|  | /* | 
|  | * Machine specific setup for xen | 
|  | * | 
|  | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/cpuidle.h> | 
|  | #include <linux/cpufreq.h> | 
|  |  | 
|  | #include <asm/elf.h> | 
|  | #include <asm/vdso.h> | 
|  | #include <asm/e820/api.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/acpi.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/xen/hypervisor.h> | 
|  | #include <asm/xen/hypercall.h> | 
|  |  | 
|  | #include <xen/xen.h> | 
|  | #include <xen/page.h> | 
|  | #include <xen/interface/callback.h> | 
|  | #include <xen/interface/memory.h> | 
|  | #include <xen/interface/physdev.h> | 
|  | #include <xen/features.h> | 
|  | #include <xen/hvc-console.h> | 
|  | #include "xen-ops.h" | 
|  | #include "vdso.h" | 
|  | #include "mmu.h" | 
|  |  | 
|  | #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024) | 
|  |  | 
|  | /* Amount of extra memory space we add to the e820 ranges */ | 
|  | struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; | 
|  |  | 
|  | /* Number of pages released from the initial allocation. */ | 
|  | unsigned long xen_released_pages; | 
|  |  | 
|  | /* E820 map used during setting up memory. */ | 
|  | static struct e820_table xen_e820_table __initdata; | 
|  |  | 
|  | /* | 
|  | * Buffer used to remap identity mapped pages. We only need the virtual space. | 
|  | * The physical page behind this address is remapped as needed to different | 
|  | * buffer pages. | 
|  | */ | 
|  | #define REMAP_SIZE	(P2M_PER_PAGE - 3) | 
|  | static struct { | 
|  | unsigned long	next_area_mfn; | 
|  | unsigned long	target_pfn; | 
|  | unsigned long	size; | 
|  | unsigned long	mfns[REMAP_SIZE]; | 
|  | } xen_remap_buf __initdata __aligned(PAGE_SIZE); | 
|  | static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY; | 
|  |  | 
|  | /* | 
|  | * The maximum amount of extra memory compared to the base size.  The | 
|  | * main scaling factor is the size of struct page.  At extreme ratios | 
|  | * of base:extra, all the base memory can be filled with page | 
|  | * structures for the extra memory, leaving no space for anything | 
|  | * else. | 
|  | * | 
|  | * 10x seems like a reasonable balance between scaling flexibility and | 
|  | * leaving a practically usable system. | 
|  | */ | 
|  | #define EXTRA_MEM_RATIO		(10) | 
|  |  | 
|  | static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB); | 
|  |  | 
|  | static void __init xen_parse_512gb(void) | 
|  | { | 
|  | bool val = false; | 
|  | char *arg; | 
|  |  | 
|  | arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit"); | 
|  | if (!arg) | 
|  | return; | 
|  |  | 
|  | arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit="); | 
|  | if (!arg) | 
|  | val = true; | 
|  | else if (strtobool(arg + strlen("xen_512gb_limit="), &val)) | 
|  | return; | 
|  |  | 
|  | xen_512gb_limit = val; | 
|  | } | 
|  |  | 
|  | static void __init xen_add_extra_mem(unsigned long start_pfn, | 
|  | unsigned long n_pfns) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * No need to check for zero size, should happen rarely and will only | 
|  | * write a new entry regarded to be unused due to zero size. | 
|  | */ | 
|  | for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { | 
|  | /* Add new region. */ | 
|  | if (xen_extra_mem[i].n_pfns == 0) { | 
|  | xen_extra_mem[i].start_pfn = start_pfn; | 
|  | xen_extra_mem[i].n_pfns = n_pfns; | 
|  | break; | 
|  | } | 
|  | /* Append to existing region. */ | 
|  | if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns == | 
|  | start_pfn) { | 
|  | xen_extra_mem[i].n_pfns += n_pfns; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == XEN_EXTRA_MEM_MAX_REGIONS) | 
|  | printk(KERN_WARNING "Warning: not enough extra memory regions\n"); | 
|  |  | 
|  | memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); | 
|  | } | 
|  |  | 
|  | static void __init xen_del_extra_mem(unsigned long start_pfn, | 
|  | unsigned long n_pfns) | 
|  | { | 
|  | int i; | 
|  | unsigned long start_r, size_r; | 
|  |  | 
|  | for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { | 
|  | start_r = xen_extra_mem[i].start_pfn; | 
|  | size_r = xen_extra_mem[i].n_pfns; | 
|  |  | 
|  | /* Start of region. */ | 
|  | if (start_r == start_pfn) { | 
|  | BUG_ON(n_pfns > size_r); | 
|  | xen_extra_mem[i].start_pfn += n_pfns; | 
|  | xen_extra_mem[i].n_pfns -= n_pfns; | 
|  | break; | 
|  | } | 
|  | /* End of region. */ | 
|  | if (start_r + size_r == start_pfn + n_pfns) { | 
|  | BUG_ON(n_pfns > size_r); | 
|  | xen_extra_mem[i].n_pfns -= n_pfns; | 
|  | break; | 
|  | } | 
|  | /* Mid of region. */ | 
|  | if (start_pfn > start_r && start_pfn < start_r + size_r) { | 
|  | BUG_ON(start_pfn + n_pfns > start_r + size_r); | 
|  | xen_extra_mem[i].n_pfns = start_pfn - start_r; | 
|  | /* Calling memblock_reserve() again is okay. */ | 
|  | xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r - | 
|  | (start_pfn + n_pfns)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called during boot before the p2m list can take entries beyond the | 
|  | * hypervisor supplied p2m list. Entries in extra mem are to be regarded as | 
|  | * invalid. | 
|  | */ | 
|  | unsigned long __ref xen_chk_extra_mem(unsigned long pfn) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { | 
|  | if (pfn >= xen_extra_mem[i].start_pfn && | 
|  | pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns) | 
|  | return INVALID_P2M_ENTRY; | 
|  | } | 
|  |  | 
|  | return IDENTITY_FRAME(pfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark all pfns of extra mem as invalid in p2m list. | 
|  | */ | 
|  | void __init xen_inv_extra_mem(void) | 
|  | { | 
|  | unsigned long pfn, pfn_s, pfn_e; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { | 
|  | if (!xen_extra_mem[i].n_pfns) | 
|  | continue; | 
|  | pfn_s = xen_extra_mem[i].start_pfn; | 
|  | pfn_e = pfn_s + xen_extra_mem[i].n_pfns; | 
|  | for (pfn = pfn_s; pfn < pfn_e; pfn++) | 
|  | set_phys_to_machine(pfn, INVALID_P2M_ENTRY); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finds the next RAM pfn available in the E820 map after min_pfn. | 
|  | * This function updates min_pfn with the pfn found and returns | 
|  | * the size of that range or zero if not found. | 
|  | */ | 
|  | static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn) | 
|  | { | 
|  | const struct e820_entry *entry = xen_e820_table.entries; | 
|  | unsigned int i; | 
|  | unsigned long done = 0; | 
|  |  | 
|  | for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { | 
|  | unsigned long s_pfn; | 
|  | unsigned long e_pfn; | 
|  |  | 
|  | if (entry->type != E820_TYPE_RAM) | 
|  | continue; | 
|  |  | 
|  | e_pfn = PFN_DOWN(entry->addr + entry->size); | 
|  |  | 
|  | /* We only care about E820 after this */ | 
|  | if (e_pfn <= *min_pfn) | 
|  | continue; | 
|  |  | 
|  | s_pfn = PFN_UP(entry->addr); | 
|  |  | 
|  | /* If min_pfn falls within the E820 entry, we want to start | 
|  | * at the min_pfn PFN. | 
|  | */ | 
|  | if (s_pfn <= *min_pfn) { | 
|  | done = e_pfn - *min_pfn; | 
|  | } else { | 
|  | done = e_pfn - s_pfn; | 
|  | *min_pfn = s_pfn; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return done; | 
|  | } | 
|  |  | 
|  | static int __init xen_free_mfn(unsigned long mfn) | 
|  | { | 
|  | struct xen_memory_reservation reservation = { | 
|  | .address_bits = 0, | 
|  | .extent_order = 0, | 
|  | .domid        = DOMID_SELF | 
|  | }; | 
|  |  | 
|  | set_xen_guest_handle(reservation.extent_start, &mfn); | 
|  | reservation.nr_extents = 1; | 
|  |  | 
|  | return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This releases a chunk of memory and then does the identity map. It's used | 
|  | * as a fallback if the remapping fails. | 
|  | */ | 
|  | static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn, | 
|  | unsigned long end_pfn, unsigned long nr_pages) | 
|  | { | 
|  | unsigned long pfn, end; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON(start_pfn > end_pfn); | 
|  |  | 
|  | /* Release pages first. */ | 
|  | end = min(end_pfn, nr_pages); | 
|  | for (pfn = start_pfn; pfn < end; pfn++) { | 
|  | unsigned long mfn = pfn_to_mfn(pfn); | 
|  |  | 
|  | /* Make sure pfn exists to start with */ | 
|  | if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) | 
|  | continue; | 
|  |  | 
|  | ret = xen_free_mfn(mfn); | 
|  | WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret); | 
|  |  | 
|  | if (ret == 1) { | 
|  | xen_released_pages++; | 
|  | if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY)) | 
|  | break; | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_phys_range_identity(start_pfn, end_pfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to update the p2m and m2p tables and kernel mapping. | 
|  | */ | 
|  | static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn) | 
|  | { | 
|  | struct mmu_update update = { | 
|  | .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE, | 
|  | .val = pfn | 
|  | }; | 
|  |  | 
|  | /* Update p2m */ | 
|  | if (!set_phys_to_machine(pfn, mfn)) { | 
|  | WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n", | 
|  | pfn, mfn); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Update m2p */ | 
|  | if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) { | 
|  | WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n", | 
|  | mfn, pfn); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Update kernel mapping, but not for highmem. */ | 
|  | if (pfn >= PFN_UP(__pa(high_memory - 1))) | 
|  | return; | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT), | 
|  | mfn_pte(mfn, PAGE_KERNEL), 0)) { | 
|  | WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n", | 
|  | mfn, pfn); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function updates the p2m and m2p tables with an identity map from | 
|  | * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the | 
|  | * original allocation at remap_pfn. The information needed for remapping is | 
|  | * saved in the memory itself to avoid the need for allocating buffers. The | 
|  | * complete remap information is contained in a list of MFNs each containing | 
|  | * up to REMAP_SIZE MFNs and the start target PFN for doing the remap. | 
|  | * This enables us to preserve the original mfn sequence while doing the | 
|  | * remapping at a time when the memory management is capable of allocating | 
|  | * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and | 
|  | * its callers. | 
|  | */ | 
|  | static void __init xen_do_set_identity_and_remap_chunk( | 
|  | unsigned long start_pfn, unsigned long size, unsigned long remap_pfn) | 
|  | { | 
|  | unsigned long buf = (unsigned long)&xen_remap_buf; | 
|  | unsigned long mfn_save, mfn; | 
|  | unsigned long ident_pfn_iter, remap_pfn_iter; | 
|  | unsigned long ident_end_pfn = start_pfn + size; | 
|  | unsigned long left = size; | 
|  | unsigned int i, chunk; | 
|  |  | 
|  | WARN_ON(size == 0); | 
|  |  | 
|  | BUG_ON(xen_feature(XENFEAT_auto_translated_physmap)); | 
|  |  | 
|  | mfn_save = virt_to_mfn(buf); | 
|  |  | 
|  | for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn; | 
|  | ident_pfn_iter < ident_end_pfn; | 
|  | ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) { | 
|  | chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE; | 
|  |  | 
|  | /* Map first pfn to xen_remap_buf */ | 
|  | mfn = pfn_to_mfn(ident_pfn_iter); | 
|  | set_pte_mfn(buf, mfn, PAGE_KERNEL); | 
|  |  | 
|  | /* Save mapping information in page */ | 
|  | xen_remap_buf.next_area_mfn = xen_remap_mfn; | 
|  | xen_remap_buf.target_pfn = remap_pfn_iter; | 
|  | xen_remap_buf.size = chunk; | 
|  | for (i = 0; i < chunk; i++) | 
|  | xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i); | 
|  |  | 
|  | /* Put remap buf into list. */ | 
|  | xen_remap_mfn = mfn; | 
|  |  | 
|  | /* Set identity map */ | 
|  | set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk); | 
|  |  | 
|  | left -= chunk; | 
|  | } | 
|  |  | 
|  | /* Restore old xen_remap_buf mapping */ | 
|  | set_pte_mfn(buf, mfn_save, PAGE_KERNEL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function takes a contiguous pfn range that needs to be identity mapped | 
|  | * and: | 
|  | * | 
|  | *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn. | 
|  | *  2) Calls the do_ function to actually do the mapping/remapping work. | 
|  | * | 
|  | * The goal is to not allocate additional memory but to remap the existing | 
|  | * pages. In the case of an error the underlying memory is simply released back | 
|  | * to Xen and not remapped. | 
|  | */ | 
|  | static unsigned long __init xen_set_identity_and_remap_chunk( | 
|  | unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, | 
|  | unsigned long remap_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  | unsigned long i = 0; | 
|  | unsigned long n = end_pfn - start_pfn; | 
|  |  | 
|  | if (remap_pfn == 0) | 
|  | remap_pfn = nr_pages; | 
|  |  | 
|  | while (i < n) { | 
|  | unsigned long cur_pfn = start_pfn + i; | 
|  | unsigned long left = n - i; | 
|  | unsigned long size = left; | 
|  | unsigned long remap_range_size; | 
|  |  | 
|  | /* Do not remap pages beyond the current allocation */ | 
|  | if (cur_pfn >= nr_pages) { | 
|  | /* Identity map remaining pages */ | 
|  | set_phys_range_identity(cur_pfn, cur_pfn + size); | 
|  | break; | 
|  | } | 
|  | if (cur_pfn + size > nr_pages) | 
|  | size = nr_pages - cur_pfn; | 
|  |  | 
|  | remap_range_size = xen_find_pfn_range(&remap_pfn); | 
|  | if (!remap_range_size) { | 
|  | pr_warning("Unable to find available pfn range, not remapping identity pages\n"); | 
|  | xen_set_identity_and_release_chunk(cur_pfn, | 
|  | cur_pfn + left, nr_pages); | 
|  | break; | 
|  | } | 
|  | /* Adjust size to fit in current e820 RAM region */ | 
|  | if (size > remap_range_size) | 
|  | size = remap_range_size; | 
|  |  | 
|  | xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn); | 
|  |  | 
|  | /* Update variables to reflect new mappings. */ | 
|  | i += size; | 
|  | remap_pfn += size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the PFNs are currently mapped, the VA mapping also needs | 
|  | * to be updated to be 1:1. | 
|  | */ | 
|  | for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) | 
|  | (void)HYPERVISOR_update_va_mapping( | 
|  | (unsigned long)__va(pfn << PAGE_SHIFT), | 
|  | mfn_pte(pfn, PAGE_KERNEL_IO), 0); | 
|  |  | 
|  | return remap_pfn; | 
|  | } | 
|  |  | 
|  | static unsigned long __init xen_count_remap_pages( | 
|  | unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, | 
|  | unsigned long remap_pages) | 
|  | { | 
|  | if (start_pfn >= nr_pages) | 
|  | return remap_pages; | 
|  |  | 
|  | return remap_pages + min(end_pfn, nr_pages) - start_pfn; | 
|  | } | 
|  |  | 
|  | static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages, | 
|  | unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn, | 
|  | unsigned long nr_pages, unsigned long last_val)) | 
|  | { | 
|  | phys_addr_t start = 0; | 
|  | unsigned long ret_val = 0; | 
|  | const struct e820_entry *entry = xen_e820_table.entries; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Combine non-RAM regions and gaps until a RAM region (or the | 
|  | * end of the map) is reached, then call the provided function | 
|  | * to perform its duty on the non-RAM region. | 
|  | * | 
|  | * The combined non-RAM regions are rounded to a whole number | 
|  | * of pages so any partial pages are accessible via the 1:1 | 
|  | * mapping.  This is needed for some BIOSes that put (for | 
|  | * example) the DMI tables in a reserved region that begins on | 
|  | * a non-page boundary. | 
|  | */ | 
|  | for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { | 
|  | phys_addr_t end = entry->addr + entry->size; | 
|  | if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) { | 
|  | unsigned long start_pfn = PFN_DOWN(start); | 
|  | unsigned long end_pfn = PFN_UP(end); | 
|  |  | 
|  | if (entry->type == E820_TYPE_RAM) | 
|  | end_pfn = PFN_UP(entry->addr); | 
|  |  | 
|  | if (start_pfn < end_pfn) | 
|  | ret_val = func(start_pfn, end_pfn, nr_pages, | 
|  | ret_val); | 
|  | start = end; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remap the memory prepared in xen_do_set_identity_and_remap_chunk(). | 
|  | * The remap information (which mfn remap to which pfn) is contained in the | 
|  | * to be remapped memory itself in a linked list anchored at xen_remap_mfn. | 
|  | * This scheme allows to remap the different chunks in arbitrary order while | 
|  | * the resulting mapping will be independant from the order. | 
|  | */ | 
|  | void __init xen_remap_memory(void) | 
|  | { | 
|  | unsigned long buf = (unsigned long)&xen_remap_buf; | 
|  | unsigned long mfn_save, mfn, pfn; | 
|  | unsigned long remapped = 0; | 
|  | unsigned int i; | 
|  | unsigned long pfn_s = ~0UL; | 
|  | unsigned long len = 0; | 
|  |  | 
|  | mfn_save = virt_to_mfn(buf); | 
|  |  | 
|  | while (xen_remap_mfn != INVALID_P2M_ENTRY) { | 
|  | /* Map the remap information */ | 
|  | set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL); | 
|  |  | 
|  | BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]); | 
|  |  | 
|  | pfn = xen_remap_buf.target_pfn; | 
|  | for (i = 0; i < xen_remap_buf.size; i++) { | 
|  | mfn = xen_remap_buf.mfns[i]; | 
|  | xen_update_mem_tables(pfn, mfn); | 
|  | remapped++; | 
|  | pfn++; | 
|  | } | 
|  | if (pfn_s == ~0UL || pfn == pfn_s) { | 
|  | pfn_s = xen_remap_buf.target_pfn; | 
|  | len += xen_remap_buf.size; | 
|  | } else if (pfn_s + len == xen_remap_buf.target_pfn) { | 
|  | len += xen_remap_buf.size; | 
|  | } else { | 
|  | xen_del_extra_mem(pfn_s, len); | 
|  | pfn_s = xen_remap_buf.target_pfn; | 
|  | len = xen_remap_buf.size; | 
|  | } | 
|  |  | 
|  | mfn = xen_remap_mfn; | 
|  | xen_remap_mfn = xen_remap_buf.next_area_mfn; | 
|  | } | 
|  |  | 
|  | if (pfn_s != ~0UL && len) | 
|  | xen_del_extra_mem(pfn_s, len); | 
|  |  | 
|  | set_pte_mfn(buf, mfn_save, PAGE_KERNEL); | 
|  |  | 
|  | pr_info("Remapped %ld page(s)\n", remapped); | 
|  | } | 
|  |  | 
|  | static unsigned long __init xen_get_pages_limit(void) | 
|  | { | 
|  | unsigned long limit; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | limit = GB(64) / PAGE_SIZE; | 
|  | #else | 
|  | limit = MAXMEM / PAGE_SIZE; | 
|  | if (!xen_initial_domain() && xen_512gb_limit) | 
|  | limit = GB(512) / PAGE_SIZE; | 
|  | #endif | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static unsigned long __init xen_get_max_pages(void) | 
|  | { | 
|  | unsigned long max_pages, limit; | 
|  | domid_t domid = DOMID_SELF; | 
|  | long ret; | 
|  |  | 
|  | limit = xen_get_pages_limit(); | 
|  | max_pages = limit; | 
|  |  | 
|  | /* | 
|  | * For the initial domain we use the maximum reservation as | 
|  | * the maximum page. | 
|  | * | 
|  | * For guest domains the current maximum reservation reflects | 
|  | * the current maximum rather than the static maximum. In this | 
|  | * case the e820 map provided to us will cover the static | 
|  | * maximum region. | 
|  | */ | 
|  | if (xen_initial_domain()) { | 
|  | ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); | 
|  | if (ret > 0) | 
|  | max_pages = ret; | 
|  | } | 
|  |  | 
|  | return min(max_pages, limit); | 
|  | } | 
|  |  | 
|  | static void __init xen_align_and_add_e820_region(phys_addr_t start, | 
|  | phys_addr_t size, int type) | 
|  | { | 
|  | phys_addr_t end = start + size; | 
|  |  | 
|  | /* Align RAM regions to page boundaries. */ | 
|  | if (type == E820_TYPE_RAM) { | 
|  | start = PAGE_ALIGN(start); | 
|  | end &= ~((phys_addr_t)PAGE_SIZE - 1); | 
|  | } | 
|  |  | 
|  | e820__range_add(start, end - start, type); | 
|  | } | 
|  |  | 
|  | static void __init xen_ignore_unusable(void) | 
|  | { | 
|  | struct e820_entry *entry = xen_e820_table.entries; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { | 
|  | if (entry->type == E820_TYPE_UNUSABLE) | 
|  | entry->type = E820_TYPE_RAM; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size) | 
|  | { | 
|  | struct e820_entry *entry; | 
|  | unsigned mapcnt; | 
|  | phys_addr_t end; | 
|  |  | 
|  | if (!size) | 
|  | return false; | 
|  |  | 
|  | end = start + size; | 
|  | entry = xen_e820_table.entries; | 
|  |  | 
|  | for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) { | 
|  | if (entry->type == E820_TYPE_RAM && entry->addr <= start && | 
|  | (entry->addr + entry->size) >= end) | 
|  | return false; | 
|  |  | 
|  | entry++; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a free area in physical memory not yet reserved and compliant with | 
|  | * E820 map. | 
|  | * Used to relocate pre-allocated areas like initrd or p2m list which are in | 
|  | * conflict with the to be used E820 map. | 
|  | * In case no area is found, return 0. Otherwise return the physical address | 
|  | * of the area which is already reserved for convenience. | 
|  | */ | 
|  | phys_addr_t __init xen_find_free_area(phys_addr_t size) | 
|  | { | 
|  | unsigned mapcnt; | 
|  | phys_addr_t addr, start; | 
|  | struct e820_entry *entry = xen_e820_table.entries; | 
|  |  | 
|  | for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) { | 
|  | if (entry->type != E820_TYPE_RAM || entry->size < size) | 
|  | continue; | 
|  | start = entry->addr; | 
|  | for (addr = start; addr < start + size; addr += PAGE_SIZE) { | 
|  | if (!memblock_is_reserved(addr)) | 
|  | continue; | 
|  | start = addr + PAGE_SIZE; | 
|  | if (start + size > entry->addr + entry->size) | 
|  | break; | 
|  | } | 
|  | if (addr >= start + size) { | 
|  | memblock_reserve(start, size); | 
|  | return start; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like memcpy, but with physical addresses for dest and src. | 
|  | */ | 
|  | static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src, | 
|  | phys_addr_t n) | 
|  | { | 
|  | phys_addr_t dest_off, src_off, dest_len, src_len, len; | 
|  | void *from, *to; | 
|  |  | 
|  | while (n) { | 
|  | dest_off = dest & ~PAGE_MASK; | 
|  | src_off = src & ~PAGE_MASK; | 
|  | dest_len = n; | 
|  | if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off) | 
|  | dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off; | 
|  | src_len = n; | 
|  | if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off) | 
|  | src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off; | 
|  | len = min(dest_len, src_len); | 
|  | to = early_memremap(dest - dest_off, dest_len + dest_off); | 
|  | from = early_memremap(src - src_off, src_len + src_off); | 
|  | memcpy(to, from, len); | 
|  | early_memunmap(to, dest_len + dest_off); | 
|  | early_memunmap(from, src_len + src_off); | 
|  | n -= len; | 
|  | dest += len; | 
|  | src += len; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve Xen mfn_list. | 
|  | */ | 
|  | static void __init xen_reserve_xen_mfnlist(void) | 
|  | { | 
|  | phys_addr_t start, size; | 
|  |  | 
|  | if (xen_start_info->mfn_list >= __START_KERNEL_map) { | 
|  | start = __pa(xen_start_info->mfn_list); | 
|  | size = PFN_ALIGN(xen_start_info->nr_pages * | 
|  | sizeof(unsigned long)); | 
|  | } else { | 
|  | start = PFN_PHYS(xen_start_info->first_p2m_pfn); | 
|  | size = PFN_PHYS(xen_start_info->nr_p2m_frames); | 
|  | } | 
|  |  | 
|  | memblock_reserve(start, size); | 
|  | if (!xen_is_e820_reserved(start, size)) | 
|  | return; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * Relocating the p2m on 32 bit system to an arbitrary virtual address | 
|  | * is not supported, so just give up. | 
|  | */ | 
|  | xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n"); | 
|  | BUG(); | 
|  | #else | 
|  | xen_relocate_p2m(); | 
|  | memblock_free(start, size); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * machine_specific_memory_setup - Hook for machine specific memory setup. | 
|  | **/ | 
|  | char * __init xen_memory_setup(void) | 
|  | { | 
|  | unsigned long max_pfn, pfn_s, n_pfns; | 
|  | phys_addr_t mem_end, addr, size, chunk_size; | 
|  | u32 type; | 
|  | int rc; | 
|  | struct xen_memory_map memmap; | 
|  | unsigned long max_pages; | 
|  | unsigned long extra_pages = 0; | 
|  | int i; | 
|  | int op; | 
|  |  | 
|  | xen_parse_512gb(); | 
|  | max_pfn = xen_get_pages_limit(); | 
|  | max_pfn = min(max_pfn, xen_start_info->nr_pages); | 
|  | mem_end = PFN_PHYS(max_pfn); | 
|  |  | 
|  | memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries); | 
|  | set_xen_guest_handle(memmap.buffer, xen_e820_table.entries); | 
|  |  | 
|  | op = xen_initial_domain() ? | 
|  | XENMEM_machine_memory_map : | 
|  | XENMEM_memory_map; | 
|  | rc = HYPERVISOR_memory_op(op, &memmap); | 
|  | if (rc == -ENOSYS) { | 
|  | BUG_ON(xen_initial_domain()); | 
|  | memmap.nr_entries = 1; | 
|  | xen_e820_table.entries[0].addr = 0ULL; | 
|  | xen_e820_table.entries[0].size = mem_end; | 
|  | /* 8MB slack (to balance backend allocations). */ | 
|  | xen_e820_table.entries[0].size += 8ULL << 20; | 
|  | xen_e820_table.entries[0].type = E820_TYPE_RAM; | 
|  | rc = 0; | 
|  | } | 
|  | BUG_ON(rc); | 
|  | BUG_ON(memmap.nr_entries == 0); | 
|  | xen_e820_table.nr_entries = memmap.nr_entries; | 
|  |  | 
|  | /* | 
|  | * Xen won't allow a 1:1 mapping to be created to UNUSABLE | 
|  | * regions, so if we're using the machine memory map leave the | 
|  | * region as RAM as it is in the pseudo-physical map. | 
|  | * | 
|  | * UNUSABLE regions in domUs are not handled and will need | 
|  | * a patch in the future. | 
|  | */ | 
|  | if (xen_initial_domain()) | 
|  | xen_ignore_unusable(); | 
|  |  | 
|  | /* Make sure the Xen-supplied memory map is well-ordered. */ | 
|  | e820__update_table(&xen_e820_table); | 
|  |  | 
|  | max_pages = xen_get_max_pages(); | 
|  |  | 
|  | /* How many extra pages do we need due to remapping? */ | 
|  | max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages); | 
|  |  | 
|  | if (max_pages > max_pfn) | 
|  | extra_pages += max_pages - max_pfn; | 
|  |  | 
|  | /* | 
|  | * Clamp the amount of extra memory to a EXTRA_MEM_RATIO | 
|  | * factor the base size.  On non-highmem systems, the base | 
|  | * size is the full initial memory allocation; on highmem it | 
|  | * is limited to the max size of lowmem, so that it doesn't | 
|  | * get completely filled. | 
|  | * | 
|  | * Make sure we have no memory above max_pages, as this area | 
|  | * isn't handled by the p2m management. | 
|  | * | 
|  | * In principle there could be a problem in lowmem systems if | 
|  | * the initial memory is also very large with respect to | 
|  | * lowmem, but we won't try to deal with that here. | 
|  | */ | 
|  | extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), | 
|  | extra_pages, max_pages - max_pfn); | 
|  | i = 0; | 
|  | addr = xen_e820_table.entries[0].addr; | 
|  | size = xen_e820_table.entries[0].size; | 
|  | while (i < xen_e820_table.nr_entries) { | 
|  | bool discard = false; | 
|  |  | 
|  | chunk_size = size; | 
|  | type = xen_e820_table.entries[i].type; | 
|  |  | 
|  | if (type == E820_TYPE_RAM) { | 
|  | if (addr < mem_end) { | 
|  | chunk_size = min(size, mem_end - addr); | 
|  | } else if (extra_pages) { | 
|  | chunk_size = min(size, PFN_PHYS(extra_pages)); | 
|  | pfn_s = PFN_UP(addr); | 
|  | n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s; | 
|  | extra_pages -= n_pfns; | 
|  | xen_add_extra_mem(pfn_s, n_pfns); | 
|  | xen_max_p2m_pfn = pfn_s + n_pfns; | 
|  | } else | 
|  | discard = true; | 
|  | } | 
|  |  | 
|  | if (!discard) | 
|  | xen_align_and_add_e820_region(addr, chunk_size, type); | 
|  |  | 
|  | addr += chunk_size; | 
|  | size -= chunk_size; | 
|  | if (size == 0) { | 
|  | i++; | 
|  | if (i < xen_e820_table.nr_entries) { | 
|  | addr = xen_e820_table.entries[i].addr; | 
|  | size = xen_e820_table.entries[i].size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the rest as identity mapped, in case PCI BARs are | 
|  | * located here. | 
|  | */ | 
|  | set_phys_range_identity(addr / PAGE_SIZE, ~0ul); | 
|  |  | 
|  | /* | 
|  | * In domU, the ISA region is normal, usable memory, but we | 
|  | * reserve ISA memory anyway because too many things poke | 
|  | * about in there. | 
|  | */ | 
|  | e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED); | 
|  |  | 
|  | e820__update_table(e820_table); | 
|  |  | 
|  | /* | 
|  | * Check whether the kernel itself conflicts with the target E820 map. | 
|  | * Failing now is better than running into weird problems later due | 
|  | * to relocating (and even reusing) pages with kernel text or data. | 
|  | */ | 
|  | if (xen_is_e820_reserved(__pa_symbol(_text), | 
|  | __pa_symbol(__bss_stop) - __pa_symbol(_text))) { | 
|  | xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for a conflict of the hypervisor supplied page tables with | 
|  | * the target E820 map. | 
|  | */ | 
|  | xen_pt_check_e820(); | 
|  |  | 
|  | xen_reserve_xen_mfnlist(); | 
|  |  | 
|  | /* Check for a conflict of the initrd with the target E820 map. */ | 
|  | if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image, | 
|  | boot_params.hdr.ramdisk_size)) { | 
|  | phys_addr_t new_area, start, size; | 
|  |  | 
|  | new_area = xen_find_free_area(boot_params.hdr.ramdisk_size); | 
|  | if (!new_area) { | 
|  | xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | start = boot_params.hdr.ramdisk_image; | 
|  | size = boot_params.hdr.ramdisk_size; | 
|  | xen_phys_memcpy(new_area, start, size); | 
|  | pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n", | 
|  | start, start + size, new_area, new_area + size); | 
|  | memblock_free(start, size); | 
|  | boot_params.hdr.ramdisk_image = new_area; | 
|  | boot_params.ext_ramdisk_image = new_area >> 32; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set identity map on non-RAM pages and prepare remapping the | 
|  | * underlying RAM. | 
|  | */ | 
|  | xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk); | 
|  |  | 
|  | pr_info("Released %ld page(s)\n", xen_released_pages); | 
|  |  | 
|  | return "Xen"; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Machine specific memory setup for auto-translated guests. | 
|  | */ | 
|  | char * __init xen_auto_xlated_memory_setup(void) | 
|  | { | 
|  | struct xen_memory_map memmap; | 
|  | int i; | 
|  | int rc; | 
|  |  | 
|  | memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries); | 
|  | set_xen_guest_handle(memmap.buffer, xen_e820_table.entries); | 
|  |  | 
|  | rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap); | 
|  | if (rc < 0) | 
|  | panic("No memory map (%d)\n", rc); | 
|  |  | 
|  | xen_e820_table.nr_entries = memmap.nr_entries; | 
|  |  | 
|  | e820__update_table(&xen_e820_table); | 
|  |  | 
|  | for (i = 0; i < xen_e820_table.nr_entries; i++) | 
|  | e820__range_add(xen_e820_table.entries[i].addr, xen_e820_table.entries[i].size, xen_e820_table.entries[i].type); | 
|  |  | 
|  | /* Remove p2m info, it is not needed. */ | 
|  | xen_start_info->mfn_list = 0; | 
|  | xen_start_info->first_p2m_pfn = 0; | 
|  | xen_start_info->nr_p2m_frames = 0; | 
|  |  | 
|  | return "Xen"; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the bit indicating "nosegneg" library variants should be used. | 
|  | * We only need to bother in pure 32-bit mode; compat 32-bit processes | 
|  | * can have un-truncated segments, so wrapping around is allowed. | 
|  | */ | 
|  | static void __init fiddle_vdso(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | u32 *mask = vdso_image_32.data + | 
|  | vdso_image_32.sym_VDSO32_NOTE_MASK; | 
|  | *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int register_callback(unsigned type, const void *func) | 
|  | { | 
|  | struct callback_register callback = { | 
|  | .type = type, | 
|  | .address = XEN_CALLBACK(__KERNEL_CS, func), | 
|  | .flags = CALLBACKF_mask_events, | 
|  | }; | 
|  |  | 
|  | return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); | 
|  | } | 
|  |  | 
|  | void xen_enable_sysenter(void) | 
|  | { | 
|  | int ret; | 
|  | unsigned sysenter_feature; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | sysenter_feature = X86_FEATURE_SEP; | 
|  | #else | 
|  | sysenter_feature = X86_FEATURE_SYSENTER32; | 
|  | #endif | 
|  |  | 
|  | if (!boot_cpu_has(sysenter_feature)) | 
|  | return; | 
|  |  | 
|  | ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); | 
|  | if(ret != 0) | 
|  | setup_clear_cpu_cap(sysenter_feature); | 
|  | } | 
|  |  | 
|  | void xen_enable_syscall(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | int ret; | 
|  |  | 
|  | ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); | 
|  | if (ret != 0) { | 
|  | printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); | 
|  | /* Pretty fatal; 64-bit userspace has no other | 
|  | mechanism for syscalls. */ | 
|  | } | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { | 
|  | ret = register_callback(CALLBACKTYPE_syscall32, | 
|  | xen_syscall32_target); | 
|  | if (ret != 0) | 
|  | setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); | 
|  | } | 
|  | #endif /* CONFIG_X86_64 */ | 
|  | } | 
|  |  | 
|  | void __init xen_pvmmu_arch_setup(void) | 
|  | { | 
|  | HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); | 
|  | HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); | 
|  |  | 
|  | HYPERVISOR_vm_assist(VMASST_CMD_enable, | 
|  | VMASST_TYPE_pae_extended_cr3); | 
|  |  | 
|  | if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || | 
|  | register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) | 
|  | BUG(); | 
|  |  | 
|  | xen_enable_sysenter(); | 
|  | xen_enable_syscall(); | 
|  | } | 
|  |  | 
|  | /* This function is not called for HVM domains */ | 
|  | void __init xen_arch_setup(void) | 
|  | { | 
|  | xen_panic_handler_init(); | 
|  | if (!xen_feature(XENFEAT_auto_translated_physmap)) | 
|  | xen_pvmmu_arch_setup(); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | if (!(xen_start_info->flags & SIF_INITDOMAIN)) { | 
|  | printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); | 
|  | disable_acpi(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | memcpy(boot_command_line, xen_start_info->cmd_line, | 
|  | MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? | 
|  | COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); | 
|  |  | 
|  | /* Set up idle, making sure it calls safe_halt() pvop */ | 
|  | disable_cpuidle(); | 
|  | disable_cpufreq(); | 
|  | WARN_ON(xen_set_default_idle()); | 
|  | fiddle_vdso(); | 
|  | #ifdef CONFIG_NUMA | 
|  | numa_off = 1; | 
|  | #endif | 
|  | } |