| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * (C) 1997 Linus Torvalds | 
 |  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) | 
 |  */ | 
 | #include <linux/export.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/filelock.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/security.h> | 
 | #include <linux/cdev.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/fsnotify.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/posix_acl.h> | 
 | #include <linux/buffer_head.h> /* for inode_has_buffers */ | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/list_lru.h> | 
 | #include <linux/iversion.h> | 
 | #include <linux/rw_hint.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/debugfs.h> | 
 | #include <trace/events/writeback.h> | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/timestamp.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * Inode locking rules: | 
 |  * | 
 |  * inode->i_lock protects: | 
 |  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list | 
 |  * Inode LRU list locks protect: | 
 |  *   inode->i_sb->s_inode_lru, inode->i_lru | 
 |  * inode->i_sb->s_inode_list_lock protects: | 
 |  *   inode->i_sb->s_inodes, inode->i_sb_list | 
 |  * bdi->wb.list_lock protects: | 
 |  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list | 
 |  * inode_hash_lock protects: | 
 |  *   inode_hashtable, inode->i_hash | 
 |  * | 
 |  * Lock ordering: | 
 |  * | 
 |  * inode->i_sb->s_inode_list_lock | 
 |  *   inode->i_lock | 
 |  *     Inode LRU list locks | 
 |  * | 
 |  * bdi->wb.list_lock | 
 |  *   inode->i_lock | 
 |  * | 
 |  * inode_hash_lock | 
 |  *   inode->i_sb->s_inode_list_lock | 
 |  *   inode->i_lock | 
 |  * | 
 |  * iunique_lock | 
 |  *   inode_hash_lock | 
 |  */ | 
 |  | 
 | static unsigned int i_hash_mask __ro_after_init; | 
 | static unsigned int i_hash_shift __ro_after_init; | 
 | static struct hlist_head *inode_hashtable __ro_after_init; | 
 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); | 
 |  | 
 | /* | 
 |  * Empty aops. Can be used for the cases where the user does not | 
 |  * define any of the address_space operations. | 
 |  */ | 
 | const struct address_space_operations empty_aops = { | 
 | }; | 
 | EXPORT_SYMBOL(empty_aops); | 
 |  | 
 | static DEFINE_PER_CPU(unsigned long, nr_inodes); | 
 | static DEFINE_PER_CPU(unsigned long, nr_unused); | 
 |  | 
 | static struct kmem_cache *inode_cachep __ro_after_init; | 
 |  | 
 | static long get_nr_inodes(void) | 
 | { | 
 | 	int i; | 
 | 	long sum = 0; | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += per_cpu(nr_inodes, i); | 
 | 	return sum < 0 ? 0 : sum; | 
 | } | 
 |  | 
 | static inline long get_nr_inodes_unused(void) | 
 | { | 
 | 	int i; | 
 | 	long sum = 0; | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += per_cpu(nr_unused, i); | 
 | 	return sum < 0 ? 0 : sum; | 
 | } | 
 |  | 
 | long get_nr_dirty_inodes(void) | 
 | { | 
 | 	/* not actually dirty inodes, but a wild approximation */ | 
 | 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); | 
 | 	return nr_dirty > 0 ? nr_dirty : 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 | static DEFINE_PER_CPU(long, mg_ctime_updates); | 
 | static DEFINE_PER_CPU(long, mg_fine_stamps); | 
 | static DEFINE_PER_CPU(long, mg_ctime_swaps); | 
 |  | 
 | static unsigned long get_mg_ctime_updates(void) | 
 | { | 
 | 	unsigned long sum = 0; | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += data_race(per_cpu(mg_ctime_updates, i)); | 
 | 	return sum; | 
 | } | 
 |  | 
 | static unsigned long get_mg_fine_stamps(void) | 
 | { | 
 | 	unsigned long sum = 0; | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += data_race(per_cpu(mg_fine_stamps, i)); | 
 | 	return sum; | 
 | } | 
 |  | 
 | static unsigned long get_mg_ctime_swaps(void) | 
 | { | 
 | 	unsigned long sum = 0; | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += data_race(per_cpu(mg_ctime_swaps, i)); | 
 | 	return sum; | 
 | } | 
 |  | 
 | #define mgtime_counter_inc(__var)	this_cpu_inc(__var) | 
 |  | 
 | static int mgts_show(struct seq_file *s, void *p) | 
 | { | 
 | 	unsigned long ctime_updates = get_mg_ctime_updates(); | 
 | 	unsigned long ctime_swaps = get_mg_ctime_swaps(); | 
 | 	unsigned long fine_stamps = get_mg_fine_stamps(); | 
 | 	unsigned long floor_swaps = timekeeping_get_mg_floor_swaps(); | 
 |  | 
 | 	seq_printf(s, "%lu %lu %lu %lu\n", | 
 | 		   ctime_updates, ctime_swaps, fine_stamps, floor_swaps); | 
 | 	return 0; | 
 | } | 
 |  | 
 | DEFINE_SHOW_ATTRIBUTE(mgts); | 
 |  | 
 | static int __init mg_debugfs_init(void) | 
 | { | 
 | 	debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops); | 
 | 	return 0; | 
 | } | 
 | late_initcall(mg_debugfs_init); | 
 |  | 
 | #else /* ! CONFIG_DEBUG_FS */ | 
 |  | 
 | #define mgtime_counter_inc(__var)	do { } while (0) | 
 |  | 
 | #endif /* CONFIG_DEBUG_FS */ | 
 |  | 
 | /* | 
 |  * Handle nr_inode sysctl | 
 |  */ | 
 | #ifdef CONFIG_SYSCTL | 
 | /* | 
 |  * Statistics gathering.. | 
 |  */ | 
 | static struct inodes_stat_t inodes_stat; | 
 |  | 
 | static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, | 
 | 			  size_t *lenp, loff_t *ppos) | 
 | { | 
 | 	inodes_stat.nr_inodes = get_nr_inodes(); | 
 | 	inodes_stat.nr_unused = get_nr_inodes_unused(); | 
 | 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
 | } | 
 |  | 
 | static const struct ctl_table inodes_sysctls[] = { | 
 | 	{ | 
 | 		.procname	= "inode-nr", | 
 | 		.data		= &inodes_stat, | 
 | 		.maxlen		= 2*sizeof(long), | 
 | 		.mode		= 0444, | 
 | 		.proc_handler	= proc_nr_inodes, | 
 | 	}, | 
 | 	{ | 
 | 		.procname	= "inode-state", | 
 | 		.data		= &inodes_stat, | 
 | 		.maxlen		= 7*sizeof(long), | 
 | 		.mode		= 0444, | 
 | 		.proc_handler	= proc_nr_inodes, | 
 | 	}, | 
 | }; | 
 |  | 
 | static int __init init_fs_inode_sysctls(void) | 
 | { | 
 | 	register_sysctl_init("fs", inodes_sysctls); | 
 | 	return 0; | 
 | } | 
 | early_initcall(init_fs_inode_sysctls); | 
 | #endif | 
 |  | 
 | static int no_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return -ENXIO; | 
 | } | 
 |  | 
 | /** | 
 |  * inode_init_always_gfp - perform inode structure initialisation | 
 |  * @sb: superblock inode belongs to | 
 |  * @inode: inode to initialise | 
 |  * @gfp: allocation flags | 
 |  * | 
 |  * These are initializations that need to be done on every inode | 
 |  * allocation as the fields are not initialised by slab allocation. | 
 |  * If there are additional allocations required @gfp is used. | 
 |  */ | 
 | int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp) | 
 | { | 
 | 	static const struct inode_operations empty_iops; | 
 | 	static const struct file_operations no_open_fops = {.open = no_open}; | 
 | 	struct address_space *const mapping = &inode->i_data; | 
 |  | 
 | 	inode->i_sb = sb; | 
 | 	inode->i_blkbits = sb->s_blocksize_bits; | 
 | 	inode->i_flags = 0; | 
 | 	inode->i_state = 0; | 
 | 	atomic64_set(&inode->i_sequence, 0); | 
 | 	atomic_set(&inode->i_count, 1); | 
 | 	inode->i_op = &empty_iops; | 
 | 	inode->i_fop = &no_open_fops; | 
 | 	inode->i_ino = 0; | 
 | 	inode->__i_nlink = 1; | 
 | 	inode->i_opflags = 0; | 
 | 	if (sb->s_xattr) | 
 | 		inode->i_opflags |= IOP_XATTR; | 
 | 	if (sb->s_type->fs_flags & FS_MGTIME) | 
 | 		inode->i_opflags |= IOP_MGTIME; | 
 | 	i_uid_write(inode, 0); | 
 | 	i_gid_write(inode, 0); | 
 | 	atomic_set(&inode->i_writecount, 0); | 
 | 	inode->i_size = 0; | 
 | 	inode->i_write_hint = WRITE_LIFE_NOT_SET; | 
 | 	inode->i_blocks = 0; | 
 | 	inode->i_bytes = 0; | 
 | 	inode->i_generation = 0; | 
 | 	inode->i_pipe = NULL; | 
 | 	inode->i_cdev = NULL; | 
 | 	inode->i_link = NULL; | 
 | 	inode->i_dir_seq = 0; | 
 | 	inode->i_rdev = 0; | 
 | 	inode->dirtied_when = 0; | 
 |  | 
 | #ifdef CONFIG_CGROUP_WRITEBACK | 
 | 	inode->i_wb_frn_winner = 0; | 
 | 	inode->i_wb_frn_avg_time = 0; | 
 | 	inode->i_wb_frn_history = 0; | 
 | #endif | 
 |  | 
 | 	spin_lock_init(&inode->i_lock); | 
 | 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); | 
 |  | 
 | 	init_rwsem(&inode->i_rwsem); | 
 | 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); | 
 |  | 
 | 	atomic_set(&inode->i_dio_count, 0); | 
 |  | 
 | 	mapping->a_ops = &empty_aops; | 
 | 	mapping->host = inode; | 
 | 	mapping->flags = 0; | 
 | 	mapping->wb_err = 0; | 
 | 	atomic_set(&mapping->i_mmap_writable, 0); | 
 | #ifdef CONFIG_READ_ONLY_THP_FOR_FS | 
 | 	atomic_set(&mapping->nr_thps, 0); | 
 | #endif | 
 | 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); | 
 | 	mapping->i_private_data = NULL; | 
 | 	mapping->writeback_index = 0; | 
 | 	init_rwsem(&mapping->invalidate_lock); | 
 | 	lockdep_set_class_and_name(&mapping->invalidate_lock, | 
 | 				   &sb->s_type->invalidate_lock_key, | 
 | 				   "mapping.invalidate_lock"); | 
 | 	if (sb->s_iflags & SB_I_STABLE_WRITES) | 
 | 		mapping_set_stable_writes(mapping); | 
 | 	inode->i_private = NULL; | 
 | 	inode->i_mapping = mapping; | 
 | 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */ | 
 | #ifdef CONFIG_FS_POSIX_ACL | 
 | 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_FSNOTIFY | 
 | 	inode->i_fsnotify_mask = 0; | 
 | #endif | 
 | 	inode->i_flctx = NULL; | 
 |  | 
 | 	if (unlikely(security_inode_alloc(inode, gfp))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	this_cpu_inc(nr_inodes); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(inode_init_always_gfp); | 
 |  | 
 | void free_inode_nonrcu(struct inode *inode) | 
 | { | 
 | 	kmem_cache_free(inode_cachep, inode); | 
 | } | 
 | EXPORT_SYMBOL(free_inode_nonrcu); | 
 |  | 
 | static void i_callback(struct rcu_head *head) | 
 | { | 
 | 	struct inode *inode = container_of(head, struct inode, i_rcu); | 
 | 	if (inode->free_inode) | 
 | 		inode->free_inode(inode); | 
 | 	else | 
 | 		free_inode_nonrcu(inode); | 
 | } | 
 |  | 
 | /** | 
 |  *	alloc_inode 	- obtain an inode | 
 |  *	@sb: superblock | 
 |  * | 
 |  *	Allocates a new inode for given superblock. | 
 |  *	Inode wont be chained in superblock s_inodes list | 
 |  *	This means : | 
 |  *	- fs can't be unmount | 
 |  *	- quotas, fsnotify, writeback can't work | 
 |  */ | 
 | struct inode *alloc_inode(struct super_block *sb) | 
 | { | 
 | 	const struct super_operations *ops = sb->s_op; | 
 | 	struct inode *inode; | 
 |  | 
 | 	if (ops->alloc_inode) | 
 | 		inode = ops->alloc_inode(sb); | 
 | 	else | 
 | 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); | 
 |  | 
 | 	if (!inode) | 
 | 		return NULL; | 
 |  | 
 | 	if (unlikely(inode_init_always(sb, inode))) { | 
 | 		if (ops->destroy_inode) { | 
 | 			ops->destroy_inode(inode); | 
 | 			if (!ops->free_inode) | 
 | 				return NULL; | 
 | 		} | 
 | 		inode->free_inode = ops->free_inode; | 
 | 		i_callback(&inode->i_rcu); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | void __destroy_inode(struct inode *inode) | 
 | { | 
 | 	BUG_ON(inode_has_buffers(inode)); | 
 | 	inode_detach_wb(inode); | 
 | 	security_inode_free(inode); | 
 | 	fsnotify_inode_delete(inode); | 
 | 	locks_free_lock_context(inode); | 
 | 	if (!inode->i_nlink) { | 
 | 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); | 
 | 		atomic_long_dec(&inode->i_sb->s_remove_count); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_FS_POSIX_ACL | 
 | 	if (inode->i_acl && !is_uncached_acl(inode->i_acl)) | 
 | 		posix_acl_release(inode->i_acl); | 
 | 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) | 
 | 		posix_acl_release(inode->i_default_acl); | 
 | #endif | 
 | 	this_cpu_dec(nr_inodes); | 
 | } | 
 | EXPORT_SYMBOL(__destroy_inode); | 
 |  | 
 | static void destroy_inode(struct inode *inode) | 
 | { | 
 | 	const struct super_operations *ops = inode->i_sb->s_op; | 
 |  | 
 | 	BUG_ON(!list_empty(&inode->i_lru)); | 
 | 	__destroy_inode(inode); | 
 | 	if (ops->destroy_inode) { | 
 | 		ops->destroy_inode(inode); | 
 | 		if (!ops->free_inode) | 
 | 			return; | 
 | 	} | 
 | 	inode->free_inode = ops->free_inode; | 
 | 	call_rcu(&inode->i_rcu, i_callback); | 
 | } | 
 |  | 
 | /** | 
 |  * drop_nlink - directly drop an inode's link count | 
 |  * @inode: inode | 
 |  * | 
 |  * This is a low-level filesystem helper to replace any | 
 |  * direct filesystem manipulation of i_nlink.  In cases | 
 |  * where we are attempting to track writes to the | 
 |  * filesystem, a decrement to zero means an imminent | 
 |  * write when the file is truncated and actually unlinked | 
 |  * on the filesystem. | 
 |  */ | 
 | void drop_nlink(struct inode *inode) | 
 | { | 
 | 	WARN_ON(inode->i_nlink == 0); | 
 | 	inode->__i_nlink--; | 
 | 	if (!inode->i_nlink) | 
 | 		atomic_long_inc(&inode->i_sb->s_remove_count); | 
 | } | 
 | EXPORT_SYMBOL(drop_nlink); | 
 |  | 
 | /** | 
 |  * clear_nlink - directly zero an inode's link count | 
 |  * @inode: inode | 
 |  * | 
 |  * This is a low-level filesystem helper to replace any | 
 |  * direct filesystem manipulation of i_nlink.  See | 
 |  * drop_nlink() for why we care about i_nlink hitting zero. | 
 |  */ | 
 | void clear_nlink(struct inode *inode) | 
 | { | 
 | 	if (inode->i_nlink) { | 
 | 		inode->__i_nlink = 0; | 
 | 		atomic_long_inc(&inode->i_sb->s_remove_count); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(clear_nlink); | 
 |  | 
 | /** | 
 |  * set_nlink - directly set an inode's link count | 
 |  * @inode: inode | 
 |  * @nlink: new nlink (should be non-zero) | 
 |  * | 
 |  * This is a low-level filesystem helper to replace any | 
 |  * direct filesystem manipulation of i_nlink. | 
 |  */ | 
 | void set_nlink(struct inode *inode, unsigned int nlink) | 
 | { | 
 | 	if (!nlink) { | 
 | 		clear_nlink(inode); | 
 | 	} else { | 
 | 		/* Yes, some filesystems do change nlink from zero to one */ | 
 | 		if (inode->i_nlink == 0) | 
 | 			atomic_long_dec(&inode->i_sb->s_remove_count); | 
 |  | 
 | 		inode->__i_nlink = nlink; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(set_nlink); | 
 |  | 
 | /** | 
 |  * inc_nlink - directly increment an inode's link count | 
 |  * @inode: inode | 
 |  * | 
 |  * This is a low-level filesystem helper to replace any | 
 |  * direct filesystem manipulation of i_nlink.  Currently, | 
 |  * it is only here for parity with dec_nlink(). | 
 |  */ | 
 | void inc_nlink(struct inode *inode) | 
 | { | 
 | 	if (unlikely(inode->i_nlink == 0)) { | 
 | 		WARN_ON(!(inode->i_state & I_LINKABLE)); | 
 | 		atomic_long_dec(&inode->i_sb->s_remove_count); | 
 | 	} | 
 |  | 
 | 	inode->__i_nlink++; | 
 | } | 
 | EXPORT_SYMBOL(inc_nlink); | 
 |  | 
 | static void __address_space_init_once(struct address_space *mapping) | 
 | { | 
 | 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); | 
 | 	init_rwsem(&mapping->i_mmap_rwsem); | 
 | 	INIT_LIST_HEAD(&mapping->i_private_list); | 
 | 	spin_lock_init(&mapping->i_private_lock); | 
 | 	mapping->i_mmap = RB_ROOT_CACHED; | 
 | } | 
 |  | 
 | void address_space_init_once(struct address_space *mapping) | 
 | { | 
 | 	memset(mapping, 0, sizeof(*mapping)); | 
 | 	__address_space_init_once(mapping); | 
 | } | 
 | EXPORT_SYMBOL(address_space_init_once); | 
 |  | 
 | /* | 
 |  * These are initializations that only need to be done | 
 |  * once, because the fields are idempotent across use | 
 |  * of the inode, so let the slab aware of that. | 
 |  */ | 
 | void inode_init_once(struct inode *inode) | 
 | { | 
 | 	memset(inode, 0, sizeof(*inode)); | 
 | 	INIT_HLIST_NODE(&inode->i_hash); | 
 | 	INIT_LIST_HEAD(&inode->i_devices); | 
 | 	INIT_LIST_HEAD(&inode->i_io_list); | 
 | 	INIT_LIST_HEAD(&inode->i_wb_list); | 
 | 	INIT_LIST_HEAD(&inode->i_lru); | 
 | 	INIT_LIST_HEAD(&inode->i_sb_list); | 
 | 	__address_space_init_once(&inode->i_data); | 
 | 	i_size_ordered_init(inode); | 
 | } | 
 | EXPORT_SYMBOL(inode_init_once); | 
 |  | 
 | static void init_once(void *foo) | 
 | { | 
 | 	struct inode *inode = (struct inode *) foo; | 
 |  | 
 | 	inode_init_once(inode); | 
 | } | 
 |  | 
 | /* | 
 |  * get additional reference to inode; caller must already hold one. | 
 |  */ | 
 | void ihold(struct inode *inode) | 
 | { | 
 | 	WARN_ON(atomic_inc_return(&inode->i_count) < 2); | 
 | } | 
 | EXPORT_SYMBOL(ihold); | 
 |  | 
 | static void __inode_add_lru(struct inode *inode, bool rotate) | 
 | { | 
 | 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) | 
 | 		return; | 
 | 	if (atomic_read(&inode->i_count)) | 
 | 		return; | 
 | 	if (!(inode->i_sb->s_flags & SB_ACTIVE)) | 
 | 		return; | 
 | 	if (!mapping_shrinkable(&inode->i_data)) | 
 | 		return; | 
 |  | 
 | 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) | 
 | 		this_cpu_inc(nr_unused); | 
 | 	else if (rotate) | 
 | 		inode->i_state |= I_REFERENCED; | 
 | } | 
 |  | 
 | struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, | 
 | 					    struct inode *inode, u32 bit) | 
 | { | 
 |         void *bit_address; | 
 |  | 
 |         bit_address = inode_state_wait_address(inode, bit); | 
 |         init_wait_var_entry(wqe, bit_address, 0); | 
 |         return __var_waitqueue(bit_address); | 
 | } | 
 | EXPORT_SYMBOL(inode_bit_waitqueue); | 
 |  | 
 | /* | 
 |  * Add inode to LRU if needed (inode is unused and clean). | 
 |  * | 
 |  * Needs inode->i_lock held. | 
 |  */ | 
 | void inode_add_lru(struct inode *inode) | 
 | { | 
 | 	__inode_add_lru(inode, false); | 
 | } | 
 |  | 
 | static void inode_lru_list_del(struct inode *inode) | 
 | { | 
 | 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) | 
 | 		this_cpu_dec(nr_unused); | 
 | } | 
 |  | 
 | static void inode_pin_lru_isolating(struct inode *inode) | 
 | { | 
 | 	lockdep_assert_held(&inode->i_lock); | 
 | 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); | 
 | 	inode->i_state |= I_LRU_ISOLATING; | 
 | } | 
 |  | 
 | static void inode_unpin_lru_isolating(struct inode *inode) | 
 | { | 
 | 	spin_lock(&inode->i_lock); | 
 | 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); | 
 | 	inode->i_state &= ~I_LRU_ISOLATING; | 
 | 	/* Called with inode->i_lock which ensures memory ordering. */ | 
 | 	inode_wake_up_bit(inode, __I_LRU_ISOLATING); | 
 | 	spin_unlock(&inode->i_lock); | 
 | } | 
 |  | 
 | static void inode_wait_for_lru_isolating(struct inode *inode) | 
 | { | 
 | 	struct wait_bit_queue_entry wqe; | 
 | 	struct wait_queue_head *wq_head; | 
 |  | 
 | 	lockdep_assert_held(&inode->i_lock); | 
 | 	if (!(inode->i_state & I_LRU_ISOLATING)) | 
 | 		return; | 
 |  | 
 | 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); | 
 | 	for (;;) { | 
 | 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); | 
 | 		/* | 
 | 		 * Checking I_LRU_ISOLATING with inode->i_lock guarantees | 
 | 		 * memory ordering. | 
 | 		 */ | 
 | 		if (!(inode->i_state & I_LRU_ISOLATING)) | 
 | 			break; | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		schedule(); | 
 | 		spin_lock(&inode->i_lock); | 
 | 	} | 
 | 	finish_wait(wq_head, &wqe.wq_entry); | 
 | 	WARN_ON(inode->i_state & I_LRU_ISOLATING); | 
 | } | 
 |  | 
 | /** | 
 |  * inode_sb_list_add - add inode to the superblock list of inodes | 
 |  * @inode: inode to add | 
 |  */ | 
 | void inode_sb_list_add(struct inode *inode) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 |  | 
 | 	spin_lock(&sb->s_inode_list_lock); | 
 | 	list_add(&inode->i_sb_list, &sb->s_inodes); | 
 | 	spin_unlock(&sb->s_inode_list_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(inode_sb_list_add); | 
 |  | 
 | static inline void inode_sb_list_del(struct inode *inode) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 |  | 
 | 	if (!list_empty(&inode->i_sb_list)) { | 
 | 		spin_lock(&sb->s_inode_list_lock); | 
 | 		list_del_init(&inode->i_sb_list); | 
 | 		spin_unlock(&sb->s_inode_list_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long hash(struct super_block *sb, unsigned long hashval) | 
 | { | 
 | 	unsigned long tmp; | 
 |  | 
 | 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / | 
 | 			L1_CACHE_BYTES; | 
 | 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); | 
 | 	return tmp & i_hash_mask; | 
 | } | 
 |  | 
 | /** | 
 |  *	__insert_inode_hash - hash an inode | 
 |  *	@inode: unhashed inode | 
 |  *	@hashval: unsigned long value used to locate this object in the | 
 |  *		inode_hashtable. | 
 |  * | 
 |  *	Add an inode to the inode hash for this superblock. | 
 |  */ | 
 | void __insert_inode_hash(struct inode *inode, unsigned long hashval) | 
 | { | 
 | 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); | 
 |  | 
 | 	spin_lock(&inode_hash_lock); | 
 | 	spin_lock(&inode->i_lock); | 
 | 	hlist_add_head_rcu(&inode->i_hash, b); | 
 | 	spin_unlock(&inode->i_lock); | 
 | 	spin_unlock(&inode_hash_lock); | 
 | } | 
 | EXPORT_SYMBOL(__insert_inode_hash); | 
 |  | 
 | /** | 
 |  *	__remove_inode_hash - remove an inode from the hash | 
 |  *	@inode: inode to unhash | 
 |  * | 
 |  *	Remove an inode from the superblock. | 
 |  */ | 
 | void __remove_inode_hash(struct inode *inode) | 
 | { | 
 | 	spin_lock(&inode_hash_lock); | 
 | 	spin_lock(&inode->i_lock); | 
 | 	hlist_del_init_rcu(&inode->i_hash); | 
 | 	spin_unlock(&inode->i_lock); | 
 | 	spin_unlock(&inode_hash_lock); | 
 | } | 
 | EXPORT_SYMBOL(__remove_inode_hash); | 
 |  | 
 | void dump_mapping(const struct address_space *mapping) | 
 | { | 
 | 	struct inode *host; | 
 | 	const struct address_space_operations *a_ops; | 
 | 	struct hlist_node *dentry_first; | 
 | 	struct dentry *dentry_ptr; | 
 | 	struct dentry dentry; | 
 | 	char fname[64] = {}; | 
 | 	unsigned long ino; | 
 |  | 
 | 	/* | 
 | 	 * If mapping is an invalid pointer, we don't want to crash | 
 | 	 * accessing it, so probe everything depending on it carefully. | 
 | 	 */ | 
 | 	if (get_kernel_nofault(host, &mapping->host) || | 
 | 	    get_kernel_nofault(a_ops, &mapping->a_ops)) { | 
 | 		pr_warn("invalid mapping:%px\n", mapping); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!host) { | 
 | 		pr_warn("aops:%ps\n", a_ops); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || | 
 | 	    get_kernel_nofault(ino, &host->i_ino)) { | 
 | 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!dentry_first) { | 
 | 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); | 
 | 	if (get_kernel_nofault(dentry, dentry_ptr) || | 
 | 	    !dentry.d_parent || !dentry.d_name.name) { | 
 | 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", | 
 | 				a_ops, ino, dentry_ptr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) | 
 | 		strscpy(fname, "<invalid>"); | 
 | 	/* | 
 | 	 * Even if strncpy_from_kernel_nofault() succeeded, | 
 | 	 * the fname could be unreliable | 
 | 	 */ | 
 | 	pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", | 
 | 		a_ops, ino, fname); | 
 | } | 
 |  | 
 | void clear_inode(struct inode *inode) | 
 | { | 
 | 	/* | 
 | 	 * We have to cycle the i_pages lock here because reclaim can be in the | 
 | 	 * process of removing the last page (in __filemap_remove_folio()) | 
 | 	 * and we must not free the mapping under it. | 
 | 	 */ | 
 | 	xa_lock_irq(&inode->i_data.i_pages); | 
 | 	BUG_ON(inode->i_data.nrpages); | 
 | 	/* | 
 | 	 * Almost always, mapping_empty(&inode->i_data) here; but there are | 
 | 	 * two known and long-standing ways in which nodes may get left behind | 
 | 	 * (when deep radix-tree node allocation failed partway; or when THP | 
 | 	 * collapse_file() failed). Until those two known cases are cleaned up, | 
 | 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), | 
 | 	 * nor even WARN_ON(!mapping_empty). | 
 | 	 */ | 
 | 	xa_unlock_irq(&inode->i_data.i_pages); | 
 | 	BUG_ON(!list_empty(&inode->i_data.i_private_list)); | 
 | 	BUG_ON(!(inode->i_state & I_FREEING)); | 
 | 	BUG_ON(inode->i_state & I_CLEAR); | 
 | 	BUG_ON(!list_empty(&inode->i_wb_list)); | 
 | 	/* don't need i_lock here, no concurrent mods to i_state */ | 
 | 	inode->i_state = I_FREEING | I_CLEAR; | 
 | } | 
 | EXPORT_SYMBOL(clear_inode); | 
 |  | 
 | /* | 
 |  * Free the inode passed in, removing it from the lists it is still connected | 
 |  * to. We remove any pages still attached to the inode and wait for any IO that | 
 |  * is still in progress before finally destroying the inode. | 
 |  * | 
 |  * An inode must already be marked I_FREEING so that we avoid the inode being | 
 |  * moved back onto lists if we race with other code that manipulates the lists | 
 |  * (e.g. writeback_single_inode). The caller is responsible for setting this. | 
 |  * | 
 |  * An inode must already be removed from the LRU list before being evicted from | 
 |  * the cache. This should occur atomically with setting the I_FREEING state | 
 |  * flag, so no inodes here should ever be on the LRU when being evicted. | 
 |  */ | 
 | static void evict(struct inode *inode) | 
 | { | 
 | 	const struct super_operations *op = inode->i_sb->s_op; | 
 |  | 
 | 	BUG_ON(!(inode->i_state & I_FREEING)); | 
 | 	BUG_ON(!list_empty(&inode->i_lru)); | 
 |  | 
 | 	if (!list_empty(&inode->i_io_list)) | 
 | 		inode_io_list_del(inode); | 
 |  | 
 | 	inode_sb_list_del(inode); | 
 |  | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode_wait_for_lru_isolating(inode); | 
 |  | 
 | 	/* | 
 | 	 * Wait for flusher thread to be done with the inode so that filesystem | 
 | 	 * does not start destroying it while writeback is still running. Since | 
 | 	 * the inode has I_FREEING set, flusher thread won't start new work on | 
 | 	 * the inode.  We just have to wait for running writeback to finish. | 
 | 	 */ | 
 | 	inode_wait_for_writeback(inode); | 
 | 	spin_unlock(&inode->i_lock); | 
 |  | 
 | 	if (op->evict_inode) { | 
 | 		op->evict_inode(inode); | 
 | 	} else { | 
 | 		truncate_inode_pages_final(&inode->i_data); | 
 | 		clear_inode(inode); | 
 | 	} | 
 | 	if (S_ISCHR(inode->i_mode) && inode->i_cdev) | 
 | 		cd_forget(inode); | 
 |  | 
 | 	remove_inode_hash(inode); | 
 |  | 
 | 	/* | 
 | 	 * Wake up waiters in __wait_on_freeing_inode(). | 
 | 	 * | 
 | 	 * It is an invariant that any thread we need to wake up is already | 
 | 	 * accounted for before remove_inode_hash() acquires ->i_lock -- both | 
 | 	 * sides take the lock and sleep is aborted if the inode is found | 
 | 	 * unhashed. Thus either the sleeper wins and goes off CPU, or removal | 
 | 	 * wins and the sleeper aborts after testing with the lock. | 
 | 	 * | 
 | 	 * This also means we don't need any fences for the call below. | 
 | 	 */ | 
 | 	inode_wake_up_bit(inode, __I_NEW); | 
 | 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); | 
 |  | 
 | 	destroy_inode(inode); | 
 | } | 
 |  | 
 | /* | 
 |  * dispose_list - dispose of the contents of a local list | 
 |  * @head: the head of the list to free | 
 |  * | 
 |  * Dispose-list gets a local list with local inodes in it, so it doesn't | 
 |  * need to worry about list corruption and SMP locks. | 
 |  */ | 
 | static void dispose_list(struct list_head *head) | 
 | { | 
 | 	while (!list_empty(head)) { | 
 | 		struct inode *inode; | 
 |  | 
 | 		inode = list_first_entry(head, struct inode, i_lru); | 
 | 		list_del_init(&inode->i_lru); | 
 |  | 
 | 		evict(inode); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * evict_inodes	- evict all evictable inodes for a superblock | 
 |  * @sb:		superblock to operate on | 
 |  * | 
 |  * Make sure that no inodes with zero refcount are retained.  This is | 
 |  * called by superblock shutdown after having SB_ACTIVE flag removed, | 
 |  * so any inode reaching zero refcount during or after that call will | 
 |  * be immediately evicted. | 
 |  */ | 
 | void evict_inodes(struct super_block *sb) | 
 | { | 
 | 	struct inode *inode; | 
 | 	LIST_HEAD(dispose); | 
 |  | 
 | again: | 
 | 	spin_lock(&sb->s_inode_list_lock); | 
 | 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { | 
 | 		if (atomic_read(&inode->i_count)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&inode->i_lock); | 
 | 		if (atomic_read(&inode->i_count)) { | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			continue; | 
 | 		} | 
 | 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		inode->i_state |= I_FREEING; | 
 | 		inode_lru_list_del(inode); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		list_add(&inode->i_lru, &dispose); | 
 |  | 
 | 		/* | 
 | 		 * We can have a ton of inodes to evict at unmount time given | 
 | 		 * enough memory, check to see if we need to go to sleep for a | 
 | 		 * bit so we don't livelock. | 
 | 		 */ | 
 | 		if (need_resched()) { | 
 | 			spin_unlock(&sb->s_inode_list_lock); | 
 | 			cond_resched(); | 
 | 			dispose_list(&dispose); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&sb->s_inode_list_lock); | 
 |  | 
 | 	dispose_list(&dispose); | 
 | } | 
 | EXPORT_SYMBOL_GPL(evict_inodes); | 
 |  | 
 | /* | 
 |  * Isolate the inode from the LRU in preparation for freeing it. | 
 |  * | 
 |  * If the inode has the I_REFERENCED flag set, then it means that it has been | 
 |  * used recently - the flag is set in iput_final(). When we encounter such an | 
 |  * inode, clear the flag and move it to the back of the LRU so it gets another | 
 |  * pass through the LRU before it gets reclaimed. This is necessary because of | 
 |  * the fact we are doing lazy LRU updates to minimise lock contention so the | 
 |  * LRU does not have strict ordering. Hence we don't want to reclaim inodes | 
 |  * with this flag set because they are the inodes that are out of order. | 
 |  */ | 
 | static enum lru_status inode_lru_isolate(struct list_head *item, | 
 | 		struct list_lru_one *lru, void *arg) | 
 | { | 
 | 	struct list_head *freeable = arg; | 
 | 	struct inode	*inode = container_of(item, struct inode, i_lru); | 
 |  | 
 | 	/* | 
 | 	 * We are inverting the lru lock/inode->i_lock here, so use a | 
 | 	 * trylock. If we fail to get the lock, just skip it. | 
 | 	 */ | 
 | 	if (!spin_trylock(&inode->i_lock)) | 
 | 		return LRU_SKIP; | 
 |  | 
 | 	/* | 
 | 	 * Inodes can get referenced, redirtied, or repopulated while | 
 | 	 * they're already on the LRU, and this can make them | 
 | 	 * unreclaimable for a while. Remove them lazily here; iput, | 
 | 	 * sync, or the last page cache deletion will requeue them. | 
 | 	 */ | 
 | 	if (atomic_read(&inode->i_count) || | 
 | 	    (inode->i_state & ~I_REFERENCED) || | 
 | 	    !mapping_shrinkable(&inode->i_data)) { | 
 | 		list_lru_isolate(lru, &inode->i_lru); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		this_cpu_dec(nr_unused); | 
 | 		return LRU_REMOVED; | 
 | 	} | 
 |  | 
 | 	/* Recently referenced inodes get one more pass */ | 
 | 	if (inode->i_state & I_REFERENCED) { | 
 | 		inode->i_state &= ~I_REFERENCED; | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		return LRU_ROTATE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * On highmem systems, mapping_shrinkable() permits dropping | 
 | 	 * page cache in order to free up struct inodes: lowmem might | 
 | 	 * be under pressure before the cache inside the highmem zone. | 
 | 	 */ | 
 | 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { | 
 | 		inode_pin_lru_isolating(inode); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		spin_unlock(&lru->lock); | 
 | 		if (remove_inode_buffers(inode)) { | 
 | 			unsigned long reap; | 
 | 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1); | 
 | 			if (current_is_kswapd()) | 
 | 				__count_vm_events(KSWAPD_INODESTEAL, reap); | 
 | 			else | 
 | 				__count_vm_events(PGINODESTEAL, reap); | 
 | 			mm_account_reclaimed_pages(reap); | 
 | 		} | 
 | 		inode_unpin_lru_isolating(inode); | 
 | 		return LRU_RETRY; | 
 | 	} | 
 |  | 
 | 	WARN_ON(inode->i_state & I_NEW); | 
 | 	inode->i_state |= I_FREEING; | 
 | 	list_lru_isolate_move(lru, &inode->i_lru, freeable); | 
 | 	spin_unlock(&inode->i_lock); | 
 |  | 
 | 	this_cpu_dec(nr_unused); | 
 | 	return LRU_REMOVED; | 
 | } | 
 |  | 
 | /* | 
 |  * Walk the superblock inode LRU for freeable inodes and attempt to free them. | 
 |  * This is called from the superblock shrinker function with a number of inodes | 
 |  * to trim from the LRU. Inodes to be freed are moved to a temporary list and | 
 |  * then are freed outside inode_lock by dispose_list(). | 
 |  */ | 
 | long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) | 
 | { | 
 | 	LIST_HEAD(freeable); | 
 | 	long freed; | 
 |  | 
 | 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, | 
 | 				     inode_lru_isolate, &freeable); | 
 | 	dispose_list(&freeable); | 
 | 	return freed; | 
 | } | 
 |  | 
 | static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); | 
 | /* | 
 |  * Called with the inode lock held. | 
 |  */ | 
 | static struct inode *find_inode(struct super_block *sb, | 
 | 				struct hlist_head *head, | 
 | 				int (*test)(struct inode *, void *), | 
 | 				void *data, bool is_inode_hash_locked) | 
 | { | 
 | 	struct inode *inode = NULL; | 
 |  | 
 | 	if (is_inode_hash_locked) | 
 | 		lockdep_assert_held(&inode_hash_lock); | 
 | 	else | 
 | 		lockdep_assert_not_held(&inode_hash_lock); | 
 |  | 
 | 	rcu_read_lock(); | 
 | repeat: | 
 | 	hlist_for_each_entry_rcu(inode, head, i_hash) { | 
 | 		if (inode->i_sb != sb) | 
 | 			continue; | 
 | 		if (!test(inode, data)) | 
 | 			continue; | 
 | 		spin_lock(&inode->i_lock); | 
 | 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) { | 
 | 			__wait_on_freeing_inode(inode, is_inode_hash_locked); | 
 | 			goto repeat; | 
 | 		} | 
 | 		if (unlikely(inode->i_state & I_CREATING)) { | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			rcu_read_unlock(); | 
 | 			return ERR_PTR(-ESTALE); | 
 | 		} | 
 | 		__iget(inode); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		rcu_read_unlock(); | 
 | 		return inode; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find_inode_fast is the fast path version of find_inode, see the comment at | 
 |  * iget_locked for details. | 
 |  */ | 
 | static struct inode *find_inode_fast(struct super_block *sb, | 
 | 				struct hlist_head *head, unsigned long ino, | 
 | 				bool is_inode_hash_locked) | 
 | { | 
 | 	struct inode *inode = NULL; | 
 |  | 
 | 	if (is_inode_hash_locked) | 
 | 		lockdep_assert_held(&inode_hash_lock); | 
 | 	else | 
 | 		lockdep_assert_not_held(&inode_hash_lock); | 
 |  | 
 | 	rcu_read_lock(); | 
 | repeat: | 
 | 	hlist_for_each_entry_rcu(inode, head, i_hash) { | 
 | 		if (inode->i_ino != ino) | 
 | 			continue; | 
 | 		if (inode->i_sb != sb) | 
 | 			continue; | 
 | 		spin_lock(&inode->i_lock); | 
 | 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) { | 
 | 			__wait_on_freeing_inode(inode, is_inode_hash_locked); | 
 | 			goto repeat; | 
 | 		} | 
 | 		if (unlikely(inode->i_state & I_CREATING)) { | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			rcu_read_unlock(); | 
 | 			return ERR_PTR(-ESTALE); | 
 | 		} | 
 | 		__iget(inode); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		rcu_read_unlock(); | 
 | 		return inode; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Each cpu owns a range of LAST_INO_BATCH numbers. | 
 |  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, | 
 |  * to renew the exhausted range. | 
 |  * | 
 |  * This does not significantly increase overflow rate because every CPU can | 
 |  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is | 
 |  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the | 
 |  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase | 
 |  * overflow rate by 2x, which does not seem too significant. | 
 |  * | 
 |  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW | 
 |  * error if st_ino won't fit in target struct field. Use 32bit counter | 
 |  * here to attempt to avoid that. | 
 |  */ | 
 | #define LAST_INO_BATCH 1024 | 
 | static DEFINE_PER_CPU(unsigned int, last_ino); | 
 |  | 
 | unsigned int get_next_ino(void) | 
 | { | 
 | 	unsigned int *p = &get_cpu_var(last_ino); | 
 | 	unsigned int res = *p; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { | 
 | 		static atomic_t shared_last_ino; | 
 | 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); | 
 |  | 
 | 		res = next - LAST_INO_BATCH; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	res++; | 
 | 	/* get_next_ino should not provide a 0 inode number */ | 
 | 	if (unlikely(!res)) | 
 | 		res++; | 
 | 	*p = res; | 
 | 	put_cpu_var(last_ino); | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(get_next_ino); | 
 |  | 
 | /** | 
 |  *	new_inode 	- obtain an inode | 
 |  *	@sb: superblock | 
 |  * | 
 |  *	Allocates a new inode for given superblock. The default gfp_mask | 
 |  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. | 
 |  *	If HIGHMEM pages are unsuitable or it is known that pages allocated | 
 |  *	for the page cache are not reclaimable or migratable, | 
 |  *	mapping_set_gfp_mask() must be called with suitable flags on the | 
 |  *	newly created inode's mapping | 
 |  * | 
 |  */ | 
 | struct inode *new_inode(struct super_block *sb) | 
 | { | 
 | 	struct inode *inode; | 
 |  | 
 | 	inode = alloc_inode(sb); | 
 | 	if (inode) | 
 | 		inode_sb_list_add(inode); | 
 | 	return inode; | 
 | } | 
 | EXPORT_SYMBOL(new_inode); | 
 |  | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | void lockdep_annotate_inode_mutex_key(struct inode *inode) | 
 | { | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		struct file_system_type *type = inode->i_sb->s_type; | 
 |  | 
 | 		/* Set new key only if filesystem hasn't already changed it */ | 
 | 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { | 
 | 			/* | 
 | 			 * ensure nobody is actually holding i_rwsem | 
 | 			 */ | 
 | 			init_rwsem(&inode->i_rwsem); | 
 | 			lockdep_set_class(&inode->i_rwsem, | 
 | 					  &type->i_mutex_dir_key); | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); | 
 | #endif | 
 |  | 
 | /** | 
 |  * unlock_new_inode - clear the I_NEW state and wake up any waiters | 
 |  * @inode:	new inode to unlock | 
 |  * | 
 |  * Called when the inode is fully initialised to clear the new state of the | 
 |  * inode and wake up anyone waiting for the inode to finish initialisation. | 
 |  */ | 
 | void unlock_new_inode(struct inode *inode) | 
 | { | 
 | 	lockdep_annotate_inode_mutex_key(inode); | 
 | 	spin_lock(&inode->i_lock); | 
 | 	WARN_ON(!(inode->i_state & I_NEW)); | 
 | 	inode->i_state &= ~I_NEW & ~I_CREATING; | 
 | 	/* | 
 | 	 * Pairs with the barrier in prepare_to_wait_event() to make sure | 
 | 	 * ___wait_var_event() either sees the bit cleared or | 
 | 	 * waitqueue_active() check in wake_up_var() sees the waiter. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	inode_wake_up_bit(inode, __I_NEW); | 
 | 	spin_unlock(&inode->i_lock); | 
 | } | 
 | EXPORT_SYMBOL(unlock_new_inode); | 
 |  | 
 | void discard_new_inode(struct inode *inode) | 
 | { | 
 | 	lockdep_annotate_inode_mutex_key(inode); | 
 | 	spin_lock(&inode->i_lock); | 
 | 	WARN_ON(!(inode->i_state & I_NEW)); | 
 | 	inode->i_state &= ~I_NEW; | 
 | 	/* | 
 | 	 * Pairs with the barrier in prepare_to_wait_event() to make sure | 
 | 	 * ___wait_var_event() either sees the bit cleared or | 
 | 	 * waitqueue_active() check in wake_up_var() sees the waiter. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	inode_wake_up_bit(inode, __I_NEW); | 
 | 	spin_unlock(&inode->i_lock); | 
 | 	iput(inode); | 
 | } | 
 | EXPORT_SYMBOL(discard_new_inode); | 
 |  | 
 | /** | 
 |  * lock_two_nondirectories - take two i_mutexes on non-directory objects | 
 |  * | 
 |  * Lock any non-NULL argument. Passed objects must not be directories. | 
 |  * Zero, one or two objects may be locked by this function. | 
 |  * | 
 |  * @inode1: first inode to lock | 
 |  * @inode2: second inode to lock | 
 |  */ | 
 | void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) | 
 | { | 
 | 	if (inode1) | 
 | 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); | 
 | 	if (inode2) | 
 | 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); | 
 | 	if (inode1 > inode2) | 
 | 		swap(inode1, inode2); | 
 | 	if (inode1) | 
 | 		inode_lock(inode1); | 
 | 	if (inode2 && inode2 != inode1) | 
 | 		inode_lock_nested(inode2, I_MUTEX_NONDIR2); | 
 | } | 
 | EXPORT_SYMBOL(lock_two_nondirectories); | 
 |  | 
 | /** | 
 |  * unlock_two_nondirectories - release locks from lock_two_nondirectories() | 
 |  * @inode1: first inode to unlock | 
 |  * @inode2: second inode to unlock | 
 |  */ | 
 | void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) | 
 | { | 
 | 	if (inode1) { | 
 | 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); | 
 | 		inode_unlock(inode1); | 
 | 	} | 
 | 	if (inode2 && inode2 != inode1) { | 
 | 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); | 
 | 		inode_unlock(inode2); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(unlock_two_nondirectories); | 
 |  | 
 | /** | 
 |  * inode_insert5 - obtain an inode from a mounted file system | 
 |  * @inode:	pre-allocated inode to use for insert to cache | 
 |  * @hashval:	hash value (usually inode number) to get | 
 |  * @test:	callback used for comparisons between inodes | 
 |  * @set:	callback used to initialize a new struct inode | 
 |  * @data:	opaque data pointer to pass to @test and @set | 
 |  * | 
 |  * Search for the inode specified by @hashval and @data in the inode cache, | 
 |  * and if present return it with an increased reference count. This is a | 
 |  * variant of iget5_locked() that doesn't allocate an inode. | 
 |  * | 
 |  * If the inode is not present in the cache, insert the pre-allocated inode and | 
 |  * return it locked, hashed, and with the I_NEW flag set. The file system gets | 
 |  * to fill it in before unlocking it via unlock_new_inode(). | 
 |  * | 
 |  * Note that both @test and @set are called with the inode_hash_lock held, so | 
 |  * they can't sleep. | 
 |  */ | 
 | struct inode *inode_insert5(struct inode *inode, unsigned long hashval, | 
 | 			    int (*test)(struct inode *, void *), | 
 | 			    int (*set)(struct inode *, void *), void *data) | 
 | { | 
 | 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); | 
 | 	struct inode *old; | 
 |  | 
 | again: | 
 | 	spin_lock(&inode_hash_lock); | 
 | 	old = find_inode(inode->i_sb, head, test, data, true); | 
 | 	if (unlikely(old)) { | 
 | 		/* | 
 | 		 * Uhhuh, somebody else created the same inode under us. | 
 | 		 * Use the old inode instead of the preallocated one. | 
 | 		 */ | 
 | 		spin_unlock(&inode_hash_lock); | 
 | 		if (IS_ERR(old)) | 
 | 			return NULL; | 
 | 		wait_on_inode(old); | 
 | 		if (unlikely(inode_unhashed(old))) { | 
 | 			iput(old); | 
 | 			goto again; | 
 | 		} | 
 | 		return old; | 
 | 	} | 
 |  | 
 | 	if (set && unlikely(set(inode, data))) { | 
 | 		spin_unlock(&inode_hash_lock); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Return the locked inode with I_NEW set, the | 
 | 	 * caller is responsible for filling in the contents | 
 | 	 */ | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode->i_state |= I_NEW; | 
 | 	hlist_add_head_rcu(&inode->i_hash, head); | 
 | 	spin_unlock(&inode->i_lock); | 
 |  | 
 | 	spin_unlock(&inode_hash_lock); | 
 |  | 
 | 	/* | 
 | 	 * Add inode to the sb list if it's not already. It has I_NEW at this | 
 | 	 * point, so it should be safe to test i_sb_list locklessly. | 
 | 	 */ | 
 | 	if (list_empty(&inode->i_sb_list)) | 
 | 		inode_sb_list_add(inode); | 
 |  | 
 | 	return inode; | 
 | } | 
 | EXPORT_SYMBOL(inode_insert5); | 
 |  | 
 | /** | 
 |  * iget5_locked - obtain an inode from a mounted file system | 
 |  * @sb:		super block of file system | 
 |  * @hashval:	hash value (usually inode number) to get | 
 |  * @test:	callback used for comparisons between inodes | 
 |  * @set:	callback used to initialize a new struct inode | 
 |  * @data:	opaque data pointer to pass to @test and @set | 
 |  * | 
 |  * Search for the inode specified by @hashval and @data in the inode cache, | 
 |  * and if present return it with an increased reference count. This is a | 
 |  * generalized version of iget_locked() for file systems where the inode | 
 |  * number is not sufficient for unique identification of an inode. | 
 |  * | 
 |  * If the inode is not present in the cache, allocate and insert a new inode | 
 |  * and return it locked, hashed, and with the I_NEW flag set. The file system | 
 |  * gets to fill it in before unlocking it via unlock_new_inode(). | 
 |  * | 
 |  * Note that both @test and @set are called with the inode_hash_lock held, so | 
 |  * they can't sleep. | 
 |  */ | 
 | struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, | 
 | 		int (*test)(struct inode *, void *), | 
 | 		int (*set)(struct inode *, void *), void *data) | 
 | { | 
 | 	struct inode *inode = ilookup5(sb, hashval, test, data); | 
 |  | 
 | 	if (!inode) { | 
 | 		struct inode *new = alloc_inode(sb); | 
 |  | 
 | 		if (new) { | 
 | 			inode = inode_insert5(new, hashval, test, set, data); | 
 | 			if (unlikely(inode != new)) | 
 | 				destroy_inode(new); | 
 | 		} | 
 | 	} | 
 | 	return inode; | 
 | } | 
 | EXPORT_SYMBOL(iget5_locked); | 
 |  | 
 | /** | 
 |  * iget5_locked_rcu - obtain an inode from a mounted file system | 
 |  * @sb:		super block of file system | 
 |  * @hashval:	hash value (usually inode number) to get | 
 |  * @test:	callback used for comparisons between inodes | 
 |  * @set:	callback used to initialize a new struct inode | 
 |  * @data:	opaque data pointer to pass to @test and @set | 
 |  * | 
 |  * This is equivalent to iget5_locked, except the @test callback must | 
 |  * tolerate the inode not being stable, including being mid-teardown. | 
 |  */ | 
 | struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, | 
 | 		int (*test)(struct inode *, void *), | 
 | 		int (*set)(struct inode *, void *), void *data) | 
 | { | 
 | 	struct hlist_head *head = inode_hashtable + hash(sb, hashval); | 
 | 	struct inode *inode, *new; | 
 |  | 
 | again: | 
 | 	inode = find_inode(sb, head, test, data, false); | 
 | 	if (inode) { | 
 | 		if (IS_ERR(inode)) | 
 | 			return NULL; | 
 | 		wait_on_inode(inode); | 
 | 		if (unlikely(inode_unhashed(inode))) { | 
 | 			iput(inode); | 
 | 			goto again; | 
 | 		} | 
 | 		return inode; | 
 | 	} | 
 |  | 
 | 	new = alloc_inode(sb); | 
 | 	if (new) { | 
 | 		inode = inode_insert5(new, hashval, test, set, data); | 
 | 		if (unlikely(inode != new)) | 
 | 			destroy_inode(new); | 
 | 	} | 
 | 	return inode; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iget5_locked_rcu); | 
 |  | 
 | /** | 
 |  * iget_locked - obtain an inode from a mounted file system | 
 |  * @sb:		super block of file system | 
 |  * @ino:	inode number to get | 
 |  * | 
 |  * Search for the inode specified by @ino in the inode cache and if present | 
 |  * return it with an increased reference count. This is for file systems | 
 |  * where the inode number is sufficient for unique identification of an inode. | 
 |  * | 
 |  * If the inode is not in cache, allocate a new inode and return it locked, | 
 |  * hashed, and with the I_NEW flag set.  The file system gets to fill it in | 
 |  * before unlocking it via unlock_new_inode(). | 
 |  */ | 
 | struct inode *iget_locked(struct super_block *sb, unsigned long ino) | 
 | { | 
 | 	struct hlist_head *head = inode_hashtable + hash(sb, ino); | 
 | 	struct inode *inode; | 
 | again: | 
 | 	inode = find_inode_fast(sb, head, ino, false); | 
 | 	if (inode) { | 
 | 		if (IS_ERR(inode)) | 
 | 			return NULL; | 
 | 		wait_on_inode(inode); | 
 | 		if (unlikely(inode_unhashed(inode))) { | 
 | 			iput(inode); | 
 | 			goto again; | 
 | 		} | 
 | 		return inode; | 
 | 	} | 
 |  | 
 | 	inode = alloc_inode(sb); | 
 | 	if (inode) { | 
 | 		struct inode *old; | 
 |  | 
 | 		spin_lock(&inode_hash_lock); | 
 | 		/* We released the lock, so.. */ | 
 | 		old = find_inode_fast(sb, head, ino, true); | 
 | 		if (!old) { | 
 | 			inode->i_ino = ino; | 
 | 			spin_lock(&inode->i_lock); | 
 | 			inode->i_state = I_NEW; | 
 | 			hlist_add_head_rcu(&inode->i_hash, head); | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			spin_unlock(&inode_hash_lock); | 
 | 			inode_sb_list_add(inode); | 
 |  | 
 | 			/* Return the locked inode with I_NEW set, the | 
 | 			 * caller is responsible for filling in the contents | 
 | 			 */ | 
 | 			return inode; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Uhhuh, somebody else created the same inode under | 
 | 		 * us. Use the old inode instead of the one we just | 
 | 		 * allocated. | 
 | 		 */ | 
 | 		spin_unlock(&inode_hash_lock); | 
 | 		destroy_inode(inode); | 
 | 		if (IS_ERR(old)) | 
 | 			return NULL; | 
 | 		inode = old; | 
 | 		wait_on_inode(inode); | 
 | 		if (unlikely(inode_unhashed(inode))) { | 
 | 			iput(inode); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 | 	return inode; | 
 | } | 
 | EXPORT_SYMBOL(iget_locked); | 
 |  | 
 | /* | 
 |  * search the inode cache for a matching inode number. | 
 |  * If we find one, then the inode number we are trying to | 
 |  * allocate is not unique and so we should not use it. | 
 |  * | 
 |  * Returns 1 if the inode number is unique, 0 if it is not. | 
 |  */ | 
 | static int test_inode_iunique(struct super_block *sb, unsigned long ino) | 
 | { | 
 | 	struct hlist_head *b = inode_hashtable + hash(sb, ino); | 
 | 	struct inode *inode; | 
 |  | 
 | 	hlist_for_each_entry_rcu(inode, b, i_hash) { | 
 | 		if (inode->i_ino == ino && inode->i_sb == sb) | 
 | 			return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	iunique - get a unique inode number | 
 |  *	@sb: superblock | 
 |  *	@max_reserved: highest reserved inode number | 
 |  * | 
 |  *	Obtain an inode number that is unique on the system for a given | 
 |  *	superblock. This is used by file systems that have no natural | 
 |  *	permanent inode numbering system. An inode number is returned that | 
 |  *	is higher than the reserved limit but unique. | 
 |  * | 
 |  *	BUGS: | 
 |  *	With a large number of inodes live on the file system this function | 
 |  *	currently becomes quite slow. | 
 |  */ | 
 | ino_t iunique(struct super_block *sb, ino_t max_reserved) | 
 | { | 
 | 	/* | 
 | 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW | 
 | 	 * error if st_ino won't fit in target struct field. Use 32bit counter | 
 | 	 * here to attempt to avoid that. | 
 | 	 */ | 
 | 	static DEFINE_SPINLOCK(iunique_lock); | 
 | 	static unsigned int counter; | 
 | 	ino_t res; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	spin_lock(&iunique_lock); | 
 | 	do { | 
 | 		if (counter <= max_reserved) | 
 | 			counter = max_reserved + 1; | 
 | 		res = counter++; | 
 | 	} while (!test_inode_iunique(sb, res)); | 
 | 	spin_unlock(&iunique_lock); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(iunique); | 
 |  | 
 | struct inode *igrab(struct inode *inode) | 
 | { | 
 | 	spin_lock(&inode->i_lock); | 
 | 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { | 
 | 		__iget(inode); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 	} else { | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		/* | 
 | 		 * Handle the case where s_op->clear_inode is not been | 
 | 		 * called yet, and somebody is calling igrab | 
 | 		 * while the inode is getting freed. | 
 | 		 */ | 
 | 		inode = NULL; | 
 | 	} | 
 | 	return inode; | 
 | } | 
 | EXPORT_SYMBOL(igrab); | 
 |  | 
 | /** | 
 |  * ilookup5_nowait - search for an inode in the inode cache | 
 |  * @sb:		super block of file system to search | 
 |  * @hashval:	hash value (usually inode number) to search for | 
 |  * @test:	callback used for comparisons between inodes | 
 |  * @data:	opaque data pointer to pass to @test | 
 |  * | 
 |  * Search for the inode specified by @hashval and @data in the inode cache. | 
 |  * If the inode is in the cache, the inode is returned with an incremented | 
 |  * reference count. | 
 |  * | 
 |  * Note: I_NEW is not waited upon so you have to be very careful what you do | 
 |  * with the returned inode.  You probably should be using ilookup5() instead. | 
 |  * | 
 |  * Note2: @test is called with the inode_hash_lock held, so can't sleep. | 
 |  */ | 
 | struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, | 
 | 		int (*test)(struct inode *, void *), void *data) | 
 | { | 
 | 	struct hlist_head *head = inode_hashtable + hash(sb, hashval); | 
 | 	struct inode *inode; | 
 |  | 
 | 	spin_lock(&inode_hash_lock); | 
 | 	inode = find_inode(sb, head, test, data, true); | 
 | 	spin_unlock(&inode_hash_lock); | 
 |  | 
 | 	return IS_ERR(inode) ? NULL : inode; | 
 | } | 
 | EXPORT_SYMBOL(ilookup5_nowait); | 
 |  | 
 | /** | 
 |  * ilookup5 - search for an inode in the inode cache | 
 |  * @sb:		super block of file system to search | 
 |  * @hashval:	hash value (usually inode number) to search for | 
 |  * @test:	callback used for comparisons between inodes | 
 |  * @data:	opaque data pointer to pass to @test | 
 |  * | 
 |  * Search for the inode specified by @hashval and @data in the inode cache, | 
 |  * and if the inode is in the cache, return the inode with an incremented | 
 |  * reference count.  Waits on I_NEW before returning the inode. | 
 |  * returned with an incremented reference count. | 
 |  * | 
 |  * This is a generalized version of ilookup() for file systems where the | 
 |  * inode number is not sufficient for unique identification of an inode. | 
 |  * | 
 |  * Note: @test is called with the inode_hash_lock held, so can't sleep. | 
 |  */ | 
 | struct inode *ilookup5(struct super_block *sb, unsigned long hashval, | 
 | 		int (*test)(struct inode *, void *), void *data) | 
 | { | 
 | 	struct inode *inode; | 
 | again: | 
 | 	inode = ilookup5_nowait(sb, hashval, test, data); | 
 | 	if (inode) { | 
 | 		wait_on_inode(inode); | 
 | 		if (unlikely(inode_unhashed(inode))) { | 
 | 			iput(inode); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 | 	return inode; | 
 | } | 
 | EXPORT_SYMBOL(ilookup5); | 
 |  | 
 | /** | 
 |  * ilookup - search for an inode in the inode cache | 
 |  * @sb:		super block of file system to search | 
 |  * @ino:	inode number to search for | 
 |  * | 
 |  * Search for the inode @ino in the inode cache, and if the inode is in the | 
 |  * cache, the inode is returned with an incremented reference count. | 
 |  */ | 
 | struct inode *ilookup(struct super_block *sb, unsigned long ino) | 
 | { | 
 | 	struct hlist_head *head = inode_hashtable + hash(sb, ino); | 
 | 	struct inode *inode; | 
 | again: | 
 | 	inode = find_inode_fast(sb, head, ino, false); | 
 |  | 
 | 	if (inode) { | 
 | 		if (IS_ERR(inode)) | 
 | 			return NULL; | 
 | 		wait_on_inode(inode); | 
 | 		if (unlikely(inode_unhashed(inode))) { | 
 | 			iput(inode); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 | 	return inode; | 
 | } | 
 | EXPORT_SYMBOL(ilookup); | 
 |  | 
 | /** | 
 |  * find_inode_nowait - find an inode in the inode cache | 
 |  * @sb:		super block of file system to search | 
 |  * @hashval:	hash value (usually inode number) to search for | 
 |  * @match:	callback used for comparisons between inodes | 
 |  * @data:	opaque data pointer to pass to @match | 
 |  * | 
 |  * Search for the inode specified by @hashval and @data in the inode | 
 |  * cache, where the helper function @match will return 0 if the inode | 
 |  * does not match, 1 if the inode does match, and -1 if the search | 
 |  * should be stopped.  The @match function must be responsible for | 
 |  * taking the i_lock spin_lock and checking i_state for an inode being | 
 |  * freed or being initialized, and incrementing the reference count | 
 |  * before returning 1.  It also must not sleep, since it is called with | 
 |  * the inode_hash_lock spinlock held. | 
 |  * | 
 |  * This is a even more generalized version of ilookup5() when the | 
 |  * function must never block --- find_inode() can block in | 
 |  * __wait_on_freeing_inode() --- or when the caller can not increment | 
 |  * the reference count because the resulting iput() might cause an | 
 |  * inode eviction.  The tradeoff is that the @match funtion must be | 
 |  * very carefully implemented. | 
 |  */ | 
 | struct inode *find_inode_nowait(struct super_block *sb, | 
 | 				unsigned long hashval, | 
 | 				int (*match)(struct inode *, unsigned long, | 
 | 					     void *), | 
 | 				void *data) | 
 | { | 
 | 	struct hlist_head *head = inode_hashtable + hash(sb, hashval); | 
 | 	struct inode *inode, *ret_inode = NULL; | 
 | 	int mval; | 
 |  | 
 | 	spin_lock(&inode_hash_lock); | 
 | 	hlist_for_each_entry(inode, head, i_hash) { | 
 | 		if (inode->i_sb != sb) | 
 | 			continue; | 
 | 		mval = match(inode, hashval, data); | 
 | 		if (mval == 0) | 
 | 			continue; | 
 | 		if (mval == 1) | 
 | 			ret_inode = inode; | 
 | 		goto out; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&inode_hash_lock); | 
 | 	return ret_inode; | 
 | } | 
 | EXPORT_SYMBOL(find_inode_nowait); | 
 |  | 
 | /** | 
 |  * find_inode_rcu - find an inode in the inode cache | 
 |  * @sb:		Super block of file system to search | 
 |  * @hashval:	Key to hash | 
 |  * @test:	Function to test match on an inode | 
 |  * @data:	Data for test function | 
 |  * | 
 |  * Search for the inode specified by @hashval and @data in the inode cache, | 
 |  * where the helper function @test will return 0 if the inode does not match | 
 |  * and 1 if it does.  The @test function must be responsible for taking the | 
 |  * i_lock spin_lock and checking i_state for an inode being freed or being | 
 |  * initialized. | 
 |  * | 
 |  * If successful, this will return the inode for which the @test function | 
 |  * returned 1 and NULL otherwise. | 
 |  * | 
 |  * The @test function is not permitted to take a ref on any inode presented. | 
 |  * It is also not permitted to sleep. | 
 |  * | 
 |  * The caller must hold the RCU read lock. | 
 |  */ | 
 | struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, | 
 | 			     int (*test)(struct inode *, void *), void *data) | 
 | { | 
 | 	struct hlist_head *head = inode_hashtable + hash(sb, hashval); | 
 | 	struct inode *inode; | 
 |  | 
 | 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), | 
 | 			 "suspicious find_inode_rcu() usage"); | 
 |  | 
 | 	hlist_for_each_entry_rcu(inode, head, i_hash) { | 
 | 		if (inode->i_sb == sb && | 
 | 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && | 
 | 		    test(inode, data)) | 
 | 			return inode; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(find_inode_rcu); | 
 |  | 
 | /** | 
 |  * find_inode_by_ino_rcu - Find an inode in the inode cache | 
 |  * @sb:		Super block of file system to search | 
 |  * @ino:	The inode number to match | 
 |  * | 
 |  * Search for the inode specified by @hashval and @data in the inode cache, | 
 |  * where the helper function @test will return 0 if the inode does not match | 
 |  * and 1 if it does.  The @test function must be responsible for taking the | 
 |  * i_lock spin_lock and checking i_state for an inode being freed or being | 
 |  * initialized. | 
 |  * | 
 |  * If successful, this will return the inode for which the @test function | 
 |  * returned 1 and NULL otherwise. | 
 |  * | 
 |  * The @test function is not permitted to take a ref on any inode presented. | 
 |  * It is also not permitted to sleep. | 
 |  * | 
 |  * The caller must hold the RCU read lock. | 
 |  */ | 
 | struct inode *find_inode_by_ino_rcu(struct super_block *sb, | 
 | 				    unsigned long ino) | 
 | { | 
 | 	struct hlist_head *head = inode_hashtable + hash(sb, ino); | 
 | 	struct inode *inode; | 
 |  | 
 | 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), | 
 | 			 "suspicious find_inode_by_ino_rcu() usage"); | 
 |  | 
 | 	hlist_for_each_entry_rcu(inode, head, i_hash) { | 
 | 		if (inode->i_ino == ino && | 
 | 		    inode->i_sb == sb && | 
 | 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) | 
 | 		    return inode; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(find_inode_by_ino_rcu); | 
 |  | 
 | int insert_inode_locked(struct inode *inode) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	ino_t ino = inode->i_ino; | 
 | 	struct hlist_head *head = inode_hashtable + hash(sb, ino); | 
 |  | 
 | 	while (1) { | 
 | 		struct inode *old = NULL; | 
 | 		spin_lock(&inode_hash_lock); | 
 | 		hlist_for_each_entry(old, head, i_hash) { | 
 | 			if (old->i_ino != ino) | 
 | 				continue; | 
 | 			if (old->i_sb != sb) | 
 | 				continue; | 
 | 			spin_lock(&old->i_lock); | 
 | 			if (old->i_state & (I_FREEING|I_WILL_FREE)) { | 
 | 				spin_unlock(&old->i_lock); | 
 | 				continue; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		if (likely(!old)) { | 
 | 			spin_lock(&inode->i_lock); | 
 | 			inode->i_state |= I_NEW | I_CREATING; | 
 | 			hlist_add_head_rcu(&inode->i_hash, head); | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			spin_unlock(&inode_hash_lock); | 
 | 			return 0; | 
 | 		} | 
 | 		if (unlikely(old->i_state & I_CREATING)) { | 
 | 			spin_unlock(&old->i_lock); | 
 | 			spin_unlock(&inode_hash_lock); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		__iget(old); | 
 | 		spin_unlock(&old->i_lock); | 
 | 		spin_unlock(&inode_hash_lock); | 
 | 		wait_on_inode(old); | 
 | 		if (unlikely(!inode_unhashed(old))) { | 
 | 			iput(old); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		iput(old); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(insert_inode_locked); | 
 |  | 
 | int insert_inode_locked4(struct inode *inode, unsigned long hashval, | 
 | 		int (*test)(struct inode *, void *), void *data) | 
 | { | 
 | 	struct inode *old; | 
 |  | 
 | 	inode->i_state |= I_CREATING; | 
 | 	old = inode_insert5(inode, hashval, test, NULL, data); | 
 |  | 
 | 	if (old != inode) { | 
 | 		iput(old); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(insert_inode_locked4); | 
 |  | 
 |  | 
 | int generic_delete_inode(struct inode *inode) | 
 | { | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(generic_delete_inode); | 
 |  | 
 | /* | 
 |  * Called when we're dropping the last reference | 
 |  * to an inode. | 
 |  * | 
 |  * Call the FS "drop_inode()" function, defaulting to | 
 |  * the legacy UNIX filesystem behaviour.  If it tells | 
 |  * us to evict inode, do so.  Otherwise, retain inode | 
 |  * in cache if fs is alive, sync and evict if fs is | 
 |  * shutting down. | 
 |  */ | 
 | static void iput_final(struct inode *inode) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	const struct super_operations *op = inode->i_sb->s_op; | 
 | 	unsigned long state; | 
 | 	int drop; | 
 |  | 
 | 	WARN_ON(inode->i_state & I_NEW); | 
 |  | 
 | 	if (op->drop_inode) | 
 | 		drop = op->drop_inode(inode); | 
 | 	else | 
 | 		drop = generic_drop_inode(inode); | 
 |  | 
 | 	if (!drop && | 
 | 	    !(inode->i_state & I_DONTCACHE) && | 
 | 	    (sb->s_flags & SB_ACTIVE)) { | 
 | 		__inode_add_lru(inode, true); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	state = inode->i_state; | 
 | 	if (!drop) { | 
 | 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE); | 
 | 		spin_unlock(&inode->i_lock); | 
 |  | 
 | 		write_inode_now(inode, 1); | 
 |  | 
 | 		spin_lock(&inode->i_lock); | 
 | 		state = inode->i_state; | 
 | 		WARN_ON(state & I_NEW); | 
 | 		state &= ~I_WILL_FREE; | 
 | 	} | 
 |  | 
 | 	WRITE_ONCE(inode->i_state, state | I_FREEING); | 
 | 	if (!list_empty(&inode->i_lru)) | 
 | 		inode_lru_list_del(inode); | 
 | 	spin_unlock(&inode->i_lock); | 
 |  | 
 | 	evict(inode); | 
 | } | 
 |  | 
 | /** | 
 |  *	iput	- put an inode | 
 |  *	@inode: inode to put | 
 |  * | 
 |  *	Puts an inode, dropping its usage count. If the inode use count hits | 
 |  *	zero, the inode is then freed and may also be destroyed. | 
 |  * | 
 |  *	Consequently, iput() can sleep. | 
 |  */ | 
 | void iput(struct inode *inode) | 
 | { | 
 | 	if (!inode) | 
 | 		return; | 
 | 	BUG_ON(inode->i_state & I_CLEAR); | 
 | retry: | 
 | 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { | 
 | 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { | 
 | 			atomic_inc(&inode->i_count); | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			trace_writeback_lazytime_iput(inode); | 
 | 			mark_inode_dirty_sync(inode); | 
 | 			goto retry; | 
 | 		} | 
 | 		iput_final(inode); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(iput); | 
 |  | 
 | #ifdef CONFIG_BLOCK | 
 | /** | 
 |  *	bmap	- find a block number in a file | 
 |  *	@inode:  inode owning the block number being requested | 
 |  *	@block: pointer containing the block to find | 
 |  * | 
 |  *	Replaces the value in ``*block`` with the block number on the device holding | 
 |  *	corresponding to the requested block number in the file. | 
 |  *	That is, asked for block 4 of inode 1 the function will replace the | 
 |  *	4 in ``*block``, with disk block relative to the disk start that holds that | 
 |  *	block of the file. | 
 |  * | 
 |  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a | 
 |  *	hole, returns 0 and ``*block`` is also set to 0. | 
 |  */ | 
 | int bmap(struct inode *inode, sector_t *block) | 
 | { | 
 | 	if (!inode->i_mapping->a_ops->bmap) | 
 | 		return -EINVAL; | 
 |  | 
 | 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(bmap); | 
 | #endif | 
 |  | 
 | /* | 
 |  * With relative atime, only update atime if the previous atime is | 
 |  * earlier than or equal to either the ctime or mtime, | 
 |  * or if at least a day has passed since the last atime update. | 
 |  */ | 
 | static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, | 
 | 			     struct timespec64 now) | 
 | { | 
 | 	struct timespec64 atime, mtime, ctime; | 
 |  | 
 | 	if (!(mnt->mnt_flags & MNT_RELATIME)) | 
 | 		return true; | 
 | 	/* | 
 | 	 * Is mtime younger than or equal to atime? If yes, update atime: | 
 | 	 */ | 
 | 	atime = inode_get_atime(inode); | 
 | 	mtime = inode_get_mtime(inode); | 
 | 	if (timespec64_compare(&mtime, &atime) >= 0) | 
 | 		return true; | 
 | 	/* | 
 | 	 * Is ctime younger than or equal to atime? If yes, update atime: | 
 | 	 */ | 
 | 	ctime = inode_get_ctime(inode); | 
 | 	if (timespec64_compare(&ctime, &atime) >= 0) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Is the previous atime value older than a day? If yes, | 
 | 	 * update atime: | 
 | 	 */ | 
 | 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) | 
 | 		return true; | 
 | 	/* | 
 | 	 * Good, we can skip the atime update: | 
 | 	 */ | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * inode_update_timestamps - update the timestamps on the inode | 
 |  * @inode: inode to be updated | 
 |  * @flags: S_* flags that needed to be updated | 
 |  * | 
 |  * The update_time function is called when an inode's timestamps need to be | 
 |  * updated for a read or write operation. This function handles updating the | 
 |  * actual timestamps. It's up to the caller to ensure that the inode is marked | 
 |  * dirty appropriately. | 
 |  * | 
 |  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, | 
 |  * attempt to update all three of them. S_ATIME updates can be handled | 
 |  * independently of the rest. | 
 |  * | 
 |  * Returns a set of S_* flags indicating which values changed. | 
 |  */ | 
 | int inode_update_timestamps(struct inode *inode, int flags) | 
 | { | 
 | 	int updated = 0; | 
 | 	struct timespec64 now; | 
 |  | 
 | 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) { | 
 | 		struct timespec64 ctime = inode_get_ctime(inode); | 
 | 		struct timespec64 mtime = inode_get_mtime(inode); | 
 |  | 
 | 		now = inode_set_ctime_current(inode); | 
 | 		if (!timespec64_equal(&now, &ctime)) | 
 | 			updated |= S_CTIME; | 
 | 		if (!timespec64_equal(&now, &mtime)) { | 
 | 			inode_set_mtime_to_ts(inode, now); | 
 | 			updated |= S_MTIME; | 
 | 		} | 
 | 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) | 
 | 			updated |= S_VERSION; | 
 | 	} else { | 
 | 		now = current_time(inode); | 
 | 	} | 
 |  | 
 | 	if (flags & S_ATIME) { | 
 | 		struct timespec64 atime = inode_get_atime(inode); | 
 |  | 
 | 		if (!timespec64_equal(&now, &atime)) { | 
 | 			inode_set_atime_to_ts(inode, now); | 
 | 			updated |= S_ATIME; | 
 | 		} | 
 | 	} | 
 | 	return updated; | 
 | } | 
 | EXPORT_SYMBOL(inode_update_timestamps); | 
 |  | 
 | /** | 
 |  * generic_update_time - update the timestamps on the inode | 
 |  * @inode: inode to be updated | 
 |  * @flags: S_* flags that needed to be updated | 
 |  * | 
 |  * The update_time function is called when an inode's timestamps need to be | 
 |  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, | 
 |  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME | 
 |  * updates can be handled done independently of the rest. | 
 |  * | 
 |  * Returns a S_* mask indicating which fields were updated. | 
 |  */ | 
 | int generic_update_time(struct inode *inode, int flags) | 
 | { | 
 | 	int updated = inode_update_timestamps(inode, flags); | 
 | 	int dirty_flags = 0; | 
 |  | 
 | 	if (updated & (S_ATIME|S_MTIME|S_CTIME)) | 
 | 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; | 
 | 	if (updated & S_VERSION) | 
 | 		dirty_flags |= I_DIRTY_SYNC; | 
 | 	__mark_inode_dirty(inode, dirty_flags); | 
 | 	return updated; | 
 | } | 
 | EXPORT_SYMBOL(generic_update_time); | 
 |  | 
 | /* | 
 |  * This does the actual work of updating an inodes time or version.  Must have | 
 |  * had called mnt_want_write() before calling this. | 
 |  */ | 
 | int inode_update_time(struct inode *inode, int flags) | 
 | { | 
 | 	if (inode->i_op->update_time) | 
 | 		return inode->i_op->update_time(inode, flags); | 
 | 	generic_update_time(inode, flags); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(inode_update_time); | 
 |  | 
 | /** | 
 |  *	atime_needs_update	-	update the access time | 
 |  *	@path: the &struct path to update | 
 |  *	@inode: inode to update | 
 |  * | 
 |  *	Update the accessed time on an inode and mark it for writeback. | 
 |  *	This function automatically handles read only file systems and media, | 
 |  *	as well as the "noatime" flag and inode specific "noatime" markers. | 
 |  */ | 
 | bool atime_needs_update(const struct path *path, struct inode *inode) | 
 | { | 
 | 	struct vfsmount *mnt = path->mnt; | 
 | 	struct timespec64 now, atime; | 
 |  | 
 | 	if (inode->i_flags & S_NOATIME) | 
 | 		return false; | 
 |  | 
 | 	/* Atime updates will likely cause i_uid and i_gid to be written | 
 | 	 * back improprely if their true value is unknown to the vfs. | 
 | 	 */ | 
 | 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) | 
 | 		return false; | 
 |  | 
 | 	if (IS_NOATIME(inode)) | 
 | 		return false; | 
 | 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) | 
 | 		return false; | 
 |  | 
 | 	if (mnt->mnt_flags & MNT_NOATIME) | 
 | 		return false; | 
 | 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) | 
 | 		return false; | 
 |  | 
 | 	now = current_time(inode); | 
 |  | 
 | 	if (!relatime_need_update(mnt, inode, now)) | 
 | 		return false; | 
 |  | 
 | 	atime = inode_get_atime(inode); | 
 | 	if (timespec64_equal(&atime, &now)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void touch_atime(const struct path *path) | 
 | { | 
 | 	struct vfsmount *mnt = path->mnt; | 
 | 	struct inode *inode = d_inode(path->dentry); | 
 |  | 
 | 	if (!atime_needs_update(path, inode)) | 
 | 		return; | 
 |  | 
 | 	if (!sb_start_write_trylock(inode->i_sb)) | 
 | 		return; | 
 |  | 
 | 	if (mnt_get_write_access(mnt) != 0) | 
 | 		goto skip_update; | 
 | 	/* | 
 | 	 * File systems can error out when updating inodes if they need to | 
 | 	 * allocate new space to modify an inode (such is the case for | 
 | 	 * Btrfs), but since we touch atime while walking down the path we | 
 | 	 * really don't care if we failed to update the atime of the file, | 
 | 	 * so just ignore the return value. | 
 | 	 * We may also fail on filesystems that have the ability to make parts | 
 | 	 * of the fs read only, e.g. subvolumes in Btrfs. | 
 | 	 */ | 
 | 	inode_update_time(inode, S_ATIME); | 
 | 	mnt_put_write_access(mnt); | 
 | skip_update: | 
 | 	sb_end_write(inode->i_sb); | 
 | } | 
 | EXPORT_SYMBOL(touch_atime); | 
 |  | 
 | /* | 
 |  * Return mask of changes for notify_change() that need to be done as a | 
 |  * response to write or truncate. Return 0 if nothing has to be changed. | 
 |  * Negative value on error (change should be denied). | 
 |  */ | 
 | int dentry_needs_remove_privs(struct mnt_idmap *idmap, | 
 | 			      struct dentry *dentry) | 
 | { | 
 | 	struct inode *inode = d_inode(dentry); | 
 | 	int mask = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (IS_NOSEC(inode)) | 
 | 		return 0; | 
 |  | 
 | 	mask = setattr_should_drop_suidgid(idmap, inode); | 
 | 	ret = security_inode_need_killpriv(dentry); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	if (ret) | 
 | 		mask |= ATTR_KILL_PRIV; | 
 | 	return mask; | 
 | } | 
 |  | 
 | static int __remove_privs(struct mnt_idmap *idmap, | 
 | 			  struct dentry *dentry, int kill) | 
 | { | 
 | 	struct iattr newattrs; | 
 |  | 
 | 	newattrs.ia_valid = ATTR_FORCE | kill; | 
 | 	/* | 
 | 	 * Note we call this on write, so notify_change will not | 
 | 	 * encounter any conflicting delegations: | 
 | 	 */ | 
 | 	return notify_change(idmap, dentry, &newattrs, NULL); | 
 | } | 
 |  | 
 | int file_remove_privs_flags(struct file *file, unsigned int flags) | 
 | { | 
 | 	struct dentry *dentry = file_dentry(file); | 
 | 	struct inode *inode = file_inode(file); | 
 | 	int error = 0; | 
 | 	int kill; | 
 |  | 
 | 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) | 
 | 		return 0; | 
 |  | 
 | 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); | 
 | 	if (kill < 0) | 
 | 		return kill; | 
 |  | 
 | 	if (kill) { | 
 | 		if (flags & IOCB_NOWAIT) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		error = __remove_privs(file_mnt_idmap(file), dentry, kill); | 
 | 	} | 
 |  | 
 | 	if (!error) | 
 | 		inode_has_no_xattr(inode); | 
 | 	return error; | 
 | } | 
 | EXPORT_SYMBOL_GPL(file_remove_privs_flags); | 
 |  | 
 | /** | 
 |  * file_remove_privs - remove special file privileges (suid, capabilities) | 
 |  * @file: file to remove privileges from | 
 |  * | 
 |  * When file is modified by a write or truncation ensure that special | 
 |  * file privileges are removed. | 
 |  * | 
 |  * Return: 0 on success, negative errno on failure. | 
 |  */ | 
 | int file_remove_privs(struct file *file) | 
 | { | 
 | 	return file_remove_privs_flags(file, 0); | 
 | } | 
 | EXPORT_SYMBOL(file_remove_privs); | 
 |  | 
 | /** | 
 |  * current_time - Return FS time (possibly fine-grained) | 
 |  * @inode: inode. | 
 |  * | 
 |  * Return the current time truncated to the time granularity supported by | 
 |  * the fs, as suitable for a ctime/mtime change. If the ctime is flagged | 
 |  * as having been QUERIED, get a fine-grained timestamp, but don't update | 
 |  * the floor. | 
 |  * | 
 |  * For a multigrain inode, this is effectively an estimate of the timestamp | 
 |  * that a file would receive. An actual update must go through | 
 |  * inode_set_ctime_current(). | 
 |  */ | 
 | struct timespec64 current_time(struct inode *inode) | 
 | { | 
 | 	struct timespec64 now; | 
 | 	u32 cns; | 
 |  | 
 | 	ktime_get_coarse_real_ts64_mg(&now); | 
 |  | 
 | 	if (!is_mgtime(inode)) | 
 | 		goto out; | 
 |  | 
 | 	/* If nothing has queried it, then coarse time is fine */ | 
 | 	cns = smp_load_acquire(&inode->i_ctime_nsec); | 
 | 	if (cns & I_CTIME_QUERIED) { | 
 | 		/* | 
 | 		 * If there is no apparent change, then get a fine-grained | 
 | 		 * timestamp. | 
 | 		 */ | 
 | 		if (now.tv_nsec == (cns & ~I_CTIME_QUERIED)) | 
 | 			ktime_get_real_ts64(&now); | 
 | 	} | 
 | out: | 
 | 	return timestamp_truncate(now, inode); | 
 | } | 
 | EXPORT_SYMBOL(current_time); | 
 |  | 
 | static int inode_needs_update_time(struct inode *inode) | 
 | { | 
 | 	struct timespec64 now, ts; | 
 | 	int sync_it = 0; | 
 |  | 
 | 	/* First try to exhaust all avenues to not sync */ | 
 | 	if (IS_NOCMTIME(inode)) | 
 | 		return 0; | 
 |  | 
 | 	now = current_time(inode); | 
 |  | 
 | 	ts = inode_get_mtime(inode); | 
 | 	if (!timespec64_equal(&ts, &now)) | 
 | 		sync_it |= S_MTIME; | 
 |  | 
 | 	ts = inode_get_ctime(inode); | 
 | 	if (!timespec64_equal(&ts, &now)) | 
 | 		sync_it |= S_CTIME; | 
 |  | 
 | 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) | 
 | 		sync_it |= S_VERSION; | 
 |  | 
 | 	return sync_it; | 
 | } | 
 |  | 
 | static int __file_update_time(struct file *file, int sync_mode) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct inode *inode = file_inode(file); | 
 |  | 
 | 	/* try to update time settings */ | 
 | 	if (!mnt_get_write_access_file(file)) { | 
 | 		ret = inode_update_time(inode, sync_mode); | 
 | 		mnt_put_write_access_file(file); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * file_update_time - update mtime and ctime time | 
 |  * @file: file accessed | 
 |  * | 
 |  * Update the mtime and ctime members of an inode and mark the inode for | 
 |  * writeback. Note that this function is meant exclusively for usage in | 
 |  * the file write path of filesystems, and filesystems may choose to | 
 |  * explicitly ignore updates via this function with the _NOCMTIME inode | 
 |  * flag, e.g. for network filesystem where these imestamps are handled | 
 |  * by the server. This can return an error for file systems who need to | 
 |  * allocate space in order to update an inode. | 
 |  * | 
 |  * Return: 0 on success, negative errno on failure. | 
 |  */ | 
 | int file_update_time(struct file *file) | 
 | { | 
 | 	int ret; | 
 | 	struct inode *inode = file_inode(file); | 
 |  | 
 | 	ret = inode_needs_update_time(inode); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 |  | 
 | 	return __file_update_time(file, ret); | 
 | } | 
 | EXPORT_SYMBOL(file_update_time); | 
 |  | 
 | /** | 
 |  * file_modified_flags - handle mandated vfs changes when modifying a file | 
 |  * @file: file that was modified | 
 |  * @flags: kiocb flags | 
 |  * | 
 |  * When file has been modified ensure that special | 
 |  * file privileges are removed and time settings are updated. | 
 |  * | 
 |  * If IOCB_NOWAIT is set, special file privileges will not be removed and | 
 |  * time settings will not be updated. It will return -EAGAIN. | 
 |  * | 
 |  * Context: Caller must hold the file's inode lock. | 
 |  * | 
 |  * Return: 0 on success, negative errno on failure. | 
 |  */ | 
 | static int file_modified_flags(struct file *file, int flags) | 
 | { | 
 | 	int ret; | 
 | 	struct inode *inode = file_inode(file); | 
 |  | 
 | 	/* | 
 | 	 * Clear the security bits if the process is not being run by root. | 
 | 	 * This keeps people from modifying setuid and setgid binaries. | 
 | 	 */ | 
 | 	ret = file_remove_privs_flags(file, flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (unlikely(file->f_mode & FMODE_NOCMTIME)) | 
 | 		return 0; | 
 |  | 
 | 	ret = inode_needs_update_time(inode); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 | 	if (flags & IOCB_NOWAIT) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	return __file_update_time(file, ret); | 
 | } | 
 |  | 
 | /** | 
 |  * file_modified - handle mandated vfs changes when modifying a file | 
 |  * @file: file that was modified | 
 |  * | 
 |  * When file has been modified ensure that special | 
 |  * file privileges are removed and time settings are updated. | 
 |  * | 
 |  * Context: Caller must hold the file's inode lock. | 
 |  * | 
 |  * Return: 0 on success, negative errno on failure. | 
 |  */ | 
 | int file_modified(struct file *file) | 
 | { | 
 | 	return file_modified_flags(file, 0); | 
 | } | 
 | EXPORT_SYMBOL(file_modified); | 
 |  | 
 | /** | 
 |  * kiocb_modified - handle mandated vfs changes when modifying a file | 
 |  * @iocb: iocb that was modified | 
 |  * | 
 |  * When file has been modified ensure that special | 
 |  * file privileges are removed and time settings are updated. | 
 |  * | 
 |  * Context: Caller must hold the file's inode lock. | 
 |  * | 
 |  * Return: 0 on success, negative errno on failure. | 
 |  */ | 
 | int kiocb_modified(struct kiocb *iocb) | 
 | { | 
 | 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kiocb_modified); | 
 |  | 
 | int inode_needs_sync(struct inode *inode) | 
 | { | 
 | 	if (IS_SYNC(inode)) | 
 | 		return 1; | 
 | 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(inode_needs_sync); | 
 |  | 
 | /* | 
 |  * If we try to find an inode in the inode hash while it is being | 
 |  * deleted, we have to wait until the filesystem completes its | 
 |  * deletion before reporting that it isn't found.  This function waits | 
 |  * until the deletion _might_ have completed.  Callers are responsible | 
 |  * to recheck inode state. | 
 |  * | 
 |  * It doesn't matter if I_NEW is not set initially, a call to | 
 |  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list | 
 |  * will DTRT. | 
 |  */ | 
 | static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) | 
 | { | 
 | 	struct wait_bit_queue_entry wqe; | 
 | 	struct wait_queue_head *wq_head; | 
 |  | 
 | 	/* | 
 | 	 * Handle racing against evict(), see that routine for more details. | 
 | 	 */ | 
 | 	if (unlikely(inode_unhashed(inode))) { | 
 | 		WARN_ON(is_inode_hash_locked); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); | 
 | 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); | 
 | 	spin_unlock(&inode->i_lock); | 
 | 	rcu_read_unlock(); | 
 | 	if (is_inode_hash_locked) | 
 | 		spin_unlock(&inode_hash_lock); | 
 | 	schedule(); | 
 | 	finish_wait(wq_head, &wqe.wq_entry); | 
 | 	if (is_inode_hash_locked) | 
 | 		spin_lock(&inode_hash_lock); | 
 | 	rcu_read_lock(); | 
 | } | 
 |  | 
 | static __initdata unsigned long ihash_entries; | 
 | static int __init set_ihash_entries(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return 0; | 
 | 	ihash_entries = simple_strtoul(str, &str, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("ihash_entries=", set_ihash_entries); | 
 |  | 
 | /* | 
 |  * Initialize the waitqueues and inode hash table. | 
 |  */ | 
 | void __init inode_init_early(void) | 
 | { | 
 | 	/* If hashes are distributed across NUMA nodes, defer | 
 | 	 * hash allocation until vmalloc space is available. | 
 | 	 */ | 
 | 	if (hashdist) | 
 | 		return; | 
 |  | 
 | 	inode_hashtable = | 
 | 		alloc_large_system_hash("Inode-cache", | 
 | 					sizeof(struct hlist_head), | 
 | 					ihash_entries, | 
 | 					14, | 
 | 					HASH_EARLY | HASH_ZERO, | 
 | 					&i_hash_shift, | 
 | 					&i_hash_mask, | 
 | 					0, | 
 | 					0); | 
 | } | 
 |  | 
 | void __init inode_init(void) | 
 | { | 
 | 	/* inode slab cache */ | 
 | 	inode_cachep = kmem_cache_create("inode_cache", | 
 | 					 sizeof(struct inode), | 
 | 					 0, | 
 | 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | 
 | 					 SLAB_ACCOUNT), | 
 | 					 init_once); | 
 |  | 
 | 	/* Hash may have been set up in inode_init_early */ | 
 | 	if (!hashdist) | 
 | 		return; | 
 |  | 
 | 	inode_hashtable = | 
 | 		alloc_large_system_hash("Inode-cache", | 
 | 					sizeof(struct hlist_head), | 
 | 					ihash_entries, | 
 | 					14, | 
 | 					HASH_ZERO, | 
 | 					&i_hash_shift, | 
 | 					&i_hash_mask, | 
 | 					0, | 
 | 					0); | 
 | } | 
 |  | 
 | void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) | 
 | { | 
 | 	inode->i_mode = mode; | 
 | 	if (S_ISCHR(mode)) { | 
 | 		inode->i_fop = &def_chr_fops; | 
 | 		inode->i_rdev = rdev; | 
 | 	} else if (S_ISBLK(mode)) { | 
 | 		if (IS_ENABLED(CONFIG_BLOCK)) | 
 | 			inode->i_fop = &def_blk_fops; | 
 | 		inode->i_rdev = rdev; | 
 | 	} else if (S_ISFIFO(mode)) | 
 | 		inode->i_fop = &pipefifo_fops; | 
 | 	else if (S_ISSOCK(mode)) | 
 | 		;	/* leave it no_open_fops */ | 
 | 	else | 
 | 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" | 
 | 				  " inode %s:%lu\n", mode, inode->i_sb->s_id, | 
 | 				  inode->i_ino); | 
 | } | 
 | EXPORT_SYMBOL(init_special_inode); | 
 |  | 
 | /** | 
 |  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards | 
 |  * @idmap: idmap of the mount the inode was created from | 
 |  * @inode: New inode | 
 |  * @dir: Directory inode | 
 |  * @mode: mode of the new inode | 
 |  * | 
 |  * If the inode has been created through an idmapped mount the idmap of | 
 |  * the vfsmount must be passed through @idmap. This function will then take | 
 |  * care to map the inode according to @idmap before checking permissions | 
 |  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission | 
 |  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. | 
 |  */ | 
 | void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, | 
 | 		      const struct inode *dir, umode_t mode) | 
 | { | 
 | 	inode_fsuid_set(inode, idmap); | 
 | 	if (dir && dir->i_mode & S_ISGID) { | 
 | 		inode->i_gid = dir->i_gid; | 
 |  | 
 | 		/* Directories are special, and always inherit S_ISGID */ | 
 | 		if (S_ISDIR(mode)) | 
 | 			mode |= S_ISGID; | 
 | 	} else | 
 | 		inode_fsgid_set(inode, idmap); | 
 | 	inode->i_mode = mode; | 
 | } | 
 | EXPORT_SYMBOL(inode_init_owner); | 
 |  | 
 | /** | 
 |  * inode_owner_or_capable - check current task permissions to inode | 
 |  * @idmap: idmap of the mount the inode was found from | 
 |  * @inode: inode being checked | 
 |  * | 
 |  * Return true if current either has CAP_FOWNER in a namespace with the | 
 |  * inode owner uid mapped, or owns the file. | 
 |  * | 
 |  * If the inode has been found through an idmapped mount the idmap of | 
 |  * the vfsmount must be passed through @idmap. This function will then take | 
 |  * care to map the inode according to @idmap before checking permissions. | 
 |  * On non-idmapped mounts or if permission checking is to be performed on the | 
 |  * raw inode simply pass @nop_mnt_idmap. | 
 |  */ | 
 | bool inode_owner_or_capable(struct mnt_idmap *idmap, | 
 | 			    const struct inode *inode) | 
 | { | 
 | 	vfsuid_t vfsuid; | 
 | 	struct user_namespace *ns; | 
 |  | 
 | 	vfsuid = i_uid_into_vfsuid(idmap, inode); | 
 | 	if (vfsuid_eq_kuid(vfsuid, current_fsuid())) | 
 | 		return true; | 
 |  | 
 | 	ns = current_user_ns(); | 
 | 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL(inode_owner_or_capable); | 
 |  | 
 | /* | 
 |  * Direct i/o helper functions | 
 |  */ | 
 | bool inode_dio_finished(const struct inode *inode) | 
 | { | 
 | 	return atomic_read(&inode->i_dio_count) == 0; | 
 | } | 
 | EXPORT_SYMBOL(inode_dio_finished); | 
 |  | 
 | /** | 
 |  * inode_dio_wait - wait for outstanding DIO requests to finish | 
 |  * @inode: inode to wait for | 
 |  * | 
 |  * Waits for all pending direct I/O requests to finish so that we can | 
 |  * proceed with a truncate or equivalent operation. | 
 |  * | 
 |  * Must be called under a lock that serializes taking new references | 
 |  * to i_dio_count, usually by inode->i_rwsem. | 
 |  */ | 
 | void inode_dio_wait(struct inode *inode) | 
 | { | 
 | 	wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); | 
 | } | 
 | EXPORT_SYMBOL(inode_dio_wait); | 
 |  | 
 | void inode_dio_wait_interruptible(struct inode *inode) | 
 | { | 
 | 	wait_var_event_interruptible(&inode->i_dio_count, | 
 | 				     inode_dio_finished(inode)); | 
 | } | 
 | EXPORT_SYMBOL(inode_dio_wait_interruptible); | 
 |  | 
 | /* | 
 |  * inode_set_flags - atomically set some inode flags | 
 |  * | 
 |  * Note: the caller should be holding i_rwsem exclusively, or else be sure that | 
 |  * they have exclusive access to the inode structure (i.e., while the | 
 |  * inode is being instantiated).  The reason for the cmpxchg() loop | 
 |  * --- which wouldn't be necessary if all code paths which modify | 
 |  * i_flags actually followed this rule, is that there is at least one | 
 |  * code path which doesn't today so we use cmpxchg() out of an abundance | 
 |  * of caution. | 
 |  * | 
 |  * In the long run, i_rwsem is overkill, and we should probably look | 
 |  * at using the i_lock spinlock to protect i_flags, and then make sure | 
 |  * it is so documented in include/linux/fs.h and that all code follows | 
 |  * the locking convention!! | 
 |  */ | 
 | void inode_set_flags(struct inode *inode, unsigned int flags, | 
 | 		     unsigned int mask) | 
 | { | 
 | 	WARN_ON_ONCE(flags & ~mask); | 
 | 	set_mask_bits(&inode->i_flags, mask, flags); | 
 | } | 
 | EXPORT_SYMBOL(inode_set_flags); | 
 |  | 
 | void inode_nohighmem(struct inode *inode) | 
 | { | 
 | 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER); | 
 | } | 
 | EXPORT_SYMBOL(inode_nohighmem); | 
 |  | 
 | struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts) | 
 | { | 
 | 	trace_inode_set_ctime_to_ts(inode, &ts); | 
 | 	set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec); | 
 | 	inode->i_ctime_sec = ts.tv_sec; | 
 | 	inode->i_ctime_nsec = ts.tv_nsec; | 
 | 	return ts; | 
 | } | 
 | EXPORT_SYMBOL(inode_set_ctime_to_ts); | 
 |  | 
 | /** | 
 |  * timestamp_truncate - Truncate timespec to a granularity | 
 |  * @t: Timespec | 
 |  * @inode: inode being updated | 
 |  * | 
 |  * Truncate a timespec to the granularity supported by the fs | 
 |  * containing the inode. Always rounds down. gran must | 
 |  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). | 
 |  */ | 
 | struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	unsigned int gran = sb->s_time_gran; | 
 |  | 
 | 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); | 
 | 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) | 
 | 		t.tv_nsec = 0; | 
 |  | 
 | 	/* Avoid division in the common cases 1 ns and 1 s. */ | 
 | 	if (gran == 1) | 
 | 		; /* nothing */ | 
 | 	else if (gran == NSEC_PER_SEC) | 
 | 		t.tv_nsec = 0; | 
 | 	else if (gran > 1 && gran < NSEC_PER_SEC) | 
 | 		t.tv_nsec -= t.tv_nsec % gran; | 
 | 	else | 
 | 		WARN(1, "invalid file time granularity: %u", gran); | 
 | 	return t; | 
 | } | 
 | EXPORT_SYMBOL(timestamp_truncate); | 
 |  | 
 | /** | 
 |  * inode_set_ctime_current - set the ctime to current_time | 
 |  * @inode: inode | 
 |  * | 
 |  * Set the inode's ctime to the current value for the inode. Returns the | 
 |  * current value that was assigned. If this is not a multigrain inode, then we | 
 |  * set it to the later of the coarse time and floor value. | 
 |  * | 
 |  * If it is multigrain, then we first see if the coarse-grained timestamp is | 
 |  * distinct from what is already there. If so, then use that. Otherwise, get a | 
 |  * fine-grained timestamp. | 
 |  * | 
 |  * After that, try to swap the new value into i_ctime_nsec. Accept the | 
 |  * resulting ctime, regardless of the outcome of the swap. If it has | 
 |  * already been replaced, then that timestamp is later than the earlier | 
 |  * unacceptable one, and is thus acceptable. | 
 |  */ | 
 | struct timespec64 inode_set_ctime_current(struct inode *inode) | 
 | { | 
 | 	struct timespec64 now; | 
 | 	u32 cns, cur; | 
 |  | 
 | 	ktime_get_coarse_real_ts64_mg(&now); | 
 | 	now = timestamp_truncate(now, inode); | 
 |  | 
 | 	/* Just return that if this is not a multigrain fs */ | 
 | 	if (!is_mgtime(inode)) { | 
 | 		inode_set_ctime_to_ts(inode, now); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A fine-grained time is only needed if someone has queried | 
 | 	 * for timestamps, and the current coarse grained time isn't | 
 | 	 * later than what's already there. | 
 | 	 */ | 
 | 	cns = smp_load_acquire(&inode->i_ctime_nsec); | 
 | 	if (cns & I_CTIME_QUERIED) { | 
 | 		struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec, | 
 | 					    .tv_nsec = cns & ~I_CTIME_QUERIED }; | 
 |  | 
 | 		if (timespec64_compare(&now, &ctime) <= 0) { | 
 | 			ktime_get_real_ts64_mg(&now); | 
 | 			now = timestamp_truncate(now, inode); | 
 | 			mgtime_counter_inc(mg_fine_stamps); | 
 | 		} | 
 | 	} | 
 | 	mgtime_counter_inc(mg_ctime_updates); | 
 |  | 
 | 	/* No need to cmpxchg if it's exactly the same */ | 
 | 	if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) { | 
 | 		trace_ctime_xchg_skip(inode, &now); | 
 | 		goto out; | 
 | 	} | 
 | 	cur = cns; | 
 | retry: | 
 | 	/* Try to swap the nsec value into place. */ | 
 | 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) { | 
 | 		/* If swap occurred, then we're (mostly) done */ | 
 | 		inode->i_ctime_sec = now.tv_sec; | 
 | 		trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur); | 
 | 		mgtime_counter_inc(mg_ctime_swaps); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Was the change due to someone marking the old ctime QUERIED? | 
 | 		 * If so then retry the swap. This can only happen once since | 
 | 		 * the only way to clear I_CTIME_QUERIED is to stamp the inode | 
 | 		 * with a new ctime. | 
 | 		 */ | 
 | 		if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) { | 
 | 			cns = cur; | 
 | 			goto retry; | 
 | 		} | 
 | 		/* Otherwise, keep the existing ctime */ | 
 | 		now.tv_sec = inode->i_ctime_sec; | 
 | 		now.tv_nsec = cur & ~I_CTIME_QUERIED; | 
 | 	} | 
 | out: | 
 | 	return now; | 
 | } | 
 | EXPORT_SYMBOL(inode_set_ctime_current); | 
 |  | 
 | /** | 
 |  * inode_set_ctime_deleg - try to update the ctime on a delegated inode | 
 |  * @inode: inode to update | 
 |  * @update: timespec64 to set the ctime | 
 |  * | 
 |  * Attempt to atomically update the ctime on behalf of a delegation holder. | 
 |  * | 
 |  * The nfs server can call back the holder of a delegation to get updated | 
 |  * inode attributes, including the mtime. When updating the mtime, update | 
 |  * the ctime to a value at least equal to that. | 
 |  * | 
 |  * This can race with concurrent updates to the inode, in which | 
 |  * case the update is skipped. | 
 |  * | 
 |  * Note that this works even when multigrain timestamps are not enabled, | 
 |  * so it is used in either case. | 
 |  */ | 
 | struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update) | 
 | { | 
 | 	struct timespec64 now, cur_ts; | 
 | 	u32 cur, old; | 
 |  | 
 | 	/* pairs with try_cmpxchg below */ | 
 | 	cur = smp_load_acquire(&inode->i_ctime_nsec); | 
 | 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; | 
 | 	cur_ts.tv_sec = inode->i_ctime_sec; | 
 |  | 
 | 	/* If the update is older than the existing value, skip it. */ | 
 | 	if (timespec64_compare(&update, &cur_ts) <= 0) | 
 | 		return cur_ts; | 
 |  | 
 | 	ktime_get_coarse_real_ts64_mg(&now); | 
 |  | 
 | 	/* Clamp the update to "now" if it's in the future */ | 
 | 	if (timespec64_compare(&update, &now) > 0) | 
 | 		update = now; | 
 |  | 
 | 	update = timestamp_truncate(update, inode); | 
 |  | 
 | 	/* No need to update if the values are already the same */ | 
 | 	if (timespec64_equal(&update, &cur_ts)) | 
 | 		return cur_ts; | 
 |  | 
 | 	/* | 
 | 	 * Try to swap the nsec value into place. If it fails, that means | 
 | 	 * it raced with an update due to a write or similar activity. That | 
 | 	 * stamp takes precedence, so just skip the update. | 
 | 	 */ | 
 | retry: | 
 | 	old = cur; | 
 | 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) { | 
 | 		inode->i_ctime_sec = update.tv_sec; | 
 | 		mgtime_counter_inc(mg_ctime_swaps); | 
 | 		return update; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Was the change due to another task marking the old ctime QUERIED? | 
 | 	 * | 
 | 	 * If so, then retry the swap. This can only happen once since | 
 | 	 * the only way to clear I_CTIME_QUERIED is to stamp the inode | 
 | 	 * with a new ctime. | 
 | 	 */ | 
 | 	if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED))) | 
 | 		goto retry; | 
 |  | 
 | 	/* Otherwise, it was a new timestamp. */ | 
 | 	cur_ts.tv_sec = inode->i_ctime_sec; | 
 | 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; | 
 | 	return cur_ts; | 
 | } | 
 | EXPORT_SYMBOL(inode_set_ctime_deleg); | 
 |  | 
 | /** | 
 |  * in_group_or_capable - check whether caller is CAP_FSETID privileged | 
 |  * @idmap:	idmap of the mount @inode was found from | 
 |  * @inode:	inode to check | 
 |  * @vfsgid:	the new/current vfsgid of @inode | 
 |  * | 
 |  * Check whether @vfsgid is in the caller's group list or if the caller is | 
 |  * privileged with CAP_FSETID over @inode. This can be used to determine | 
 |  * whether the setgid bit can be kept or must be dropped. | 
 |  * | 
 |  * Return: true if the caller is sufficiently privileged, false if not. | 
 |  */ | 
 | bool in_group_or_capable(struct mnt_idmap *idmap, | 
 | 			 const struct inode *inode, vfsgid_t vfsgid) | 
 | { | 
 | 	if (vfsgid_in_group_p(vfsgid)) | 
 | 		return true; | 
 | 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL(in_group_or_capable); | 
 |  | 
 | /** | 
 |  * mode_strip_sgid - handle the sgid bit for non-directories | 
 |  * @idmap: idmap of the mount the inode was created from | 
 |  * @dir: parent directory inode | 
 |  * @mode: mode of the file to be created in @dir | 
 |  * | 
 |  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit | 
 |  * raised and @dir has the S_ISGID bit raised ensure that the caller is | 
 |  * either in the group of the parent directory or they have CAP_FSETID | 
 |  * in their user namespace and are privileged over the parent directory. | 
 |  * In all other cases, strip the S_ISGID bit from @mode. | 
 |  * | 
 |  * Return: the new mode to use for the file | 
 |  */ | 
 | umode_t mode_strip_sgid(struct mnt_idmap *idmap, | 
 | 			const struct inode *dir, umode_t mode) | 
 | { | 
 | 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) | 
 | 		return mode; | 
 | 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) | 
 | 		return mode; | 
 | 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) | 
 | 		return mode; | 
 | 	return mode & ~S_ISGID; | 
 | } | 
 | EXPORT_SYMBOL(mode_strip_sgid); | 
 |  | 
 | #ifdef CONFIG_DEBUG_VFS | 
 | /* | 
 |  * Dump an inode. | 
 |  * | 
 |  * TODO: add a proper inode dumping routine, this is a stub to get debug off the | 
 |  * ground. | 
 |  */ | 
 | void dump_inode(struct inode *inode, const char *reason) | 
 | { | 
 |        pr_warn("%s encountered for inode %px", reason, inode); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dump_inode); | 
 | #endif |