|  | /* | 
|  | * zsmalloc memory allocator | 
|  | * | 
|  | * Copyright (C) 2011  Nitin Gupta | 
|  | * Copyright (C) 2012, 2013 Minchan Kim | 
|  | * | 
|  | * This code is released using a dual license strategy: BSD/GPL | 
|  | * You can choose the license that better fits your requirements. | 
|  | * | 
|  | * Released under the terms of 3-clause BSD License | 
|  | * Released under the terms of GNU General Public License Version 2.0 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Following is how we use various fields and flags of underlying | 
|  | * struct page(s) to form a zspage. | 
|  | * | 
|  | * Usage of struct page fields: | 
|  | *	page->private: points to zspage | 
|  | *	page->freelist(index): links together all component pages of a zspage | 
|  | *		For the huge page, this is always 0, so we use this field | 
|  | *		to store handle. | 
|  | *	page->units: first object offset in a subpage of zspage | 
|  | * | 
|  | * Usage of struct page flags: | 
|  | *	PG_private: identifies the first component page | 
|  | *	PG_owner_priv_1: identifies the huge component page | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/zsmalloc.h> | 
|  | #include <linux/zpool.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/pagemap.h> | 
|  |  | 
|  | #define ZSPAGE_MAGIC	0x58 | 
|  |  | 
|  | /* | 
|  | * This must be power of 2 and greater than of equal to sizeof(link_free). | 
|  | * These two conditions ensure that any 'struct link_free' itself doesn't | 
|  | * span more than 1 page which avoids complex case of mapping 2 pages simply | 
|  | * to restore link_free pointer values. | 
|  | */ | 
|  | #define ZS_ALIGN		8 | 
|  |  | 
|  | /* | 
|  | * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) | 
|  | * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. | 
|  | */ | 
|  | #define ZS_MAX_ZSPAGE_ORDER 2 | 
|  | #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) | 
|  |  | 
|  | #define ZS_HANDLE_SIZE (sizeof(unsigned long)) | 
|  |  | 
|  | /* | 
|  | * Object location (<PFN>, <obj_idx>) is encoded as | 
|  | * as single (unsigned long) handle value. | 
|  | * | 
|  | * Note that object index <obj_idx> starts from 0. | 
|  | * | 
|  | * This is made more complicated by various memory models and PAE. | 
|  | */ | 
|  |  | 
|  | #ifndef MAX_PHYSMEM_BITS | 
|  | #ifdef CONFIG_HIGHMEM64G | 
|  | #define MAX_PHYSMEM_BITS 36 | 
|  | #else /* !CONFIG_HIGHMEM64G */ | 
|  | /* | 
|  | * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just | 
|  | * be PAGE_SHIFT | 
|  | */ | 
|  | #define MAX_PHYSMEM_BITS BITS_PER_LONG | 
|  | #endif | 
|  | #endif | 
|  | #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Memory for allocating for handle keeps object position by | 
|  | * encoding <page, obj_idx> and the encoded value has a room | 
|  | * in least bit(ie, look at obj_to_location). | 
|  | * We use the bit to synchronize between object access by | 
|  | * user and migration. | 
|  | */ | 
|  | #define HANDLE_PIN_BIT	0 | 
|  |  | 
|  | /* | 
|  | * Head in allocated object should have OBJ_ALLOCATED_TAG | 
|  | * to identify the object was allocated or not. | 
|  | * It's okay to add the status bit in the least bit because | 
|  | * header keeps handle which is 4byte-aligned address so we | 
|  | * have room for two bit at least. | 
|  | */ | 
|  | #define OBJ_ALLOCATED_TAG 1 | 
|  | #define OBJ_TAG_BITS 1 | 
|  | #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) | 
|  | #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1) | 
|  |  | 
|  | #define MAX(a, b) ((a) >= (b) ? (a) : (b)) | 
|  | /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ | 
|  | #define ZS_MIN_ALLOC_SIZE \ | 
|  | MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) | 
|  | /* each chunk includes extra space to keep handle */ | 
|  | #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE | 
|  |  | 
|  | /* | 
|  | * On systems with 4K page size, this gives 255 size classes! There is a | 
|  | * trader-off here: | 
|  | *  - Large number of size classes is potentially wasteful as free page are | 
|  | *    spread across these classes | 
|  | *  - Small number of size classes causes large internal fragmentation | 
|  | *  - Probably its better to use specific size classes (empirically | 
|  | *    determined). NOTE: all those class sizes must be set as multiple of | 
|  | *    ZS_ALIGN to make sure link_free itself never has to span 2 pages. | 
|  | * | 
|  | *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN | 
|  | *  (reason above) | 
|  | */ | 
|  | #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS) | 
|  |  | 
|  | enum fullness_group { | 
|  | ZS_EMPTY, | 
|  | ZS_ALMOST_EMPTY, | 
|  | ZS_ALMOST_FULL, | 
|  | ZS_FULL, | 
|  | NR_ZS_FULLNESS, | 
|  | }; | 
|  |  | 
|  | enum zs_stat_type { | 
|  | CLASS_EMPTY, | 
|  | CLASS_ALMOST_EMPTY, | 
|  | CLASS_ALMOST_FULL, | 
|  | CLASS_FULL, | 
|  | OBJ_ALLOCATED, | 
|  | OBJ_USED, | 
|  | NR_ZS_STAT_TYPE, | 
|  | }; | 
|  |  | 
|  | struct zs_size_stat { | 
|  | unsigned long objs[NR_ZS_STAT_TYPE]; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | static struct dentry *zs_stat_root; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | static struct vfsmount *zsmalloc_mnt; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * number of size_classes | 
|  | */ | 
|  | static int zs_size_classes; | 
|  |  | 
|  | /* | 
|  | * We assign a page to ZS_ALMOST_EMPTY fullness group when: | 
|  | *	n <= N / f, where | 
|  | * n = number of allocated objects | 
|  | * N = total number of objects zspage can store | 
|  | * f = fullness_threshold_frac | 
|  | * | 
|  | * Similarly, we assign zspage to: | 
|  | *	ZS_ALMOST_FULL	when n > N / f | 
|  | *	ZS_EMPTY	when n == 0 | 
|  | *	ZS_FULL		when n == N | 
|  | * | 
|  | * (see: fix_fullness_group()) | 
|  | */ | 
|  | static const int fullness_threshold_frac = 4; | 
|  |  | 
|  | struct size_class { | 
|  | spinlock_t lock; | 
|  | struct list_head fullness_list[NR_ZS_FULLNESS]; | 
|  | /* | 
|  | * Size of objects stored in this class. Must be multiple | 
|  | * of ZS_ALIGN. | 
|  | */ | 
|  | int size; | 
|  | int objs_per_zspage; | 
|  | /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ | 
|  | int pages_per_zspage; | 
|  |  | 
|  | unsigned int index; | 
|  | struct zs_size_stat stats; | 
|  | }; | 
|  |  | 
|  | /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ | 
|  | static void SetPageHugeObject(struct page *page) | 
|  | { | 
|  | SetPageOwnerPriv1(page); | 
|  | } | 
|  |  | 
|  | static void ClearPageHugeObject(struct page *page) | 
|  | { | 
|  | ClearPageOwnerPriv1(page); | 
|  | } | 
|  |  | 
|  | static int PageHugeObject(struct page *page) | 
|  | { | 
|  | return PageOwnerPriv1(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Placed within free objects to form a singly linked list. | 
|  | * For every zspage, zspage->freeobj gives head of this list. | 
|  | * | 
|  | * This must be power of 2 and less than or equal to ZS_ALIGN | 
|  | */ | 
|  | struct link_free { | 
|  | union { | 
|  | /* | 
|  | * Free object index; | 
|  | * It's valid for non-allocated object | 
|  | */ | 
|  | unsigned long next; | 
|  | /* | 
|  | * Handle of allocated object. | 
|  | */ | 
|  | unsigned long handle; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | struct zs_pool { | 
|  | const char *name; | 
|  |  | 
|  | struct size_class **size_class; | 
|  | struct kmem_cache *handle_cachep; | 
|  | struct kmem_cache *zspage_cachep; | 
|  |  | 
|  | atomic_long_t pages_allocated; | 
|  |  | 
|  | struct zs_pool_stats stats; | 
|  |  | 
|  | /* Compact classes */ | 
|  | struct shrinker shrinker; | 
|  | /* | 
|  | * To signify that register_shrinker() was successful | 
|  | * and unregister_shrinker() will not Oops. | 
|  | */ | 
|  | bool shrinker_enabled; | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | struct dentry *stat_dentry; | 
|  | #endif | 
|  | #ifdef CONFIG_COMPACTION | 
|  | struct inode *inode; | 
|  | struct work_struct free_work; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #define FULLNESS_BITS	2 | 
|  | #define CLASS_BITS	8 | 
|  | #define ISOLATED_BITS	3 | 
|  | #define MAGIC_VAL_BITS	8 | 
|  |  | 
|  | struct zspage { | 
|  | struct { | 
|  | unsigned int fullness:FULLNESS_BITS; | 
|  | unsigned int class:CLASS_BITS + 1; | 
|  | unsigned int isolated:ISOLATED_BITS; | 
|  | unsigned int magic:MAGIC_VAL_BITS; | 
|  | }; | 
|  | unsigned int inuse; | 
|  | unsigned int freeobj; | 
|  | struct page *first_page; | 
|  | struct list_head list; /* fullness list */ | 
|  | #ifdef CONFIG_COMPACTION | 
|  | rwlock_t lock; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct mapping_area { | 
|  | #ifdef CONFIG_PGTABLE_MAPPING | 
|  | struct vm_struct *vm; /* vm area for mapping object that span pages */ | 
|  | #else | 
|  | char *vm_buf; /* copy buffer for objects that span pages */ | 
|  | #endif | 
|  | char *vm_addr; /* address of kmap_atomic()'ed pages */ | 
|  | enum zs_mapmode vm_mm; /* mapping mode */ | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | static int zs_register_migration(struct zs_pool *pool); | 
|  | static void zs_unregister_migration(struct zs_pool *pool); | 
|  | static void migrate_lock_init(struct zspage *zspage); | 
|  | static void migrate_read_lock(struct zspage *zspage); | 
|  | static void migrate_read_unlock(struct zspage *zspage); | 
|  | static void kick_deferred_free(struct zs_pool *pool); | 
|  | static void init_deferred_free(struct zs_pool *pool); | 
|  | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); | 
|  | #else | 
|  | static int zsmalloc_mount(void) { return 0; } | 
|  | static void zsmalloc_unmount(void) {} | 
|  | static int zs_register_migration(struct zs_pool *pool) { return 0; } | 
|  | static void zs_unregister_migration(struct zs_pool *pool) {} | 
|  | static void migrate_lock_init(struct zspage *zspage) {} | 
|  | static void migrate_read_lock(struct zspage *zspage) {} | 
|  | static void migrate_read_unlock(struct zspage *zspage) {} | 
|  | static void kick_deferred_free(struct zs_pool *pool) {} | 
|  | static void init_deferred_free(struct zs_pool *pool) {} | 
|  | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} | 
|  | #endif | 
|  |  | 
|  | static int create_cache(struct zs_pool *pool) | 
|  | { | 
|  | pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, | 
|  | 0, 0, NULL); | 
|  | if (!pool->handle_cachep) | 
|  | return 1; | 
|  |  | 
|  | pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), | 
|  | 0, 0, NULL); | 
|  | if (!pool->zspage_cachep) { | 
|  | kmem_cache_destroy(pool->handle_cachep); | 
|  | pool->handle_cachep = NULL; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void destroy_cache(struct zs_pool *pool) | 
|  | { | 
|  | kmem_cache_destroy(pool->handle_cachep); | 
|  | kmem_cache_destroy(pool->zspage_cachep); | 
|  | } | 
|  |  | 
|  | static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) | 
|  | { | 
|  | return (unsigned long)kmem_cache_alloc(pool->handle_cachep, | 
|  | gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
|  | } | 
|  |  | 
|  | static void cache_free_handle(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | kmem_cache_free(pool->handle_cachep, (void *)handle); | 
|  | } | 
|  |  | 
|  | static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) | 
|  | { | 
|  | return kmem_cache_alloc(pool->zspage_cachep, | 
|  | flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
|  | } | 
|  |  | 
|  | static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) | 
|  | { | 
|  | kmem_cache_free(pool->zspage_cachep, zspage); | 
|  | } | 
|  |  | 
|  | static void record_obj(unsigned long handle, unsigned long obj) | 
|  | { | 
|  | /* | 
|  | * lsb of @obj represents handle lock while other bits | 
|  | * represent object value the handle is pointing so | 
|  | * updating shouldn't do store tearing. | 
|  | */ | 
|  | WRITE_ONCE(*(unsigned long *)handle, obj); | 
|  | } | 
|  |  | 
|  | /* zpool driver */ | 
|  |  | 
|  | #ifdef CONFIG_ZPOOL | 
|  |  | 
|  | static void *zs_zpool_create(const char *name, gfp_t gfp, | 
|  | const struct zpool_ops *zpool_ops, | 
|  | struct zpool *zpool) | 
|  | { | 
|  | /* | 
|  | * Ignore global gfp flags: zs_malloc() may be invoked from | 
|  | * different contexts and its caller must provide a valid | 
|  | * gfp mask. | 
|  | */ | 
|  | return zs_create_pool(name); | 
|  | } | 
|  |  | 
|  | static void zs_zpool_destroy(void *pool) | 
|  | { | 
|  | zs_destroy_pool(pool); | 
|  | } | 
|  |  | 
|  | static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, | 
|  | unsigned long *handle) | 
|  | { | 
|  | *handle = zs_malloc(pool, size, gfp); | 
|  | return *handle ? 0 : -1; | 
|  | } | 
|  | static void zs_zpool_free(void *pool, unsigned long handle) | 
|  | { | 
|  | zs_free(pool, handle); | 
|  | } | 
|  |  | 
|  | static int zs_zpool_shrink(void *pool, unsigned int pages, | 
|  | unsigned int *reclaimed) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void *zs_zpool_map(void *pool, unsigned long handle, | 
|  | enum zpool_mapmode mm) | 
|  | { | 
|  | enum zs_mapmode zs_mm; | 
|  |  | 
|  | switch (mm) { | 
|  | case ZPOOL_MM_RO: | 
|  | zs_mm = ZS_MM_RO; | 
|  | break; | 
|  | case ZPOOL_MM_WO: | 
|  | zs_mm = ZS_MM_WO; | 
|  | break; | 
|  | case ZPOOL_MM_RW: /* fallthru */ | 
|  | default: | 
|  | zs_mm = ZS_MM_RW; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return zs_map_object(pool, handle, zs_mm); | 
|  | } | 
|  | static void zs_zpool_unmap(void *pool, unsigned long handle) | 
|  | { | 
|  | zs_unmap_object(pool, handle); | 
|  | } | 
|  |  | 
|  | static u64 zs_zpool_total_size(void *pool) | 
|  | { | 
|  | return zs_get_total_pages(pool) << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static struct zpool_driver zs_zpool_driver = { | 
|  | .type =		"zsmalloc", | 
|  | .owner =	THIS_MODULE, | 
|  | .create =	zs_zpool_create, | 
|  | .destroy =	zs_zpool_destroy, | 
|  | .malloc =	zs_zpool_malloc, | 
|  | .free =		zs_zpool_free, | 
|  | .shrink =	zs_zpool_shrink, | 
|  | .map =		zs_zpool_map, | 
|  | .unmap =	zs_zpool_unmap, | 
|  | .total_size =	zs_zpool_total_size, | 
|  | }; | 
|  |  | 
|  | MODULE_ALIAS("zpool-zsmalloc"); | 
|  | #endif /* CONFIG_ZPOOL */ | 
|  |  | 
|  | /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ | 
|  | static DEFINE_PER_CPU(struct mapping_area, zs_map_area); | 
|  |  | 
|  | static bool is_zspage_isolated(struct zspage *zspage) | 
|  | { | 
|  | return zspage->isolated; | 
|  | } | 
|  |  | 
|  | static int is_first_page(struct page *page) | 
|  | { | 
|  | return PagePrivate(page); | 
|  | } | 
|  |  | 
|  | /* Protected by class->lock */ | 
|  | static inline int get_zspage_inuse(struct zspage *zspage) | 
|  | { | 
|  | return zspage->inuse; | 
|  | } | 
|  |  | 
|  | static inline void set_zspage_inuse(struct zspage *zspage, int val) | 
|  | { | 
|  | zspage->inuse = val; | 
|  | } | 
|  |  | 
|  | static inline void mod_zspage_inuse(struct zspage *zspage, int val) | 
|  | { | 
|  | zspage->inuse += val; | 
|  | } | 
|  |  | 
|  | static inline struct page *get_first_page(struct zspage *zspage) | 
|  | { | 
|  | struct page *first_page = zspage->first_page; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  | return first_page; | 
|  | } | 
|  |  | 
|  | static inline int get_first_obj_offset(struct page *page) | 
|  | { | 
|  | return page->units; | 
|  | } | 
|  |  | 
|  | static inline void set_first_obj_offset(struct page *page, int offset) | 
|  | { | 
|  | page->units = offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned int get_freeobj(struct zspage *zspage) | 
|  | { | 
|  | return zspage->freeobj; | 
|  | } | 
|  |  | 
|  | static inline void set_freeobj(struct zspage *zspage, unsigned int obj) | 
|  | { | 
|  | zspage->freeobj = obj; | 
|  | } | 
|  |  | 
|  | static void get_zspage_mapping(struct zspage *zspage, | 
|  | unsigned int *class_idx, | 
|  | enum fullness_group *fullness) | 
|  | { | 
|  | BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
|  |  | 
|  | *fullness = zspage->fullness; | 
|  | *class_idx = zspage->class; | 
|  | } | 
|  |  | 
|  | static void set_zspage_mapping(struct zspage *zspage, | 
|  | unsigned int class_idx, | 
|  | enum fullness_group fullness) | 
|  | { | 
|  | zspage->class = class_idx; | 
|  | zspage->fullness = fullness; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zsmalloc divides the pool into various size classes where each | 
|  | * class maintains a list of zspages where each zspage is divided | 
|  | * into equal sized chunks. Each allocation falls into one of these | 
|  | * classes depending on its size. This function returns index of the | 
|  | * size class which has chunk size big enough to hold the give size. | 
|  | */ | 
|  | static int get_size_class_index(int size) | 
|  | { | 
|  | int idx = 0; | 
|  |  | 
|  | if (likely(size > ZS_MIN_ALLOC_SIZE)) | 
|  | idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, | 
|  | ZS_SIZE_CLASS_DELTA); | 
|  |  | 
|  | return min(zs_size_classes - 1, idx); | 
|  | } | 
|  |  | 
|  | static inline void zs_stat_inc(struct size_class *class, | 
|  | enum zs_stat_type type, unsigned long cnt) | 
|  | { | 
|  | class->stats.objs[type] += cnt; | 
|  | } | 
|  |  | 
|  | static inline void zs_stat_dec(struct size_class *class, | 
|  | enum zs_stat_type type, unsigned long cnt) | 
|  | { | 
|  | class->stats.objs[type] -= cnt; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zs_stat_get(struct size_class *class, | 
|  | enum zs_stat_type type) | 
|  | { | 
|  | return class->stats.objs[type]; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  |  | 
|  | static void __init zs_stat_init(void) | 
|  | { | 
|  | if (!debugfs_initialized()) { | 
|  | pr_warn("debugfs not available, stat dir not created\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | zs_stat_root = debugfs_create_dir("zsmalloc", NULL); | 
|  | if (!zs_stat_root) | 
|  | pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); | 
|  | } | 
|  |  | 
|  | static void __exit zs_stat_exit(void) | 
|  | { | 
|  | debugfs_remove_recursive(zs_stat_root); | 
|  | } | 
|  |  | 
|  | static unsigned long zs_can_compact(struct size_class *class); | 
|  |  | 
|  | static int zs_stats_size_show(struct seq_file *s, void *v) | 
|  | { | 
|  | int i; | 
|  | struct zs_pool *pool = s->private; | 
|  | struct size_class *class; | 
|  | int objs_per_zspage; | 
|  | unsigned long class_almost_full, class_almost_empty; | 
|  | unsigned long obj_allocated, obj_used, pages_used, freeable; | 
|  | unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; | 
|  | unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; | 
|  | unsigned long total_freeable = 0; | 
|  |  | 
|  | seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", | 
|  | "class", "size", "almost_full", "almost_empty", | 
|  | "obj_allocated", "obj_used", "pages_used", | 
|  | "pages_per_zspage", "freeable"); | 
|  |  | 
|  | for (i = 0; i < zs_size_classes; i++) { | 
|  | class = pool->size_class[i]; | 
|  |  | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); | 
|  | class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); | 
|  | obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
|  | obj_used = zs_stat_get(class, OBJ_USED); | 
|  | freeable = zs_can_compact(class); | 
|  | spin_unlock(&class->lock); | 
|  |  | 
|  | objs_per_zspage = class->objs_per_zspage; | 
|  | pages_used = obj_allocated / objs_per_zspage * | 
|  | class->pages_per_zspage; | 
|  |  | 
|  | seq_printf(s, " %5u %5u %11lu %12lu %13lu" | 
|  | " %10lu %10lu %16d %8lu\n", | 
|  | i, class->size, class_almost_full, class_almost_empty, | 
|  | obj_allocated, obj_used, pages_used, | 
|  | class->pages_per_zspage, freeable); | 
|  |  | 
|  | total_class_almost_full += class_almost_full; | 
|  | total_class_almost_empty += class_almost_empty; | 
|  | total_objs += obj_allocated; | 
|  | total_used_objs += obj_used; | 
|  | total_pages += pages_used; | 
|  | total_freeable += freeable; | 
|  | } | 
|  |  | 
|  | seq_puts(s, "\n"); | 
|  | seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", | 
|  | "Total", "", total_class_almost_full, | 
|  | total_class_almost_empty, total_objs, | 
|  | total_used_objs, total_pages, "", total_freeable); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int zs_stats_size_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, zs_stats_size_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations zs_stat_size_ops = { | 
|  | .open           = zs_stats_size_open, | 
|  | .read           = seq_read, | 
|  | .llseek         = seq_lseek, | 
|  | .release        = single_release, | 
|  | }; | 
|  |  | 
|  | static void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
|  | { | 
|  | struct dentry *entry; | 
|  |  | 
|  | if (!zs_stat_root) { | 
|  | pr_warn("no root stat dir, not creating <%s> stat dir\n", name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | entry = debugfs_create_dir(name, zs_stat_root); | 
|  | if (!entry) { | 
|  | pr_warn("debugfs dir <%s> creation failed\n", name); | 
|  | return; | 
|  | } | 
|  | pool->stat_dentry = entry; | 
|  |  | 
|  | entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, | 
|  | pool->stat_dentry, pool, &zs_stat_size_ops); | 
|  | if (!entry) { | 
|  | pr_warn("%s: debugfs file entry <%s> creation failed\n", | 
|  | name, "classes"); | 
|  | debugfs_remove_recursive(pool->stat_dentry); | 
|  | pool->stat_dentry = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void zs_pool_stat_destroy(struct zs_pool *pool) | 
|  | { | 
|  | debugfs_remove_recursive(pool->stat_dentry); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_ZSMALLOC_STAT */ | 
|  | static void __init zs_stat_init(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void __exit zs_stat_exit(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void zs_pool_stat_destroy(struct zs_pool *pool) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * For each size class, zspages are divided into different groups | 
|  | * depending on how "full" they are. This was done so that we could | 
|  | * easily find empty or nearly empty zspages when we try to shrink | 
|  | * the pool (not yet implemented). This function returns fullness | 
|  | * status of the given page. | 
|  | */ | 
|  | static enum fullness_group get_fullness_group(struct size_class *class, | 
|  | struct zspage *zspage) | 
|  | { | 
|  | int inuse, objs_per_zspage; | 
|  | enum fullness_group fg; | 
|  |  | 
|  | inuse = get_zspage_inuse(zspage); | 
|  | objs_per_zspage = class->objs_per_zspage; | 
|  |  | 
|  | if (inuse == 0) | 
|  | fg = ZS_EMPTY; | 
|  | else if (inuse == objs_per_zspage) | 
|  | fg = ZS_FULL; | 
|  | else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) | 
|  | fg = ZS_ALMOST_EMPTY; | 
|  | else | 
|  | fg = ZS_ALMOST_FULL; | 
|  |  | 
|  | return fg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each size class maintains various freelists and zspages are assigned | 
|  | * to one of these freelists based on the number of live objects they | 
|  | * have. This functions inserts the given zspage into the freelist | 
|  | * identified by <class, fullness_group>. | 
|  | */ | 
|  | static void insert_zspage(struct size_class *class, | 
|  | struct zspage *zspage, | 
|  | enum fullness_group fullness) | 
|  | { | 
|  | struct zspage *head; | 
|  |  | 
|  | zs_stat_inc(class, fullness, 1); | 
|  | head = list_first_entry_or_null(&class->fullness_list[fullness], | 
|  | struct zspage, list); | 
|  | /* | 
|  | * We want to see more ZS_FULL pages and less almost empty/full. | 
|  | * Put pages with higher ->inuse first. | 
|  | */ | 
|  | if (head) { | 
|  | if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { | 
|  | list_add(&zspage->list, &head->list); | 
|  | return; | 
|  | } | 
|  | } | 
|  | list_add(&zspage->list, &class->fullness_list[fullness]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function removes the given zspage from the freelist identified | 
|  | * by <class, fullness_group>. | 
|  | */ | 
|  | static void remove_zspage(struct size_class *class, | 
|  | struct zspage *zspage, | 
|  | enum fullness_group fullness) | 
|  | { | 
|  | VM_BUG_ON(list_empty(&class->fullness_list[fullness])); | 
|  | VM_BUG_ON(is_zspage_isolated(zspage)); | 
|  |  | 
|  | list_del_init(&zspage->list); | 
|  | zs_stat_dec(class, fullness, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each size class maintains zspages in different fullness groups depending | 
|  | * on the number of live objects they contain. When allocating or freeing | 
|  | * objects, the fullness status of the page can change, say, from ALMOST_FULL | 
|  | * to ALMOST_EMPTY when freeing an object. This function checks if such | 
|  | * a status change has occurred for the given page and accordingly moves the | 
|  | * page from the freelist of the old fullness group to that of the new | 
|  | * fullness group. | 
|  | */ | 
|  | static enum fullness_group fix_fullness_group(struct size_class *class, | 
|  | struct zspage *zspage) | 
|  | { | 
|  | int class_idx; | 
|  | enum fullness_group currfg, newfg; | 
|  |  | 
|  | get_zspage_mapping(zspage, &class_idx, &currfg); | 
|  | newfg = get_fullness_group(class, zspage); | 
|  | if (newfg == currfg) | 
|  | goto out; | 
|  |  | 
|  | if (!is_zspage_isolated(zspage)) { | 
|  | remove_zspage(class, zspage, currfg); | 
|  | insert_zspage(class, zspage, newfg); | 
|  | } | 
|  |  | 
|  | set_zspage_mapping(zspage, class_idx, newfg); | 
|  |  | 
|  | out: | 
|  | return newfg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to decide on how many pages to link together | 
|  | * to form a zspage for each size class. This is important | 
|  | * to reduce wastage due to unusable space left at end of | 
|  | * each zspage which is given as: | 
|  | *     wastage = Zp % class_size | 
|  | *     usage = Zp - wastage | 
|  | * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... | 
|  | * | 
|  | * For example, for size class of 3/8 * PAGE_SIZE, we should | 
|  | * link together 3 PAGE_SIZE sized pages to form a zspage | 
|  | * since then we can perfectly fit in 8 such objects. | 
|  | */ | 
|  | static int get_pages_per_zspage(int class_size) | 
|  | { | 
|  | int i, max_usedpc = 0; | 
|  | /* zspage order which gives maximum used size per KB */ | 
|  | int max_usedpc_order = 1; | 
|  |  | 
|  | for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { | 
|  | int zspage_size; | 
|  | int waste, usedpc; | 
|  |  | 
|  | zspage_size = i * PAGE_SIZE; | 
|  | waste = zspage_size % class_size; | 
|  | usedpc = (zspage_size - waste) * 100 / zspage_size; | 
|  |  | 
|  | if (usedpc > max_usedpc) { | 
|  | max_usedpc = usedpc; | 
|  | max_usedpc_order = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return max_usedpc_order; | 
|  | } | 
|  |  | 
|  | static struct zspage *get_zspage(struct page *page) | 
|  | { | 
|  | struct zspage *zspage = (struct zspage *)page->private; | 
|  |  | 
|  | BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | static struct page *get_next_page(struct page *page) | 
|  | { | 
|  | if (unlikely(PageHugeObject(page))) | 
|  | return NULL; | 
|  |  | 
|  | return page->freelist; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * obj_to_location - get (<page>, <obj_idx>) from encoded object value | 
|  | * @page: page object resides in zspage | 
|  | * @obj_idx: object index | 
|  | */ | 
|  | static void obj_to_location(unsigned long obj, struct page **page, | 
|  | unsigned int *obj_idx) | 
|  | { | 
|  | obj >>= OBJ_TAG_BITS; | 
|  | *page = pfn_to_page(obj >> OBJ_INDEX_BITS); | 
|  | *obj_idx = (obj & OBJ_INDEX_MASK); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * location_to_obj - get obj value encoded from (<page>, <obj_idx>) | 
|  | * @page: page object resides in zspage | 
|  | * @obj_idx: object index | 
|  | */ | 
|  | static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) | 
|  | { | 
|  | unsigned long obj; | 
|  |  | 
|  | obj = page_to_pfn(page) << OBJ_INDEX_BITS; | 
|  | obj |= obj_idx & OBJ_INDEX_MASK; | 
|  | obj <<= OBJ_TAG_BITS; | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | static unsigned long handle_to_obj(unsigned long handle) | 
|  | { | 
|  | return *(unsigned long *)handle; | 
|  | } | 
|  |  | 
|  | static unsigned long obj_to_head(struct page *page, void *obj) | 
|  | { | 
|  | if (unlikely(PageHugeObject(page))) { | 
|  | VM_BUG_ON_PAGE(!is_first_page(page), page); | 
|  | return page->index; | 
|  | } else | 
|  | return *(unsigned long *)obj; | 
|  | } | 
|  |  | 
|  | static inline int testpin_tag(unsigned long handle) | 
|  | { | 
|  | return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); | 
|  | } | 
|  |  | 
|  | static inline int trypin_tag(unsigned long handle) | 
|  | { | 
|  | return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
|  | } | 
|  |  | 
|  | static void pin_tag(unsigned long handle) | 
|  | { | 
|  | bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
|  | } | 
|  |  | 
|  | static void unpin_tag(unsigned long handle) | 
|  | { | 
|  | bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
|  | } | 
|  |  | 
|  | static void reset_page(struct page *page) | 
|  | { | 
|  | __ClearPageMovable(page); | 
|  | ClearPagePrivate(page); | 
|  | set_page_private(page, 0); | 
|  | page_mapcount_reset(page); | 
|  | ClearPageHugeObject(page); | 
|  | page->freelist = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To prevent zspage destroy during migration, zspage freeing should | 
|  | * hold locks of all pages in the zspage. | 
|  | */ | 
|  | void lock_zspage(struct zspage *zspage) | 
|  | { | 
|  | struct page *page = get_first_page(zspage); | 
|  |  | 
|  | do { | 
|  | lock_page(page); | 
|  | } while ((page = get_next_page(page)) != NULL); | 
|  | } | 
|  |  | 
|  | int trylock_zspage(struct zspage *zspage) | 
|  | { | 
|  | struct page *cursor, *fail; | 
|  |  | 
|  | for (cursor = get_first_page(zspage); cursor != NULL; cursor = | 
|  | get_next_page(cursor)) { | 
|  | if (!trylock_page(cursor)) { | 
|  | fail = cursor; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | unlock: | 
|  | for (cursor = get_first_page(zspage); cursor != fail; cursor = | 
|  | get_next_page(cursor)) | 
|  | unlock_page(cursor); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __free_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | struct zspage *zspage) | 
|  | { | 
|  | struct page *page, *next; | 
|  | enum fullness_group fg; | 
|  | unsigned int class_idx; | 
|  |  | 
|  | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  |  | 
|  | assert_spin_locked(&class->lock); | 
|  |  | 
|  | VM_BUG_ON(get_zspage_inuse(zspage)); | 
|  | VM_BUG_ON(fg != ZS_EMPTY); | 
|  |  | 
|  | next = page = get_first_page(zspage); | 
|  | do { | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | next = get_next_page(page); | 
|  | reset_page(page); | 
|  | unlock_page(page); | 
|  | dec_zone_page_state(page, NR_ZSPAGES); | 
|  | put_page(page); | 
|  | page = next; | 
|  | } while (page != NULL); | 
|  |  | 
|  | cache_free_zspage(pool, zspage); | 
|  |  | 
|  | zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); | 
|  | atomic_long_sub(class->pages_per_zspage, | 
|  | &pool->pages_allocated); | 
|  | } | 
|  |  | 
|  | static void free_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | struct zspage *zspage) | 
|  | { | 
|  | VM_BUG_ON(get_zspage_inuse(zspage)); | 
|  | VM_BUG_ON(list_empty(&zspage->list)); | 
|  |  | 
|  | if (!trylock_zspage(zspage)) { | 
|  | kick_deferred_free(pool); | 
|  | return; | 
|  | } | 
|  |  | 
|  | remove_zspage(class, zspage, ZS_EMPTY); | 
|  | __free_zspage(pool, class, zspage); | 
|  | } | 
|  |  | 
|  | /* Initialize a newly allocated zspage */ | 
|  | static void init_zspage(struct size_class *class, struct zspage *zspage) | 
|  | { | 
|  | unsigned int freeobj = 1; | 
|  | unsigned long off = 0; | 
|  | struct page *page = get_first_page(zspage); | 
|  |  | 
|  | while (page) { | 
|  | struct page *next_page; | 
|  | struct link_free *link; | 
|  | void *vaddr; | 
|  |  | 
|  | set_first_obj_offset(page, off); | 
|  |  | 
|  | vaddr = kmap_atomic(page); | 
|  | link = (struct link_free *)vaddr + off / sizeof(*link); | 
|  |  | 
|  | while ((off += class->size) < PAGE_SIZE) { | 
|  | link->next = freeobj++ << OBJ_TAG_BITS; | 
|  | link += class->size / sizeof(*link); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We now come to the last (full or partial) object on this | 
|  | * page, which must point to the first object on the next | 
|  | * page (if present) | 
|  | */ | 
|  | next_page = get_next_page(page); | 
|  | if (next_page) { | 
|  | link->next = freeobj++ << OBJ_TAG_BITS; | 
|  | } else { | 
|  | /* | 
|  | * Reset OBJ_TAG_BITS bit to last link to tell | 
|  | * whether it's allocated object or not. | 
|  | */ | 
|  | link->next = -1 << OBJ_TAG_BITS; | 
|  | } | 
|  | kunmap_atomic(vaddr); | 
|  | page = next_page; | 
|  | off %= PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | set_freeobj(zspage, 0); | 
|  | } | 
|  |  | 
|  | static void create_page_chain(struct size_class *class, struct zspage *zspage, | 
|  | struct page *pages[]) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  | struct page *prev_page = NULL; | 
|  | int nr_pages = class->pages_per_zspage; | 
|  |  | 
|  | /* | 
|  | * Allocate individual pages and link them together as: | 
|  | * 1. all pages are linked together using page->freelist | 
|  | * 2. each sub-page point to zspage using page->private | 
|  | * | 
|  | * we set PG_private to identify the first page (i.e. no other sub-page | 
|  | * has this flag set). | 
|  | */ | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | page = pages[i]; | 
|  | set_page_private(page, (unsigned long)zspage); | 
|  | page->freelist = NULL; | 
|  | if (i == 0) { | 
|  | zspage->first_page = page; | 
|  | SetPagePrivate(page); | 
|  | if (unlikely(class->objs_per_zspage == 1 && | 
|  | class->pages_per_zspage == 1)) | 
|  | SetPageHugeObject(page); | 
|  | } else { | 
|  | prev_page->freelist = page; | 
|  | } | 
|  | prev_page = page; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a zspage for the given size class | 
|  | */ | 
|  | static struct zspage *alloc_zspage(struct zs_pool *pool, | 
|  | struct size_class *class, | 
|  | gfp_t gfp) | 
|  | { | 
|  | int i; | 
|  | struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; | 
|  | struct zspage *zspage = cache_alloc_zspage(pool, gfp); | 
|  |  | 
|  | if (!zspage) | 
|  | return NULL; | 
|  |  | 
|  | memset(zspage, 0, sizeof(struct zspage)); | 
|  | zspage->magic = ZSPAGE_MAGIC; | 
|  | migrate_lock_init(zspage); | 
|  |  | 
|  | for (i = 0; i < class->pages_per_zspage; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_page(gfp); | 
|  | if (!page) { | 
|  | while (--i >= 0) { | 
|  | dec_zone_page_state(pages[i], NR_ZSPAGES); | 
|  | __free_page(pages[i]); | 
|  | } | 
|  | cache_free_zspage(pool, zspage); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | inc_zone_page_state(page, NR_ZSPAGES); | 
|  | pages[i] = page; | 
|  | } | 
|  |  | 
|  | create_page_chain(class, zspage, pages); | 
|  | init_zspage(class, zspage); | 
|  |  | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | static struct zspage *find_get_zspage(struct size_class *class) | 
|  | { | 
|  | int i; | 
|  | struct zspage *zspage; | 
|  |  | 
|  | for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { | 
|  | zspage = list_first_entry_or_null(&class->fullness_list[i], | 
|  | struct zspage, list); | 
|  | if (zspage) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PGTABLE_MAPPING | 
|  | static inline int __zs_cpu_up(struct mapping_area *area) | 
|  | { | 
|  | /* | 
|  | * Make sure we don't leak memory if a cpu UP notification | 
|  | * and zs_init() race and both call zs_cpu_up() on the same cpu | 
|  | */ | 
|  | if (area->vm) | 
|  | return 0; | 
|  | area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); | 
|  | if (!area->vm) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __zs_cpu_down(struct mapping_area *area) | 
|  | { | 
|  | if (area->vm) | 
|  | free_vm_area(area->vm); | 
|  | area->vm = NULL; | 
|  | } | 
|  |  | 
|  | static inline void *__zs_map_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); | 
|  | area->vm_addr = area->vm->addr; | 
|  | return area->vm_addr + off; | 
|  | } | 
|  |  | 
|  | static inline void __zs_unmap_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | unsigned long addr = (unsigned long)area->vm_addr; | 
|  |  | 
|  | unmap_kernel_range(addr, PAGE_SIZE * 2); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_PGTABLE_MAPPING */ | 
|  |  | 
|  | static inline int __zs_cpu_up(struct mapping_area *area) | 
|  | { | 
|  | /* | 
|  | * Make sure we don't leak memory if a cpu UP notification | 
|  | * and zs_init() race and both call zs_cpu_up() on the same cpu | 
|  | */ | 
|  | if (area->vm_buf) | 
|  | return 0; | 
|  | area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); | 
|  | if (!area->vm_buf) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __zs_cpu_down(struct mapping_area *area) | 
|  | { | 
|  | kfree(area->vm_buf); | 
|  | area->vm_buf = NULL; | 
|  | } | 
|  |  | 
|  | static void *__zs_map_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | int sizes[2]; | 
|  | void *addr; | 
|  | char *buf = area->vm_buf; | 
|  |  | 
|  | /* disable page faults to match kmap_atomic() return conditions */ | 
|  | pagefault_disable(); | 
|  |  | 
|  | /* no read fastpath */ | 
|  | if (area->vm_mm == ZS_MM_WO) | 
|  | goto out; | 
|  |  | 
|  | sizes[0] = PAGE_SIZE - off; | 
|  | sizes[1] = size - sizes[0]; | 
|  |  | 
|  | /* copy object to per-cpu buffer */ | 
|  | addr = kmap_atomic(pages[0]); | 
|  | memcpy(buf, addr + off, sizes[0]); | 
|  | kunmap_atomic(addr); | 
|  | addr = kmap_atomic(pages[1]); | 
|  | memcpy(buf + sizes[0], addr, sizes[1]); | 
|  | kunmap_atomic(addr); | 
|  | out: | 
|  | return area->vm_buf; | 
|  | } | 
|  |  | 
|  | static void __zs_unmap_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | int sizes[2]; | 
|  | void *addr; | 
|  | char *buf; | 
|  |  | 
|  | /* no write fastpath */ | 
|  | if (area->vm_mm == ZS_MM_RO) | 
|  | goto out; | 
|  |  | 
|  | buf = area->vm_buf; | 
|  | buf = buf + ZS_HANDLE_SIZE; | 
|  | size -= ZS_HANDLE_SIZE; | 
|  | off += ZS_HANDLE_SIZE; | 
|  |  | 
|  | sizes[0] = PAGE_SIZE - off; | 
|  | sizes[1] = size - sizes[0]; | 
|  |  | 
|  | /* copy per-cpu buffer to object */ | 
|  | addr = kmap_atomic(pages[0]); | 
|  | memcpy(addr + off, buf, sizes[0]); | 
|  | kunmap_atomic(addr); | 
|  | addr = kmap_atomic(pages[1]); | 
|  | memcpy(addr, buf + sizes[0], sizes[1]); | 
|  | kunmap_atomic(addr); | 
|  |  | 
|  | out: | 
|  | /* enable page faults to match kunmap_atomic() return conditions */ | 
|  | pagefault_enable(); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PGTABLE_MAPPING */ | 
|  |  | 
|  | static int zs_cpu_prepare(unsigned int cpu) | 
|  | { | 
|  | struct mapping_area *area; | 
|  |  | 
|  | area = &per_cpu(zs_map_area, cpu); | 
|  | return __zs_cpu_up(area); | 
|  | } | 
|  |  | 
|  | static int zs_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | struct mapping_area *area; | 
|  |  | 
|  | area = &per_cpu(zs_map_area, cpu); | 
|  | __zs_cpu_down(area); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init init_zs_size_classes(void) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; | 
|  | if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) | 
|  | nr += 1; | 
|  |  | 
|  | zs_size_classes = nr; | 
|  | } | 
|  |  | 
|  | static bool can_merge(struct size_class *prev, int pages_per_zspage, | 
|  | int objs_per_zspage) | 
|  | { | 
|  | if (prev->pages_per_zspage == pages_per_zspage && | 
|  | prev->objs_per_zspage == objs_per_zspage) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool zspage_full(struct size_class *class, struct zspage *zspage) | 
|  | { | 
|  | return get_zspage_inuse(zspage) == class->objs_per_zspage; | 
|  | } | 
|  |  | 
|  | unsigned long zs_get_total_pages(struct zs_pool *pool) | 
|  | { | 
|  | return atomic_long_read(&pool->pages_allocated); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_get_total_pages); | 
|  |  | 
|  | /** | 
|  | * zs_map_object - get address of allocated object from handle. | 
|  | * @pool: pool from which the object was allocated | 
|  | * @handle: handle returned from zs_malloc | 
|  | * | 
|  | * Before using an object allocated from zs_malloc, it must be mapped using | 
|  | * this function. When done with the object, it must be unmapped using | 
|  | * zs_unmap_object. | 
|  | * | 
|  | * Only one object can be mapped per cpu at a time. There is no protection | 
|  | * against nested mappings. | 
|  | * | 
|  | * This function returns with preemption and page faults disabled. | 
|  | */ | 
|  | void *zs_map_object(struct zs_pool *pool, unsigned long handle, | 
|  | enum zs_mapmode mm) | 
|  | { | 
|  | struct zspage *zspage; | 
|  | struct page *page; | 
|  | unsigned long obj, off; | 
|  | unsigned int obj_idx; | 
|  |  | 
|  | unsigned int class_idx; | 
|  | enum fullness_group fg; | 
|  | struct size_class *class; | 
|  | struct mapping_area *area; | 
|  | struct page *pages[2]; | 
|  | void *ret; | 
|  |  | 
|  | /* | 
|  | * Because we use per-cpu mapping areas shared among the | 
|  | * pools/users, we can't allow mapping in interrupt context | 
|  | * because it can corrupt another users mappings. | 
|  | */ | 
|  | WARN_ON_ONCE(in_interrupt()); | 
|  |  | 
|  | /* From now on, migration cannot move the object */ | 
|  | pin_tag(handle); | 
|  |  | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_location(obj, &page, &obj_idx); | 
|  | zspage = get_zspage(page); | 
|  |  | 
|  | /* migration cannot move any subpage in this zspage */ | 
|  | migrate_read_lock(zspage); | 
|  |  | 
|  | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  | class = pool->size_class[class_idx]; | 
|  | off = (class->size * obj_idx) & ~PAGE_MASK; | 
|  |  | 
|  | area = &get_cpu_var(zs_map_area); | 
|  | area->vm_mm = mm; | 
|  | if (off + class->size <= PAGE_SIZE) { | 
|  | /* this object is contained entirely within a page */ | 
|  | area->vm_addr = kmap_atomic(page); | 
|  | ret = area->vm_addr + off; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* this object spans two pages */ | 
|  | pages[0] = page; | 
|  | pages[1] = get_next_page(page); | 
|  | BUG_ON(!pages[1]); | 
|  |  | 
|  | ret = __zs_map_object(area, pages, off, class->size); | 
|  | out: | 
|  | if (likely(!PageHugeObject(page))) | 
|  | ret += ZS_HANDLE_SIZE; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_map_object); | 
|  |  | 
|  | void zs_unmap_object(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | struct zspage *zspage; | 
|  | struct page *page; | 
|  | unsigned long obj, off; | 
|  | unsigned int obj_idx; | 
|  |  | 
|  | unsigned int class_idx; | 
|  | enum fullness_group fg; | 
|  | struct size_class *class; | 
|  | struct mapping_area *area; | 
|  |  | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_location(obj, &page, &obj_idx); | 
|  | zspage = get_zspage(page); | 
|  | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  | class = pool->size_class[class_idx]; | 
|  | off = (class->size * obj_idx) & ~PAGE_MASK; | 
|  |  | 
|  | area = this_cpu_ptr(&zs_map_area); | 
|  | if (off + class->size <= PAGE_SIZE) | 
|  | kunmap_atomic(area->vm_addr); | 
|  | else { | 
|  | struct page *pages[2]; | 
|  |  | 
|  | pages[0] = page; | 
|  | pages[1] = get_next_page(page); | 
|  | BUG_ON(!pages[1]); | 
|  |  | 
|  | __zs_unmap_object(area, pages, off, class->size); | 
|  | } | 
|  | put_cpu_var(zs_map_area); | 
|  |  | 
|  | migrate_read_unlock(zspage); | 
|  | unpin_tag(handle); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_unmap_object); | 
|  |  | 
|  | static unsigned long obj_malloc(struct size_class *class, | 
|  | struct zspage *zspage, unsigned long handle) | 
|  | { | 
|  | int i, nr_page, offset; | 
|  | unsigned long obj; | 
|  | struct link_free *link; | 
|  |  | 
|  | struct page *m_page; | 
|  | unsigned long m_offset; | 
|  | void *vaddr; | 
|  |  | 
|  | handle |= OBJ_ALLOCATED_TAG; | 
|  | obj = get_freeobj(zspage); | 
|  |  | 
|  | offset = obj * class->size; | 
|  | nr_page = offset >> PAGE_SHIFT; | 
|  | m_offset = offset & ~PAGE_MASK; | 
|  | m_page = get_first_page(zspage); | 
|  |  | 
|  | for (i = 0; i < nr_page; i++) | 
|  | m_page = get_next_page(m_page); | 
|  |  | 
|  | vaddr = kmap_atomic(m_page); | 
|  | link = (struct link_free *)vaddr + m_offset / sizeof(*link); | 
|  | set_freeobj(zspage, link->next >> OBJ_TAG_BITS); | 
|  | if (likely(!PageHugeObject(m_page))) | 
|  | /* record handle in the header of allocated chunk */ | 
|  | link->handle = handle; | 
|  | else | 
|  | /* record handle to page->index */ | 
|  | zspage->first_page->index = handle; | 
|  |  | 
|  | kunmap_atomic(vaddr); | 
|  | mod_zspage_inuse(zspage, 1); | 
|  | zs_stat_inc(class, OBJ_USED, 1); | 
|  |  | 
|  | obj = location_to_obj(m_page, obj); | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * zs_malloc - Allocate block of given size from pool. | 
|  | * @pool: pool to allocate from | 
|  | * @size: size of block to allocate | 
|  | * @gfp: gfp flags when allocating object | 
|  | * | 
|  | * On success, handle to the allocated object is returned, | 
|  | * otherwise 0. | 
|  | * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. | 
|  | */ | 
|  | unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) | 
|  | { | 
|  | unsigned long handle, obj; | 
|  | struct size_class *class; | 
|  | enum fullness_group newfg; | 
|  | struct zspage *zspage; | 
|  |  | 
|  | if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) | 
|  | return 0; | 
|  |  | 
|  | handle = cache_alloc_handle(pool, gfp); | 
|  | if (!handle) | 
|  | return 0; | 
|  |  | 
|  | /* extra space in chunk to keep the handle */ | 
|  | size += ZS_HANDLE_SIZE; | 
|  | class = pool->size_class[get_size_class_index(size)]; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | zspage = find_get_zspage(class); | 
|  | if (likely(zspage)) { | 
|  | obj = obj_malloc(class, zspage, handle); | 
|  | /* Now move the zspage to another fullness group, if required */ | 
|  | fix_fullness_group(class, zspage); | 
|  | record_obj(handle, obj); | 
|  | spin_unlock(&class->lock); | 
|  |  | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | spin_unlock(&class->lock); | 
|  |  | 
|  | zspage = alloc_zspage(pool, class, gfp); | 
|  | if (!zspage) { | 
|  | cache_free_handle(pool, handle); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | obj = obj_malloc(class, zspage, handle); | 
|  | newfg = get_fullness_group(class, zspage); | 
|  | insert_zspage(class, zspage, newfg); | 
|  | set_zspage_mapping(zspage, class->index, newfg); | 
|  | record_obj(handle, obj); | 
|  | atomic_long_add(class->pages_per_zspage, | 
|  | &pool->pages_allocated); | 
|  | zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); | 
|  |  | 
|  | /* We completely set up zspage so mark them as movable */ | 
|  | SetZsPageMovable(pool, zspage); | 
|  | spin_unlock(&class->lock); | 
|  |  | 
|  | return handle; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_malloc); | 
|  |  | 
|  | static void obj_free(struct size_class *class, unsigned long obj) | 
|  | { | 
|  | struct link_free *link; | 
|  | struct zspage *zspage; | 
|  | struct page *f_page; | 
|  | unsigned long f_offset; | 
|  | unsigned int f_objidx; | 
|  | void *vaddr; | 
|  |  | 
|  | obj &= ~OBJ_ALLOCATED_TAG; | 
|  | obj_to_location(obj, &f_page, &f_objidx); | 
|  | f_offset = (class->size * f_objidx) & ~PAGE_MASK; | 
|  | zspage = get_zspage(f_page); | 
|  |  | 
|  | vaddr = kmap_atomic(f_page); | 
|  |  | 
|  | /* Insert this object in containing zspage's freelist */ | 
|  | link = (struct link_free *)(vaddr + f_offset); | 
|  | link->next = get_freeobj(zspage) << OBJ_TAG_BITS; | 
|  | kunmap_atomic(vaddr); | 
|  | set_freeobj(zspage, f_objidx); | 
|  | mod_zspage_inuse(zspage, -1); | 
|  | zs_stat_dec(class, OBJ_USED, 1); | 
|  | } | 
|  |  | 
|  | void zs_free(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | struct zspage *zspage; | 
|  | struct page *f_page; | 
|  | unsigned long obj; | 
|  | unsigned int f_objidx; | 
|  | int class_idx; | 
|  | struct size_class *class; | 
|  | enum fullness_group fullness; | 
|  | bool isolated; | 
|  |  | 
|  | if (unlikely(!handle)) | 
|  | return; | 
|  |  | 
|  | pin_tag(handle); | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_location(obj, &f_page, &f_objidx); | 
|  | zspage = get_zspage(f_page); | 
|  |  | 
|  | migrate_read_lock(zspage); | 
|  |  | 
|  | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | class = pool->size_class[class_idx]; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | obj_free(class, obj); | 
|  | fullness = fix_fullness_group(class, zspage); | 
|  | if (fullness != ZS_EMPTY) { | 
|  | migrate_read_unlock(zspage); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | isolated = is_zspage_isolated(zspage); | 
|  | migrate_read_unlock(zspage); | 
|  | /* If zspage is isolated, zs_page_putback will free the zspage */ | 
|  | if (likely(!isolated)) | 
|  | free_zspage(pool, class, zspage); | 
|  | out: | 
|  |  | 
|  | spin_unlock(&class->lock); | 
|  | unpin_tag(handle); | 
|  | cache_free_handle(pool, handle); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_free); | 
|  |  | 
|  | static void zs_object_copy(struct size_class *class, unsigned long dst, | 
|  | unsigned long src) | 
|  | { | 
|  | struct page *s_page, *d_page; | 
|  | unsigned int s_objidx, d_objidx; | 
|  | unsigned long s_off, d_off; | 
|  | void *s_addr, *d_addr; | 
|  | int s_size, d_size, size; | 
|  | int written = 0; | 
|  |  | 
|  | s_size = d_size = class->size; | 
|  |  | 
|  | obj_to_location(src, &s_page, &s_objidx); | 
|  | obj_to_location(dst, &d_page, &d_objidx); | 
|  |  | 
|  | s_off = (class->size * s_objidx) & ~PAGE_MASK; | 
|  | d_off = (class->size * d_objidx) & ~PAGE_MASK; | 
|  |  | 
|  | if (s_off + class->size > PAGE_SIZE) | 
|  | s_size = PAGE_SIZE - s_off; | 
|  |  | 
|  | if (d_off + class->size > PAGE_SIZE) | 
|  | d_size = PAGE_SIZE - d_off; | 
|  |  | 
|  | s_addr = kmap_atomic(s_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  |  | 
|  | while (1) { | 
|  | size = min(s_size, d_size); | 
|  | memcpy(d_addr + d_off, s_addr + s_off, size); | 
|  | written += size; | 
|  |  | 
|  | if (written == class->size) | 
|  | break; | 
|  |  | 
|  | s_off += size; | 
|  | s_size -= size; | 
|  | d_off += size; | 
|  | d_size -= size; | 
|  |  | 
|  | if (s_off >= PAGE_SIZE) { | 
|  | kunmap_atomic(d_addr); | 
|  | kunmap_atomic(s_addr); | 
|  | s_page = get_next_page(s_page); | 
|  | s_addr = kmap_atomic(s_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  | s_size = class->size - written; | 
|  | s_off = 0; | 
|  | } | 
|  |  | 
|  | if (d_off >= PAGE_SIZE) { | 
|  | kunmap_atomic(d_addr); | 
|  | d_page = get_next_page(d_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  | d_size = class->size - written; | 
|  | d_off = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | kunmap_atomic(d_addr); | 
|  | kunmap_atomic(s_addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find alloced object in zspage from index object and | 
|  | * return handle. | 
|  | */ | 
|  | static unsigned long find_alloced_obj(struct size_class *class, | 
|  | struct page *page, int *obj_idx) | 
|  | { | 
|  | unsigned long head; | 
|  | int offset = 0; | 
|  | int index = *obj_idx; | 
|  | unsigned long handle = 0; | 
|  | void *addr = kmap_atomic(page); | 
|  |  | 
|  | offset = get_first_obj_offset(page); | 
|  | offset += class->size * index; | 
|  |  | 
|  | while (offset < PAGE_SIZE) { | 
|  | head = obj_to_head(page, addr + offset); | 
|  | if (head & OBJ_ALLOCATED_TAG) { | 
|  | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | if (trypin_tag(handle)) | 
|  | break; | 
|  | handle = 0; | 
|  | } | 
|  |  | 
|  | offset += class->size; | 
|  | index++; | 
|  | } | 
|  |  | 
|  | kunmap_atomic(addr); | 
|  |  | 
|  | *obj_idx = index; | 
|  |  | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | struct zs_compact_control { | 
|  | /* Source spage for migration which could be a subpage of zspage */ | 
|  | struct page *s_page; | 
|  | /* Destination page for migration which should be a first page | 
|  | * of zspage. */ | 
|  | struct page *d_page; | 
|  | /* Starting object index within @s_page which used for live object | 
|  | * in the subpage. */ | 
|  | int obj_idx; | 
|  | }; | 
|  |  | 
|  | static int migrate_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | struct zs_compact_control *cc) | 
|  | { | 
|  | unsigned long used_obj, free_obj; | 
|  | unsigned long handle; | 
|  | struct page *s_page = cc->s_page; | 
|  | struct page *d_page = cc->d_page; | 
|  | int obj_idx = cc->obj_idx; | 
|  | int ret = 0; | 
|  |  | 
|  | while (1) { | 
|  | handle = find_alloced_obj(class, s_page, &obj_idx); | 
|  | if (!handle) { | 
|  | s_page = get_next_page(s_page); | 
|  | if (!s_page) | 
|  | break; | 
|  | obj_idx = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Stop if there is no more space */ | 
|  | if (zspage_full(class, get_zspage(d_page))) { | 
|  | unpin_tag(handle); | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | used_obj = handle_to_obj(handle); | 
|  | free_obj = obj_malloc(class, get_zspage(d_page), handle); | 
|  | zs_object_copy(class, free_obj, used_obj); | 
|  | obj_idx++; | 
|  | /* | 
|  | * record_obj updates handle's value to free_obj and it will | 
|  | * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which | 
|  | * breaks synchronization using pin_tag(e,g, zs_free) so | 
|  | * let's keep the lock bit. | 
|  | */ | 
|  | free_obj |= BIT(HANDLE_PIN_BIT); | 
|  | record_obj(handle, free_obj); | 
|  | unpin_tag(handle); | 
|  | obj_free(class, used_obj); | 
|  | } | 
|  |  | 
|  | /* Remember last position in this iteration */ | 
|  | cc->s_page = s_page; | 
|  | cc->obj_idx = obj_idx; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct zspage *isolate_zspage(struct size_class *class, bool source) | 
|  | { | 
|  | int i; | 
|  | struct zspage *zspage; | 
|  | enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; | 
|  |  | 
|  | if (!source) { | 
|  | fg[0] = ZS_ALMOST_FULL; | 
|  | fg[1] = ZS_ALMOST_EMPTY; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], | 
|  | struct zspage, list); | 
|  | if (zspage) { | 
|  | VM_BUG_ON(is_zspage_isolated(zspage)); | 
|  | remove_zspage(class, zspage, fg[i]); | 
|  | return zspage; | 
|  | } | 
|  | } | 
|  |  | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * putback_zspage - add @zspage into right class's fullness list | 
|  | * @class: destination class | 
|  | * @zspage: target page | 
|  | * | 
|  | * Return @zspage's fullness_group | 
|  | */ | 
|  | static enum fullness_group putback_zspage(struct size_class *class, | 
|  | struct zspage *zspage) | 
|  | { | 
|  | enum fullness_group fullness; | 
|  |  | 
|  | VM_BUG_ON(is_zspage_isolated(zspage)); | 
|  |  | 
|  | fullness = get_fullness_group(class, zspage); | 
|  | insert_zspage(class, zspage, fullness); | 
|  | set_zspage_mapping(zspage, class->index, fullness); | 
|  |  | 
|  | return fullness; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | static struct dentry *zs_mount(struct file_system_type *fs_type, | 
|  | int flags, const char *dev_name, void *data) | 
|  | { | 
|  | static const struct dentry_operations ops = { | 
|  | .d_dname = simple_dname, | 
|  | }; | 
|  |  | 
|  | return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); | 
|  | } | 
|  |  | 
|  | static struct file_system_type zsmalloc_fs = { | 
|  | .name		= "zsmalloc", | 
|  | .mount		= zs_mount, | 
|  | .kill_sb	= kill_anon_super, | 
|  | }; | 
|  |  | 
|  | static int zsmalloc_mount(void) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | zsmalloc_mnt = kern_mount(&zsmalloc_fs); | 
|  | if (IS_ERR(zsmalloc_mnt)) | 
|  | ret = PTR_ERR(zsmalloc_mnt); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void zsmalloc_unmount(void) | 
|  | { | 
|  | kern_unmount(zsmalloc_mnt); | 
|  | } | 
|  |  | 
|  | static void migrate_lock_init(struct zspage *zspage) | 
|  | { | 
|  | rwlock_init(&zspage->lock); | 
|  | } | 
|  |  | 
|  | static void migrate_read_lock(struct zspage *zspage) | 
|  | { | 
|  | read_lock(&zspage->lock); | 
|  | } | 
|  |  | 
|  | static void migrate_read_unlock(struct zspage *zspage) | 
|  | { | 
|  | read_unlock(&zspage->lock); | 
|  | } | 
|  |  | 
|  | static void migrate_write_lock(struct zspage *zspage) | 
|  | { | 
|  | write_lock(&zspage->lock); | 
|  | } | 
|  |  | 
|  | static void migrate_write_unlock(struct zspage *zspage) | 
|  | { | 
|  | write_unlock(&zspage->lock); | 
|  | } | 
|  |  | 
|  | /* Number of isolated subpage for *page migration* in this zspage */ | 
|  | static void inc_zspage_isolation(struct zspage *zspage) | 
|  | { | 
|  | zspage->isolated++; | 
|  | } | 
|  |  | 
|  | static void dec_zspage_isolation(struct zspage *zspage) | 
|  | { | 
|  | zspage->isolated--; | 
|  | } | 
|  |  | 
|  | static void replace_sub_page(struct size_class *class, struct zspage *zspage, | 
|  | struct page *newpage, struct page *oldpage) | 
|  | { | 
|  | struct page *page; | 
|  | struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; | 
|  | int idx = 0; | 
|  |  | 
|  | page = get_first_page(zspage); | 
|  | do { | 
|  | if (page == oldpage) | 
|  | pages[idx] = newpage; | 
|  | else | 
|  | pages[idx] = page; | 
|  | idx++; | 
|  | } while ((page = get_next_page(page)) != NULL); | 
|  |  | 
|  | create_page_chain(class, zspage, pages); | 
|  | set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); | 
|  | if (unlikely(PageHugeObject(oldpage))) | 
|  | newpage->index = oldpage->index; | 
|  | __SetPageMovable(newpage, page_mapping(oldpage)); | 
|  | } | 
|  |  | 
|  | bool zs_page_isolate(struct page *page, isolate_mode_t mode) | 
|  | { | 
|  | struct zs_pool *pool; | 
|  | struct size_class *class; | 
|  | int class_idx; | 
|  | enum fullness_group fullness; | 
|  | struct zspage *zspage; | 
|  | struct address_space *mapping; | 
|  |  | 
|  | /* | 
|  | * Page is locked so zspage couldn't be destroyed. For detail, look at | 
|  | * lock_zspage in free_zspage. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(!PageMovable(page), page); | 
|  | VM_BUG_ON_PAGE(PageIsolated(page), page); | 
|  |  | 
|  | zspage = get_zspage(page); | 
|  |  | 
|  | /* | 
|  | * Without class lock, fullness could be stale while class_idx is okay | 
|  | * because class_idx is constant unless page is freed so we should get | 
|  | * fullness again under class lock. | 
|  | */ | 
|  | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | mapping = page_mapping(page); | 
|  | pool = mapping->private_data; | 
|  | class = pool->size_class[class_idx]; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | if (get_zspage_inuse(zspage) == 0) { | 
|  | spin_unlock(&class->lock); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* zspage is isolated for object migration */ | 
|  | if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { | 
|  | spin_unlock(&class->lock); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is first time isolation for the zspage, isolate zspage from | 
|  | * size_class to prevent further object allocation from the zspage. | 
|  | */ | 
|  | if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { | 
|  | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | remove_zspage(class, zspage, fullness); | 
|  | } | 
|  |  | 
|  | inc_zspage_isolation(zspage); | 
|  | spin_unlock(&class->lock); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int zs_page_migrate(struct address_space *mapping, struct page *newpage, | 
|  | struct page *page, enum migrate_mode mode) | 
|  | { | 
|  | struct zs_pool *pool; | 
|  | struct size_class *class; | 
|  | int class_idx; | 
|  | enum fullness_group fullness; | 
|  | struct zspage *zspage; | 
|  | struct page *dummy; | 
|  | void *s_addr, *d_addr, *addr; | 
|  | int offset, pos; | 
|  | unsigned long handle, head; | 
|  | unsigned long old_obj, new_obj; | 
|  | unsigned int obj_idx; | 
|  | int ret = -EAGAIN; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageMovable(page), page); | 
|  | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  |  | 
|  | zspage = get_zspage(page); | 
|  |  | 
|  | /* Concurrent compactor cannot migrate any subpage in zspage */ | 
|  | migrate_write_lock(zspage); | 
|  | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | pool = mapping->private_data; | 
|  | class = pool->size_class[class_idx]; | 
|  | offset = get_first_obj_offset(page); | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | if (!get_zspage_inuse(zspage)) { | 
|  | ret = -EBUSY; | 
|  | goto unlock_class; | 
|  | } | 
|  |  | 
|  | pos = offset; | 
|  | s_addr = kmap_atomic(page); | 
|  | while (pos < PAGE_SIZE) { | 
|  | head = obj_to_head(page, s_addr + pos); | 
|  | if (head & OBJ_ALLOCATED_TAG) { | 
|  | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | if (!trypin_tag(handle)) | 
|  | goto unpin_objects; | 
|  | } | 
|  | pos += class->size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here, any user cannot access all objects in the zspage so let's move. | 
|  | */ | 
|  | d_addr = kmap_atomic(newpage); | 
|  | memcpy(d_addr, s_addr, PAGE_SIZE); | 
|  | kunmap_atomic(d_addr); | 
|  |  | 
|  | for (addr = s_addr + offset; addr < s_addr + pos; | 
|  | addr += class->size) { | 
|  | head = obj_to_head(page, addr); | 
|  | if (head & OBJ_ALLOCATED_TAG) { | 
|  | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | if (!testpin_tag(handle)) | 
|  | BUG(); | 
|  |  | 
|  | old_obj = handle_to_obj(handle); | 
|  | obj_to_location(old_obj, &dummy, &obj_idx); | 
|  | new_obj = (unsigned long)location_to_obj(newpage, | 
|  | obj_idx); | 
|  | new_obj |= BIT(HANDLE_PIN_BIT); | 
|  | record_obj(handle, new_obj); | 
|  | } | 
|  | } | 
|  |  | 
|  | replace_sub_page(class, zspage, newpage, page); | 
|  | get_page(newpage); | 
|  |  | 
|  | dec_zspage_isolation(zspage); | 
|  |  | 
|  | /* | 
|  | * Page migration is done so let's putback isolated zspage to | 
|  | * the list if @page is final isolated subpage in the zspage. | 
|  | */ | 
|  | if (!is_zspage_isolated(zspage)) | 
|  | putback_zspage(class, zspage); | 
|  |  | 
|  | reset_page(page); | 
|  | put_page(page); | 
|  | page = newpage; | 
|  |  | 
|  | ret = MIGRATEPAGE_SUCCESS; | 
|  | unpin_objects: | 
|  | for (addr = s_addr + offset; addr < s_addr + pos; | 
|  | addr += class->size) { | 
|  | head = obj_to_head(page, addr); | 
|  | if (head & OBJ_ALLOCATED_TAG) { | 
|  | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | if (!testpin_tag(handle)) | 
|  | BUG(); | 
|  | unpin_tag(handle); | 
|  | } | 
|  | } | 
|  | kunmap_atomic(s_addr); | 
|  | unlock_class: | 
|  | spin_unlock(&class->lock); | 
|  | migrate_write_unlock(zspage); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void zs_page_putback(struct page *page) | 
|  | { | 
|  | struct zs_pool *pool; | 
|  | struct size_class *class; | 
|  | int class_idx; | 
|  | enum fullness_group fg; | 
|  | struct address_space *mapping; | 
|  | struct zspage *zspage; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageMovable(page), page); | 
|  | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  |  | 
|  | zspage = get_zspage(page); | 
|  | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  | mapping = page_mapping(page); | 
|  | pool = mapping->private_data; | 
|  | class = pool->size_class[class_idx]; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | dec_zspage_isolation(zspage); | 
|  | if (!is_zspage_isolated(zspage)) { | 
|  | fg = putback_zspage(class, zspage); | 
|  | /* | 
|  | * Due to page_lock, we cannot free zspage immediately | 
|  | * so let's defer. | 
|  | */ | 
|  | if (fg == ZS_EMPTY) | 
|  | schedule_work(&pool->free_work); | 
|  | } | 
|  | spin_unlock(&class->lock); | 
|  | } | 
|  |  | 
|  | const struct address_space_operations zsmalloc_aops = { | 
|  | .isolate_page = zs_page_isolate, | 
|  | .migratepage = zs_page_migrate, | 
|  | .putback_page = zs_page_putback, | 
|  | }; | 
|  |  | 
|  | static int zs_register_migration(struct zs_pool *pool) | 
|  | { | 
|  | pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); | 
|  | if (IS_ERR(pool->inode)) { | 
|  | pool->inode = NULL; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | pool->inode->i_mapping->private_data = pool; | 
|  | pool->inode->i_mapping->a_ops = &zsmalloc_aops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void zs_unregister_migration(struct zs_pool *pool) | 
|  | { | 
|  | flush_work(&pool->free_work); | 
|  | iput(pool->inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller should hold page_lock of all pages in the zspage | 
|  | * In here, we cannot use zspage meta data. | 
|  | */ | 
|  | static void async_free_zspage(struct work_struct *work) | 
|  | { | 
|  | int i; | 
|  | struct size_class *class; | 
|  | unsigned int class_idx; | 
|  | enum fullness_group fullness; | 
|  | struct zspage *zspage, *tmp; | 
|  | LIST_HEAD(free_pages); | 
|  | struct zs_pool *pool = container_of(work, struct zs_pool, | 
|  | free_work); | 
|  |  | 
|  | for (i = 0; i < zs_size_classes; i++) { | 
|  | class = pool->size_class[i]; | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); | 
|  | spin_unlock(&class->lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | list_for_each_entry_safe(zspage, tmp, &free_pages, list) { | 
|  | list_del(&zspage->list); | 
|  | lock_zspage(zspage); | 
|  |  | 
|  | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | VM_BUG_ON(fullness != ZS_EMPTY); | 
|  | class = pool->size_class[class_idx]; | 
|  | spin_lock(&class->lock); | 
|  | __free_zspage(pool, pool->size_class[class_idx], zspage); | 
|  | spin_unlock(&class->lock); | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void kick_deferred_free(struct zs_pool *pool) | 
|  | { | 
|  | schedule_work(&pool->free_work); | 
|  | } | 
|  |  | 
|  | static void init_deferred_free(struct zs_pool *pool) | 
|  | { | 
|  | INIT_WORK(&pool->free_work, async_free_zspage); | 
|  | } | 
|  |  | 
|  | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) | 
|  | { | 
|  | struct page *page = get_first_page(zspage); | 
|  |  | 
|  | do { | 
|  | WARN_ON(!trylock_page(page)); | 
|  | __SetPageMovable(page, pool->inode->i_mapping); | 
|  | unlock_page(page); | 
|  | } while ((page = get_next_page(page)) != NULL); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Based on the number of unused allocated objects calculate | 
|  | * and return the number of pages that we can free. | 
|  | */ | 
|  | static unsigned long zs_can_compact(struct size_class *class) | 
|  | { | 
|  | unsigned long obj_wasted; | 
|  | unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
|  | unsigned long obj_used = zs_stat_get(class, OBJ_USED); | 
|  |  | 
|  | if (obj_allocated <= obj_used) | 
|  | return 0; | 
|  |  | 
|  | obj_wasted = obj_allocated - obj_used; | 
|  | obj_wasted /= class->objs_per_zspage; | 
|  |  | 
|  | return obj_wasted * class->pages_per_zspage; | 
|  | } | 
|  |  | 
|  | static void __zs_compact(struct zs_pool *pool, struct size_class *class) | 
|  | { | 
|  | struct zs_compact_control cc; | 
|  | struct zspage *src_zspage; | 
|  | struct zspage *dst_zspage = NULL; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | while ((src_zspage = isolate_zspage(class, true))) { | 
|  |  | 
|  | if (!zs_can_compact(class)) | 
|  | break; | 
|  |  | 
|  | cc.obj_idx = 0; | 
|  | cc.s_page = get_first_page(src_zspage); | 
|  |  | 
|  | while ((dst_zspage = isolate_zspage(class, false))) { | 
|  | cc.d_page = get_first_page(dst_zspage); | 
|  | /* | 
|  | * If there is no more space in dst_page, resched | 
|  | * and see if anyone had allocated another zspage. | 
|  | */ | 
|  | if (!migrate_zspage(pool, class, &cc)) | 
|  | break; | 
|  |  | 
|  | putback_zspage(class, dst_zspage); | 
|  | } | 
|  |  | 
|  | /* Stop if we couldn't find slot */ | 
|  | if (dst_zspage == NULL) | 
|  | break; | 
|  |  | 
|  | putback_zspage(class, dst_zspage); | 
|  | if (putback_zspage(class, src_zspage) == ZS_EMPTY) { | 
|  | free_zspage(pool, class, src_zspage); | 
|  | pool->stats.pages_compacted += class->pages_per_zspage; | 
|  | } | 
|  | spin_unlock(&class->lock); | 
|  | cond_resched(); | 
|  | spin_lock(&class->lock); | 
|  | } | 
|  |  | 
|  | if (src_zspage) | 
|  | putback_zspage(class, src_zspage); | 
|  |  | 
|  | spin_unlock(&class->lock); | 
|  | } | 
|  |  | 
|  | unsigned long zs_compact(struct zs_pool *pool) | 
|  | { | 
|  | int i; | 
|  | struct size_class *class; | 
|  |  | 
|  | for (i = zs_size_classes - 1; i >= 0; i--) { | 
|  | class = pool->size_class[i]; | 
|  | if (!class) | 
|  | continue; | 
|  | if (class->index != i) | 
|  | continue; | 
|  | __zs_compact(pool, class); | 
|  | } | 
|  |  | 
|  | return pool->stats.pages_compacted; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_compact); | 
|  |  | 
|  | void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) | 
|  | { | 
|  | memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_pool_stats); | 
|  |  | 
|  | static unsigned long zs_shrinker_scan(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | unsigned long pages_freed; | 
|  | struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
|  | shrinker); | 
|  |  | 
|  | pages_freed = pool->stats.pages_compacted; | 
|  | /* | 
|  | * Compact classes and calculate compaction delta. | 
|  | * Can run concurrently with a manually triggered | 
|  | * (by user) compaction. | 
|  | */ | 
|  | pages_freed = zs_compact(pool) - pages_freed; | 
|  |  | 
|  | return pages_freed ? pages_freed : SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | static unsigned long zs_shrinker_count(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | int i; | 
|  | struct size_class *class; | 
|  | unsigned long pages_to_free = 0; | 
|  | struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
|  | shrinker); | 
|  |  | 
|  | for (i = zs_size_classes - 1; i >= 0; i--) { | 
|  | class = pool->size_class[i]; | 
|  | if (!class) | 
|  | continue; | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | pages_to_free += zs_can_compact(class); | 
|  | } | 
|  |  | 
|  | return pages_to_free; | 
|  | } | 
|  |  | 
|  | static void zs_unregister_shrinker(struct zs_pool *pool) | 
|  | { | 
|  | if (pool->shrinker_enabled) { | 
|  | unregister_shrinker(&pool->shrinker); | 
|  | pool->shrinker_enabled = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int zs_register_shrinker(struct zs_pool *pool) | 
|  | { | 
|  | pool->shrinker.scan_objects = zs_shrinker_scan; | 
|  | pool->shrinker.count_objects = zs_shrinker_count; | 
|  | pool->shrinker.batch = 0; | 
|  | pool->shrinker.seeks = DEFAULT_SEEKS; | 
|  |  | 
|  | return register_shrinker(&pool->shrinker); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zs_create_pool - Creates an allocation pool to work from. | 
|  | * @name: pool name to be created | 
|  | * | 
|  | * This function must be called before anything when using | 
|  | * the zsmalloc allocator. | 
|  | * | 
|  | * On success, a pointer to the newly created pool is returned, | 
|  | * otherwise NULL. | 
|  | */ | 
|  | struct zs_pool *zs_create_pool(const char *name) | 
|  | { | 
|  | int i; | 
|  | struct zs_pool *pool; | 
|  | struct size_class *prev_class = NULL; | 
|  |  | 
|  | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) | 
|  | return NULL; | 
|  |  | 
|  | init_deferred_free(pool); | 
|  | pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), | 
|  | GFP_KERNEL); | 
|  | if (!pool->size_class) { | 
|  | kfree(pool); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pool->name = kstrdup(name, GFP_KERNEL); | 
|  | if (!pool->name) | 
|  | goto err; | 
|  |  | 
|  | if (create_cache(pool)) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * Iterate reversely, because, size of size_class that we want to use | 
|  | * for merging should be larger or equal to current size. | 
|  | */ | 
|  | for (i = zs_size_classes - 1; i >= 0; i--) { | 
|  | int size; | 
|  | int pages_per_zspage; | 
|  | int objs_per_zspage; | 
|  | struct size_class *class; | 
|  | int fullness = 0; | 
|  |  | 
|  | size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; | 
|  | if (size > ZS_MAX_ALLOC_SIZE) | 
|  | size = ZS_MAX_ALLOC_SIZE; | 
|  | pages_per_zspage = get_pages_per_zspage(size); | 
|  | objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; | 
|  |  | 
|  | /* | 
|  | * size_class is used for normal zsmalloc operation such | 
|  | * as alloc/free for that size. Although it is natural that we | 
|  | * have one size_class for each size, there is a chance that we | 
|  | * can get more memory utilization if we use one size_class for | 
|  | * many different sizes whose size_class have same | 
|  | * characteristics. So, we makes size_class point to | 
|  | * previous size_class if possible. | 
|  | */ | 
|  | if (prev_class) { | 
|  | if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { | 
|  | pool->size_class[i] = prev_class; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | class = kzalloc(sizeof(struct size_class), GFP_KERNEL); | 
|  | if (!class) | 
|  | goto err; | 
|  |  | 
|  | class->size = size; | 
|  | class->index = i; | 
|  | class->pages_per_zspage = pages_per_zspage; | 
|  | class->objs_per_zspage = objs_per_zspage; | 
|  | spin_lock_init(&class->lock); | 
|  | pool->size_class[i] = class; | 
|  | for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; | 
|  | fullness++) | 
|  | INIT_LIST_HEAD(&class->fullness_list[fullness]); | 
|  |  | 
|  | prev_class = class; | 
|  | } | 
|  |  | 
|  | /* debug only, don't abort if it fails */ | 
|  | zs_pool_stat_create(pool, name); | 
|  |  | 
|  | if (zs_register_migration(pool)) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * Not critical, we still can use the pool | 
|  | * and user can trigger compaction manually. | 
|  | */ | 
|  | if (zs_register_shrinker(pool) == 0) | 
|  | pool->shrinker_enabled = true; | 
|  | return pool; | 
|  |  | 
|  | err: | 
|  | zs_destroy_pool(pool); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_create_pool); | 
|  |  | 
|  | void zs_destroy_pool(struct zs_pool *pool) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | zs_unregister_shrinker(pool); | 
|  | zs_unregister_migration(pool); | 
|  | zs_pool_stat_destroy(pool); | 
|  |  | 
|  | for (i = 0; i < zs_size_classes; i++) { | 
|  | int fg; | 
|  | struct size_class *class = pool->size_class[i]; | 
|  |  | 
|  | if (!class) | 
|  | continue; | 
|  |  | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { | 
|  | if (!list_empty(&class->fullness_list[fg])) { | 
|  | pr_info("Freeing non-empty class with size %db, fullness group %d\n", | 
|  | class->size, fg); | 
|  | } | 
|  | } | 
|  | kfree(class); | 
|  | } | 
|  |  | 
|  | destroy_cache(pool); | 
|  | kfree(pool->size_class); | 
|  | kfree(pool->name); | 
|  | kfree(pool); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_destroy_pool); | 
|  |  | 
|  | static int __init zs_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = zsmalloc_mount(); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", | 
|  | zs_cpu_prepare, zs_cpu_dead); | 
|  | if (ret) | 
|  | goto hp_setup_fail; | 
|  |  | 
|  | init_zs_size_classes(); | 
|  |  | 
|  | #ifdef CONFIG_ZPOOL | 
|  | zpool_register_driver(&zs_zpool_driver); | 
|  | #endif | 
|  |  | 
|  | zs_stat_init(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | hp_setup_fail: | 
|  | zsmalloc_unmount(); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit zs_exit(void) | 
|  | { | 
|  | #ifdef CONFIG_ZPOOL | 
|  | zpool_unregister_driver(&zs_zpool_driver); | 
|  | #endif | 
|  | zsmalloc_unmount(); | 
|  | cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); | 
|  |  | 
|  | zs_stat_exit(); | 
|  | } | 
|  |  | 
|  | module_init(zs_init); | 
|  | module_exit(zs_exit); | 
|  |  | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  | MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |