| // SPDX-License-Identifier: GPL-2.0 | 
 |  | 
 | #include "misc.h" | 
 | #include "ctree.h" | 
 | #include "block-group.h" | 
 | #include "space-info.h" | 
 | #include "disk-io.h" | 
 | #include "free-space-cache.h" | 
 | #include "free-space-tree.h" | 
 | #include "disk-io.h" | 
 | #include "volumes.h" | 
 | #include "transaction.h" | 
 | #include "ref-verify.h" | 
 | #include "sysfs.h" | 
 | #include "tree-log.h" | 
 | #include "delalloc-space.h" | 
 | #include "discard.h" | 
 | #include "raid56.h" | 
 |  | 
 | /* | 
 |  * Return target flags in extended format or 0 if restripe for this chunk_type | 
 |  * is not in progress | 
 |  * | 
 |  * Should be called with balance_lock held | 
 |  */ | 
 | static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) | 
 | { | 
 | 	struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
 | 	u64 target = 0; | 
 |  | 
 | 	if (!bctl) | 
 | 		return 0; | 
 |  | 
 | 	if (flags & BTRFS_BLOCK_GROUP_DATA && | 
 | 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
 | 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; | 
 | 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && | 
 | 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
 | 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; | 
 | 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA && | 
 | 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
 | 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; | 
 | 	} | 
 |  | 
 | 	return target; | 
 | } | 
 |  | 
 | /* | 
 |  * @flags: available profiles in extended format (see ctree.h) | 
 |  * | 
 |  * Return reduced profile in chunk format.  If profile changing is in progress | 
 |  * (either running or paused) picks the target profile (if it's already | 
 |  * available), otherwise falls back to plain reducing. | 
 |  */ | 
 | static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) | 
 | { | 
 | 	u64 num_devices = fs_info->fs_devices->rw_devices; | 
 | 	u64 target; | 
 | 	u64 raid_type; | 
 | 	u64 allowed = 0; | 
 |  | 
 | 	/* | 
 | 	 * See if restripe for this chunk_type is in progress, if so try to | 
 | 	 * reduce to the target profile | 
 | 	 */ | 
 | 	spin_lock(&fs_info->balance_lock); | 
 | 	target = get_restripe_target(fs_info, flags); | 
 | 	if (target) { | 
 | 		/* Pick target profile only if it's already available */ | 
 | 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { | 
 | 			spin_unlock(&fs_info->balance_lock); | 
 | 			return extended_to_chunk(target); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&fs_info->balance_lock); | 
 |  | 
 | 	/* First, mask out the RAID levels which aren't possible */ | 
 | 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { | 
 | 		if (num_devices >= btrfs_raid_array[raid_type].devs_min) | 
 | 			allowed |= btrfs_raid_array[raid_type].bg_flag; | 
 | 	} | 
 | 	allowed &= flags; | 
 |  | 
 | 	if (allowed & BTRFS_BLOCK_GROUP_RAID6) | 
 | 		allowed = BTRFS_BLOCK_GROUP_RAID6; | 
 | 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5) | 
 | 		allowed = BTRFS_BLOCK_GROUP_RAID5; | 
 | 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10) | 
 | 		allowed = BTRFS_BLOCK_GROUP_RAID10; | 
 | 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1) | 
 | 		allowed = BTRFS_BLOCK_GROUP_RAID1; | 
 | 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0) | 
 | 		allowed = BTRFS_BLOCK_GROUP_RAID0; | 
 |  | 
 | 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; | 
 |  | 
 | 	return extended_to_chunk(flags | allowed); | 
 | } | 
 |  | 
 | u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) | 
 | { | 
 | 	unsigned seq; | 
 | 	u64 flags; | 
 |  | 
 | 	do { | 
 | 		flags = orig_flags; | 
 | 		seq = read_seqbegin(&fs_info->profiles_lock); | 
 |  | 
 | 		if (flags & BTRFS_BLOCK_GROUP_DATA) | 
 | 			flags |= fs_info->avail_data_alloc_bits; | 
 | 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
 | 			flags |= fs_info->avail_system_alloc_bits; | 
 | 		else if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
 | 			flags |= fs_info->avail_metadata_alloc_bits; | 
 | 	} while (read_seqretry(&fs_info->profiles_lock, seq)); | 
 |  | 
 | 	return btrfs_reduce_alloc_profile(fs_info, flags); | 
 | } | 
 |  | 
 | void btrfs_get_block_group(struct btrfs_block_group *cache) | 
 | { | 
 | 	atomic_inc(&cache->count); | 
 | } | 
 |  | 
 | void btrfs_put_block_group(struct btrfs_block_group *cache) | 
 | { | 
 | 	if (atomic_dec_and_test(&cache->count)) { | 
 | 		WARN_ON(cache->pinned > 0); | 
 | 		WARN_ON(cache->reserved > 0); | 
 |  | 
 | 		/* | 
 | 		 * A block_group shouldn't be on the discard_list anymore. | 
 | 		 * Remove the block_group from the discard_list to prevent us | 
 | 		 * from causing a panic due to NULL pointer dereference. | 
 | 		 */ | 
 | 		if (WARN_ON(!list_empty(&cache->discard_list))) | 
 | 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, | 
 | 						  cache); | 
 |  | 
 | 		/* | 
 | 		 * If not empty, someone is still holding mutex of | 
 | 		 * full_stripe_lock, which can only be released by caller. | 
 | 		 * And it will definitely cause use-after-free when caller | 
 | 		 * tries to release full stripe lock. | 
 | 		 * | 
 | 		 * No better way to resolve, but only to warn. | 
 | 		 */ | 
 | 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); | 
 | 		kfree(cache->free_space_ctl); | 
 | 		kfree(cache); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This adds the block group to the fs_info rb tree for the block group cache | 
 |  */ | 
 | static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, | 
 | 				       struct btrfs_block_group *block_group) | 
 | { | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct btrfs_block_group *cache; | 
 |  | 
 | 	spin_lock(&info->block_group_cache_lock); | 
 | 	p = &info->block_group_cache_tree.rb_node; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		cache = rb_entry(parent, struct btrfs_block_group, cache_node); | 
 | 		if (block_group->start < cache->start) { | 
 | 			p = &(*p)->rb_left; | 
 | 		} else if (block_group->start > cache->start) { | 
 | 			p = &(*p)->rb_right; | 
 | 		} else { | 
 | 			spin_unlock(&info->block_group_cache_lock); | 
 | 			return -EEXIST; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(&block_group->cache_node, parent, p); | 
 | 	rb_insert_color(&block_group->cache_node, | 
 | 			&info->block_group_cache_tree); | 
 |  | 
 | 	if (info->first_logical_byte > block_group->start) | 
 | 		info->first_logical_byte = block_group->start; | 
 |  | 
 | 	spin_unlock(&info->block_group_cache_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This will return the block group at or after bytenr if contains is 0, else | 
 |  * it will return the block group that contains the bytenr | 
 |  */ | 
 | static struct btrfs_block_group *block_group_cache_tree_search( | 
 | 		struct btrfs_fs_info *info, u64 bytenr, int contains) | 
 | { | 
 | 	struct btrfs_block_group *cache, *ret = NULL; | 
 | 	struct rb_node *n; | 
 | 	u64 end, start; | 
 |  | 
 | 	spin_lock(&info->block_group_cache_lock); | 
 | 	n = info->block_group_cache_tree.rb_node; | 
 |  | 
 | 	while (n) { | 
 | 		cache = rb_entry(n, struct btrfs_block_group, cache_node); | 
 | 		end = cache->start + cache->length - 1; | 
 | 		start = cache->start; | 
 |  | 
 | 		if (bytenr < start) { | 
 | 			if (!contains && (!ret || start < ret->start)) | 
 | 				ret = cache; | 
 | 			n = n->rb_left; | 
 | 		} else if (bytenr > start) { | 
 | 			if (contains && bytenr <= end) { | 
 | 				ret = cache; | 
 | 				break; | 
 | 			} | 
 | 			n = n->rb_right; | 
 | 		} else { | 
 | 			ret = cache; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (ret) { | 
 | 		btrfs_get_block_group(ret); | 
 | 		if (bytenr == 0 && info->first_logical_byte > ret->start) | 
 | 			info->first_logical_byte = ret->start; | 
 | 	} | 
 | 	spin_unlock(&info->block_group_cache_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the block group that starts at or after bytenr | 
 |  */ | 
 | struct btrfs_block_group *btrfs_lookup_first_block_group( | 
 | 		struct btrfs_fs_info *info, u64 bytenr) | 
 | { | 
 | 	return block_group_cache_tree_search(info, bytenr, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the block group that contains the given bytenr | 
 |  */ | 
 | struct btrfs_block_group *btrfs_lookup_block_group( | 
 | 		struct btrfs_fs_info *info, u64 bytenr) | 
 | { | 
 | 	return block_group_cache_tree_search(info, bytenr, 1); | 
 | } | 
 |  | 
 | struct btrfs_block_group *btrfs_next_block_group( | 
 | 		struct btrfs_block_group *cache) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = cache->fs_info; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	spin_lock(&fs_info->block_group_cache_lock); | 
 |  | 
 | 	/* If our block group was removed, we need a full search. */ | 
 | 	if (RB_EMPTY_NODE(&cache->cache_node)) { | 
 | 		const u64 next_bytenr = cache->start + cache->length; | 
 |  | 
 | 		spin_unlock(&fs_info->block_group_cache_lock); | 
 | 		btrfs_put_block_group(cache); | 
 | 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; | 
 | 	} | 
 | 	node = rb_next(&cache->cache_node); | 
 | 	btrfs_put_block_group(cache); | 
 | 	if (node) { | 
 | 		cache = rb_entry(node, struct btrfs_block_group, cache_node); | 
 | 		btrfs_get_block_group(cache); | 
 | 	} else | 
 | 		cache = NULL; | 
 | 	spin_unlock(&fs_info->block_group_cache_lock); | 
 | 	return cache; | 
 | } | 
 |  | 
 | bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) | 
 | { | 
 | 	struct btrfs_block_group *bg; | 
 | 	bool ret = true; | 
 |  | 
 | 	bg = btrfs_lookup_block_group(fs_info, bytenr); | 
 | 	if (!bg) | 
 | 		return false; | 
 |  | 
 | 	spin_lock(&bg->lock); | 
 | 	if (bg->ro) | 
 | 		ret = false; | 
 | 	else | 
 | 		atomic_inc(&bg->nocow_writers); | 
 | 	spin_unlock(&bg->lock); | 
 |  | 
 | 	/* No put on block group, done by btrfs_dec_nocow_writers */ | 
 | 	if (!ret) | 
 | 		btrfs_put_block_group(bg); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) | 
 | { | 
 | 	struct btrfs_block_group *bg; | 
 |  | 
 | 	bg = btrfs_lookup_block_group(fs_info, bytenr); | 
 | 	ASSERT(bg); | 
 | 	if (atomic_dec_and_test(&bg->nocow_writers)) | 
 | 		wake_up_var(&bg->nocow_writers); | 
 | 	/* | 
 | 	 * Once for our lookup and once for the lookup done by a previous call | 
 | 	 * to btrfs_inc_nocow_writers() | 
 | 	 */ | 
 | 	btrfs_put_block_group(bg); | 
 | 	btrfs_put_block_group(bg); | 
 | } | 
 |  | 
 | void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) | 
 | { | 
 | 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); | 
 | } | 
 |  | 
 | void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, | 
 | 					const u64 start) | 
 | { | 
 | 	struct btrfs_block_group *bg; | 
 |  | 
 | 	bg = btrfs_lookup_block_group(fs_info, start); | 
 | 	ASSERT(bg); | 
 | 	if (atomic_dec_and_test(&bg->reservations)) | 
 | 		wake_up_var(&bg->reservations); | 
 | 	btrfs_put_block_group(bg); | 
 | } | 
 |  | 
 | void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) | 
 | { | 
 | 	struct btrfs_space_info *space_info = bg->space_info; | 
 |  | 
 | 	ASSERT(bg->ro); | 
 |  | 
 | 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Our block group is read only but before we set it to read only, | 
 | 	 * some task might have had allocated an extent from it already, but it | 
 | 	 * has not yet created a respective ordered extent (and added it to a | 
 | 	 * root's list of ordered extents). | 
 | 	 * Therefore wait for any task currently allocating extents, since the | 
 | 	 * block group's reservations counter is incremented while a read lock | 
 | 	 * on the groups' semaphore is held and decremented after releasing | 
 | 	 * the read access on that semaphore and creating the ordered extent. | 
 | 	 */ | 
 | 	down_write(&space_info->groups_sem); | 
 | 	up_write(&space_info->groups_sem); | 
 |  | 
 | 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); | 
 | } | 
 |  | 
 | struct btrfs_caching_control *btrfs_get_caching_control( | 
 | 		struct btrfs_block_group *cache) | 
 | { | 
 | 	struct btrfs_caching_control *ctl; | 
 |  | 
 | 	spin_lock(&cache->lock); | 
 | 	if (!cache->caching_ctl) { | 
 | 		spin_unlock(&cache->lock); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	ctl = cache->caching_ctl; | 
 | 	refcount_inc(&ctl->count); | 
 | 	spin_unlock(&cache->lock); | 
 | 	return ctl; | 
 | } | 
 |  | 
 | void btrfs_put_caching_control(struct btrfs_caching_control *ctl) | 
 | { | 
 | 	if (refcount_dec_and_test(&ctl->count)) | 
 | 		kfree(ctl); | 
 | } | 
 |  | 
 | /* | 
 |  * When we wait for progress in the block group caching, its because our | 
 |  * allocation attempt failed at least once.  So, we must sleep and let some | 
 |  * progress happen before we try again. | 
 |  * | 
 |  * This function will sleep at least once waiting for new free space to show | 
 |  * up, and then it will check the block group free space numbers for our min | 
 |  * num_bytes.  Another option is to have it go ahead and look in the rbtree for | 
 |  * a free extent of a given size, but this is a good start. | 
 |  * | 
 |  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using | 
 |  * any of the information in this block group. | 
 |  */ | 
 | void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, | 
 | 					   u64 num_bytes) | 
 | { | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 |  | 
 | 	caching_ctl = btrfs_get_caching_control(cache); | 
 | 	if (!caching_ctl) | 
 | 		return; | 
 |  | 
 | 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || | 
 | 		   (cache->free_space_ctl->free_space >= num_bytes)); | 
 |  | 
 | 	btrfs_put_caching_control(caching_ctl); | 
 | } | 
 |  | 
 | int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) | 
 | { | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	int ret = 0; | 
 |  | 
 | 	caching_ctl = btrfs_get_caching_control(cache); | 
 | 	if (!caching_ctl) | 
 | 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; | 
 |  | 
 | 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); | 
 | 	if (cache->cached == BTRFS_CACHE_ERROR) | 
 | 		ret = -EIO; | 
 | 	btrfs_put_caching_control(caching_ctl); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | static void fragment_free_space(struct btrfs_block_group *block_group) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	u64 start = block_group->start; | 
 | 	u64 len = block_group->length; | 
 | 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? | 
 | 		fs_info->nodesize : fs_info->sectorsize; | 
 | 	u64 step = chunk << 1; | 
 |  | 
 | 	while (len > chunk) { | 
 | 		btrfs_remove_free_space(block_group, start, chunk); | 
 | 		start += step; | 
 | 		if (len < step) | 
 | 			len = 0; | 
 | 		else | 
 | 			len -= step; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This is only called by btrfs_cache_block_group, since we could have freed | 
 |  * extents we need to check the pinned_extents for any extents that can't be | 
 |  * used yet since their free space will be released as soon as the transaction | 
 |  * commits. | 
 |  */ | 
 | u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) | 
 | { | 
 | 	struct btrfs_fs_info *info = block_group->fs_info; | 
 | 	u64 extent_start, extent_end, size, total_added = 0; | 
 | 	int ret; | 
 |  | 
 | 	while (start < end) { | 
 | 		ret = find_first_extent_bit(info->pinned_extents, start, | 
 | 					    &extent_start, &extent_end, | 
 | 					    EXTENT_DIRTY | EXTENT_UPTODATE, | 
 | 					    NULL); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		if (extent_start <= start) { | 
 | 			start = extent_end + 1; | 
 | 		} else if (extent_start > start && extent_start < end) { | 
 | 			size = extent_start - start; | 
 | 			total_added += size; | 
 | 			ret = btrfs_add_free_space_async_trimmed(block_group, | 
 | 								 start, size); | 
 | 			BUG_ON(ret); /* -ENOMEM or logic error */ | 
 | 			start = extent_end + 1; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (start < end) { | 
 | 		size = end - start; | 
 | 		total_added += size; | 
 | 		ret = btrfs_add_free_space_async_trimmed(block_group, start, | 
 | 							 size); | 
 | 		BUG_ON(ret); /* -ENOMEM or logic error */ | 
 | 	} | 
 |  | 
 | 	return total_added; | 
 | } | 
 |  | 
 | static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) | 
 | { | 
 | 	struct btrfs_block_group *block_group = caching_ctl->block_group; | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	struct btrfs_root *extent_root = fs_info->extent_root; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	u64 total_found = 0; | 
 | 	u64 last = 0; | 
 | 	u32 nritems; | 
 | 	int ret; | 
 | 	bool wakeup = true; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); | 
 |  | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	/* | 
 | 	 * If we're fragmenting we don't want to make anybody think we can | 
 | 	 * allocate from this block group until we've had a chance to fragment | 
 | 	 * the free space. | 
 | 	 */ | 
 | 	if (btrfs_should_fragment_free_space(block_group)) | 
 | 		wakeup = false; | 
 | #endif | 
 | 	/* | 
 | 	 * We don't want to deadlock with somebody trying to allocate a new | 
 | 	 * extent for the extent root while also trying to search the extent | 
 | 	 * root to add free space.  So we skip locking and search the commit | 
 | 	 * root, since its read-only | 
 | 	 */ | 
 | 	path->skip_locking = 1; | 
 | 	path->search_commit_root = 1; | 
 | 	path->reada = READA_FORWARD; | 
 |  | 
 | 	key.objectid = last; | 
 | 	key.offset = 0; | 
 | 	key.type = BTRFS_EXTENT_ITEM_KEY; | 
 |  | 
 | next: | 
 | 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 |  | 
 | 	while (1) { | 
 | 		if (btrfs_fs_closing(fs_info) > 1) { | 
 | 			last = (u64)-1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (path->slots[0] < nritems) { | 
 | 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		} else { | 
 | 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); | 
 | 			if (ret) | 
 | 				break; | 
 |  | 
 | 			if (need_resched() || | 
 | 			    rwsem_is_contended(&fs_info->commit_root_sem)) { | 
 | 				if (wakeup) | 
 | 					caching_ctl->progress = last; | 
 | 				btrfs_release_path(path); | 
 | 				up_read(&fs_info->commit_root_sem); | 
 | 				mutex_unlock(&caching_ctl->mutex); | 
 | 				cond_resched(); | 
 | 				mutex_lock(&caching_ctl->mutex); | 
 | 				down_read(&fs_info->commit_root_sem); | 
 | 				goto next; | 
 | 			} | 
 |  | 
 | 			ret = btrfs_next_leaf(extent_root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret) | 
 | 				break; | 
 | 			leaf = path->nodes[0]; | 
 | 			nritems = btrfs_header_nritems(leaf); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (key.objectid < last) { | 
 | 			key.objectid = last; | 
 | 			key.offset = 0; | 
 | 			key.type = BTRFS_EXTENT_ITEM_KEY; | 
 |  | 
 | 			if (wakeup) | 
 | 				caching_ctl->progress = last; | 
 | 			btrfs_release_path(path); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		if (key.objectid < block_group->start) { | 
 | 			path->slots[0]++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (key.objectid >= block_group->start + block_group->length) | 
 | 			break; | 
 |  | 
 | 		if (key.type == BTRFS_EXTENT_ITEM_KEY || | 
 | 		    key.type == BTRFS_METADATA_ITEM_KEY) { | 
 | 			total_found += add_new_free_space(block_group, last, | 
 | 							  key.objectid); | 
 | 			if (key.type == BTRFS_METADATA_ITEM_KEY) | 
 | 				last = key.objectid + | 
 | 					fs_info->nodesize; | 
 | 			else | 
 | 				last = key.objectid + key.offset; | 
 |  | 
 | 			if (total_found > CACHING_CTL_WAKE_UP) { | 
 | 				total_found = 0; | 
 | 				if (wakeup) | 
 | 					wake_up(&caching_ctl->wait); | 
 | 			} | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	ret = 0; | 
 |  | 
 | 	total_found += add_new_free_space(block_group, last, | 
 | 				block_group->start + block_group->length); | 
 | 	caching_ctl->progress = (u64)-1; | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline void caching_thread(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_block_group *block_group; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	int ret; | 
 |  | 
 | 	caching_ctl = container_of(work, struct btrfs_caching_control, work); | 
 | 	block_group = caching_ctl->block_group; | 
 | 	fs_info = block_group->fs_info; | 
 |  | 
 | 	mutex_lock(&caching_ctl->mutex); | 
 | 	down_read(&fs_info->commit_root_sem); | 
 |  | 
 | 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) | 
 | 		ret = load_free_space_tree(caching_ctl); | 
 | 	else | 
 | 		ret = load_extent_tree_free(caching_ctl); | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	block_group->caching_ctl = NULL; | 
 | 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	if (btrfs_should_fragment_free_space(block_group)) { | 
 | 		u64 bytes_used; | 
 |  | 
 | 		spin_lock(&block_group->space_info->lock); | 
 | 		spin_lock(&block_group->lock); | 
 | 		bytes_used = block_group->length - block_group->used; | 
 | 		block_group->space_info->bytes_used += bytes_used >> 1; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		spin_unlock(&block_group->space_info->lock); | 
 | 		fragment_free_space(block_group); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	caching_ctl->progress = (u64)-1; | 
 |  | 
 | 	up_read(&fs_info->commit_root_sem); | 
 | 	btrfs_free_excluded_extents(block_group); | 
 | 	mutex_unlock(&caching_ctl->mutex); | 
 |  | 
 | 	wake_up(&caching_ctl->wait); | 
 |  | 
 | 	btrfs_put_caching_control(caching_ctl); | 
 | 	btrfs_put_block_group(block_group); | 
 | } | 
 |  | 
 | int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	struct btrfs_fs_info *fs_info = cache->fs_info; | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	int ret = 0; | 
 |  | 
 | 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); | 
 | 	if (!caching_ctl) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_LIST_HEAD(&caching_ctl->list); | 
 | 	mutex_init(&caching_ctl->mutex); | 
 | 	init_waitqueue_head(&caching_ctl->wait); | 
 | 	caching_ctl->block_group = cache; | 
 | 	caching_ctl->progress = cache->start; | 
 | 	refcount_set(&caching_ctl->count, 1); | 
 | 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); | 
 |  | 
 | 	spin_lock(&cache->lock); | 
 | 	/* | 
 | 	 * This should be a rare occasion, but this could happen I think in the | 
 | 	 * case where one thread starts to load the space cache info, and then | 
 | 	 * some other thread starts a transaction commit which tries to do an | 
 | 	 * allocation while the other thread is still loading the space cache | 
 | 	 * info.  The previous loop should have kept us from choosing this block | 
 | 	 * group, but if we've moved to the state where we will wait on caching | 
 | 	 * block groups we need to first check if we're doing a fast load here, | 
 | 	 * so we can wait for it to finish, otherwise we could end up allocating | 
 | 	 * from a block group who's cache gets evicted for one reason or | 
 | 	 * another. | 
 | 	 */ | 
 | 	while (cache->cached == BTRFS_CACHE_FAST) { | 
 | 		struct btrfs_caching_control *ctl; | 
 |  | 
 | 		ctl = cache->caching_ctl; | 
 | 		refcount_inc(&ctl->count); | 
 | 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); | 
 | 		spin_unlock(&cache->lock); | 
 |  | 
 | 		schedule(); | 
 |  | 
 | 		finish_wait(&ctl->wait, &wait); | 
 | 		btrfs_put_caching_control(ctl); | 
 | 		spin_lock(&cache->lock); | 
 | 	} | 
 |  | 
 | 	if (cache->cached != BTRFS_CACHE_NO) { | 
 | 		spin_unlock(&cache->lock); | 
 | 		kfree(caching_ctl); | 
 | 		return 0; | 
 | 	} | 
 | 	WARN_ON(cache->caching_ctl); | 
 | 	cache->caching_ctl = caching_ctl; | 
 | 	cache->cached = BTRFS_CACHE_FAST; | 
 | 	spin_unlock(&cache->lock); | 
 |  | 
 | 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) { | 
 | 		mutex_lock(&caching_ctl->mutex); | 
 | 		ret = load_free_space_cache(cache); | 
 |  | 
 | 		spin_lock(&cache->lock); | 
 | 		if (ret == 1) { | 
 | 			cache->caching_ctl = NULL; | 
 | 			cache->cached = BTRFS_CACHE_FINISHED; | 
 | 			cache->last_byte_to_unpin = (u64)-1; | 
 | 			caching_ctl->progress = (u64)-1; | 
 | 		} else { | 
 | 			if (load_cache_only) { | 
 | 				cache->caching_ctl = NULL; | 
 | 				cache->cached = BTRFS_CACHE_NO; | 
 | 			} else { | 
 | 				cache->cached = BTRFS_CACHE_STARTED; | 
 | 				cache->has_caching_ctl = 1; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(&cache->lock); | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 		if (ret == 1 && | 
 | 		    btrfs_should_fragment_free_space(cache)) { | 
 | 			u64 bytes_used; | 
 |  | 
 | 			spin_lock(&cache->space_info->lock); | 
 | 			spin_lock(&cache->lock); | 
 | 			bytes_used = cache->length - cache->used; | 
 | 			cache->space_info->bytes_used += bytes_used >> 1; | 
 | 			spin_unlock(&cache->lock); | 
 | 			spin_unlock(&cache->space_info->lock); | 
 | 			fragment_free_space(cache); | 
 | 		} | 
 | #endif | 
 | 		mutex_unlock(&caching_ctl->mutex); | 
 |  | 
 | 		wake_up(&caching_ctl->wait); | 
 | 		if (ret == 1) { | 
 | 			btrfs_put_caching_control(caching_ctl); | 
 | 			btrfs_free_excluded_extents(cache); | 
 | 			return 0; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * We're either using the free space tree or no caching at all. | 
 | 		 * Set cached to the appropriate value and wakeup any waiters. | 
 | 		 */ | 
 | 		spin_lock(&cache->lock); | 
 | 		if (load_cache_only) { | 
 | 			cache->caching_ctl = NULL; | 
 | 			cache->cached = BTRFS_CACHE_NO; | 
 | 		} else { | 
 | 			cache->cached = BTRFS_CACHE_STARTED; | 
 | 			cache->has_caching_ctl = 1; | 
 | 		} | 
 | 		spin_unlock(&cache->lock); | 
 | 		wake_up(&caching_ctl->wait); | 
 | 	} | 
 |  | 
 | 	if (load_cache_only) { | 
 | 		btrfs_put_caching_control(caching_ctl); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	down_write(&fs_info->commit_root_sem); | 
 | 	refcount_inc(&caching_ctl->count); | 
 | 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); | 
 | 	up_write(&fs_info->commit_root_sem); | 
 |  | 
 | 	btrfs_get_block_group(cache); | 
 |  | 
 | 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
 | { | 
 | 	u64 extra_flags = chunk_to_extended(flags) & | 
 | 				BTRFS_EXTENDED_PROFILE_MASK; | 
 |  | 
 | 	write_seqlock(&fs_info->profiles_lock); | 
 | 	if (flags & BTRFS_BLOCK_GROUP_DATA) | 
 | 		fs_info->avail_data_alloc_bits &= ~extra_flags; | 
 | 	if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
 | 		fs_info->avail_metadata_alloc_bits &= ~extra_flags; | 
 | 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
 | 		fs_info->avail_system_alloc_bits &= ~extra_flags; | 
 | 	write_sequnlock(&fs_info->profiles_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear incompat bits for the following feature(s): | 
 |  * | 
 |  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group | 
 |  *            in the whole filesystem | 
 |  * | 
 |  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups | 
 |  */ | 
 | static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
 | { | 
 | 	bool found_raid56 = false; | 
 | 	bool found_raid1c34 = false; | 
 |  | 
 | 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || | 
 | 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) || | 
 | 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { | 
 | 		struct list_head *head = &fs_info->space_info; | 
 | 		struct btrfs_space_info *sinfo; | 
 |  | 
 | 		list_for_each_entry_rcu(sinfo, head, list) { | 
 | 			down_read(&sinfo->groups_sem); | 
 | 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) | 
 | 				found_raid56 = true; | 
 | 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) | 
 | 				found_raid56 = true; | 
 | 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) | 
 | 				found_raid1c34 = true; | 
 | 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) | 
 | 				found_raid1c34 = true; | 
 | 			up_read(&sinfo->groups_sem); | 
 | 		} | 
 | 		if (found_raid56) | 
 | 			btrfs_clear_fs_incompat(fs_info, RAID56); | 
 | 		if (found_raid1c34) | 
 | 			btrfs_clear_fs_incompat(fs_info, RAID1C34); | 
 | 	} | 
 | } | 
 |  | 
 | int btrfs_remove_block_group(struct btrfs_trans_handle *trans, | 
 | 			     u64 group_start, struct extent_map *em) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_root *root = fs_info->extent_root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_block_group *block_group; | 
 | 	struct btrfs_free_cluster *cluster; | 
 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode; | 
 | 	struct kobject *kobj = NULL; | 
 | 	int ret; | 
 | 	int index; | 
 | 	int factor; | 
 | 	struct btrfs_caching_control *caching_ctl = NULL; | 
 | 	bool remove_em; | 
 | 	bool remove_rsv = false; | 
 |  | 
 | 	block_group = btrfs_lookup_block_group(fs_info, group_start); | 
 | 	BUG_ON(!block_group); | 
 | 	BUG_ON(!block_group->ro); | 
 |  | 
 | 	trace_btrfs_remove_block_group(block_group); | 
 | 	/* | 
 | 	 * Free the reserved super bytes from this block group before | 
 | 	 * remove it. | 
 | 	 */ | 
 | 	btrfs_free_excluded_extents(block_group); | 
 | 	btrfs_free_ref_tree_range(fs_info, block_group->start, | 
 | 				  block_group->length); | 
 |  | 
 | 	index = btrfs_bg_flags_to_raid_index(block_group->flags); | 
 | 	factor = btrfs_bg_type_to_factor(block_group->flags); | 
 |  | 
 | 	/* make sure this block group isn't part of an allocation cluster */ | 
 | 	cluster = &fs_info->data_alloc_cluster; | 
 | 	spin_lock(&cluster->refill_lock); | 
 | 	btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 	spin_unlock(&cluster->refill_lock); | 
 |  | 
 | 	/* | 
 | 	 * make sure this block group isn't part of a metadata | 
 | 	 * allocation cluster | 
 | 	 */ | 
 | 	cluster = &fs_info->meta_alloc_cluster; | 
 | 	spin_lock(&cluster->refill_lock); | 
 | 	btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 	spin_unlock(&cluster->refill_lock); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * get the inode first so any iput calls done for the io_list | 
 | 	 * aren't the final iput (no unlinks allowed now) | 
 | 	 */ | 
 | 	inode = lookup_free_space_inode(block_group, path); | 
 |  | 
 | 	mutex_lock(&trans->transaction->cache_write_mutex); | 
 | 	/* | 
 | 	 * Make sure our free space cache IO is done before removing the | 
 | 	 * free space inode | 
 | 	 */ | 
 | 	spin_lock(&trans->transaction->dirty_bgs_lock); | 
 | 	if (!list_empty(&block_group->io_list)) { | 
 | 		list_del_init(&block_group->io_list); | 
 |  | 
 | 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); | 
 |  | 
 | 		spin_unlock(&trans->transaction->dirty_bgs_lock); | 
 | 		btrfs_wait_cache_io(trans, block_group, path); | 
 | 		btrfs_put_block_group(block_group); | 
 | 		spin_lock(&trans->transaction->dirty_bgs_lock); | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&block_group->dirty_list)) { | 
 | 		list_del_init(&block_group->dirty_list); | 
 | 		remove_rsv = true; | 
 | 		btrfs_put_block_group(block_group); | 
 | 	} | 
 | 	spin_unlock(&trans->transaction->dirty_bgs_lock); | 
 | 	mutex_unlock(&trans->transaction->cache_write_mutex); | 
 |  | 
 | 	if (!IS_ERR(inode)) { | 
 | 		ret = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
 | 		if (ret) { | 
 | 			btrfs_add_delayed_iput(inode); | 
 | 			goto out; | 
 | 		} | 
 | 		clear_nlink(inode); | 
 | 		/* One for the block groups ref */ | 
 | 		spin_lock(&block_group->lock); | 
 | 		if (block_group->iref) { | 
 | 			block_group->iref = 0; | 
 | 			block_group->inode = NULL; | 
 | 			spin_unlock(&block_group->lock); | 
 | 			iput(inode); | 
 | 		} else { | 
 | 			spin_unlock(&block_group->lock); | 
 | 		} | 
 | 		/* One for our lookup ref */ | 
 | 		btrfs_add_delayed_iput(inode); | 
 | 	} | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.type = 0; | 
 | 	key.offset = block_group->start; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) | 
 | 		btrfs_release_path(path); | 
 | 	if (ret == 0) { | 
 | 		ret = btrfs_del_item(trans, tree_root, path); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 |  | 
 | 	spin_lock(&fs_info->block_group_cache_lock); | 
 | 	rb_erase(&block_group->cache_node, | 
 | 		 &fs_info->block_group_cache_tree); | 
 | 	RB_CLEAR_NODE(&block_group->cache_node); | 
 |  | 
 | 	if (fs_info->first_logical_byte == block_group->start) | 
 | 		fs_info->first_logical_byte = (u64)-1; | 
 | 	spin_unlock(&fs_info->block_group_cache_lock); | 
 |  | 
 | 	down_write(&block_group->space_info->groups_sem); | 
 | 	/* | 
 | 	 * we must use list_del_init so people can check to see if they | 
 | 	 * are still on the list after taking the semaphore | 
 | 	 */ | 
 | 	list_del_init(&block_group->list); | 
 | 	if (list_empty(&block_group->space_info->block_groups[index])) { | 
 | 		kobj = block_group->space_info->block_group_kobjs[index]; | 
 | 		block_group->space_info->block_group_kobjs[index] = NULL; | 
 | 		clear_avail_alloc_bits(fs_info, block_group->flags); | 
 | 	} | 
 | 	up_write(&block_group->space_info->groups_sem); | 
 | 	clear_incompat_bg_bits(fs_info, block_group->flags); | 
 | 	if (kobj) { | 
 | 		kobject_del(kobj); | 
 | 		kobject_put(kobj); | 
 | 	} | 
 |  | 
 | 	if (block_group->has_caching_ctl) | 
 | 		caching_ctl = btrfs_get_caching_control(block_group); | 
 | 	if (block_group->cached == BTRFS_CACHE_STARTED) | 
 | 		btrfs_wait_block_group_cache_done(block_group); | 
 | 	if (block_group->has_caching_ctl) { | 
 | 		down_write(&fs_info->commit_root_sem); | 
 | 		if (!caching_ctl) { | 
 | 			struct btrfs_caching_control *ctl; | 
 |  | 
 | 			list_for_each_entry(ctl, | 
 | 				    &fs_info->caching_block_groups, list) | 
 | 				if (ctl->block_group == block_group) { | 
 | 					caching_ctl = ctl; | 
 | 					refcount_inc(&caching_ctl->count); | 
 | 					break; | 
 | 				} | 
 | 		} | 
 | 		if (caching_ctl) | 
 | 			list_del_init(&caching_ctl->list); | 
 | 		up_write(&fs_info->commit_root_sem); | 
 | 		if (caching_ctl) { | 
 | 			/* Once for the caching bgs list and once for us. */ | 
 | 			btrfs_put_caching_control(caching_ctl); | 
 | 			btrfs_put_caching_control(caching_ctl); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock(&trans->transaction->dirty_bgs_lock); | 
 | 	WARN_ON(!list_empty(&block_group->dirty_list)); | 
 | 	WARN_ON(!list_empty(&block_group->io_list)); | 
 | 	spin_unlock(&trans->transaction->dirty_bgs_lock); | 
 |  | 
 | 	btrfs_remove_free_space_cache(block_group); | 
 |  | 
 | 	spin_lock(&block_group->space_info->lock); | 
 | 	list_del_init(&block_group->ro_list); | 
 |  | 
 | 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { | 
 | 		WARN_ON(block_group->space_info->total_bytes | 
 | 			< block_group->length); | 
 | 		WARN_ON(block_group->space_info->bytes_readonly | 
 | 			< block_group->length); | 
 | 		WARN_ON(block_group->space_info->disk_total | 
 | 			< block_group->length * factor); | 
 | 	} | 
 | 	block_group->space_info->total_bytes -= block_group->length; | 
 | 	block_group->space_info->bytes_readonly -= block_group->length; | 
 | 	block_group->space_info->disk_total -= block_group->length * factor; | 
 |  | 
 | 	spin_unlock(&block_group->space_info->lock); | 
 |  | 
 | 	key.objectid = block_group->start; | 
 | 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
 | 	key.offset = block_group->length; | 
 |  | 
 | 	mutex_lock(&fs_info->chunk_mutex); | 
 | 	spin_lock(&block_group->lock); | 
 | 	block_group->removed = 1; | 
 | 	/* | 
 | 	 * At this point trimming can't start on this block group, because we | 
 | 	 * removed the block group from the tree fs_info->block_group_cache_tree | 
 | 	 * so no one can't find it anymore and even if someone already got this | 
 | 	 * block group before we removed it from the rbtree, they have already | 
 | 	 * incremented block_group->trimming - if they didn't, they won't find | 
 | 	 * any free space entries because we already removed them all when we | 
 | 	 * called btrfs_remove_free_space_cache(). | 
 | 	 * | 
 | 	 * And we must not remove the extent map from the fs_info->mapping_tree | 
 | 	 * to prevent the same logical address range and physical device space | 
 | 	 * ranges from being reused for a new block group. This is because our | 
 | 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is | 
 | 	 * completely transactionless, so while it is trimming a range the | 
 | 	 * currently running transaction might finish and a new one start, | 
 | 	 * allowing for new block groups to be created that can reuse the same | 
 | 	 * physical device locations unless we take this special care. | 
 | 	 * | 
 | 	 * There may also be an implicit trim operation if the file system | 
 | 	 * is mounted with -odiscard. The same protections must remain | 
 | 	 * in place until the extents have been discarded completely when | 
 | 	 * the transaction commit has completed. | 
 | 	 */ | 
 | 	remove_em = (atomic_read(&block_group->trimming) == 0); | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	mutex_unlock(&fs_info->chunk_mutex); | 
 |  | 
 | 	ret = remove_block_group_free_space(trans, block_group); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	btrfs_put_block_group(block_group); | 
 | 	btrfs_put_block_group(block_group); | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret > 0) | 
 | 		ret = -EIO; | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (remove_em) { | 
 | 		struct extent_map_tree *em_tree; | 
 |  | 
 | 		em_tree = &fs_info->mapping_tree; | 
 | 		write_lock(&em_tree->lock); | 
 | 		remove_extent_mapping(em_tree, em); | 
 | 		write_unlock(&em_tree->lock); | 
 | 		/* once for the tree */ | 
 | 		free_extent_map(em); | 
 | 	} | 
 | out: | 
 | 	if (remove_rsv) | 
 | 		btrfs_delayed_refs_rsv_release(fs_info, 1); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( | 
 | 		struct btrfs_fs_info *fs_info, const u64 chunk_offset) | 
 | { | 
 | 	struct extent_map_tree *em_tree = &fs_info->mapping_tree; | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	unsigned int num_items; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, chunk_offset, 1); | 
 | 	read_unlock(&em_tree->lock); | 
 | 	ASSERT(em && em->start == chunk_offset); | 
 |  | 
 | 	/* | 
 | 	 * We need to reserve 3 + N units from the metadata space info in order | 
 | 	 * to remove a block group (done at btrfs_remove_chunk() and at | 
 | 	 * btrfs_remove_block_group()), which are used for: | 
 | 	 * | 
 | 	 * 1 unit for adding the free space inode's orphan (located in the tree | 
 | 	 * of tree roots). | 
 | 	 * 1 unit for deleting the block group item (located in the extent | 
 | 	 * tree). | 
 | 	 * 1 unit for deleting the free space item (located in tree of tree | 
 | 	 * roots). | 
 | 	 * N units for deleting N device extent items corresponding to each | 
 | 	 * stripe (located in the device tree). | 
 | 	 * | 
 | 	 * In order to remove a block group we also need to reserve units in the | 
 | 	 * system space info in order to update the chunk tree (update one or | 
 | 	 * more device items and remove one chunk item), but this is done at | 
 | 	 * btrfs_remove_chunk() through a call to check_system_chunk(). | 
 | 	 */ | 
 | 	map = em->map_lookup; | 
 | 	num_items = 3 + map->num_stripes; | 
 | 	free_extent_map(em); | 
 |  | 
 | 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, | 
 | 							   num_items, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Mark block group @cache read-only, so later write won't happen to block | 
 |  * group @cache. | 
 |  * | 
 |  * If @force is not set, this function will only mark the block group readonly | 
 |  * if we have enough free space (1M) in other metadata/system block groups. | 
 |  * If @force is not set, this function will mark the block group readonly | 
 |  * without checking free space. | 
 |  * | 
 |  * NOTE: This function doesn't care if other block groups can contain all the | 
 |  * data in this block group. That check should be done by relocation routine, | 
 |  * not this function. | 
 |  */ | 
 | static int inc_block_group_ro(struct btrfs_block_group *cache, int force) | 
 | { | 
 | 	struct btrfs_space_info *sinfo = cache->space_info; | 
 | 	u64 num_bytes; | 
 | 	int ret = -ENOSPC; | 
 |  | 
 | 	spin_lock(&sinfo->lock); | 
 | 	spin_lock(&cache->lock); | 
 |  | 
 | 	if (cache->ro) { | 
 | 		cache->ro++; | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	num_bytes = cache->length - cache->reserved - cache->pinned - | 
 | 		    cache->bytes_super - cache->used; | 
 |  | 
 | 	/* | 
 | 	 * Data never overcommits, even in mixed mode, so do just the straight | 
 | 	 * check of left over space in how much we have allocated. | 
 | 	 */ | 
 | 	if (force) { | 
 | 		ret = 0; | 
 | 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { | 
 | 		u64 sinfo_used = btrfs_space_info_used(sinfo, true); | 
 |  | 
 | 		/* | 
 | 		 * Here we make sure if we mark this bg RO, we still have enough | 
 | 		 * free space as buffer. | 
 | 		 */ | 
 | 		if (sinfo_used + num_bytes <= sinfo->total_bytes) | 
 | 			ret = 0; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We overcommit metadata, so we need to do the | 
 | 		 * btrfs_can_overcommit check here, and we need to pass in | 
 | 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of | 
 | 		 * leeway to allow us to mark this block group as read only. | 
 | 		 */ | 
 | 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, | 
 | 					 BTRFS_RESERVE_NO_FLUSH)) | 
 | 			ret = 0; | 
 | 	} | 
 |  | 
 | 	if (!ret) { | 
 | 		sinfo->bytes_readonly += num_bytes; | 
 | 		cache->ro++; | 
 | 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs); | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&cache->lock); | 
 | 	spin_unlock(&sinfo->lock); | 
 | 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { | 
 | 		btrfs_info(cache->fs_info, | 
 | 			"unable to make block group %llu ro", cache->start); | 
 | 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Process the unused_bgs list and remove any that don't have any allocated | 
 |  * space inside of them. | 
 |  */ | 
 | void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_block_group *block_group; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&fs_info->unused_bgs_lock); | 
 | 	while (!list_empty(&fs_info->unused_bgs)) { | 
 | 		u64 start, end; | 
 | 		int trimming; | 
 |  | 
 | 		block_group = list_first_entry(&fs_info->unused_bgs, | 
 | 					       struct btrfs_block_group, | 
 | 					       bg_list); | 
 | 		list_del_init(&block_group->bg_list); | 
 |  | 
 | 		space_info = block_group->space_info; | 
 |  | 
 | 		if (ret || btrfs_mixed_space_info(space_info)) { | 
 | 			btrfs_put_block_group(block_group); | 
 | 			continue; | 
 | 		} | 
 | 		spin_unlock(&fs_info->unused_bgs_lock); | 
 |  | 
 | 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); | 
 |  | 
 | 		mutex_lock(&fs_info->delete_unused_bgs_mutex); | 
 |  | 
 | 		/* Don't want to race with allocators so take the groups_sem */ | 
 | 		down_write(&space_info->groups_sem); | 
 |  | 
 | 		/* | 
 | 		 * Async discard moves the final block group discard to be prior | 
 | 		 * to the unused_bgs code path.  Therefore, if it's not fully | 
 | 		 * trimmed, punt it back to the async discard lists. | 
 | 		 */ | 
 | 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && | 
 | 		    !btrfs_is_free_space_trimmed(block_group)) { | 
 | 			trace_btrfs_skip_unused_block_group(block_group); | 
 | 			up_write(&space_info->groups_sem); | 
 | 			/* Requeue if we failed because of async discard */ | 
 | 			btrfs_discard_queue_work(&fs_info->discard_ctl, | 
 | 						 block_group); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		spin_lock(&block_group->lock); | 
 | 		if (block_group->reserved || block_group->pinned || | 
 | 		    block_group->used || block_group->ro || | 
 | 		    list_is_singular(&block_group->list)) { | 
 | 			/* | 
 | 			 * We want to bail if we made new allocations or have | 
 | 			 * outstanding allocations in this block group.  We do | 
 | 			 * the ro check in case balance is currently acting on | 
 | 			 * this block group. | 
 | 			 */ | 
 | 			trace_btrfs_skip_unused_block_group(block_group); | 
 | 			spin_unlock(&block_group->lock); | 
 | 			up_write(&space_info->groups_sem); | 
 | 			goto next; | 
 | 		} | 
 | 		spin_unlock(&block_group->lock); | 
 |  | 
 | 		/* We don't want to force the issue, only flip if it's ok. */ | 
 | 		ret = inc_block_group_ro(block_group, 0); | 
 | 		up_write(&space_info->groups_sem); | 
 | 		if (ret < 0) { | 
 | 			ret = 0; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Want to do this before we do anything else so we can recover | 
 | 		 * properly if we fail to join the transaction. | 
 | 		 */ | 
 | 		trans = btrfs_start_trans_remove_block_group(fs_info, | 
 | 						     block_group->start); | 
 | 		if (IS_ERR(trans)) { | 
 | 			btrfs_dec_block_group_ro(block_group); | 
 | 			ret = PTR_ERR(trans); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We could have pending pinned extents for this block group, | 
 | 		 * just delete them, we don't care about them anymore. | 
 | 		 */ | 
 | 		start = block_group->start; | 
 | 		end = start + block_group->length - 1; | 
 | 		/* | 
 | 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with | 
 | 		 * btrfs_finish_extent_commit(). If we are at transaction N, | 
 | 		 * another task might be running finish_extent_commit() for the | 
 | 		 * previous transaction N - 1, and have seen a range belonging | 
 | 		 * to the block group in freed_extents[] before we were able to | 
 | 		 * clear the whole block group range from freed_extents[]. This | 
 | 		 * means that task can lookup for the block group after we | 
 | 		 * unpinned it from freed_extents[] and removed it, leading to | 
 | 		 * a BUG_ON() at btrfs_unpin_extent_range(). | 
 | 		 */ | 
 | 		mutex_lock(&fs_info->unused_bg_unpin_mutex); | 
 | 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, | 
 | 				  EXTENT_DIRTY); | 
 | 		if (ret) { | 
 | 			mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
 | 			btrfs_dec_block_group_ro(block_group); | 
 | 			goto end_trans; | 
 | 		} | 
 | 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, | 
 | 				  EXTENT_DIRTY); | 
 | 		if (ret) { | 
 | 			mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
 | 			btrfs_dec_block_group_ro(block_group); | 
 | 			goto end_trans; | 
 | 		} | 
 | 		mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
 |  | 
 | 		/* | 
 | 		 * At this point, the block_group is read only and should fail | 
 | 		 * new allocations.  However, btrfs_finish_extent_commit() can | 
 | 		 * cause this block_group to be placed back on the discard | 
 | 		 * lists because now the block_group isn't fully discarded. | 
 | 		 * Bail here and try again later after discarding everything. | 
 | 		 */ | 
 | 		spin_lock(&fs_info->discard_ctl.lock); | 
 | 		if (!list_empty(&block_group->discard_list)) { | 
 | 			spin_unlock(&fs_info->discard_ctl.lock); | 
 | 			btrfs_dec_block_group_ro(block_group); | 
 | 			btrfs_discard_queue_work(&fs_info->discard_ctl, | 
 | 						 block_group); | 
 | 			goto end_trans; | 
 | 		} | 
 | 		spin_unlock(&fs_info->discard_ctl.lock); | 
 |  | 
 | 		/* Reset pinned so btrfs_put_block_group doesn't complain */ | 
 | 		spin_lock(&space_info->lock); | 
 | 		spin_lock(&block_group->lock); | 
 |  | 
 | 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, | 
 | 						     -block_group->pinned); | 
 | 		space_info->bytes_readonly += block_group->pinned; | 
 | 		percpu_counter_add_batch(&space_info->total_bytes_pinned, | 
 | 				   -block_group->pinned, | 
 | 				   BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
 | 		block_group->pinned = 0; | 
 |  | 
 | 		spin_unlock(&block_group->lock); | 
 | 		spin_unlock(&space_info->lock); | 
 |  | 
 | 		/* | 
 | 		 * The normal path here is an unused block group is passed here, | 
 | 		 * then trimming is handled in the transaction commit path. | 
 | 		 * Async discard interposes before this to do the trimming | 
 | 		 * before coming down the unused block group path as trimming | 
 | 		 * will no longer be done later in the transaction commit path. | 
 | 		 */ | 
 | 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) | 
 | 			goto flip_async; | 
 |  | 
 | 		/* DISCARD can flip during remount */ | 
 | 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); | 
 |  | 
 | 		/* Implicit trim during transaction commit. */ | 
 | 		if (trimming) | 
 | 			btrfs_get_block_group_trimming(block_group); | 
 |  | 
 | 		/* | 
 | 		 * Btrfs_remove_chunk will abort the transaction if things go | 
 | 		 * horribly wrong. | 
 | 		 */ | 
 | 		ret = btrfs_remove_chunk(trans, block_group->start); | 
 |  | 
 | 		if (ret) { | 
 | 			if (trimming) | 
 | 				btrfs_put_block_group_trimming(block_group); | 
 | 			goto end_trans; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we're not mounted with -odiscard, we can just forget | 
 | 		 * about this block group. Otherwise we'll need to wait | 
 | 		 * until transaction commit to do the actual discard. | 
 | 		 */ | 
 | 		if (trimming) { | 
 | 			spin_lock(&fs_info->unused_bgs_lock); | 
 | 			/* | 
 | 			 * A concurrent scrub might have added us to the list | 
 | 			 * fs_info->unused_bgs, so use a list_move operation | 
 | 			 * to add the block group to the deleted_bgs list. | 
 | 			 */ | 
 | 			list_move(&block_group->bg_list, | 
 | 				  &trans->transaction->deleted_bgs); | 
 | 			spin_unlock(&fs_info->unused_bgs_lock); | 
 | 			btrfs_get_block_group(block_group); | 
 | 		} | 
 | end_trans: | 
 | 		btrfs_end_transaction(trans); | 
 | next: | 
 | 		mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
 | 		btrfs_put_block_group(block_group); | 
 | 		spin_lock(&fs_info->unused_bgs_lock); | 
 | 	} | 
 | 	spin_unlock(&fs_info->unused_bgs_lock); | 
 | 	return; | 
 |  | 
 | flip_async: | 
 | 	btrfs_end_transaction(trans); | 
 | 	mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
 | 	btrfs_put_block_group(block_group); | 
 | 	btrfs_discard_punt_unused_bgs_list(fs_info); | 
 | } | 
 |  | 
 | void btrfs_mark_bg_unused(struct btrfs_block_group *bg) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = bg->fs_info; | 
 |  | 
 | 	spin_lock(&fs_info->unused_bgs_lock); | 
 | 	if (list_empty(&bg->bg_list)) { | 
 | 		btrfs_get_block_group(bg); | 
 | 		trace_btrfs_add_unused_block_group(bg); | 
 | 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs); | 
 | 	} | 
 | 	spin_unlock(&fs_info->unused_bgs_lock); | 
 | } | 
 |  | 
 | static int find_first_block_group(struct btrfs_fs_info *fs_info, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct btrfs_key *key) | 
 | { | 
 | 	struct btrfs_root *root = fs_info->extent_root; | 
 | 	int ret = 0; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_block_group_item bg; | 
 | 	u64 flags; | 
 | 	int slot; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		slot = path->slots[0]; | 
 | 		leaf = path->nodes[0]; | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			break; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 |  | 
 | 		if (found_key.objectid >= key->objectid && | 
 | 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
 | 			struct extent_map_tree *em_tree; | 
 | 			struct extent_map *em; | 
 |  | 
 | 			em_tree = &root->fs_info->mapping_tree; | 
 | 			read_lock(&em_tree->lock); | 
 | 			em = lookup_extent_mapping(em_tree, found_key.objectid, | 
 | 						   found_key.offset); | 
 | 			read_unlock(&em_tree->lock); | 
 | 			if (!em) { | 
 | 				btrfs_err(fs_info, | 
 | 			"logical %llu len %llu found bg but no related chunk", | 
 | 					  found_key.objectid, found_key.offset); | 
 | 				ret = -ENOENT; | 
 | 			} else if (em->start != found_key.objectid || | 
 | 				   em->len != found_key.offset) { | 
 | 				btrfs_err(fs_info, | 
 | 		"block group %llu len %llu mismatch with chunk %llu len %llu", | 
 | 					  found_key.objectid, found_key.offset, | 
 | 					  em->start, em->len); | 
 | 				ret = -EUCLEAN; | 
 | 			} else { | 
 | 				read_extent_buffer(leaf, &bg, | 
 | 					btrfs_item_ptr_offset(leaf, slot), | 
 | 					sizeof(bg)); | 
 | 				flags = btrfs_stack_block_group_flags(&bg) & | 
 | 					BTRFS_BLOCK_GROUP_TYPE_MASK; | 
 |  | 
 | 				if (flags != (em->map_lookup->type & | 
 | 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) { | 
 | 					btrfs_err(fs_info, | 
 | "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", | 
 | 						found_key.objectid, | 
 | 						found_key.offset, flags, | 
 | 						(BTRFS_BLOCK_GROUP_TYPE_MASK & | 
 | 						 em->map_lookup->type)); | 
 | 					ret = -EUCLEAN; | 
 | 				} else { | 
 | 					ret = 0; | 
 | 				} | 
 | 			} | 
 | 			free_extent_map(em); | 
 | 			goto out; | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
 | { | 
 | 	u64 extra_flags = chunk_to_extended(flags) & | 
 | 				BTRFS_EXTENDED_PROFILE_MASK; | 
 |  | 
 | 	write_seqlock(&fs_info->profiles_lock); | 
 | 	if (flags & BTRFS_BLOCK_GROUP_DATA) | 
 | 		fs_info->avail_data_alloc_bits |= extra_flags; | 
 | 	if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
 | 		fs_info->avail_metadata_alloc_bits |= extra_flags; | 
 | 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
 | 		fs_info->avail_system_alloc_bits |= extra_flags; | 
 | 	write_sequnlock(&fs_info->profiles_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses | 
 |  * @chunk_start:   logical address of block group | 
 |  * @physical:	   physical address to map to logical addresses | 
 |  * @logical:	   return array of logical addresses which map to @physical | 
 |  * @naddrs:	   length of @logical | 
 |  * @stripe_len:    size of IO stripe for the given block group | 
 |  * | 
 |  * Maps a particular @physical disk address to a list of @logical addresses. | 
 |  * Used primarily to exclude those portions of a block group that contain super | 
 |  * block copies. | 
 |  */ | 
 | EXPORT_FOR_TESTS | 
 | int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, | 
 | 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	u64 *buf; | 
 | 	u64 bytenr; | 
 | 	u64 data_stripe_length; | 
 | 	u64 io_stripe_size; | 
 | 	int i, nr = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1); | 
 | 	if (IS_ERR(em)) | 
 | 		return -EIO; | 
 |  | 
 | 	map = em->map_lookup; | 
 | 	data_stripe_length = em->len; | 
 | 	io_stripe_size = map->stripe_len; | 
 |  | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
 | 		data_stripe_length = div_u64(data_stripe_length, | 
 | 					     map->num_stripes / map->sub_stripes); | 
 | 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0) | 
 | 		data_stripe_length = div_u64(data_stripe_length, map->num_stripes); | 
 | 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
 | 		data_stripe_length = div_u64(data_stripe_length, | 
 | 					     nr_data_stripes(map)); | 
 | 		io_stripe_size = map->stripe_len * nr_data_stripes(map); | 
 | 	} | 
 |  | 
 | 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); | 
 | 	if (!buf) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; i++) { | 
 | 		bool already_inserted = false; | 
 | 		u64 stripe_nr; | 
 | 		int j; | 
 |  | 
 | 		if (!in_range(physical, map->stripes[i].physical, | 
 | 			      data_stripe_length)) | 
 | 			continue; | 
 |  | 
 | 		stripe_nr = physical - map->stripes[i].physical; | 
 | 		stripe_nr = div64_u64(stripe_nr, map->stripe_len); | 
 |  | 
 | 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 			stripe_nr = stripe_nr * map->num_stripes + i; | 
 | 			stripe_nr = div_u64(stripe_nr, map->sub_stripes); | 
 | 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 			stripe_nr = stripe_nr * map->num_stripes + i; | 
 | 		} | 
 | 		/* | 
 | 		 * The remaining case would be for RAID56, multiply by | 
 | 		 * nr_data_stripes().  Alternatively, just use rmap_len below | 
 | 		 * instead of map->stripe_len | 
 | 		 */ | 
 |  | 
 | 		bytenr = chunk_start + stripe_nr * io_stripe_size; | 
 |  | 
 | 		/* Ensure we don't add duplicate addresses */ | 
 | 		for (j = 0; j < nr; j++) { | 
 | 			if (buf[j] == bytenr) { | 
 | 				already_inserted = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!already_inserted) | 
 | 			buf[nr++] = bytenr; | 
 | 	} | 
 |  | 
 | 	*logical = buf; | 
 | 	*naddrs = nr; | 
 | 	*stripe_len = io_stripe_size; | 
 | out: | 
 | 	free_extent_map(em); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int exclude_super_stripes(struct btrfs_block_group *cache) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = cache->fs_info; | 
 | 	u64 bytenr; | 
 | 	u64 *logical; | 
 | 	int stripe_len; | 
 | 	int i, nr, ret; | 
 |  | 
 | 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) { | 
 | 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; | 
 | 		cache->bytes_super += stripe_len; | 
 | 		ret = btrfs_add_excluded_extent(fs_info, cache->start, | 
 | 						stripe_len); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
 | 		bytenr = btrfs_sb_offset(i); | 
 | 		ret = btrfs_rmap_block(fs_info, cache->start, | 
 | 				       bytenr, &logical, &nr, &stripe_len); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		while (nr--) { | 
 | 			u64 start, len; | 
 |  | 
 | 			if (logical[nr] > cache->start + cache->length) | 
 | 				continue; | 
 |  | 
 | 			if (logical[nr] + stripe_len <= cache->start) | 
 | 				continue; | 
 |  | 
 | 			start = logical[nr]; | 
 | 			if (start < cache->start) { | 
 | 				start = cache->start; | 
 | 				len = (logical[nr] + stripe_len) - start; | 
 | 			} else { | 
 | 				len = min_t(u64, stripe_len, | 
 | 					    cache->start + cache->length - start); | 
 | 			} | 
 |  | 
 | 			cache->bytes_super += len; | 
 | 			ret = btrfs_add_excluded_extent(fs_info, start, len); | 
 | 			if (ret) { | 
 | 				kfree(logical); | 
 | 				return ret; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		kfree(logical); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void link_block_group(struct btrfs_block_group *cache) | 
 | { | 
 | 	struct btrfs_space_info *space_info = cache->space_info; | 
 | 	int index = btrfs_bg_flags_to_raid_index(cache->flags); | 
 | 	bool first = false; | 
 |  | 
 | 	down_write(&space_info->groups_sem); | 
 | 	if (list_empty(&space_info->block_groups[index])) | 
 | 		first = true; | 
 | 	list_add_tail(&cache->list, &space_info->block_groups[index]); | 
 | 	up_write(&space_info->groups_sem); | 
 |  | 
 | 	if (first) | 
 | 		btrfs_sysfs_add_block_group_type(cache); | 
 | } | 
 |  | 
 | static struct btrfs_block_group *btrfs_create_block_group_cache( | 
 | 		struct btrfs_fs_info *fs_info, u64 start, u64 size) | 
 | { | 
 | 	struct btrfs_block_group *cache; | 
 |  | 
 | 	cache = kzalloc(sizeof(*cache), GFP_NOFS); | 
 | 	if (!cache) | 
 | 		return NULL; | 
 |  | 
 | 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), | 
 | 					GFP_NOFS); | 
 | 	if (!cache->free_space_ctl) { | 
 | 		kfree(cache); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	cache->start = start; | 
 | 	cache->length = size; | 
 |  | 
 | 	cache->fs_info = fs_info; | 
 | 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); | 
 | 	set_free_space_tree_thresholds(cache); | 
 |  | 
 | 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; | 
 |  | 
 | 	atomic_set(&cache->count, 1); | 
 | 	spin_lock_init(&cache->lock); | 
 | 	init_rwsem(&cache->data_rwsem); | 
 | 	INIT_LIST_HEAD(&cache->list); | 
 | 	INIT_LIST_HEAD(&cache->cluster_list); | 
 | 	INIT_LIST_HEAD(&cache->bg_list); | 
 | 	INIT_LIST_HEAD(&cache->ro_list); | 
 | 	INIT_LIST_HEAD(&cache->discard_list); | 
 | 	INIT_LIST_HEAD(&cache->dirty_list); | 
 | 	INIT_LIST_HEAD(&cache->io_list); | 
 | 	btrfs_init_free_space_ctl(cache); | 
 | 	atomic_set(&cache->trimming, 0); | 
 | 	mutex_init(&cache->free_space_lock); | 
 | 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); | 
 |  | 
 | 	return cache; | 
 | } | 
 |  | 
 | /* | 
 |  * Iterate all chunks and verify that each of them has the corresponding block | 
 |  * group | 
 |  */ | 
 | static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct extent_map_tree *map_tree = &fs_info->mapping_tree; | 
 | 	struct extent_map *em; | 
 | 	struct btrfs_block_group *bg; | 
 | 	u64 start = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (1) { | 
 | 		read_lock(&map_tree->lock); | 
 | 		/* | 
 | 		 * lookup_extent_mapping will return the first extent map | 
 | 		 * intersecting the range, so setting @len to 1 is enough to | 
 | 		 * get the first chunk. | 
 | 		 */ | 
 | 		em = lookup_extent_mapping(map_tree, start, 1); | 
 | 		read_unlock(&map_tree->lock); | 
 | 		if (!em) | 
 | 			break; | 
 |  | 
 | 		bg = btrfs_lookup_block_group(fs_info, em->start); | 
 | 		if (!bg) { | 
 | 			btrfs_err(fs_info, | 
 | 	"chunk start=%llu len=%llu doesn't have corresponding block group", | 
 | 				     em->start, em->len); | 
 | 			ret = -EUCLEAN; | 
 | 			free_extent_map(em); | 
 | 			break; | 
 | 		} | 
 | 		if (bg->start != em->start || bg->length != em->len || | 
 | 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != | 
 | 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { | 
 | 			btrfs_err(fs_info, | 
 | "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", | 
 | 				em->start, em->len, | 
 | 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, | 
 | 				bg->start, bg->length, | 
 | 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); | 
 | 			ret = -EUCLEAN; | 
 | 			free_extent_map(em); | 
 | 			btrfs_put_block_group(bg); | 
 | 			break; | 
 | 		} | 
 | 		start = em->start + em->len; | 
 | 		free_extent_map(em); | 
 | 		btrfs_put_block_group(bg); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int read_one_block_group(struct btrfs_fs_info *info, | 
 | 				struct btrfs_path *path, | 
 | 				const struct btrfs_key *key, | 
 | 				int need_clear) | 
 | { | 
 | 	struct extent_buffer *leaf = path->nodes[0]; | 
 | 	struct btrfs_block_group *cache; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_block_group_item bgi; | 
 | 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); | 
 | 	int slot = path->slots[0]; | 
 | 	int ret; | 
 |  | 
 | 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); | 
 |  | 
 | 	cache = btrfs_create_block_group_cache(info, key->objectid, key->offset); | 
 | 	if (!cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (need_clear) { | 
 | 		/* | 
 | 		 * When we mount with old space cache, we need to | 
 | 		 * set BTRFS_DC_CLEAR and set dirty flag. | 
 | 		 * | 
 | 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we | 
 | 		 *    truncate the old free space cache inode and | 
 | 		 *    setup a new one. | 
 | 		 * b) Setting 'dirty flag' makes sure that we flush | 
 | 		 *    the new space cache info onto disk. | 
 | 		 */ | 
 | 		if (btrfs_test_opt(info, SPACE_CACHE)) | 
 | 			cache->disk_cache_state = BTRFS_DC_CLEAR; | 
 | 	} | 
 | 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), | 
 | 			   sizeof(bgi)); | 
 | 	cache->used = btrfs_stack_block_group_used(&bgi); | 
 | 	cache->flags = btrfs_stack_block_group_flags(&bgi); | 
 | 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && | 
 | 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { | 
 | 			btrfs_err(info, | 
 | "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", | 
 | 				  cache->start); | 
 | 			ret = -EINVAL; | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to exclude the super stripes now so that the space info has | 
 | 	 * super bytes accounted for, otherwise we'll think we have more space | 
 | 	 * than we actually do. | 
 | 	 */ | 
 | 	ret = exclude_super_stripes(cache); | 
 | 	if (ret) { | 
 | 		/* We may have excluded something, so call this just in case. */ | 
 | 		btrfs_free_excluded_extents(cache); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check for two cases, either we are full, and therefore don't need | 
 | 	 * to bother with the caching work since we won't find any space, or we | 
 | 	 * are empty, and we can just add all the space in and be done with it. | 
 | 	 * This saves us _a_lot_ of time, particularly in the full case. | 
 | 	 */ | 
 | 	if (key->offset == cache->used) { | 
 | 		cache->last_byte_to_unpin = (u64)-1; | 
 | 		cache->cached = BTRFS_CACHE_FINISHED; | 
 | 		btrfs_free_excluded_extents(cache); | 
 | 	} else if (cache->used == 0) { | 
 | 		cache->last_byte_to_unpin = (u64)-1; | 
 | 		cache->cached = BTRFS_CACHE_FINISHED; | 
 | 		add_new_free_space(cache, key->objectid, | 
 | 				   key->objectid + key->offset); | 
 | 		btrfs_free_excluded_extents(cache); | 
 | 	} | 
 |  | 
 | 	ret = btrfs_add_block_group_cache(info, cache); | 
 | 	if (ret) { | 
 | 		btrfs_remove_free_space_cache(cache); | 
 | 		goto error; | 
 | 	} | 
 | 	trace_btrfs_add_block_group(info, cache, 0); | 
 | 	btrfs_update_space_info(info, cache->flags, key->offset, | 
 | 				cache->used, cache->bytes_super, &space_info); | 
 |  | 
 | 	cache->space_info = space_info; | 
 |  | 
 | 	link_block_group(cache); | 
 |  | 
 | 	set_avail_alloc_bits(info, cache->flags); | 
 | 	if (btrfs_chunk_readonly(info, cache->start)) { | 
 | 		inc_block_group_ro(cache, 1); | 
 | 	} else if (cache->used == 0) { | 
 | 		ASSERT(list_empty(&cache->bg_list)); | 
 | 		if (btrfs_test_opt(info, DISCARD_ASYNC)) | 
 | 			btrfs_discard_queue_work(&info->discard_ctl, cache); | 
 | 		else | 
 | 			btrfs_mark_bg_unused(cache); | 
 | 	} | 
 | 	return 0; | 
 | error: | 
 | 	btrfs_put_block_group(cache); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_read_block_groups(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	struct btrfs_block_group *cache; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_key key; | 
 | 	int need_clear = 0; | 
 | 	u64 cache_gen; | 
 |  | 
 | 	key.objectid = 0; | 
 | 	key.offset = 0; | 
 | 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->reada = READA_FORWARD; | 
 |  | 
 | 	cache_gen = btrfs_super_cache_generation(info->super_copy); | 
 | 	if (btrfs_test_opt(info, SPACE_CACHE) && | 
 | 	    btrfs_super_generation(info->super_copy) != cache_gen) | 
 | 		need_clear = 1; | 
 | 	if (btrfs_test_opt(info, CLEAR_CACHE)) | 
 | 		need_clear = 1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = find_first_block_group(info, path, &key); | 
 | 		if (ret > 0) | 
 | 			break; | 
 | 		if (ret != 0) | 
 | 			goto error; | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 		ret = read_one_block_group(info, path, &key, need_clear); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 | 		key.objectid += key.offset; | 
 | 		key.offset = 0; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_rcu(space_info, &info->space_info, list) { | 
 | 		if (!(btrfs_get_alloc_profile(info, space_info->flags) & | 
 | 		      (BTRFS_BLOCK_GROUP_RAID10 | | 
 | 		       BTRFS_BLOCK_GROUP_RAID1_MASK | | 
 | 		       BTRFS_BLOCK_GROUP_RAID56_MASK | | 
 | 		       BTRFS_BLOCK_GROUP_DUP))) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Avoid allocating from un-mirrored block group if there are | 
 | 		 * mirrored block groups. | 
 | 		 */ | 
 | 		list_for_each_entry(cache, | 
 | 				&space_info->block_groups[BTRFS_RAID_RAID0], | 
 | 				list) | 
 | 			inc_block_group_ro(cache, 1); | 
 | 		list_for_each_entry(cache, | 
 | 				&space_info->block_groups[BTRFS_RAID_SINGLE], | 
 | 				list) | 
 | 			inc_block_group_ro(cache, 1); | 
 | 	} | 
 |  | 
 | 	btrfs_init_global_block_rsv(info); | 
 | 	ret = check_chunk_block_group_mappings(info); | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_block_group *block_group; | 
 | 	struct btrfs_root *extent_root = fs_info->extent_root; | 
 | 	struct btrfs_block_group_item item; | 
 | 	struct btrfs_key key; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!trans->can_flush_pending_bgs) | 
 | 		return; | 
 |  | 
 | 	while (!list_empty(&trans->new_bgs)) { | 
 | 		block_group = list_first_entry(&trans->new_bgs, | 
 | 					       struct btrfs_block_group, | 
 | 					       bg_list); | 
 | 		if (ret) | 
 | 			goto next; | 
 |  | 
 | 		spin_lock(&block_group->lock); | 
 | 		btrfs_set_stack_block_group_used(&item, block_group->used); | 
 | 		btrfs_set_stack_block_group_chunk_objectid(&item, | 
 | 				BTRFS_FIRST_CHUNK_TREE_OBJECTID); | 
 | 		btrfs_set_stack_block_group_flags(&item, block_group->flags); | 
 | 		key.objectid = block_group->start; | 
 | 		key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
 | 		key.offset = block_group->length; | 
 | 		spin_unlock(&block_group->lock); | 
 |  | 
 | 		ret = btrfs_insert_item(trans, extent_root, &key, &item, | 
 | 					sizeof(item)); | 
 | 		if (ret) | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); | 
 | 		if (ret) | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 		add_block_group_free_space(trans, block_group); | 
 | 		/* Already aborted the transaction if it failed. */ | 
 | next: | 
 | 		btrfs_delayed_refs_rsv_release(fs_info, 1); | 
 | 		list_del_init(&block_group->bg_list); | 
 | 	} | 
 | 	btrfs_trans_release_chunk_metadata(trans); | 
 | } | 
 |  | 
 | int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, | 
 | 			   u64 type, u64 chunk_offset, u64 size) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_block_group *cache; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_set_log_full_commit(trans); | 
 |  | 
 | 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); | 
 | 	if (!cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cache->used = bytes_used; | 
 | 	cache->flags = type; | 
 | 	cache->last_byte_to_unpin = (u64)-1; | 
 | 	cache->cached = BTRFS_CACHE_FINISHED; | 
 | 	cache->needs_free_space = 1; | 
 | 	ret = exclude_super_stripes(cache); | 
 | 	if (ret) { | 
 | 		/* We may have excluded something, so call this just in case */ | 
 | 		btrfs_free_excluded_extents(cache); | 
 | 		btrfs_put_block_group(cache); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	add_new_free_space(cache, chunk_offset, chunk_offset + size); | 
 |  | 
 | 	btrfs_free_excluded_extents(cache); | 
 |  | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	if (btrfs_should_fragment_free_space(cache)) { | 
 | 		u64 new_bytes_used = size - bytes_used; | 
 |  | 
 | 		bytes_used += new_bytes_used >> 1; | 
 | 		fragment_free_space(cache); | 
 | 	} | 
 | #endif | 
 | 	/* | 
 | 	 * Ensure the corresponding space_info object is created and | 
 | 	 * assigned to our block group. We want our bg to be added to the rbtree | 
 | 	 * with its ->space_info set. | 
 | 	 */ | 
 | 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags); | 
 | 	ASSERT(cache->space_info); | 
 |  | 
 | 	ret = btrfs_add_block_group_cache(fs_info, cache); | 
 | 	if (ret) { | 
 | 		btrfs_remove_free_space_cache(cache); | 
 | 		btrfs_put_block_group(cache); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now that our block group has its ->space_info set and is inserted in | 
 | 	 * the rbtree, update the space info's counters. | 
 | 	 */ | 
 | 	trace_btrfs_add_block_group(fs_info, cache, 1); | 
 | 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, | 
 | 				cache->bytes_super, &cache->space_info); | 
 | 	btrfs_update_global_block_rsv(fs_info); | 
 |  | 
 | 	link_block_group(cache); | 
 |  | 
 | 	list_add_tail(&cache->bg_list, &trans->new_bgs); | 
 | 	trans->delayed_ref_updates++; | 
 | 	btrfs_update_delayed_refs_rsv(trans); | 
 |  | 
 | 	set_avail_alloc_bits(fs_info, type); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Mark one block group RO, can be called several times for the same block | 
 |  * group. | 
 |  * | 
 |  * @cache:		the destination block group | 
 |  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to | 
 |  * 			ensure we still have some free space after marking this | 
 |  * 			block group RO. | 
 |  */ | 
 | int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, | 
 | 			     bool do_chunk_alloc) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = cache->fs_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	u64 alloc_flags; | 
 | 	int ret; | 
 |  | 
 | again: | 
 | 	trans = btrfs_join_transaction(fs_info->extent_root); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	/* | 
 | 	 * we're not allowed to set block groups readonly after the dirty | 
 | 	 * block groups cache has started writing.  If it already started, | 
 | 	 * back off and let this transaction commit | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->ro_block_group_mutex); | 
 | 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { | 
 | 		u64 transid = trans->transid; | 
 |  | 
 | 		mutex_unlock(&fs_info->ro_block_group_mutex); | 
 | 		btrfs_end_transaction(trans); | 
 |  | 
 | 		ret = btrfs_wait_for_commit(fs_info, transid); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	if (do_chunk_alloc) { | 
 | 		/* | 
 | 		 * If we are changing raid levels, try to allocate a | 
 | 		 * corresponding block group with the new raid level. | 
 | 		 */ | 
 | 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); | 
 | 		if (alloc_flags != cache->flags) { | 
 | 			ret = btrfs_chunk_alloc(trans, alloc_flags, | 
 | 						CHUNK_ALLOC_FORCE); | 
 | 			/* | 
 | 			 * ENOSPC is allowed here, we may have enough space | 
 | 			 * already allocated at the new raid level to carry on | 
 | 			 */ | 
 | 			if (ret == -ENOSPC) | 
 | 				ret = 0; | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = inc_block_group_ro(cache, 0); | 
 | 	if (!do_chunk_alloc) | 
 | 		goto unlock_out; | 
 | 	if (!ret) | 
 | 		goto out; | 
 | 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); | 
 | 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = inc_block_group_ro(cache, 0); | 
 | out: | 
 | 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); | 
 | 		mutex_lock(&fs_info->chunk_mutex); | 
 | 		check_system_chunk(trans, alloc_flags); | 
 | 		mutex_unlock(&fs_info->chunk_mutex); | 
 | 	} | 
 | unlock_out: | 
 | 	mutex_unlock(&fs_info->ro_block_group_mutex); | 
 |  | 
 | 	btrfs_end_transaction(trans); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) | 
 | { | 
 | 	struct btrfs_space_info *sinfo = cache->space_info; | 
 | 	u64 num_bytes; | 
 |  | 
 | 	BUG_ON(!cache->ro); | 
 |  | 
 | 	spin_lock(&sinfo->lock); | 
 | 	spin_lock(&cache->lock); | 
 | 	if (!--cache->ro) { | 
 | 		num_bytes = cache->length - cache->reserved - | 
 | 			    cache->pinned - cache->bytes_super - cache->used; | 
 | 		sinfo->bytes_readonly -= num_bytes; | 
 | 		list_del_init(&cache->ro_list); | 
 | 	} | 
 | 	spin_unlock(&cache->lock); | 
 | 	spin_unlock(&sinfo->lock); | 
 | } | 
 |  | 
 | static int write_one_cache_group(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct btrfs_block_group *cache) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	int ret; | 
 | 	struct btrfs_root *extent_root = fs_info->extent_root; | 
 | 	unsigned long bi; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_block_group_item bgi; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	key.objectid = cache->start; | 
 | 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
 | 	key.offset = cache->length; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1); | 
 | 	if (ret) { | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 	btrfs_set_stack_block_group_used(&bgi, cache->used); | 
 | 	btrfs_set_stack_block_group_chunk_objectid(&bgi, | 
 | 			BTRFS_FIRST_CHUNK_TREE_OBJECTID); | 
 | 	btrfs_set_stack_block_group_flags(&bgi, cache->flags); | 
 | 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | fail: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | static int cache_save_setup(struct btrfs_block_group *block_group, | 
 | 			    struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	struct btrfs_root *root = fs_info->tree_root; | 
 | 	struct inode *inode = NULL; | 
 | 	struct extent_changeset *data_reserved = NULL; | 
 | 	u64 alloc_hint = 0; | 
 | 	int dcs = BTRFS_DC_ERROR; | 
 | 	u64 num_pages = 0; | 
 | 	int retries = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If this block group is smaller than 100 megs don't bother caching the | 
 | 	 * block group. | 
 | 	 */ | 
 | 	if (block_group->length < (100 * SZ_1M)) { | 
 | 		spin_lock(&block_group->lock); | 
 | 		block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (TRANS_ABORTED(trans)) | 
 | 		return 0; | 
 | again: | 
 | 	inode = lookup_free_space_inode(block_group, path); | 
 | 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { | 
 | 		ret = PTR_ERR(inode); | 
 | 		btrfs_release_path(path); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (IS_ERR(inode)) { | 
 | 		BUG_ON(retries); | 
 | 		retries++; | 
 |  | 
 | 		if (block_group->ro) | 
 | 			goto out_free; | 
 |  | 
 | 		ret = create_free_space_inode(trans, block_group, path); | 
 | 		if (ret) | 
 | 			goto out_free; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We want to set the generation to 0, that way if anything goes wrong | 
 | 	 * from here on out we know not to trust this cache when we load up next | 
 | 	 * time. | 
 | 	 */ | 
 | 	BTRFS_I(inode)->generation = 0; | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 | 	if (ret) { | 
 | 		/* | 
 | 		 * So theoretically we could recover from this, simply set the | 
 | 		 * super cache generation to 0 so we know to invalidate the | 
 | 		 * cache, but then we'd have to keep track of the block groups | 
 | 		 * that fail this way so we know we _have_ to reset this cache | 
 | 		 * before the next commit or risk reading stale cache.  So to | 
 | 		 * limit our exposure to horrible edge cases lets just abort the | 
 | 		 * transaction, this only happens in really bad situations | 
 | 		 * anyway. | 
 | 		 */ | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_put; | 
 | 	} | 
 | 	WARN_ON(ret); | 
 |  | 
 | 	/* We've already setup this transaction, go ahead and exit */ | 
 | 	if (block_group->cache_generation == trans->transid && | 
 | 	    i_size_read(inode)) { | 
 | 		dcs = BTRFS_DC_SETUP; | 
 | 		goto out_put; | 
 | 	} | 
 |  | 
 | 	if (i_size_read(inode) > 0) { | 
 | 		ret = btrfs_check_trunc_cache_free_space(fs_info, | 
 | 					&fs_info->global_block_rsv); | 
 | 		if (ret) | 
 | 			goto out_put; | 
 |  | 
 | 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode); | 
 | 		if (ret) | 
 | 			goto out_put; | 
 | 	} | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->cached != BTRFS_CACHE_FINISHED || | 
 | 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) { | 
 | 		/* | 
 | 		 * don't bother trying to write stuff out _if_ | 
 | 		 * a) we're not cached, | 
 | 		 * b) we're with nospace_cache mount option, | 
 | 		 * c) we're with v2 space_cache (FREE_SPACE_TREE). | 
 | 		 */ | 
 | 		dcs = BTRFS_DC_WRITTEN; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		goto out_put; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	/* | 
 | 	 * We hit an ENOSPC when setting up the cache in this transaction, just | 
 | 	 * skip doing the setup, we've already cleared the cache so we're safe. | 
 | 	 */ | 
 | 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { | 
 | 		ret = -ENOSPC; | 
 | 		goto out_put; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Try to preallocate enough space based on how big the block group is. | 
 | 	 * Keep in mind this has to include any pinned space which could end up | 
 | 	 * taking up quite a bit since it's not folded into the other space | 
 | 	 * cache. | 
 | 	 */ | 
 | 	num_pages = div_u64(block_group->length, SZ_256M); | 
 | 	if (!num_pages) | 
 | 		num_pages = 1; | 
 |  | 
 | 	num_pages *= 16; | 
 | 	num_pages *= PAGE_SIZE; | 
 |  | 
 | 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); | 
 | 	if (ret) | 
 | 		goto out_put; | 
 |  | 
 | 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, | 
 | 					      num_pages, num_pages, | 
 | 					      &alloc_hint); | 
 | 	/* | 
 | 	 * Our cache requires contiguous chunks so that we don't modify a bunch | 
 | 	 * of metadata or split extents when writing the cache out, which means | 
 | 	 * we can enospc if we are heavily fragmented in addition to just normal | 
 | 	 * out of space conditions.  So if we hit this just skip setting up any | 
 | 	 * other block groups for this transaction, maybe we'll unpin enough | 
 | 	 * space the next time around. | 
 | 	 */ | 
 | 	if (!ret) | 
 | 		dcs = BTRFS_DC_SETUP; | 
 | 	else if (ret == -ENOSPC) | 
 | 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); | 
 |  | 
 | out_put: | 
 | 	iput(inode); | 
 | out_free: | 
 | 	btrfs_release_path(path); | 
 | out: | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (!ret && dcs == BTRFS_DC_SETUP) | 
 | 		block_group->cache_generation = trans->transid; | 
 | 	block_group->disk_cache_state = dcs; | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	extent_changeset_free(data_reserved); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_block_group *cache, *tmp; | 
 | 	struct btrfs_transaction *cur_trans = trans->transaction; | 
 | 	struct btrfs_path *path; | 
 |  | 
 | 	if (list_empty(&cur_trans->dirty_bgs) || | 
 | 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Could add new block groups, use _safe just in case */ | 
 | 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, | 
 | 				 dirty_list) { | 
 | 		if (cache->disk_cache_state == BTRFS_DC_CLEAR) | 
 | 			cache_save_setup(cache, trans, path); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Transaction commit does final block group cache writeback during a critical | 
 |  * section where nothing is allowed to change the FS.  This is required in | 
 |  * order for the cache to actually match the block group, but can introduce a | 
 |  * lot of latency into the commit. | 
 |  * | 
 |  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. | 
 |  * There's a chance we'll have to redo some of it if the block group changes | 
 |  * again during the commit, but it greatly reduces the commit latency by | 
 |  * getting rid of the easy block groups while we're still allowing others to | 
 |  * join the commit. | 
 |  */ | 
 | int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_block_group *cache; | 
 | 	struct btrfs_transaction *cur_trans = trans->transaction; | 
 | 	int ret = 0; | 
 | 	int should_put; | 
 | 	struct btrfs_path *path = NULL; | 
 | 	LIST_HEAD(dirty); | 
 | 	struct list_head *io = &cur_trans->io_bgs; | 
 | 	int num_started = 0; | 
 | 	int loops = 0; | 
 |  | 
 | 	spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 	if (list_empty(&cur_trans->dirty_bgs)) { | 
 | 		spin_unlock(&cur_trans->dirty_bgs_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	list_splice_init(&cur_trans->dirty_bgs, &dirty); | 
 | 	spin_unlock(&cur_trans->dirty_bgs_lock); | 
 |  | 
 | again: | 
 | 	/* Make sure all the block groups on our dirty list actually exist */ | 
 | 	btrfs_create_pending_block_groups(trans); | 
 |  | 
 | 	if (!path) { | 
 | 		path = btrfs_alloc_path(); | 
 | 		if (!path) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * cache_write_mutex is here only to save us from balance or automatic | 
 | 	 * removal of empty block groups deleting this block group while we are | 
 | 	 * writing out the cache | 
 | 	 */ | 
 | 	mutex_lock(&trans->transaction->cache_write_mutex); | 
 | 	while (!list_empty(&dirty)) { | 
 | 		bool drop_reserve = true; | 
 |  | 
 | 		cache = list_first_entry(&dirty, struct btrfs_block_group, | 
 | 					 dirty_list); | 
 | 		/* | 
 | 		 * This can happen if something re-dirties a block group that | 
 | 		 * is already under IO.  Just wait for it to finish and then do | 
 | 		 * it all again | 
 | 		 */ | 
 | 		if (!list_empty(&cache->io_list)) { | 
 | 			list_del_init(&cache->io_list); | 
 | 			btrfs_wait_cache_io(trans, cache, path); | 
 | 			btrfs_put_block_group(cache); | 
 | 		} | 
 |  | 
 |  | 
 | 		/* | 
 | 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if | 
 | 		 * it should update the cache_state.  Don't delete until after | 
 | 		 * we wait. | 
 | 		 * | 
 | 		 * Since we're not running in the commit critical section | 
 | 		 * we need the dirty_bgs_lock to protect from update_block_group | 
 | 		 */ | 
 | 		spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 		list_del_init(&cache->dirty_list); | 
 | 		spin_unlock(&cur_trans->dirty_bgs_lock); | 
 |  | 
 | 		should_put = 1; | 
 |  | 
 | 		cache_save_setup(cache, trans, path); | 
 |  | 
 | 		if (cache->disk_cache_state == BTRFS_DC_SETUP) { | 
 | 			cache->io_ctl.inode = NULL; | 
 | 			ret = btrfs_write_out_cache(trans, cache, path); | 
 | 			if (ret == 0 && cache->io_ctl.inode) { | 
 | 				num_started++; | 
 | 				should_put = 0; | 
 |  | 
 | 				/* | 
 | 				 * The cache_write_mutex is protecting the | 
 | 				 * io_list, also refer to the definition of | 
 | 				 * btrfs_transaction::io_bgs for more details | 
 | 				 */ | 
 | 				list_add_tail(&cache->io_list, io); | 
 | 			} else { | 
 | 				/* | 
 | 				 * If we failed to write the cache, the | 
 | 				 * generation will be bad and life goes on | 
 | 				 */ | 
 | 				ret = 0; | 
 | 			} | 
 | 		} | 
 | 		if (!ret) { | 
 | 			ret = write_one_cache_group(trans, path, cache); | 
 | 			/* | 
 | 			 * Our block group might still be attached to the list | 
 | 			 * of new block groups in the transaction handle of some | 
 | 			 * other task (struct btrfs_trans_handle->new_bgs). This | 
 | 			 * means its block group item isn't yet in the extent | 
 | 			 * tree. If this happens ignore the error, as we will | 
 | 			 * try again later in the critical section of the | 
 | 			 * transaction commit. | 
 | 			 */ | 
 | 			if (ret == -ENOENT) { | 
 | 				ret = 0; | 
 | 				spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 				if (list_empty(&cache->dirty_list)) { | 
 | 					list_add_tail(&cache->dirty_list, | 
 | 						      &cur_trans->dirty_bgs); | 
 | 					btrfs_get_block_group(cache); | 
 | 					drop_reserve = false; | 
 | 				} | 
 | 				spin_unlock(&cur_trans->dirty_bgs_lock); | 
 | 			} else if (ret) { | 
 | 				btrfs_abort_transaction(trans, ret); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* If it's not on the io list, we need to put the block group */ | 
 | 		if (should_put) | 
 | 			btrfs_put_block_group(cache); | 
 | 		if (drop_reserve) | 
 | 			btrfs_delayed_refs_rsv_release(fs_info, 1); | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Avoid blocking other tasks for too long. It might even save | 
 | 		 * us from writing caches for block groups that are going to be | 
 | 		 * removed. | 
 | 		 */ | 
 | 		mutex_unlock(&trans->transaction->cache_write_mutex); | 
 | 		mutex_lock(&trans->transaction->cache_write_mutex); | 
 | 	} | 
 | 	mutex_unlock(&trans->transaction->cache_write_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Go through delayed refs for all the stuff we've just kicked off | 
 | 	 * and then loop back (just once) | 
 | 	 */ | 
 | 	ret = btrfs_run_delayed_refs(trans, 0); | 
 | 	if (!ret && loops == 0) { | 
 | 		loops++; | 
 | 		spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 		list_splice_init(&cur_trans->dirty_bgs, &dirty); | 
 | 		/* | 
 | 		 * dirty_bgs_lock protects us from concurrent block group | 
 | 		 * deletes too (not just cache_write_mutex). | 
 | 		 */ | 
 | 		if (!list_empty(&dirty)) { | 
 | 			spin_unlock(&cur_trans->dirty_bgs_lock); | 
 | 			goto again; | 
 | 		} | 
 | 		spin_unlock(&cur_trans->dirty_bgs_lock); | 
 | 	} else if (ret < 0) { | 
 | 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_block_group *cache; | 
 | 	struct btrfs_transaction *cur_trans = trans->transaction; | 
 | 	int ret = 0; | 
 | 	int should_put; | 
 | 	struct btrfs_path *path; | 
 | 	struct list_head *io = &cur_trans->io_bgs; | 
 | 	int num_started = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Even though we are in the critical section of the transaction commit, | 
 | 	 * we can still have concurrent tasks adding elements to this | 
 | 	 * transaction's list of dirty block groups. These tasks correspond to | 
 | 	 * endio free space workers started when writeback finishes for a | 
 | 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can | 
 | 	 * allocate new block groups as a result of COWing nodes of the root | 
 | 	 * tree when updating the free space inode. The writeback for the space | 
 | 	 * caches is triggered by an earlier call to | 
 | 	 * btrfs_start_dirty_block_groups() and iterations of the following | 
 | 	 * loop. | 
 | 	 * Also we want to do the cache_save_setup first and then run the | 
 | 	 * delayed refs to make sure we have the best chance at doing this all | 
 | 	 * in one shot. | 
 | 	 */ | 
 | 	spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 	while (!list_empty(&cur_trans->dirty_bgs)) { | 
 | 		cache = list_first_entry(&cur_trans->dirty_bgs, | 
 | 					 struct btrfs_block_group, | 
 | 					 dirty_list); | 
 |  | 
 | 		/* | 
 | 		 * This can happen if cache_save_setup re-dirties a block group | 
 | 		 * that is already under IO.  Just wait for it to finish and | 
 | 		 * then do it all again | 
 | 		 */ | 
 | 		if (!list_empty(&cache->io_list)) { | 
 | 			spin_unlock(&cur_trans->dirty_bgs_lock); | 
 | 			list_del_init(&cache->io_list); | 
 | 			btrfs_wait_cache_io(trans, cache, path); | 
 | 			btrfs_put_block_group(cache); | 
 | 			spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Don't remove from the dirty list until after we've waited on | 
 | 		 * any pending IO | 
 | 		 */ | 
 | 		list_del_init(&cache->dirty_list); | 
 | 		spin_unlock(&cur_trans->dirty_bgs_lock); | 
 | 		should_put = 1; | 
 |  | 
 | 		cache_save_setup(cache, trans, path); | 
 |  | 
 | 		if (!ret) | 
 | 			ret = btrfs_run_delayed_refs(trans, | 
 | 						     (unsigned long) -1); | 
 |  | 
 | 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { | 
 | 			cache->io_ctl.inode = NULL; | 
 | 			ret = btrfs_write_out_cache(trans, cache, path); | 
 | 			if (ret == 0 && cache->io_ctl.inode) { | 
 | 				num_started++; | 
 | 				should_put = 0; | 
 | 				list_add_tail(&cache->io_list, io); | 
 | 			} else { | 
 | 				/* | 
 | 				 * If we failed to write the cache, the | 
 | 				 * generation will be bad and life goes on | 
 | 				 */ | 
 | 				ret = 0; | 
 | 			} | 
 | 		} | 
 | 		if (!ret) { | 
 | 			ret = write_one_cache_group(trans, path, cache); | 
 | 			/* | 
 | 			 * One of the free space endio workers might have | 
 | 			 * created a new block group while updating a free space | 
 | 			 * cache's inode (at inode.c:btrfs_finish_ordered_io()) | 
 | 			 * and hasn't released its transaction handle yet, in | 
 | 			 * which case the new block group is still attached to | 
 | 			 * its transaction handle and its creation has not | 
 | 			 * finished yet (no block group item in the extent tree | 
 | 			 * yet, etc). If this is the case, wait for all free | 
 | 			 * space endio workers to finish and retry. This is a | 
 | 			 * a very rare case so no need for a more efficient and | 
 | 			 * complex approach. | 
 | 			 */ | 
 | 			if (ret == -ENOENT) { | 
 | 				wait_event(cur_trans->writer_wait, | 
 | 				   atomic_read(&cur_trans->num_writers) == 1); | 
 | 				ret = write_one_cache_group(trans, path, cache); | 
 | 			} | 
 | 			if (ret) | 
 | 				btrfs_abort_transaction(trans, ret); | 
 | 		} | 
 |  | 
 | 		/* If its not on the io list, we need to put the block group */ | 
 | 		if (should_put) | 
 | 			btrfs_put_block_group(cache); | 
 | 		btrfs_delayed_refs_rsv_release(fs_info, 1); | 
 | 		spin_lock(&cur_trans->dirty_bgs_lock); | 
 | 	} | 
 | 	spin_unlock(&cur_trans->dirty_bgs_lock); | 
 |  | 
 | 	/* | 
 | 	 * Refer to the definition of io_bgs member for details why it's safe | 
 | 	 * to use it without any locking | 
 | 	 */ | 
 | 	while (!list_empty(io)) { | 
 | 		cache = list_first_entry(io, struct btrfs_block_group, | 
 | 					 io_list); | 
 | 		list_del_init(&cache->io_list); | 
 | 		btrfs_wait_cache_io(trans, cache, path); | 
 | 		btrfs_put_block_group(cache); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_update_block_group(struct btrfs_trans_handle *trans, | 
 | 			     u64 bytenr, u64 num_bytes, int alloc) | 
 | { | 
 | 	struct btrfs_fs_info *info = trans->fs_info; | 
 | 	struct btrfs_block_group *cache = NULL; | 
 | 	u64 total = num_bytes; | 
 | 	u64 old_val; | 
 | 	u64 byte_in_group; | 
 | 	int factor; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Block accounting for super block */ | 
 | 	spin_lock(&info->delalloc_root_lock); | 
 | 	old_val = btrfs_super_bytes_used(info->super_copy); | 
 | 	if (alloc) | 
 | 		old_val += num_bytes; | 
 | 	else | 
 | 		old_val -= num_bytes; | 
 | 	btrfs_set_super_bytes_used(info->super_copy, old_val); | 
 | 	spin_unlock(&info->delalloc_root_lock); | 
 |  | 
 | 	while (total) { | 
 | 		cache = btrfs_lookup_block_group(info, bytenr); | 
 | 		if (!cache) { | 
 | 			ret = -ENOENT; | 
 | 			break; | 
 | 		} | 
 | 		factor = btrfs_bg_type_to_factor(cache->flags); | 
 |  | 
 | 		/* | 
 | 		 * If this block group has free space cache written out, we | 
 | 		 * need to make sure to load it if we are removing space.  This | 
 | 		 * is because we need the unpinning stage to actually add the | 
 | 		 * space back to the block group, otherwise we will leak space. | 
 | 		 */ | 
 | 		if (!alloc && !btrfs_block_group_done(cache)) | 
 | 			btrfs_cache_block_group(cache, 1); | 
 |  | 
 | 		byte_in_group = bytenr - cache->start; | 
 | 		WARN_ON(byte_in_group > cache->length); | 
 |  | 
 | 		spin_lock(&cache->space_info->lock); | 
 | 		spin_lock(&cache->lock); | 
 |  | 
 | 		if (btrfs_test_opt(info, SPACE_CACHE) && | 
 | 		    cache->disk_cache_state < BTRFS_DC_CLEAR) | 
 | 			cache->disk_cache_state = BTRFS_DC_CLEAR; | 
 |  | 
 | 		old_val = cache->used; | 
 | 		num_bytes = min(total, cache->length - byte_in_group); | 
 | 		if (alloc) { | 
 | 			old_val += num_bytes; | 
 | 			cache->used = old_val; | 
 | 			cache->reserved -= num_bytes; | 
 | 			cache->space_info->bytes_reserved -= num_bytes; | 
 | 			cache->space_info->bytes_used += num_bytes; | 
 | 			cache->space_info->disk_used += num_bytes * factor; | 
 | 			spin_unlock(&cache->lock); | 
 | 			spin_unlock(&cache->space_info->lock); | 
 | 		} else { | 
 | 			old_val -= num_bytes; | 
 | 			cache->used = old_val; | 
 | 			cache->pinned += num_bytes; | 
 | 			btrfs_space_info_update_bytes_pinned(info, | 
 | 					cache->space_info, num_bytes); | 
 | 			cache->space_info->bytes_used -= num_bytes; | 
 | 			cache->space_info->disk_used -= num_bytes * factor; | 
 | 			spin_unlock(&cache->lock); | 
 | 			spin_unlock(&cache->space_info->lock); | 
 |  | 
 | 			percpu_counter_add_batch( | 
 | 					&cache->space_info->total_bytes_pinned, | 
 | 					num_bytes, | 
 | 					BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
 | 			set_extent_dirty(info->pinned_extents, | 
 | 					 bytenr, bytenr + num_bytes - 1, | 
 | 					 GFP_NOFS | __GFP_NOFAIL); | 
 | 		} | 
 |  | 
 | 		spin_lock(&trans->transaction->dirty_bgs_lock); | 
 | 		if (list_empty(&cache->dirty_list)) { | 
 | 			list_add_tail(&cache->dirty_list, | 
 | 				      &trans->transaction->dirty_bgs); | 
 | 			trans->delayed_ref_updates++; | 
 | 			btrfs_get_block_group(cache); | 
 | 		} | 
 | 		spin_unlock(&trans->transaction->dirty_bgs_lock); | 
 |  | 
 | 		/* | 
 | 		 * No longer have used bytes in this block group, queue it for | 
 | 		 * deletion. We do this after adding the block group to the | 
 | 		 * dirty list to avoid races between cleaner kthread and space | 
 | 		 * cache writeout. | 
 | 		 */ | 
 | 		if (!alloc && old_val == 0) { | 
 | 			if (!btrfs_test_opt(info, DISCARD_ASYNC)) | 
 | 				btrfs_mark_bg_unused(cache); | 
 | 		} | 
 |  | 
 | 		btrfs_put_block_group(cache); | 
 | 		total -= num_bytes; | 
 | 		bytenr += num_bytes; | 
 | 	} | 
 |  | 
 | 	/* Modified block groups are accounted for in the delayed_refs_rsv. */ | 
 | 	btrfs_update_delayed_refs_rsv(trans); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * btrfs_add_reserved_bytes - update the block_group and space info counters | 
 |  * @cache:	The cache we are manipulating | 
 |  * @ram_bytes:  The number of bytes of file content, and will be same to | 
 |  *              @num_bytes except for the compress path. | 
 |  * @num_bytes:	The number of bytes in question | 
 |  * @delalloc:   The blocks are allocated for the delalloc write | 
 |  * | 
 |  * This is called by the allocator when it reserves space. If this is a | 
 |  * reservation and the block group has become read only we cannot make the | 
 |  * reservation and return -EAGAIN, otherwise this function always succeeds. | 
 |  */ | 
 | int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, | 
 | 			     u64 ram_bytes, u64 num_bytes, int delalloc) | 
 | { | 
 | 	struct btrfs_space_info *space_info = cache->space_info; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&space_info->lock); | 
 | 	spin_lock(&cache->lock); | 
 | 	if (cache->ro) { | 
 | 		ret = -EAGAIN; | 
 | 	} else { | 
 | 		cache->reserved += num_bytes; | 
 | 		space_info->bytes_reserved += num_bytes; | 
 | 		trace_btrfs_space_reservation(cache->fs_info, "space_info", | 
 | 					      space_info->flags, num_bytes, 1); | 
 | 		btrfs_space_info_update_bytes_may_use(cache->fs_info, | 
 | 						      space_info, -ram_bytes); | 
 | 		if (delalloc) | 
 | 			cache->delalloc_bytes += num_bytes; | 
 |  | 
 | 		/* | 
 | 		 * Compression can use less space than we reserved, so wake | 
 | 		 * tickets if that happens. | 
 | 		 */ | 
 | 		if (num_bytes < ram_bytes) | 
 | 			btrfs_try_granting_tickets(cache->fs_info, space_info); | 
 | 	} | 
 | 	spin_unlock(&cache->lock); | 
 | 	spin_unlock(&space_info->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * btrfs_free_reserved_bytes - update the block_group and space info counters | 
 |  * @cache:      The cache we are manipulating | 
 |  * @num_bytes:  The number of bytes in question | 
 |  * @delalloc:   The blocks are allocated for the delalloc write | 
 |  * | 
 |  * This is called by somebody who is freeing space that was never actually used | 
 |  * on disk.  For example if you reserve some space for a new leaf in transaction | 
 |  * A and before transaction A commits you free that leaf, you call this with | 
 |  * reserve set to 0 in order to clear the reservation. | 
 |  */ | 
 | void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, | 
 | 			       u64 num_bytes, int delalloc) | 
 | { | 
 | 	struct btrfs_space_info *space_info = cache->space_info; | 
 |  | 
 | 	spin_lock(&space_info->lock); | 
 | 	spin_lock(&cache->lock); | 
 | 	if (cache->ro) | 
 | 		space_info->bytes_readonly += num_bytes; | 
 | 	cache->reserved -= num_bytes; | 
 | 	space_info->bytes_reserved -= num_bytes; | 
 | 	space_info->max_extent_size = 0; | 
 |  | 
 | 	if (delalloc) | 
 | 		cache->delalloc_bytes -= num_bytes; | 
 | 	spin_unlock(&cache->lock); | 
 |  | 
 | 	btrfs_try_granting_tickets(cache->fs_info, space_info); | 
 | 	spin_unlock(&space_info->lock); | 
 | } | 
 |  | 
 | static void force_metadata_allocation(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct list_head *head = &info->space_info; | 
 | 	struct btrfs_space_info *found; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(found, head, list) { | 
 | 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA) | 
 | 			found->force_alloc = CHUNK_ALLOC_FORCE; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static int should_alloc_chunk(struct btrfs_fs_info *fs_info, | 
 | 			      struct btrfs_space_info *sinfo, int force) | 
 | { | 
 | 	u64 bytes_used = btrfs_space_info_used(sinfo, false); | 
 | 	u64 thresh; | 
 |  | 
 | 	if (force == CHUNK_ALLOC_FORCE) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * in limited mode, we want to have some free space up to | 
 | 	 * about 1% of the FS size. | 
 | 	 */ | 
 | 	if (force == CHUNK_ALLOC_LIMITED) { | 
 | 		thresh = btrfs_super_total_bytes(fs_info->super_copy); | 
 | 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); | 
 |  | 
 | 		if (sinfo->total_bytes - bytes_used < thresh) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) | 
 | { | 
 | 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); | 
 |  | 
 | 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); | 
 | } | 
 |  | 
 | /* | 
 |  * If force is CHUNK_ALLOC_FORCE: | 
 |  *    - return 1 if it successfully allocates a chunk, | 
 |  *    - return errors including -ENOSPC otherwise. | 
 |  * If force is NOT CHUNK_ALLOC_FORCE: | 
 |  *    - return 0 if it doesn't need to allocate a new chunk, | 
 |  *    - return 1 if it successfully allocates a chunk, | 
 |  *    - return errors including -ENOSPC otherwise. | 
 |  */ | 
 | int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, | 
 | 		      enum btrfs_chunk_alloc_enum force) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	bool wait_for_alloc = false; | 
 | 	bool should_alloc = false; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Don't re-enter if we're already allocating a chunk */ | 
 | 	if (trans->allocating_chunk) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	space_info = btrfs_find_space_info(fs_info, flags); | 
 | 	ASSERT(space_info); | 
 |  | 
 | 	do { | 
 | 		spin_lock(&space_info->lock); | 
 | 		if (force < space_info->force_alloc) | 
 | 			force = space_info->force_alloc; | 
 | 		should_alloc = should_alloc_chunk(fs_info, space_info, force); | 
 | 		if (space_info->full) { | 
 | 			/* No more free physical space */ | 
 | 			if (should_alloc) | 
 | 				ret = -ENOSPC; | 
 | 			else | 
 | 				ret = 0; | 
 | 			spin_unlock(&space_info->lock); | 
 | 			return ret; | 
 | 		} else if (!should_alloc) { | 
 | 			spin_unlock(&space_info->lock); | 
 | 			return 0; | 
 | 		} else if (space_info->chunk_alloc) { | 
 | 			/* | 
 | 			 * Someone is already allocating, so we need to block | 
 | 			 * until this someone is finished and then loop to | 
 | 			 * recheck if we should continue with our allocation | 
 | 			 * attempt. | 
 | 			 */ | 
 | 			wait_for_alloc = true; | 
 | 			spin_unlock(&space_info->lock); | 
 | 			mutex_lock(&fs_info->chunk_mutex); | 
 | 			mutex_unlock(&fs_info->chunk_mutex); | 
 | 		} else { | 
 | 			/* Proceed with allocation */ | 
 | 			space_info->chunk_alloc = 1; | 
 | 			wait_for_alloc = false; | 
 | 			spin_unlock(&space_info->lock); | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 	} while (wait_for_alloc); | 
 |  | 
 | 	mutex_lock(&fs_info->chunk_mutex); | 
 | 	trans->allocating_chunk = true; | 
 |  | 
 | 	/* | 
 | 	 * If we have mixed data/metadata chunks we want to make sure we keep | 
 | 	 * allocating mixed chunks instead of individual chunks. | 
 | 	 */ | 
 | 	if (btrfs_mixed_space_info(space_info)) | 
 | 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); | 
 |  | 
 | 	/* | 
 | 	 * if we're doing a data chunk, go ahead and make sure that | 
 | 	 * we keep a reasonable number of metadata chunks allocated in the | 
 | 	 * FS as well. | 
 | 	 */ | 
 | 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { | 
 | 		fs_info->data_chunk_allocations++; | 
 | 		if (!(fs_info->data_chunk_allocations % | 
 | 		      fs_info->metadata_ratio)) | 
 | 			force_metadata_allocation(fs_info); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if we have enough space in SYSTEM chunk because we may need | 
 | 	 * to update devices. | 
 | 	 */ | 
 | 	check_system_chunk(trans, flags); | 
 |  | 
 | 	ret = btrfs_alloc_chunk(trans, flags); | 
 | 	trans->allocating_chunk = false; | 
 |  | 
 | 	spin_lock(&space_info->lock); | 
 | 	if (ret < 0) { | 
 | 		if (ret == -ENOSPC) | 
 | 			space_info->full = 1; | 
 | 		else | 
 | 			goto out; | 
 | 	} else { | 
 | 		ret = 1; | 
 | 		space_info->max_extent_size = 0; | 
 | 	} | 
 |  | 
 | 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; | 
 | out: | 
 | 	space_info->chunk_alloc = 0; | 
 | 	spin_unlock(&space_info->lock); | 
 | 	mutex_unlock(&fs_info->chunk_mutex); | 
 | 	/* | 
 | 	 * When we allocate a new chunk we reserve space in the chunk block | 
 | 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or | 
 | 	 * add new nodes/leafs to it if we end up needing to do it when | 
 | 	 * inserting the chunk item and updating device items as part of the | 
 | 	 * second phase of chunk allocation, performed by | 
 | 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a | 
 | 	 * large number of new block groups to create in our transaction | 
 | 	 * handle's new_bgs list to avoid exhausting the chunk block reserve | 
 | 	 * in extreme cases - like having a single transaction create many new | 
 | 	 * block groups when starting to write out the free space caches of all | 
 | 	 * the block groups that were made dirty during the lifetime of the | 
 | 	 * transaction. | 
 | 	 */ | 
 | 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M) | 
 | 		btrfs_create_pending_block_groups(trans); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) | 
 | { | 
 | 	u64 num_dev; | 
 |  | 
 | 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; | 
 | 	if (!num_dev) | 
 | 		num_dev = fs_info->fs_devices->rw_devices; | 
 |  | 
 | 	return num_dev; | 
 | } | 
 |  | 
 | /* | 
 |  * Reserve space in the system space for allocating or removing a chunk | 
 |  */ | 
 | void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_space_info *info; | 
 | 	u64 left; | 
 | 	u64 thresh; | 
 | 	int ret = 0; | 
 | 	u64 num_devs; | 
 |  | 
 | 	/* | 
 | 	 * Needed because we can end up allocating a system chunk and for an | 
 | 	 * atomic and race free space reservation in the chunk block reserve. | 
 | 	 */ | 
 | 	lockdep_assert_held(&fs_info->chunk_mutex); | 
 |  | 
 | 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
 | 	spin_lock(&info->lock); | 
 | 	left = info->total_bytes - btrfs_space_info_used(info, true); | 
 | 	spin_unlock(&info->lock); | 
 |  | 
 | 	num_devs = get_profile_num_devs(fs_info, type); | 
 |  | 
 | 	/* num_devs device items to update and 1 chunk item to add or remove */ | 
 | 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) + | 
 | 		btrfs_calc_insert_metadata_size(fs_info, 1); | 
 |  | 
 | 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { | 
 | 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", | 
 | 			   left, thresh, type); | 
 | 		btrfs_dump_space_info(fs_info, info, 0, 0); | 
 | 	} | 
 |  | 
 | 	if (left < thresh) { | 
 | 		u64 flags = btrfs_system_alloc_profile(fs_info); | 
 |  | 
 | 		/* | 
 | 		 * Ignore failure to create system chunk. We might end up not | 
 | 		 * needing it, as we might not need to COW all nodes/leafs from | 
 | 		 * the paths we visit in the chunk tree (they were already COWed | 
 | 		 * or created in the current transaction for example). | 
 | 		 */ | 
 | 		ret = btrfs_alloc_chunk(trans, flags); | 
 | 	} | 
 |  | 
 | 	if (!ret) { | 
 | 		ret = btrfs_block_rsv_add(fs_info->chunk_root, | 
 | 					  &fs_info->chunk_block_rsv, | 
 | 					  thresh, BTRFS_RESERVE_NO_FLUSH); | 
 | 		if (!ret) | 
 | 			trans->chunk_bytes_reserved += thresh; | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_put_block_group_cache(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_block_group *block_group; | 
 | 	u64 last = 0; | 
 |  | 
 | 	while (1) { | 
 | 		struct inode *inode; | 
 |  | 
 | 		block_group = btrfs_lookup_first_block_group(info, last); | 
 | 		while (block_group) { | 
 | 			btrfs_wait_block_group_cache_done(block_group); | 
 | 			spin_lock(&block_group->lock); | 
 | 			if (block_group->iref) | 
 | 				break; | 
 | 			spin_unlock(&block_group->lock); | 
 | 			block_group = btrfs_next_block_group(block_group); | 
 | 		} | 
 | 		if (!block_group) { | 
 | 			if (last == 0) | 
 | 				break; | 
 | 			last = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		inode = block_group->inode; | 
 | 		block_group->iref = 0; | 
 | 		block_group->inode = NULL; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		ASSERT(block_group->io_ctl.inode == NULL); | 
 | 		iput(inode); | 
 | 		last = block_group->start + block_group->length; | 
 | 		btrfs_put_block_group(block_group); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called only after stopping all workers, since we could have block | 
 |  * group caching kthreads running, and therefore they could race with us if we | 
 |  * freed the block groups before stopping them. | 
 |  */ | 
 | int btrfs_free_block_groups(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_block_group *block_group; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	struct rb_node *n; | 
 |  | 
 | 	down_write(&info->commit_root_sem); | 
 | 	while (!list_empty(&info->caching_block_groups)) { | 
 | 		caching_ctl = list_entry(info->caching_block_groups.next, | 
 | 					 struct btrfs_caching_control, list); | 
 | 		list_del(&caching_ctl->list); | 
 | 		btrfs_put_caching_control(caching_ctl); | 
 | 	} | 
 | 	up_write(&info->commit_root_sem); | 
 |  | 
 | 	spin_lock(&info->unused_bgs_lock); | 
 | 	while (!list_empty(&info->unused_bgs)) { | 
 | 		block_group = list_first_entry(&info->unused_bgs, | 
 | 					       struct btrfs_block_group, | 
 | 					       bg_list); | 
 | 		list_del_init(&block_group->bg_list); | 
 | 		btrfs_put_block_group(block_group); | 
 | 	} | 
 | 	spin_unlock(&info->unused_bgs_lock); | 
 |  | 
 | 	spin_lock(&info->block_group_cache_lock); | 
 | 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { | 
 | 		block_group = rb_entry(n, struct btrfs_block_group, | 
 | 				       cache_node); | 
 | 		rb_erase(&block_group->cache_node, | 
 | 			 &info->block_group_cache_tree); | 
 | 		RB_CLEAR_NODE(&block_group->cache_node); | 
 | 		spin_unlock(&info->block_group_cache_lock); | 
 |  | 
 | 		down_write(&block_group->space_info->groups_sem); | 
 | 		list_del(&block_group->list); | 
 | 		up_write(&block_group->space_info->groups_sem); | 
 |  | 
 | 		/* | 
 | 		 * We haven't cached this block group, which means we could | 
 | 		 * possibly have excluded extents on this block group. | 
 | 		 */ | 
 | 		if (block_group->cached == BTRFS_CACHE_NO || | 
 | 		    block_group->cached == BTRFS_CACHE_ERROR) | 
 | 			btrfs_free_excluded_extents(block_group); | 
 |  | 
 | 		btrfs_remove_free_space_cache(block_group); | 
 | 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED); | 
 | 		ASSERT(list_empty(&block_group->dirty_list)); | 
 | 		ASSERT(list_empty(&block_group->io_list)); | 
 | 		ASSERT(list_empty(&block_group->bg_list)); | 
 | 		ASSERT(atomic_read(&block_group->count) == 1); | 
 | 		btrfs_put_block_group(block_group); | 
 |  | 
 | 		spin_lock(&info->block_group_cache_lock); | 
 | 	} | 
 | 	spin_unlock(&info->block_group_cache_lock); | 
 |  | 
 | 	/* | 
 | 	 * Now that all the block groups are freed, go through and free all the | 
 | 	 * space_info structs.  This is only called during the final stages of | 
 | 	 * unmount, and so we know nobody is using them.  We call | 
 | 	 * synchronize_rcu() once before we start, just to be on the safe side. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	btrfs_release_global_block_rsv(info); | 
 |  | 
 | 	while (!list_empty(&info->space_info)) { | 
 | 		space_info = list_entry(info->space_info.next, | 
 | 					struct btrfs_space_info, | 
 | 					list); | 
 |  | 
 | 		/* | 
 | 		 * Do not hide this behind enospc_debug, this is actually | 
 | 		 * important and indicates a real bug if this happens. | 
 | 		 */ | 
 | 		if (WARN_ON(space_info->bytes_pinned > 0 || | 
 | 			    space_info->bytes_reserved > 0 || | 
 | 			    space_info->bytes_may_use > 0)) | 
 | 			btrfs_dump_space_info(info, space_info, 0, 0); | 
 | 		list_del(&space_info->list); | 
 | 		btrfs_sysfs_remove_space_info(space_info); | 
 | 	} | 
 | 	return 0; | 
 | } |