
static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
{
struct k_itimer *timr;
/*
* Watch out here. We do a irqsave on the idr_lock and pass the
* flags part over to the timer lock. Must not let interrupts in
* while we are moving the lock.
*/
spin_lock_irqsave(&idr_lock, *flags);
timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
if (timr) {
spin_lock(&timr->it_lock);
spin_unlock(&idr_lock);
if ((timr->it_id != timer_id) || !(timr->it_process) ||
timr->it_process->tgid != current->tgid) {
unlock_timer(timr, *flags);
timr = NULL;
}
} else
spin_unlock_irqrestore(&idr_lock, *flags);
return timr;
}
/*
* Get the time remaining on a POSIX.1b interval timer. This function
* is ALWAYS called with spin_lock_irq on the timer, thus it must not
* mess with irq.
*
* We have a couple of messes to clean up here. First there is the case
* of a timer that has a requeue pending. These timers should appear to
* be in the timer list with an expiry as if we were to requeue them
* now.
*
* The second issue is the SIGEV_NONE timer which may be active but is
* not really ever put in the timer list (to save system resources).
* This timer may be expired, and if so, we will do it here. Otherwise
* it is the same as a requeue pending timer WRT to what we should
* report.
*/
void inline
do_timer_gettime(struct k_itimer *timr, struct itimerspec *cur_setting)
{
unsigned long expires;
struct now_struct now;
do
expires = timr->it_timer.expires;
while ((volatile long) (timr->it_timer.expires) != expires);
posix_get_now(&now);
if (expires && (timr->it_sigev_notify & SIGEV_NONE) && !timr->it_incr &&
posix_time_before(&timr->it_timer, &now))
timr->it_timer.expires = expires = 0;
if (expires) {
if (timr->it_requeue_pending & REQUEUE_PENDING ||
(timr->it_sigev_notify & SIGEV_NONE))
while (posix_time_before(&timr->it_timer, &now))
posix_bump_timer(timr);
else
if (!timer_pending(&timr->it_timer))
expires = 0;
if (expires)
expires -= now.jiffies;
}
jiffies_to_timespec(expires, &cur_setting->it_value);
jiffies_to_timespec(timr->it_incr, &cur_setting->it_interval);
if (cur_setting->it_value.tv_sec < 0) {
cur_setting->it_value.tv_nsec = 1;
cur_setting->it_value.tv_sec = 0;
}
}
/* Get the time remaining on a POSIX.1b interval timer. */
asmlinkage long
sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
{
struct k_itimer *timr;
struct itimerspec cur_setting;
unsigned long flags;
timr = lock_timer(timer_id, &flags);
if (!timr)
return -EINVAL;
p_timer_get(&posix_clocks[timr->it_clock], timr, &cur_setting);
unlock_timer(timr, flags);
if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
return -EFAULT;
return 0;
}
/*
* Get the number of overruns of a POSIX.1b interval timer. This is to
* be the overrun of the timer last delivered. At the same time we are
* accumulating overruns on the next timer. The overrun is frozen when
* the signal is delivered, either at the notify time (if the info block
* is not queued) or at the actual delivery time (as we are informed by
* the call back to do_schedule_next_timer(). So all we need to do is
* to pick up the frozen overrun.
*/
asmlinkage long
sys_timer_getoverrun(timer_t timer_id)
{
struct k_itimer *timr;
int overrun;
long flags;
timr = lock_timer(timer_id, &flags);
if (!timr)
return -EINVAL;
overrun = timr->it_overrun_last;
unlock_timer(timr, flags);
return overrun;
}
/*
* Adjust for absolute time
*
* If absolute time is given and it is not CLOCK_MONOTONIC, we need to
* adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
* what ever clock he is using.
*
* If it is relative time, we need to add the current (CLOCK_MONOTONIC)
* time to it to get the proper time for the timer.
*/
static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
int abs, u64 *exp)
{
struct timespec now;
struct timespec oc = *tp;
struct timespec wall_to_mono;
u64 jiffies_64_f;
int rtn =0;
if (abs) {
/*
* The mask pick up the 4 basic clocks
*/
if (!(clock - &posix_clocks[0]) & ~CLOCKS_MASK) {
jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
&now, &wall_to_mono);
/*
* If we are doing a MONOTONIC clock
*/
if((clock - &posix_clocks[0]) & CLOCKS_MONO){
now.tv_sec += wall_to_mono.tv_sec;
now.tv_nsec += wall_to_mono.tv_nsec;
}
} else {
/*
* Not one of the basic clocks
*/
do_posix_gettime(clock, &now);
jiffies_64_f = get_jiffies_64();
}
/*
* Take away now to get delta
*/
oc.tv_sec -= now.tv_sec;
oc.tv_nsec -= now.tv_nsec;
/*
* Normalize...
*/
while ((oc.tv_nsec - NSEC_PER_SEC) >= 0) {
oc.tv_nsec -= NSEC_PER_SEC;
oc.tv_sec++;
}
while ((oc.tv_nsec) < 0) {
oc.tv_nsec += NSEC_PER_SEC;
oc.tv_sec--;
}
}else{
jiffies_64_f = get_jiffies_64();
}
/*
* Check if the requested time is prior to now (if so set now)
*/
if (oc.tv_sec < 0)
oc.tv_sec = oc.tv_nsec = 0;
tstojiffie(&oc, clock->res, exp);
/*
* Check if the requested time is more than the timer code
* can handle (if so we error out but return the value too).
*/
if (*exp > ((u64)MAX_JIFFY_OFFSET))
/*
* This is a considered response, not exactly in
* line with the standard (in fact it is silent on
* possible overflows). We assume such a large
* value is ALMOST always a programming error and
* try not to compound it by setting a really dumb
* value.
*/
rtn = -EINVAL;
/*
* return the actual jiffies expire time, full 64 bits
*/
*exp += jiffies_64_f;
return rtn;
}
/* Set a POSIX.1b interval timer. */
/* timr->it_lock is taken. */
static inline int
do_timer_settime(struct k_itimer *timr, int flags,
struct itimerspec *new_setting, struct itimerspec *old_setting)
{
struct k_clock *clock = &posix_clocks[timr->it_clock];
u64 expire_64;
if (old_setting)
do_timer_gettime(timr, old_setting);
/* disable the timer */
timr->it_incr = 0;
/*
* careful here. If smp we could be in the "fire" routine which will
* be spinning as we hold the lock. But this is ONLY an SMP issue.
*/
#ifdef CONFIG_SMP
if (timer_active(timr) && !del_timer(&timr->it_timer))
/*
* It can only be active if on an other cpu. Since
* we have cleared the interval stuff above, it should
* clear once we release the spin lock. Of course once
* we do that anything could happen, including the
* complete melt down of the timer. So return with
* a "retry" exit status.
*/
return TIMER_RETRY;
set_timer_inactive(timr);
#else
del_timer(&timr->it_timer);
#endif
timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
~REQUEUE_PENDING;
timr->it_overrun_last = 0;
timr->it_overrun = -1;
/*
*switch off the timer when it_value is zero
*/
if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
timr->it_timer.expires = 0;
return 0;
}
if (adjust_abs_time(clock,
&new_setting->it_value, flags & TIMER_ABSTIME,
&expire_64)) {
return -EINVAL;
}
timr->it_timer.expires = (unsigned long)expire_64;
tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
timr->it_incr = (unsigned long)expire_64;
/*
* For some reason the timer does not fire immediately if expires is
* equal to jiffies, so the timer notify function is called directly.
* We do not even queue SIGEV_NONE timers!
*/
if (!(timr->it_sigev_notify & SIGEV_NONE)) {
if (timr->it_timer.expires == jiffies)
timer_notify_task(timr);
else
add_timer(&timr->it_timer);
}
return 0;
}
/* Set a POSIX.1b interval timer */
asmlinkage long
sys_timer_settime(timer_t timer_id, int flags,
const struct itimerspec __user *new_setting,
struct itimerspec __user *old_setting)
{
struct k_itimer *timr;
struct itimerspec new_spec, old_spec;
int error = 0;
long flag;
struct itimerspec *rtn = old_setting ? &old_spec : NULL;
if (!new_setting)
return -EINVAL;
if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
return -EFAULT;
if ((!good_timespec(&new_spec.it_interval)) ||
(!good_timespec(&new_spec.it_value)))
return -EINVAL;
retry:
timr = lock_timer(timer_id, &flag);
if (!timr)
return -EINVAL;
if (!posix_clocks[timr->it_clock].timer_set)
error = do_timer_settime(timr, flags, &new_spec, rtn);
else
error = posix_clocks[timr->it_clock].timer_set(timr,
flags,
&new_spec, rtn);
unlock_timer(timr, flag);
if (error == TIMER_RETRY) {
rtn = NULL; // We already got the old time...
goto retry;
}
if (old_setting && !error && copy_to_user(old_setting,
&old_spec, sizeof (old_spec)))
error = -EFAULT;
return error;
}
static inline int do_timer_delete(struct k_itimer *timer)
{
timer->it_incr = 0;
#ifdef CONFIG_SMP
if (timer_active(timer) && !del_timer(&timer->it_timer))
/*
* It can only be active if on an other cpu. Since
* we have cleared the interval stuff above, it should
* clear once we release the spin lock. Of course once
* we do that anything could happen, including the
* complete melt down of the timer. So return with
* a "retry" exit status.
*/
return TIMER_RETRY;
#else
del_timer(&timer->it_timer);
#endif
return 0;
}
/* Delete a POSIX.1b interval timer. */
asmlinkage long
sys_timer_delete(timer_t timer_id)
{
struct k_itimer *timer;
long flags;
#ifdef CONFIG_SMP
int error;
retry_delete:
#endif
timer = lock_timer(timer_id, &flags);
if (!timer)
return -EINVAL;
#ifdef CONFIG_SMP
error = p_timer_del(&posix_clocks[timer->it_clock], timer);
if (error == TIMER_RETRY) {
unlock_timer(timer, flags);
goto retry_delete;
}
#else
p_timer_del(&posix_clocks[timer->it_clock], timer);
#endif
task_lock(timer->it_process);
list_del(&timer->list);
task_unlock(timer->it_process);
/*
* This keeps any tasks waiting on the spin lock from thinking
* they got something (see the lock code above).
*/
timer->it_process = NULL;
unlock_timer(timer, flags);
release_posix_timer(timer);
return 0;
}
/*
* return timer owned by the process, used by exit_itimers
*/
static inline void itimer_delete(struct k_itimer *timer)
{
if (sys_timer_delete(timer->it_id))
BUG();
}
/*
* This is exported to exit and exec
*/
void exit_itimers(struct task_struct *tsk)
{
struct k_itimer *tmr;
task_lock(tsk);
while (!list_empty(&tsk->posix_timers)) {
tmr = list_entry(tsk->posix_timers.next, struct k_itimer, list);
task_unlock(tsk);
itimer_delete(tmr);
task_lock(tsk);
}
task_unlock(tsk);
}
/*
* And now for the "clock" calls
*
* These functions are called both from timer functions (with the timer
* spin_lock_irq() held and from clock calls with no locking. They must
* use the save flags versions of locks.
*/
static int do_posix_gettime(struct k_clock *clock, struct timespec *tp)
{
struct timeval tv;
if (clock->clock_get)
return clock->clock_get(tp);
do_gettimeofday(&tv);
tp->tv_sec = tv.tv_sec;
tp->tv_nsec = tv.tv_usec * NSEC_PER_USEC;
return 0;
}
/*
* We do ticks here to avoid the irq lock ( they take sooo long).
* The seqlock is great here. Since we a reader, we don't really care
* if we are interrupted since we don't take lock that will stall us or
* any other cpu. Voila, no irq lock is needed.
*
* Note also that the while loop assures that the sub_jiff_offset
* will be less than a jiffie, thus no need to normalize the result.
* Well, not really, if called with ints off :(
*/
static u64 do_posix_clock_monotonic_gettime_parts(
struct timespec *tp, struct timespec *mo)
{
u64 jiff;
struct timeval tpv;
unsigned int seq;
do {
seq = read_seqbegin(&xtime_lock);
do_gettimeofday(&tpv);
*mo = wall_to_monotonic;
jiff = jiffies_64;
} while(read_seqretry(&xtime_lock, seq));
/*
* Love to get this before it is converted to usec.
* It would save a div AND a mpy.
*/
tp->tv_sec = tpv.tv_sec;
tp->tv_nsec = tpv.tv_usec * NSEC_PER_USEC;
return jiff;
}
int do_posix_clock_monotonic_gettime(struct timespec *tp)
{
struct timespec wall_to_mono;
do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
tp->tv_sec += wall_to_mono.tv_sec;
tp->tv_nsec += wall_to_mono.tv_nsec;
if ((tp->tv_nsec - NSEC_PER_SEC) > 0) {
tp->tv_nsec -= NSEC_PER_SEC;
tp->tv_sec++;
}
return 0;
}
int do_posix_clock_monotonic_settime(struct timespec *tp)
{
return -EINVAL;
}
asmlinkage long
sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp)
{
struct timespec new_tp;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res)
return -EINVAL;
if (copy_from_user(&new_tp, tp, sizeof (*tp)))
return -EFAULT;
if (posix_clocks[which_clock].clock_set)
return posix_clocks[which_clock].clock_set(&new_tp);
return do_sys_settimeofday(&new_tp, NULL);
}
asmlinkage long
sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp)
{
struct timespec rtn_tp;
int error = 0;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res)
return -EINVAL;
error = do_posix_gettime(&posix_clocks[which_clock], &rtn_tp);
if (!error && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
error = -EFAULT;
return error;
}
asmlinkage long
sys_clock_getres(clockid_t which_clock, struct timespec __user *tp)
{
struct timespec rtn_tp;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res)
return -EINVAL;
rtn_tp.tv_sec = 0;
rtn_tp.tv_nsec = posix_clocks[which_clock].res;
if (tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
return -EFAULT;
return 0;
}
static void nanosleep_wake_up(unsigned long __data)
{
struct task_struct *p = (struct task_struct *) __data;
wake_up_process(p);
}
/*
* The standard says that an absolute nanosleep call MUST wake up at
* the requested time in spite of clock settings. Here is what we do:
* For each nanosleep call that needs it (only absolute and not on
* CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
* into the "nanosleep_abs_list". All we need is the task_struct pointer.
* When ever the clock is set we just wake up all those tasks. The rest
* is done by the while loop in clock_nanosleep().
*
* On locking, clock_was_set() is called from update_wall_clock which
* holds (or has held for it) a write_lock_irq( xtime_lock) and is
* called from the timer bh code. Thus we need the irq save locks.
*/
static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
void clock_was_set(void)
{
wake_up_all(&nanosleep_abs_wqueue);
}
long clock_nanosleep_restart(struct restart_block *restart_block);
extern long do_clock_nanosleep(clockid_t which_clock, int flags,
struct timespec *t);
asmlinkage long
sys_clock_nanosleep(clockid_t which_clock, int flags,
const struct timespec __user *rqtp,
struct timespec __user *rmtp)
{
struct timespec t;
struct restart_block *restart_block =
&(current_thread_info()->restart_block);
int ret;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res)
return -EINVAL;
if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
return -EFAULT;
if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
return -EINVAL;
ret = do_clock_nanosleep(which_clock, flags, &t);
/*
* Do this here as do_clock_nanosleep does not have the real address
*/
restart_block->arg1 = (unsigned long)rmtp;
if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
copy_to_user(rmtp, &t, sizeof (t)))
return -EFAULT;
return ret;
}
long
do_clock_nanosleep(clockid_t which_clock, int flags, struct timespec *tsave)
{
struct timespec t;
struct timer_list new_timer;
DECLARE_WAITQUEUE(abs_wqueue, current);
u64 rq_time = (u64)0;
s64 left;
int abs;
struct restart_block *restart_block =
&current_thread_info()->restart_block;
abs_wqueue.flags = 0;
init_timer(&new_timer);
new_timer.expires = 0;
new_timer.data = (unsigned long) current;
new_timer.function = nanosleep_wake_up;
abs = flags & TIMER_ABSTIME;
if (restart_block->fn == clock_nanosleep_restart) {
/*
* Interrupted by a non-delivered signal, pick up remaining
* time and continue. Remaining time is in arg2 & 3.
*/
restart_block->fn = do_no_restart_syscall;
rq_time = restart_block->arg3;
rq_time = (rq_time << 32) + restart_block->arg2;
if (!rq_time)
return -EINTR;
left = rq_time - get_jiffies_64();
if (left <= (s64)0)
return 0; /* Already passed */
}
if (abs && (posix_clocks[which_clock].clock_get !=
posix_clocks[CLOCK_MONOTONIC].clock_get))
add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
do {
t = *tsave;
if (abs || !rq_time) {
adjust_abs_time(&posix_clocks[which_clock], &t, abs,
&rq_time);
rq_time += (t.tv_sec || t.tv_nsec);
}
left = rq_time - get_jiffies_64();
if (left >= (s64)MAX_JIFFY_OFFSET)
left = (s64)MAX_JIFFY_OFFSET;
if (left < (s64)0)
break;
new_timer.expires = jiffies + left;
__set_current_state(TASK_INTERRUPTIBLE);
add_timer(&new_timer);
schedule();
del_timer_sync(&new_timer);
left = rq_time - get_jiffies_64();
} while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));
if (abs_wqueue.task_list.next)
finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);
if (left > (s64)0) {
/*
* Always restart abs calls from scratch to pick up any
* clock shifting that happened while we are away.
*/
if (abs)
return -ERESTARTNOHAND;
left *= TICK_NSEC;
tsave->tv_sec = div_long_long_rem(left,
NSEC_PER_SEC,
&tsave->tv_nsec);
/*
* Restart works by saving the time remaing in
* arg2 & 3 (it is 64-bits of jiffies). The other
* info we need is the clock_id (saved in arg0).
* The sys_call interface needs the users
* timespec return address which _it_ saves in arg1.
* Since we have cast the nanosleep call to a clock_nanosleep
* both can be restarted with the same code.
*/
restart_block->fn = clock_nanosleep_restart;
restart_block->arg0 = which_clock;
/*
* Caller sets arg1
*/
restart_block->arg2 = rq_time & 0xffffffffLL;
restart_block->arg3 = rq_time >> 32;
return -ERESTART_RESTARTBLOCK;
}
return 0;
}
/*
* This will restart clock_nanosleep.
*/
long
clock_nanosleep_restart(struct restart_block *restart_block)
{
struct timespec t;
int ret = do_clock_nanosleep(restart_block->arg0, 0, &t);
if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
sizeof (t)))
return -EFAULT;
return ret;
}