| /* | 
 |  * Implement the default iomap interfaces | 
 |  * | 
 |  * (C) Copyright 2004 Linus Torvalds | 
 |  */ | 
 | #include <linux/pci.h> | 
 | #include <linux/io.h> | 
 |  | 
 | #include <linux/export.h> | 
 |  | 
 | /* | 
 |  * Read/write from/to an (offsettable) iomem cookie. It might be a PIO | 
 |  * access or a MMIO access, these functions don't care. The info is | 
 |  * encoded in the hardware mapping set up by the mapping functions | 
 |  * (or the cookie itself, depending on implementation and hw). | 
 |  * | 
 |  * The generic routines don't assume any hardware mappings, and just | 
 |  * encode the PIO/MMIO as part of the cookie. They coldly assume that | 
 |  * the MMIO IO mappings are not in the low address range. | 
 |  * | 
 |  * Architectures for which this is not true can't use this generic | 
 |  * implementation and should do their own copy. | 
 |  */ | 
 |  | 
 | #ifndef HAVE_ARCH_PIO_SIZE | 
 | /* | 
 |  * We encode the physical PIO addresses (0-0xffff) into the | 
 |  * pointer by offsetting them with a constant (0x10000) and | 
 |  * assuming that all the low addresses are always PIO. That means | 
 |  * we can do some sanity checks on the low bits, and don't | 
 |  * need to just take things for granted. | 
 |  */ | 
 | #define PIO_OFFSET	0x10000UL | 
 | #define PIO_MASK	0x0ffffUL | 
 | #define PIO_RESERVED	0x40000UL | 
 | #endif | 
 |  | 
 | static void bad_io_access(unsigned long port, const char *access) | 
 | { | 
 | 	static int count = 10; | 
 | 	if (count) { | 
 | 		count--; | 
 | 		WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Ugly macros are a way of life. | 
 |  */ | 
 | #define IO_COND(addr, is_pio, is_mmio) do {			\ | 
 | 	unsigned long port = (unsigned long __force)addr;	\ | 
 | 	if (port >= PIO_RESERVED) {				\ | 
 | 		is_mmio;					\ | 
 | 	} else if (port > PIO_OFFSET) {				\ | 
 | 		port &= PIO_MASK;				\ | 
 | 		is_pio;						\ | 
 | 	} else							\ | 
 | 		bad_io_access(port, #is_pio );			\ | 
 | } while (0) | 
 |  | 
 | #ifndef pio_read16be | 
 | #define pio_read16be(port) swab16(inw(port)) | 
 | #define pio_read32be(port) swab32(inl(port)) | 
 | #endif | 
 |  | 
 | #ifndef mmio_read16be | 
 | #define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr)) | 
 | #define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr)) | 
 | #endif | 
 |  | 
 | unsigned int ioread8(void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, return inb(port), return readb(addr)); | 
 | 	return 0xff; | 
 | } | 
 | unsigned int ioread16(void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, return inw(port), return readw(addr)); | 
 | 	return 0xffff; | 
 | } | 
 | unsigned int ioread16be(void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr)); | 
 | 	return 0xffff; | 
 | } | 
 | unsigned int ioread32(void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, return inl(port), return readl(addr)); | 
 | 	return 0xffffffff; | 
 | } | 
 | unsigned int ioread32be(void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr)); | 
 | 	return 0xffffffff; | 
 | } | 
 | EXPORT_SYMBOL(ioread8); | 
 | EXPORT_SYMBOL(ioread16); | 
 | EXPORT_SYMBOL(ioread16be); | 
 | EXPORT_SYMBOL(ioread32); | 
 | EXPORT_SYMBOL(ioread32be); | 
 |  | 
 | #ifndef pio_write16be | 
 | #define pio_write16be(val,port) outw(swab16(val),port) | 
 | #define pio_write32be(val,port) outl(swab32(val),port) | 
 | #endif | 
 |  | 
 | #ifndef mmio_write16be | 
 | #define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port) | 
 | #define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port) | 
 | #endif | 
 |  | 
 | void iowrite8(u8 val, void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, outb(val,port), writeb(val, addr)); | 
 | } | 
 | void iowrite16(u16 val, void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, outw(val,port), writew(val, addr)); | 
 | } | 
 | void iowrite16be(u16 val, void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr)); | 
 | } | 
 | void iowrite32(u32 val, void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, outl(val,port), writel(val, addr)); | 
 | } | 
 | void iowrite32be(u32 val, void __iomem *addr) | 
 | { | 
 | 	IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr)); | 
 | } | 
 | EXPORT_SYMBOL(iowrite8); | 
 | EXPORT_SYMBOL(iowrite16); | 
 | EXPORT_SYMBOL(iowrite16be); | 
 | EXPORT_SYMBOL(iowrite32); | 
 | EXPORT_SYMBOL(iowrite32be); | 
 |  | 
 | /* | 
 |  * These are the "repeat MMIO read/write" functions. | 
 |  * Note the "__raw" accesses, since we don't want to | 
 |  * convert to CPU byte order. We write in "IO byte | 
 |  * order" (we also don't have IO barriers). | 
 |  */ | 
 | #ifndef mmio_insb | 
 | static inline void mmio_insb(void __iomem *addr, u8 *dst, int count) | 
 | { | 
 | 	while (--count >= 0) { | 
 | 		u8 data = __raw_readb(addr); | 
 | 		*dst = data; | 
 | 		dst++; | 
 | 	} | 
 | } | 
 | static inline void mmio_insw(void __iomem *addr, u16 *dst, int count) | 
 | { | 
 | 	while (--count >= 0) { | 
 | 		u16 data = __raw_readw(addr); | 
 | 		*dst = data; | 
 | 		dst++; | 
 | 	} | 
 | } | 
 | static inline void mmio_insl(void __iomem *addr, u32 *dst, int count) | 
 | { | 
 | 	while (--count >= 0) { | 
 | 		u32 data = __raw_readl(addr); | 
 | 		*dst = data; | 
 | 		dst++; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef mmio_outsb | 
 | static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count) | 
 | { | 
 | 	while (--count >= 0) { | 
 | 		__raw_writeb(*src, addr); | 
 | 		src++; | 
 | 	} | 
 | } | 
 | static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count) | 
 | { | 
 | 	while (--count >= 0) { | 
 | 		__raw_writew(*src, addr); | 
 | 		src++; | 
 | 	} | 
 | } | 
 | static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count) | 
 | { | 
 | 	while (--count >= 0) { | 
 | 		__raw_writel(*src, addr); | 
 | 		src++; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | void ioread8_rep(void __iomem *addr, void *dst, unsigned long count) | 
 | { | 
 | 	IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count)); | 
 | } | 
 | void ioread16_rep(void __iomem *addr, void *dst, unsigned long count) | 
 | { | 
 | 	IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count)); | 
 | } | 
 | void ioread32_rep(void __iomem *addr, void *dst, unsigned long count) | 
 | { | 
 | 	IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count)); | 
 | } | 
 | EXPORT_SYMBOL(ioread8_rep); | 
 | EXPORT_SYMBOL(ioread16_rep); | 
 | EXPORT_SYMBOL(ioread32_rep); | 
 |  | 
 | void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) | 
 | { | 
 | 	IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count)); | 
 | } | 
 | void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) | 
 | { | 
 | 	IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count)); | 
 | } | 
 | void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) | 
 | { | 
 | 	IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count)); | 
 | } | 
 | EXPORT_SYMBOL(iowrite8_rep); | 
 | EXPORT_SYMBOL(iowrite16_rep); | 
 | EXPORT_SYMBOL(iowrite32_rep); | 
 |  | 
 | #ifdef CONFIG_HAS_IOPORT_MAP | 
 | /* Create a virtual mapping cookie for an IO port range */ | 
 | void __iomem *ioport_map(unsigned long port, unsigned int nr) | 
 | { | 
 | 	if (port > PIO_MASK) | 
 | 		return NULL; | 
 | 	return (void __iomem *) (unsigned long) (port + PIO_OFFSET); | 
 | } | 
 |  | 
 | void ioport_unmap(void __iomem *addr) | 
 | { | 
 | 	/* Nothing to do */ | 
 | } | 
 | EXPORT_SYMBOL(ioport_map); | 
 | EXPORT_SYMBOL(ioport_unmap); | 
 | #endif /* CONFIG_HAS_IOPORT_MAP */ | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | /* Hide the details if this is a MMIO or PIO address space and just do what | 
 |  * you expect in the correct way. */ | 
 | void pci_iounmap(struct pci_dev *dev, void __iomem * addr) | 
 | { | 
 | 	IO_COND(addr, /* nothing */, iounmap(addr)); | 
 | } | 
 | EXPORT_SYMBOL(pci_iounmap); | 
 | #endif /* CONFIG_PCI */ |