|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Slab allocator functions that are independent of the allocator strategy | 
|  | * | 
|  | * (C) 2012 Christoph Lameter <cl@gentwo.org> | 
|  | */ | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/kfence.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/swiotlb.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/kasan.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/page.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/stackdepot.h> | 
|  | #include <trace/events/rcu.h> | 
|  |  | 
|  | #include "../kernel/rcu/rcu.h" | 
|  | #include "internal.h" | 
|  | #include "slab.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/kmem.h> | 
|  |  | 
|  | enum slab_state slab_state; | 
|  | LIST_HEAD(slab_caches); | 
|  | DEFINE_MUTEX(slab_mutex); | 
|  | struct kmem_cache *kmem_cache; | 
|  |  | 
|  | /* | 
|  | * Set of flags that will prevent slab merging | 
|  | */ | 
|  | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
|  | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ | 
|  | SLAB_FAILSLAB | SLAB_NO_MERGE) | 
|  |  | 
|  | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ | 
|  | SLAB_CACHE_DMA32 | SLAB_ACCOUNT) | 
|  |  | 
|  | /* | 
|  | * Merge control. If this is set then no merging of slab caches will occur. | 
|  | */ | 
|  | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); | 
|  |  | 
|  | static int __init setup_slab_nomerge(char *str) | 
|  | { | 
|  | slab_nomerge = true; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __init setup_slab_merge(char *str) | 
|  | { | 
|  | slab_nomerge = false; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | 
|  | __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); | 
|  |  | 
|  | __setup("slab_nomerge", setup_slab_nomerge); | 
|  | __setup("slab_merge", setup_slab_merge); | 
|  |  | 
|  | /* | 
|  | * Determine the size of a slab object | 
|  | */ | 
|  | unsigned int kmem_cache_size(struct kmem_cache *s) | 
|  | { | 
|  | return s->object_size; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_size); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  |  | 
|  | static bool kmem_cache_is_duplicate_name(const char *name) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | if (!strcmp(s->name, name)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int kmem_cache_sanity_check(const char *name, unsigned int size) | 
|  | { | 
|  | if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { | 
|  | pr_err("kmem_cache_create(%s) integrity check failed\n", name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Duplicate names will confuse slabtop, et al */ | 
|  | WARN(kmem_cache_is_duplicate_name(name), | 
|  | "kmem_cache of name '%s' already exists\n", name); | 
|  |  | 
|  | WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Figure out what the alignment of the objects will be given a set of | 
|  | * flags, a user specified alignment and the size of the objects. | 
|  | */ | 
|  | static unsigned int calculate_alignment(slab_flags_t flags, | 
|  | unsigned int align, unsigned int size) | 
|  | { | 
|  | /* | 
|  | * If the user wants hardware cache aligned objects then follow that | 
|  | * suggestion if the object is sufficiently large. | 
|  | * | 
|  | * The hardware cache alignment cannot override the specified | 
|  | * alignment though. If that is greater then use it. | 
|  | */ | 
|  | if (flags & SLAB_HWCACHE_ALIGN) { | 
|  | unsigned int ralign; | 
|  |  | 
|  | ralign = cache_line_size(); | 
|  | while (size <= ralign / 2) | 
|  | ralign /= 2; | 
|  | align = max(align, ralign); | 
|  | } | 
|  |  | 
|  | align = max(align, arch_slab_minalign()); | 
|  |  | 
|  | return ALIGN(align, sizeof(void *)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a mergeable slab cache | 
|  | */ | 
|  | int slab_unmergeable(struct kmem_cache *s) | 
|  | { | 
|  | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | 
|  | return 1; | 
|  |  | 
|  | if (s->ctor) | 
|  | return 1; | 
|  |  | 
|  | #ifdef CONFIG_HARDENED_USERCOPY | 
|  | if (s->usersize) | 
|  | return 1; | 
|  | #endif | 
|  |  | 
|  | if (s->cpu_sheaves) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * We may have set a slab to be unmergeable during bootstrap. | 
|  | */ | 
|  | if (s->refcount < 0) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, | 
|  | slab_flags_t flags, const char *name, void (*ctor)(void *)) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | if (slab_nomerge) | 
|  | return NULL; | 
|  |  | 
|  | if (ctor) | 
|  | return NULL; | 
|  |  | 
|  | flags = kmem_cache_flags(flags, name); | 
|  |  | 
|  | if (flags & SLAB_NEVER_MERGE) | 
|  | return NULL; | 
|  |  | 
|  | size = ALIGN(size, sizeof(void *)); | 
|  | align = calculate_alignment(flags, align, size); | 
|  | size = ALIGN(size, align); | 
|  |  | 
|  | list_for_each_entry_reverse(s, &slab_caches, list) { | 
|  | if (slab_unmergeable(s)) | 
|  | continue; | 
|  |  | 
|  | if (size > s->size) | 
|  | continue; | 
|  |  | 
|  | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | 
|  | continue; | 
|  | /* | 
|  | * Check if alignment is compatible. | 
|  | * Courtesy of Adrian Drzewiecki | 
|  | */ | 
|  | if ((s->size & ~(align - 1)) != s->size) | 
|  | continue; | 
|  |  | 
|  | if (s->size - size >= sizeof(void *)) | 
|  | continue; | 
|  |  | 
|  | return s; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *create_cache(const char *name, | 
|  | unsigned int object_size, | 
|  | struct kmem_cache_args *args, | 
|  | slab_flags_t flags) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | /* If a custom freelist pointer is requested make sure it's sane. */ | 
|  | err = -EINVAL; | 
|  | if (args->use_freeptr_offset && | 
|  | (args->freeptr_offset >= object_size || | 
|  | !(flags & SLAB_TYPESAFE_BY_RCU) || | 
|  | !IS_ALIGNED(args->freeptr_offset, __alignof__(freeptr_t)))) | 
|  | goto out; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | 
|  | if (!s) | 
|  | goto out; | 
|  | err = do_kmem_cache_create(s, name, object_size, args, flags); | 
|  | if (err) | 
|  | goto out_free_cache; | 
|  |  | 
|  | s->refcount = 1; | 
|  | list_add(&s->list, &slab_caches); | 
|  | return s; | 
|  |  | 
|  | out_free_cache: | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | out: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __kmem_cache_create_args - Create a kmem cache. | 
|  | * @name: A string which is used in /proc/slabinfo to identify this cache. | 
|  | * @object_size: The size of objects to be created in this cache. | 
|  | * @args: Additional arguments for the cache creation (see | 
|  | *        &struct kmem_cache_args). | 
|  | * @flags: See the desriptions of individual flags. The common ones are listed | 
|  | *         in the description below. | 
|  | * | 
|  | * Not to be called directly, use the kmem_cache_create() wrapper with the same | 
|  | * parameters. | 
|  | * | 
|  | * Commonly used @flags: | 
|  | * | 
|  | * &SLAB_ACCOUNT - Account allocations to memcg. | 
|  | * | 
|  | * &SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. | 
|  | * | 
|  | * &SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. | 
|  | * | 
|  | * &SLAB_TYPESAFE_BY_RCU - Slab page (not individual objects) freeing delayed | 
|  | * by a grace period - see the full description before using. | 
|  | * | 
|  | * Context: Cannot be called within a interrupt, but can be interrupted. | 
|  | * | 
|  | * Return: a pointer to the cache on success, NULL on failure. | 
|  | */ | 
|  | struct kmem_cache *__kmem_cache_create_args(const char *name, | 
|  | unsigned int object_size, | 
|  | struct kmem_cache_args *args, | 
|  | slab_flags_t flags) | 
|  | { | 
|  | struct kmem_cache *s = NULL; | 
|  | const char *cache_name; | 
|  | int err; | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | /* | 
|  | * If no slab_debug was enabled globally, the static key is not yet | 
|  | * enabled by setup_slub_debug(). Enable it if the cache is being | 
|  | * created with any of the debugging flags passed explicitly. | 
|  | * It's also possible that this is the first cache created with | 
|  | * SLAB_STORE_USER and we should init stack_depot for it. | 
|  | */ | 
|  | if (flags & SLAB_DEBUG_FLAGS) | 
|  | static_branch_enable(&slub_debug_enabled); | 
|  | if (flags & SLAB_STORE_USER) | 
|  | stack_depot_init(); | 
|  | #else | 
|  | flags &= ~SLAB_DEBUG_FLAGS; | 
|  | #endif | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | err = kmem_cache_sanity_check(name, object_size); | 
|  | if (err) { | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (flags & ~SLAB_FLAGS_PERMITTED) { | 
|  | err = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Fail closed on bad usersize of useroffset values. */ | 
|  | if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) || | 
|  | WARN_ON(!args->usersize && args->useroffset) || | 
|  | WARN_ON(object_size < args->usersize || | 
|  | object_size - args->usersize < args->useroffset)) | 
|  | args->usersize = args->useroffset = 0; | 
|  |  | 
|  | if (!args->usersize && !args->sheaf_capacity) | 
|  | s = __kmem_cache_alias(name, object_size, args->align, flags, | 
|  | args->ctor); | 
|  | if (s) | 
|  | goto out_unlock; | 
|  |  | 
|  | cache_name = kstrdup_const(name, GFP_KERNEL); | 
|  | if (!cache_name) { | 
|  | err = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | args->align = calculate_alignment(flags, args->align, object_size); | 
|  | s = create_cache(cache_name, object_size, args, flags); | 
|  | if (IS_ERR(s)) { | 
|  | err = PTR_ERR(s); | 
|  | kfree_const(cache_name); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | if (err) { | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("%s: Failed to create slab '%s'. Error %d\n", | 
|  | __func__, name, err); | 
|  | else { | 
|  | pr_warn("%s(%s) failed with error %d\n", | 
|  | __func__, name, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | return s; | 
|  | } | 
|  | EXPORT_SYMBOL(__kmem_cache_create_args); | 
|  |  | 
|  | static struct kmem_cache *kmem_buckets_cache __ro_after_init; | 
|  |  | 
|  | /** | 
|  | * kmem_buckets_create - Create a set of caches that handle dynamic sized | 
|  | *			 allocations via kmem_buckets_alloc() | 
|  | * @name: A prefix string which is used in /proc/slabinfo to identify this | 
|  | *	  cache. The individual caches with have their sizes as the suffix. | 
|  | * @flags: SLAB flags (see kmem_cache_create() for details). | 
|  | * @useroffset: Starting offset within an allocation that may be copied | 
|  | *		to/from userspace. | 
|  | * @usersize: How many bytes, starting at @useroffset, may be copied | 
|  | *		to/from userspace. | 
|  | * @ctor: A constructor for the objects, run when new allocations are made. | 
|  | * | 
|  | * Cannot be called within an interrupt, but can be interrupted. | 
|  | * | 
|  | * Return: a pointer to the cache on success, NULL on failure. When | 
|  | * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and | 
|  | * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc(). | 
|  | * (i.e. callers only need to check for NULL on failure.) | 
|  | */ | 
|  | kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, | 
|  | unsigned int useroffset, | 
|  | unsigned int usersize, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | unsigned long mask = 0; | 
|  | unsigned int idx; | 
|  | kmem_buckets *b; | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]) > BITS_PER_LONG); | 
|  |  | 
|  | /* | 
|  | * When the separate buckets API is not built in, just return | 
|  | * a non-NULL value for the kmem_buckets pointer, which will be | 
|  | * unused when performing allocations. | 
|  | */ | 
|  | if (!IS_ENABLED(CONFIG_SLAB_BUCKETS)) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | if (WARN_ON(!kmem_buckets_cache)) | 
|  | return NULL; | 
|  |  | 
|  | b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO); | 
|  | if (WARN_ON(!b)) | 
|  | return NULL; | 
|  |  | 
|  | flags |= SLAB_NO_MERGE; | 
|  |  | 
|  | for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) { | 
|  | char *short_size, *cache_name; | 
|  | unsigned int cache_useroffset, cache_usersize; | 
|  | unsigned int size, aligned_idx; | 
|  |  | 
|  | if (!kmalloc_caches[KMALLOC_NORMAL][idx]) | 
|  | continue; | 
|  |  | 
|  | size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size; | 
|  | if (!size) | 
|  | continue; | 
|  |  | 
|  | short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-'); | 
|  | if (WARN_ON(!short_size)) | 
|  | goto fail; | 
|  |  | 
|  | if (useroffset >= size) { | 
|  | cache_useroffset = 0; | 
|  | cache_usersize = 0; | 
|  | } else { | 
|  | cache_useroffset = useroffset; | 
|  | cache_usersize = min(size - cache_useroffset, usersize); | 
|  | } | 
|  |  | 
|  | aligned_idx = __kmalloc_index(size, false); | 
|  | if (!(*b)[aligned_idx]) { | 
|  | cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1); | 
|  | if (WARN_ON(!cache_name)) | 
|  | goto fail; | 
|  | (*b)[aligned_idx] = kmem_cache_create_usercopy(cache_name, size, | 
|  | 0, flags, cache_useroffset, | 
|  | cache_usersize, ctor); | 
|  | kfree(cache_name); | 
|  | if (WARN_ON(!(*b)[aligned_idx])) | 
|  | goto fail; | 
|  | set_bit(aligned_idx, &mask); | 
|  | } | 
|  | if (idx != aligned_idx) | 
|  | (*b)[idx] = (*b)[aligned_idx]; | 
|  | } | 
|  |  | 
|  | return b; | 
|  |  | 
|  | fail: | 
|  | for_each_set_bit(idx, &mask, ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL])) | 
|  | kmem_cache_destroy((*b)[idx]); | 
|  | kmem_cache_free(kmem_buckets_cache, b); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_buckets_create); | 
|  |  | 
|  | /* | 
|  | * For a given kmem_cache, kmem_cache_destroy() should only be called | 
|  | * once or there will be a use-after-free problem. The actual deletion | 
|  | * and release of the kobject does not need slab_mutex or cpu_hotplug_lock | 
|  | * protection. So they are now done without holding those locks. | 
|  | */ | 
|  | static void kmem_cache_release(struct kmem_cache *s) | 
|  | { | 
|  | kfence_shutdown_cache(s); | 
|  | if (__is_defined(SLAB_SUPPORTS_SYSFS) && slab_state >= FULL) | 
|  | sysfs_slab_release(s); | 
|  | else | 
|  | slab_kmem_cache_release(s); | 
|  | } | 
|  |  | 
|  | void slab_kmem_cache_release(struct kmem_cache *s) | 
|  | { | 
|  | __kmem_cache_release(s); | 
|  | kfree_const(s->name); | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | } | 
|  |  | 
|  | void kmem_cache_destroy(struct kmem_cache *s) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (unlikely(!s) || !kasan_check_byte(s)) | 
|  | return; | 
|  |  | 
|  | /* in-flight kfree_rcu()'s may include objects from our cache */ | 
|  | kvfree_rcu_barrier(); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_SLUB_RCU_DEBUG) && | 
|  | (s->flags & SLAB_TYPESAFE_BY_RCU)) { | 
|  | /* | 
|  | * Under CONFIG_SLUB_RCU_DEBUG, when objects in a | 
|  | * SLAB_TYPESAFE_BY_RCU slab are freed, SLUB will internally | 
|  | * defer their freeing with call_rcu(). | 
|  | * Wait for such call_rcu() invocations here before actually | 
|  | * destroying the cache. | 
|  | * | 
|  | * It doesn't matter that we haven't looked at the slab refcount | 
|  | * yet - slabs with SLAB_TYPESAFE_BY_RCU can't be merged, so | 
|  | * the refcount should be 1 here. | 
|  | */ | 
|  | rcu_barrier(); | 
|  | } | 
|  |  | 
|  | /* Wait for deferred work from kmalloc/kfree_nolock() */ | 
|  | defer_free_barrier(); | 
|  |  | 
|  | cpus_read_lock(); | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | s->refcount--; | 
|  | if (s->refcount) { | 
|  | mutex_unlock(&slab_mutex); | 
|  | cpus_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* free asan quarantined objects */ | 
|  | kasan_cache_shutdown(s); | 
|  |  | 
|  | err = __kmem_cache_shutdown(s); | 
|  | if (!slab_in_kunit_test()) | 
|  | WARN(err, "%s %s: Slab cache still has objects when called from %pS", | 
|  | __func__, s->name, (void *)_RET_IP_); | 
|  |  | 
|  | list_del(&s->list); | 
|  |  | 
|  | mutex_unlock(&slab_mutex); | 
|  | cpus_read_unlock(); | 
|  |  | 
|  | if (slab_state >= FULL) | 
|  | sysfs_slab_unlink(s); | 
|  | debugfs_slab_release(s); | 
|  |  | 
|  | if (err) | 
|  | return; | 
|  |  | 
|  | if (s->flags & SLAB_TYPESAFE_BY_RCU) | 
|  | rcu_barrier(); | 
|  |  | 
|  | kmem_cache_release(s); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  |  | 
|  | /** | 
|  | * kmem_cache_shrink - Shrink a cache. | 
|  | * @cachep: The cache to shrink. | 
|  | * | 
|  | * Releases as many slabs as possible for a cache. | 
|  | * To help debugging, a zero exit status indicates all slabs were released. | 
|  | * | 
|  | * Return: %0 if all slabs were released, non-zero otherwise | 
|  | */ | 
|  | int kmem_cache_shrink(struct kmem_cache *cachep) | 
|  | { | 
|  | kasan_cache_shrink(cachep); | 
|  |  | 
|  | return __kmem_cache_shrink(cachep); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  |  | 
|  | bool slab_is_available(void) | 
|  | { | 
|  | return slab_state >= UP; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PRINTK | 
|  | static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) | 
|  | { | 
|  | if (__kfence_obj_info(kpp, object, slab)) | 
|  | return; | 
|  | __kmem_obj_info(kpp, object, slab); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kmem_dump_obj - Print available slab provenance information | 
|  | * @object: slab object for which to find provenance information. | 
|  | * | 
|  | * This function uses pr_cont(), so that the caller is expected to have | 
|  | * printed out whatever preamble is appropriate.  The provenance information | 
|  | * depends on the type of object and on how much debugging is enabled. | 
|  | * For a slab-cache object, the fact that it is a slab object is printed, | 
|  | * and, if available, the slab name, return address, and stack trace from | 
|  | * the allocation and last free path of that object. | 
|  | * | 
|  | * Return: %true if the pointer is to a not-yet-freed object from | 
|  | * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer | 
|  | * is to an already-freed object, and %false otherwise. | 
|  | */ | 
|  | bool kmem_dump_obj(void *object) | 
|  | { | 
|  | char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; | 
|  | int i; | 
|  | struct slab *slab; | 
|  | unsigned long ptroffset; | 
|  | struct kmem_obj_info kp = { }; | 
|  |  | 
|  | /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ | 
|  | if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) | 
|  | return false; | 
|  | slab = virt_to_slab(object); | 
|  | if (!slab) | 
|  | return false; | 
|  |  | 
|  | kmem_obj_info(&kp, object, slab); | 
|  | if (kp.kp_slab_cache) | 
|  | pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); | 
|  | else | 
|  | pr_cont(" slab%s", cp); | 
|  | if (is_kfence_address(object)) | 
|  | pr_cont(" (kfence)"); | 
|  | if (kp.kp_objp) | 
|  | pr_cont(" start %px", kp.kp_objp); | 
|  | if (kp.kp_data_offset) | 
|  | pr_cont(" data offset %lu", kp.kp_data_offset); | 
|  | if (kp.kp_objp) { | 
|  | ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; | 
|  | pr_cont(" pointer offset %lu", ptroffset); | 
|  | } | 
|  | if (kp.kp_slab_cache && kp.kp_slab_cache->object_size) | 
|  | pr_cont(" size %u", kp.kp_slab_cache->object_size); | 
|  | if (kp.kp_ret) | 
|  | pr_cont(" allocated at %pS\n", kp.kp_ret); | 
|  | else | 
|  | pr_cont("\n"); | 
|  | for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { | 
|  | if (!kp.kp_stack[i]) | 
|  | break; | 
|  | pr_info("    %pS\n", kp.kp_stack[i]); | 
|  | } | 
|  |  | 
|  | if (kp.kp_free_stack[0]) | 
|  | pr_cont(" Free path:\n"); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { | 
|  | if (!kp.kp_free_stack[i]) | 
|  | break; | 
|  | pr_info("    %pS\n", kp.kp_free_stack[i]); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kmem_dump_obj); | 
|  | #endif | 
|  |  | 
|  | /* Create a cache during boot when no slab services are available yet */ | 
|  | void __init create_boot_cache(struct kmem_cache *s, const char *name, | 
|  | unsigned int size, slab_flags_t flags, | 
|  | unsigned int useroffset, unsigned int usersize) | 
|  | { | 
|  | int err; | 
|  | unsigned int align = ARCH_KMALLOC_MINALIGN; | 
|  | struct kmem_cache_args kmem_args = {}; | 
|  |  | 
|  | /* | 
|  | * kmalloc caches guarantee alignment of at least the largest | 
|  | * power-of-two divisor of the size. For power-of-two sizes, | 
|  | * it is the size itself. | 
|  | */ | 
|  | if (flags & SLAB_KMALLOC) | 
|  | align = max(align, 1U << (ffs(size) - 1)); | 
|  | kmem_args.align = calculate_alignment(flags, align, size); | 
|  |  | 
|  | #ifdef CONFIG_HARDENED_USERCOPY | 
|  | kmem_args.useroffset = useroffset; | 
|  | kmem_args.usersize = usersize; | 
|  | #endif | 
|  |  | 
|  | err = do_kmem_cache_create(s, name, size, &kmem_args, flags); | 
|  |  | 
|  | if (err) | 
|  | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", | 
|  | name, size, err); | 
|  |  | 
|  | s->refcount = -1;	/* Exempt from merging for now */ | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *__init create_kmalloc_cache(const char *name, | 
|  | unsigned int size, | 
|  | slab_flags_t flags) | 
|  | { | 
|  | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
|  |  | 
|  | if (!s) | 
|  | panic("Out of memory when creating slab %s\n", name); | 
|  |  | 
|  | create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size); | 
|  | list_add(&s->list, &slab_caches); | 
|  | s->refcount = 1; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init = | 
|  | { /* initialization for https://llvm.org/pr42570 */ }; | 
|  | EXPORT_SYMBOL(kmalloc_caches); | 
|  |  | 
|  | #ifdef CONFIG_RANDOM_KMALLOC_CACHES | 
|  | unsigned long random_kmalloc_seed __ro_after_init; | 
|  | EXPORT_SYMBOL(random_kmalloc_seed); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Conversion table for small slabs sizes / 8 to the index in the | 
|  | * kmalloc array. This is necessary for slabs < 192 since we have non power | 
|  | * of two cache sizes there. The size of larger slabs can be determined using | 
|  | * fls. | 
|  | */ | 
|  | u8 kmalloc_size_index[24] __ro_after_init = { | 
|  | 3,	/* 8 */ | 
|  | 4,	/* 16 */ | 
|  | 5,	/* 24 */ | 
|  | 5,	/* 32 */ | 
|  | 6,	/* 40 */ | 
|  | 6,	/* 48 */ | 
|  | 6,	/* 56 */ | 
|  | 6,	/* 64 */ | 
|  | 1,	/* 72 */ | 
|  | 1,	/* 80 */ | 
|  | 1,	/* 88 */ | 
|  | 1,	/* 96 */ | 
|  | 7,	/* 104 */ | 
|  | 7,	/* 112 */ | 
|  | 7,	/* 120 */ | 
|  | 7,	/* 128 */ | 
|  | 2,	/* 136 */ | 
|  | 2,	/* 144 */ | 
|  | 2,	/* 152 */ | 
|  | 2,	/* 160 */ | 
|  | 2,	/* 168 */ | 
|  | 2,	/* 176 */ | 
|  | 2,	/* 184 */ | 
|  | 2	/* 192 */ | 
|  | }; | 
|  |  | 
|  | size_t kmalloc_size_roundup(size_t size) | 
|  | { | 
|  | if (size && size <= KMALLOC_MAX_CACHE_SIZE) { | 
|  | /* | 
|  | * The flags don't matter since size_index is common to all. | 
|  | * Neither does the caller for just getting ->object_size. | 
|  | */ | 
|  | return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size; | 
|  | } | 
|  |  | 
|  | /* Above the smaller buckets, size is a multiple of page size. */ | 
|  | if (size && size <= KMALLOC_MAX_SIZE) | 
|  | return PAGE_SIZE << get_order(size); | 
|  |  | 
|  | /* | 
|  | * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR | 
|  | * and very large size - kmalloc() may fail. | 
|  | */ | 
|  | return size; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(kmalloc_size_roundup); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz, | 
|  | #else | 
|  | #define KMALLOC_DMA_NAME(sz) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, | 
|  | #else | 
|  | #define KMALLOC_CGROUP_NAME(sz) | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_SLUB_TINY | 
|  | #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz, | 
|  | #else | 
|  | #define KMALLOC_RCL_NAME(sz) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RANDOM_KMALLOC_CACHES | 
|  | #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b | 
|  | #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz) | 
|  | #define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz, | 
|  | #define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz, | 
|  | #define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz, | 
|  | #define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz, | 
|  | #define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz, | 
|  | #define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz, | 
|  | #define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz, | 
|  | #define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz, | 
|  | #define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz, | 
|  | #define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz, | 
|  | #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz, | 
|  | #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz, | 
|  | #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz, | 
|  | #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz, | 
|  | #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz, | 
|  | #else // CONFIG_RANDOM_KMALLOC_CACHES | 
|  | #define KMALLOC_RANDOM_NAME(N, sz) | 
|  | #endif | 
|  |  | 
|  | #define INIT_KMALLOC_INFO(__size, __short_size)			\ | 
|  | {								\ | 
|  | .name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\ | 
|  | KMALLOC_RCL_NAME(__short_size)				\ | 
|  | KMALLOC_CGROUP_NAME(__short_size)			\ | 
|  | KMALLOC_DMA_NAME(__short_size)				\ | 
|  | KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\ | 
|  | .size = __size,						\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time. | 
|  | * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is | 
|  | * kmalloc-2M. | 
|  | */ | 
|  | const struct kmalloc_info_struct kmalloc_info[] __initconst = { | 
|  | INIT_KMALLOC_INFO(0, 0), | 
|  | INIT_KMALLOC_INFO(96, 96), | 
|  | INIT_KMALLOC_INFO(192, 192), | 
|  | INIT_KMALLOC_INFO(8, 8), | 
|  | INIT_KMALLOC_INFO(16, 16), | 
|  | INIT_KMALLOC_INFO(32, 32), | 
|  | INIT_KMALLOC_INFO(64, 64), | 
|  | INIT_KMALLOC_INFO(128, 128), | 
|  | INIT_KMALLOC_INFO(256, 256), | 
|  | INIT_KMALLOC_INFO(512, 512), | 
|  | INIT_KMALLOC_INFO(1024, 1k), | 
|  | INIT_KMALLOC_INFO(2048, 2k), | 
|  | INIT_KMALLOC_INFO(4096, 4k), | 
|  | INIT_KMALLOC_INFO(8192, 8k), | 
|  | INIT_KMALLOC_INFO(16384, 16k), | 
|  | INIT_KMALLOC_INFO(32768, 32k), | 
|  | INIT_KMALLOC_INFO(65536, 64k), | 
|  | INIT_KMALLOC_INFO(131072, 128k), | 
|  | INIT_KMALLOC_INFO(262144, 256k), | 
|  | INIT_KMALLOC_INFO(524288, 512k), | 
|  | INIT_KMALLOC_INFO(1048576, 1M), | 
|  | INIT_KMALLOC_INFO(2097152, 2M) | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Patch up the size_index table if we have strange large alignment | 
|  | * requirements for the kmalloc array. This is only the case for | 
|  | * MIPS it seems. The standard arches will not generate any code here. | 
|  | * | 
|  | * Largest permitted alignment is 256 bytes due to the way we | 
|  | * handle the index determination for the smaller caches. | 
|  | * | 
|  | * Make sure that nothing crazy happens if someone starts tinkering | 
|  | * around with ARCH_KMALLOC_MINALIGN | 
|  | */ | 
|  | void __init setup_kmalloc_cache_index_table(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
|  | !is_power_of_2(KMALLOC_MIN_SIZE)); | 
|  |  | 
|  | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | 
|  | unsigned int elem = size_index_elem(i); | 
|  |  | 
|  | if (elem >= ARRAY_SIZE(kmalloc_size_index)) | 
|  | break; | 
|  | kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW; | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE >= 64) { | 
|  | /* | 
|  | * The 96 byte sized cache is not used if the alignment | 
|  | * is 64 byte. | 
|  | */ | 
|  | for (i = 64 + 8; i <= 96; i += 8) | 
|  | kmalloc_size_index[size_index_elem(i)] = 7; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE >= 128) { | 
|  | /* | 
|  | * The 192 byte sized cache is not used if the alignment | 
|  | * is 128 byte. Redirect kmalloc to use the 256 byte cache | 
|  | * instead. | 
|  | */ | 
|  | for (i = 128 + 8; i <= 192; i += 8) | 
|  | kmalloc_size_index[size_index_elem(i)] = 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int __kmalloc_minalign(void) | 
|  | { | 
|  | unsigned int minalign = dma_get_cache_alignment(); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && | 
|  | is_swiotlb_allocated()) | 
|  | minalign = ARCH_KMALLOC_MINALIGN; | 
|  |  | 
|  | return max(minalign, arch_slab_minalign()); | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | new_kmalloc_cache(int idx, enum kmalloc_cache_type type) | 
|  | { | 
|  | slab_flags_t flags = 0; | 
|  | unsigned int minalign = __kmalloc_minalign(); | 
|  | unsigned int aligned_size = kmalloc_info[idx].size; | 
|  | int aligned_idx = idx; | 
|  |  | 
|  | if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) { | 
|  | flags |= SLAB_RECLAIM_ACCOUNT; | 
|  | } else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) { | 
|  | if (mem_cgroup_kmem_disabled()) { | 
|  | kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; | 
|  | return; | 
|  | } | 
|  | flags |= SLAB_ACCOUNT; | 
|  | } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { | 
|  | flags |= SLAB_CACHE_DMA; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RANDOM_KMALLOC_CACHES | 
|  | if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END) | 
|  | flags |= SLAB_NO_MERGE; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If CONFIG_MEMCG is enabled, disable cache merging for | 
|  | * KMALLOC_NORMAL caches. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL)) | 
|  | flags |= SLAB_NO_MERGE; | 
|  |  | 
|  | if (minalign > ARCH_KMALLOC_MINALIGN) { | 
|  | aligned_size = ALIGN(aligned_size, minalign); | 
|  | aligned_idx = __kmalloc_index(aligned_size, false); | 
|  | } | 
|  |  | 
|  | if (!kmalloc_caches[type][aligned_idx]) | 
|  | kmalloc_caches[type][aligned_idx] = create_kmalloc_cache( | 
|  | kmalloc_info[aligned_idx].name[type], | 
|  | aligned_size, flags); | 
|  | if (idx != aligned_idx) | 
|  | kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the kmalloc array. Some of the regular kmalloc arrays | 
|  | * may already have been created because they were needed to | 
|  | * enable allocations for slab creation. | 
|  | */ | 
|  | void __init create_kmalloc_caches(void) | 
|  | { | 
|  | int i; | 
|  | enum kmalloc_cache_type type; | 
|  |  | 
|  | /* | 
|  | * Including KMALLOC_CGROUP if CONFIG_MEMCG defined | 
|  | */ | 
|  | for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { | 
|  | /* Caches that are NOT of the two-to-the-power-of size. */ | 
|  | if (KMALLOC_MIN_SIZE <= 32) | 
|  | new_kmalloc_cache(1, type); | 
|  | if (KMALLOC_MIN_SIZE <= 64) | 
|  | new_kmalloc_cache(2, type); | 
|  |  | 
|  | /* Caches that are of the two-to-the-power-of size. */ | 
|  | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) | 
|  | new_kmalloc_cache(i, type); | 
|  | } | 
|  | #ifdef CONFIG_RANDOM_KMALLOC_CACHES | 
|  | random_kmalloc_seed = get_random_u64(); | 
|  | #endif | 
|  |  | 
|  | /* Kmalloc array is now usable */ | 
|  | slab_state = UP; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_SLAB_BUCKETS)) | 
|  | kmem_buckets_cache = kmem_cache_create("kmalloc_buckets", | 
|  | sizeof(kmem_buckets), | 
|  | 0, SLAB_NO_MERGE, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __ksize -- Report full size of underlying allocation | 
|  | * @object: pointer to the object | 
|  | * | 
|  | * This should only be used internally to query the true size of allocations. | 
|  | * It is not meant to be a way to discover the usable size of an allocation | 
|  | * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond | 
|  | * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, | 
|  | * and/or FORTIFY_SOURCE. | 
|  | * | 
|  | * Return: size of the actual memory used by @object in bytes | 
|  | */ | 
|  | size_t __ksize(const void *object) | 
|  | { | 
|  | struct folio *folio; | 
|  |  | 
|  | if (unlikely(object == ZERO_SIZE_PTR)) | 
|  | return 0; | 
|  |  | 
|  | folio = virt_to_folio(object); | 
|  |  | 
|  | if (unlikely(!folio_test_slab(folio))) { | 
|  | if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE)) | 
|  | return 0; | 
|  | if (WARN_ON(object != folio_address(folio))) | 
|  | return 0; | 
|  | return folio_size(folio); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | skip_orig_size_check(folio_slab(folio)->slab_cache, object); | 
|  | #endif | 
|  |  | 
|  | return slab_ksize(folio_slab(folio)->slab_cache); | 
|  | } | 
|  |  | 
|  | gfp_t kmalloc_fix_flags(gfp_t flags) | 
|  | { | 
|  | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; | 
|  |  | 
|  | flags &= ~GFP_SLAB_BUG_MASK; | 
|  | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | 
|  | invalid_mask, &invalid_mask, flags, &flags); | 
|  | dump_stack(); | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
|  | /* Randomize a generic freelist */ | 
|  | static void freelist_randomize(unsigned int *list, | 
|  | unsigned int count) | 
|  | { | 
|  | unsigned int rand; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | list[i] = i; | 
|  |  | 
|  | /* Fisher-Yates shuffle */ | 
|  | for (i = count - 1; i > 0; i--) { | 
|  | rand = get_random_u32_below(i + 1); | 
|  | swap(list[i], list[rand]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Create a random sequence per cache */ | 
|  | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | 
|  | gfp_t gfp) | 
|  | { | 
|  |  | 
|  | if (count < 2 || cachep->random_seq) | 
|  | return 0; | 
|  |  | 
|  | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | 
|  | if (!cachep->random_seq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | freelist_randomize(cachep->random_seq, count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Destroy the per-cache random freelist sequence */ | 
|  | void cache_random_seq_destroy(struct kmem_cache *cachep) | 
|  | { | 
|  | kfree(cachep->random_seq); | 
|  | cachep->random_seq = NULL; | 
|  | } | 
|  | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | #define SLABINFO_RIGHTS (0400) | 
|  |  | 
|  | static void print_slabinfo_header(struct seq_file *m) | 
|  | { | 
|  | /* | 
|  | * Output format version, so at least we can change it | 
|  | * without _too_ many complaints. | 
|  | */ | 
|  | seq_puts(m, "slabinfo - version: 2.1\n"); | 
|  | seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | 
|  | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
|  | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static void *slab_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | mutex_lock(&slab_mutex); | 
|  | return seq_list_start(&slab_caches, *pos); | 
|  | } | 
|  |  | 
|  | static void *slab_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(p, &slab_caches, pos); | 
|  | } | 
|  |  | 
|  | static void slab_stop(struct seq_file *m, void *p) | 
|  | { | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | static void cache_show(struct kmem_cache *s, struct seq_file *m) | 
|  | { | 
|  | struct slabinfo sinfo; | 
|  |  | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(s, &sinfo); | 
|  |  | 
|  | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
|  | s->name, sinfo.active_objs, sinfo.num_objs, s->size, | 
|  | sinfo.objects_per_slab, (1 << sinfo.cache_order)); | 
|  |  | 
|  | seq_printf(m, " : tunables %4u %4u %4u", | 
|  | sinfo.limit, sinfo.batchcount, sinfo.shared); | 
|  | seq_printf(m, " : slabdata %6lu %6lu %6lu", | 
|  | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static int slab_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | 
|  |  | 
|  | if (p == slab_caches.next) | 
|  | print_slabinfo_header(m); | 
|  | cache_show(s, m); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void dump_unreclaimable_slab(void) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | struct slabinfo sinfo; | 
|  |  | 
|  | /* | 
|  | * Here acquiring slab_mutex is risky since we don't prefer to get | 
|  | * sleep in oom path. But, without mutex hold, it may introduce a | 
|  | * risk of crash. | 
|  | * Use mutex_trylock to protect the list traverse, dump nothing | 
|  | * without acquiring the mutex. | 
|  | */ | 
|  | if (!mutex_trylock(&slab_mutex)) { | 
|  | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_info("Unreclaimable slab info:\n"); | 
|  | pr_info("Name                      Used          Total\n"); | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | continue; | 
|  |  | 
|  | get_slabinfo(s, &sinfo); | 
|  |  | 
|  | if (sinfo.num_objs > 0) | 
|  | pr_info("%-17s %10luKB %10luKB\n", s->name, | 
|  | (sinfo.active_objs * s->size) / 1024, | 
|  | (sinfo.num_objs * s->size) / 1024); | 
|  | } | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * slabinfo_op - iterator that generates /proc/slabinfo | 
|  | * | 
|  | * Output layout: | 
|  | * cache-name | 
|  | * num-active-objs | 
|  | * total-objs | 
|  | * object size | 
|  | * num-active-slabs | 
|  | * total-slabs | 
|  | * num-pages-per-slab | 
|  | * + further values on SMP and with statistics enabled | 
|  | */ | 
|  | static const struct seq_operations slabinfo_op = { | 
|  | .start = slab_start, | 
|  | .next = slab_next, | 
|  | .stop = slab_stop, | 
|  | .show = slab_show, | 
|  | }; | 
|  |  | 
|  | static int slabinfo_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &slabinfo_op); | 
|  | } | 
|  |  | 
|  | static const struct proc_ops slabinfo_proc_ops = { | 
|  | .proc_flags	= PROC_ENTRY_PERMANENT, | 
|  | .proc_open	= slabinfo_open, | 
|  | .proc_read	= seq_read, | 
|  | .proc_lseek	= seq_lseek, | 
|  | .proc_release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init slab_proc_init(void) | 
|  | { | 
|  | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); | 
|  | return 0; | 
|  | } | 
|  | module_init(slab_proc_init); | 
|  |  | 
|  | #endif /* CONFIG_SLUB_DEBUG */ | 
|  |  | 
|  | /** | 
|  | * kfree_sensitive - Clear sensitive information in memory before freeing | 
|  | * @p: object to free memory of | 
|  | * | 
|  | * The memory of the object @p points to is zeroed before freed. | 
|  | * If @p is %NULL, kfree_sensitive() does nothing. | 
|  | * | 
|  | * Note: this function zeroes the whole allocated buffer which can be a good | 
|  | * deal bigger than the requested buffer size passed to kmalloc(). So be | 
|  | * careful when using this function in performance sensitive code. | 
|  | */ | 
|  | void kfree_sensitive(const void *p) | 
|  | { | 
|  | size_t ks; | 
|  | void *mem = (void *)p; | 
|  |  | 
|  | ks = ksize(mem); | 
|  | if (ks) { | 
|  | kasan_unpoison_range(mem, ks); | 
|  | memzero_explicit(mem, ks); | 
|  | } | 
|  | kfree(mem); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_sensitive); | 
|  |  | 
|  | size_t ksize(const void *objp) | 
|  | { | 
|  | /* | 
|  | * We need to first check that the pointer to the object is valid. | 
|  | * The KASAN report printed from ksize() is more useful, then when | 
|  | * it's printed later when the behaviour could be undefined due to | 
|  | * a potential use-after-free or double-free. | 
|  | * | 
|  | * We use kasan_check_byte(), which is supported for the hardware | 
|  | * tag-based KASAN mode, unlike kasan_check_read/write(). | 
|  | * | 
|  | * If the pointed to memory is invalid, we return 0 to avoid users of | 
|  | * ksize() writing to and potentially corrupting the memory region. | 
|  | * | 
|  | * We want to perform the check before __ksize(), to avoid potentially | 
|  | * crashing in __ksize() due to accessing invalid metadata. | 
|  | */ | 
|  | if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) | 
|  | return 0; | 
|  |  | 
|  | return kfence_ksize(objp) ?: __ksize(objp); | 
|  | } | 
|  | EXPORT_SYMBOL(ksize); | 
|  |  | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | #include <linux/btf.h> | 
|  |  | 
|  | __bpf_kfunc_start_defs(); | 
|  |  | 
|  | __bpf_kfunc struct kmem_cache *bpf_get_kmem_cache(u64 addr) | 
|  | { | 
|  | struct slab *slab; | 
|  |  | 
|  | if (!virt_addr_valid((void *)(long)addr)) | 
|  | return NULL; | 
|  |  | 
|  | slab = virt_to_slab((void *)(long)addr); | 
|  | return slab ? slab->slab_cache : NULL; | 
|  | } | 
|  |  | 
|  | __bpf_kfunc_end_defs(); | 
|  | #endif /* CONFIG_BPF_SYSCALL */ | 
|  |  | 
|  | /* Tracepoints definitions. */ | 
|  | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | 
|  | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | 
|  | EXPORT_TRACEPOINT_SYMBOL(kfree); | 
|  | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | 
|  |  | 
|  | #ifndef CONFIG_KVFREE_RCU_BATCHED | 
|  |  | 
|  | void kvfree_call_rcu(struct rcu_head *head, void *ptr) | 
|  | { | 
|  | if (head) { | 
|  | kasan_record_aux_stack(ptr); | 
|  | call_rcu(head, kvfree_rcu_cb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // kvfree_rcu(one_arg) call. | 
|  | might_sleep(); | 
|  | synchronize_rcu(); | 
|  | kvfree(ptr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvfree_call_rcu); | 
|  |  | 
|  | void __init kvfree_rcu_init(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_KVFREE_RCU_BATCHED */ | 
|  |  | 
|  | /* | 
|  | * This rcu parameter is runtime-read-only. It reflects | 
|  | * a minimum allowed number of objects which can be cached | 
|  | * per-CPU. Object size is equal to one page. This value | 
|  | * can be changed at boot time. | 
|  | */ | 
|  | static int rcu_min_cached_objs = 5; | 
|  | module_param(rcu_min_cached_objs, int, 0444); | 
|  |  | 
|  | // A page shrinker can ask for pages to be freed to make them | 
|  | // available for other parts of the system. This usually happens | 
|  | // under low memory conditions, and in that case we should also | 
|  | // defer page-cache filling for a short time period. | 
|  | // | 
|  | // The default value is 5 seconds, which is long enough to reduce | 
|  | // interference with the shrinker while it asks other systems to | 
|  | // drain their caches. | 
|  | static int rcu_delay_page_cache_fill_msec = 5000; | 
|  | module_param(rcu_delay_page_cache_fill_msec, int, 0444); | 
|  |  | 
|  | static struct workqueue_struct *rcu_reclaim_wq; | 
|  |  | 
|  | /* Maximum number of jiffies to wait before draining a batch. */ | 
|  | #define KFREE_DRAIN_JIFFIES (5 * HZ) | 
|  | #define KFREE_N_BATCHES 2 | 
|  | #define FREE_N_CHANNELS 2 | 
|  |  | 
|  | /** | 
|  | * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers | 
|  | * @list: List node. All blocks are linked between each other | 
|  | * @gp_snap: Snapshot of RCU state for objects placed to this bulk | 
|  | * @nr_records: Number of active pointers in the array | 
|  | * @records: Array of the kvfree_rcu() pointers | 
|  | */ | 
|  | struct kvfree_rcu_bulk_data { | 
|  | struct list_head list; | 
|  | struct rcu_gp_oldstate gp_snap; | 
|  | unsigned long nr_records; | 
|  | void *records[] __counted_by(nr_records); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This macro defines how many entries the "records" array | 
|  | * will contain. It is based on the fact that the size of | 
|  | * kvfree_rcu_bulk_data structure becomes exactly one page. | 
|  | */ | 
|  | #define KVFREE_BULK_MAX_ENTR \ | 
|  | ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) | 
|  |  | 
|  | /** | 
|  | * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests | 
|  | * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period | 
|  | * @head_free: List of kfree_rcu() objects waiting for a grace period | 
|  | * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. | 
|  | * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period | 
|  | * @krcp: Pointer to @kfree_rcu_cpu structure | 
|  | */ | 
|  |  | 
|  | struct kfree_rcu_cpu_work { | 
|  | struct rcu_work rcu_work; | 
|  | struct rcu_head *head_free; | 
|  | struct rcu_gp_oldstate head_free_gp_snap; | 
|  | struct list_head bulk_head_free[FREE_N_CHANNELS]; | 
|  | struct kfree_rcu_cpu *krcp; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period | 
|  | * @head: List of kfree_rcu() objects not yet waiting for a grace period | 
|  | * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" | 
|  | * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period | 
|  | * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period | 
|  | * @lock: Synchronize access to this structure | 
|  | * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES | 
|  | * @initialized: The @rcu_work fields have been initialized | 
|  | * @head_count: Number of objects in rcu_head singular list | 
|  | * @bulk_count: Number of objects in bulk-list | 
|  | * @bkvcache: | 
|  | *	A simple cache list that contains objects for reuse purpose. | 
|  | *	In order to save some per-cpu space the list is singular. | 
|  | *	Even though it is lockless an access has to be protected by the | 
|  | *	per-cpu lock. | 
|  | * @page_cache_work: A work to refill the cache when it is empty | 
|  | * @backoff_page_cache_fill: Delay cache refills | 
|  | * @work_in_progress: Indicates that page_cache_work is running | 
|  | * @hrtimer: A hrtimer for scheduling a page_cache_work | 
|  | * @nr_bkv_objs: number of allocated objects at @bkvcache. | 
|  | * | 
|  | * This is a per-CPU structure.  The reason that it is not included in | 
|  | * the rcu_data structure is to permit this code to be extracted from | 
|  | * the RCU files.  Such extraction could allow further optimization of | 
|  | * the interactions with the slab allocators. | 
|  | */ | 
|  | struct kfree_rcu_cpu { | 
|  | // Objects queued on a linked list | 
|  | // through their rcu_head structures. | 
|  | struct rcu_head *head; | 
|  | unsigned long head_gp_snap; | 
|  | atomic_t head_count; | 
|  |  | 
|  | // Objects queued on a bulk-list. | 
|  | struct list_head bulk_head[FREE_N_CHANNELS]; | 
|  | atomic_t bulk_count[FREE_N_CHANNELS]; | 
|  |  | 
|  | struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; | 
|  | raw_spinlock_t lock; | 
|  | struct delayed_work monitor_work; | 
|  | bool initialized; | 
|  |  | 
|  | struct delayed_work page_cache_work; | 
|  | atomic_t backoff_page_cache_fill; | 
|  | atomic_t work_in_progress; | 
|  | struct hrtimer hrtimer; | 
|  |  | 
|  | struct llist_head bkvcache; | 
|  | int nr_bkv_objs; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { | 
|  | .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), | 
|  | }; | 
|  |  | 
|  | static __always_inline void | 
|  | debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < bhead->nr_records; i++) | 
|  | debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline struct kfree_rcu_cpu * | 
|  | krc_this_cpu_lock(unsigned long *flags) | 
|  | { | 
|  | struct kfree_rcu_cpu *krcp; | 
|  |  | 
|  | local_irq_save(*flags);	// For safely calling this_cpu_ptr(). | 
|  | krcp = this_cpu_ptr(&krc); | 
|  | raw_spin_lock(&krcp->lock); | 
|  |  | 
|  | return krcp; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) | 
|  | { | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  | } | 
|  |  | 
|  | static inline struct kvfree_rcu_bulk_data * | 
|  | get_cached_bnode(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | if (!krcp->nr_bkv_objs) | 
|  | return NULL; | 
|  |  | 
|  | WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); | 
|  | return (struct kvfree_rcu_bulk_data *) | 
|  | llist_del_first(&krcp->bkvcache); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | put_cached_bnode(struct kfree_rcu_cpu *krcp, | 
|  | struct kvfree_rcu_bulk_data *bnode) | 
|  | { | 
|  | // Check the limit. | 
|  | if (krcp->nr_bkv_objs >= rcu_min_cached_objs) | 
|  | return false; | 
|  |  | 
|  | llist_add((struct llist_node *) bnode, &krcp->bkvcache); | 
|  | WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int | 
|  | drain_page_cache(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct llist_node *page_list, *pos, *n; | 
|  | int freed = 0; | 
|  |  | 
|  | if (!rcu_min_cached_objs) | 
|  | return 0; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | page_list = llist_del_all(&krcp->bkvcache); | 
|  | WRITE_ONCE(krcp->nr_bkv_objs, 0); | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | llist_for_each_safe(pos, n, page_list) { | 
|  | free_page((unsigned long)pos); | 
|  | freed++; | 
|  | } | 
|  |  | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static void | 
|  | kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, | 
|  | struct kvfree_rcu_bulk_data *bnode, int idx) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { | 
|  | debug_rcu_bhead_unqueue(bnode); | 
|  | rcu_lock_acquire(&rcu_callback_map); | 
|  | if (idx == 0) { // kmalloc() / kfree(). | 
|  | trace_rcu_invoke_kfree_bulk_callback( | 
|  | "slab", bnode->nr_records, | 
|  | bnode->records); | 
|  |  | 
|  | kfree_bulk(bnode->nr_records, bnode->records); | 
|  | } else { // vmalloc() / vfree(). | 
|  | for (i = 0; i < bnode->nr_records; i++) { | 
|  | trace_rcu_invoke_kvfree_callback( | 
|  | "slab", bnode->records[i], 0); | 
|  |  | 
|  | vfree(bnode->records[i]); | 
|  | } | 
|  | } | 
|  | rcu_lock_release(&rcu_callback_map); | 
|  | } | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | if (put_cached_bnode(krcp, bnode)) | 
|  | bnode = NULL; | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | if (bnode) | 
|  | free_page((unsigned long) bnode); | 
|  |  | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | } | 
|  |  | 
|  | static void | 
|  | kvfree_rcu_list(struct rcu_head *head) | 
|  | { | 
|  | struct rcu_head *next; | 
|  |  | 
|  | for (; head; head = next) { | 
|  | void *ptr = (void *) head->func; | 
|  | unsigned long offset = (void *) head - ptr; | 
|  |  | 
|  | next = head->next; | 
|  | debug_rcu_head_unqueue((struct rcu_head *)ptr); | 
|  | rcu_lock_acquire(&rcu_callback_map); | 
|  | trace_rcu_invoke_kvfree_callback("slab", head, offset); | 
|  |  | 
|  | kvfree(ptr); | 
|  |  | 
|  | rcu_lock_release(&rcu_callback_map); | 
|  | cond_resched_tasks_rcu_qs(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is invoked in workqueue context after a grace period. | 
|  | * It frees all the objects queued on ->bulk_head_free or ->head_free. | 
|  | */ | 
|  | static void kfree_rcu_work(struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct kvfree_rcu_bulk_data *bnode, *n; | 
|  | struct list_head bulk_head[FREE_N_CHANNELS]; | 
|  | struct rcu_head *head; | 
|  | struct kfree_rcu_cpu *krcp; | 
|  | struct kfree_rcu_cpu_work *krwp; | 
|  | struct rcu_gp_oldstate head_gp_snap; | 
|  | int i; | 
|  |  | 
|  | krwp = container_of(to_rcu_work(work), | 
|  | struct kfree_rcu_cpu_work, rcu_work); | 
|  | krcp = krwp->krcp; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | // Channels 1 and 2. | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); | 
|  |  | 
|  | // Channel 3. | 
|  | head = krwp->head_free; | 
|  | krwp->head_free = NULL; | 
|  | head_gp_snap = krwp->head_free_gp_snap; | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | // Handle the first two channels. | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) { | 
|  | // Start from the tail page, so a GP is likely passed for it. | 
|  | list_for_each_entry_safe(bnode, n, &bulk_head[i], list) | 
|  | kvfree_rcu_bulk(krcp, bnode, i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is used when the "bulk" path can not be used for the | 
|  | * double-argument of kvfree_rcu().  This happens when the | 
|  | * page-cache is empty, which means that objects are instead | 
|  | * queued on a linked list through their rcu_head structures. | 
|  | * This list is named "Channel 3". | 
|  | */ | 
|  | if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) | 
|  | kvfree_rcu_list(head); | 
|  | } | 
|  |  | 
|  | static bool kfree_rcu_sheaf(void *obj) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | struct folio *folio; | 
|  | struct slab *slab; | 
|  |  | 
|  | if (is_vmalloc_addr(obj)) | 
|  | return false; | 
|  |  | 
|  | folio = virt_to_folio(obj); | 
|  | if (unlikely(!folio_test_slab(folio))) | 
|  | return false; | 
|  |  | 
|  | slab = folio_slab(folio); | 
|  | s = slab->slab_cache; | 
|  | if (s->cpu_sheaves) { | 
|  | if (likely(!IS_ENABLED(CONFIG_NUMA) || | 
|  | slab_nid(slab) == numa_mem_id())) | 
|  | return __kfree_rcu_sheaf(s, obj); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | need_offload_krc(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | if (!list_empty(&krcp->bulk_head[i])) | 
|  | return true; | 
|  |  | 
|  | return !!READ_ONCE(krcp->head); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | if (!list_empty(&krwp->bulk_head_free[i])) | 
|  | return true; | 
|  |  | 
|  | return !!krwp->head_free; | 
|  | } | 
|  |  | 
|  | static int krc_count(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | int sum = atomic_read(&krcp->head_count); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | sum += atomic_read(&krcp->bulk_count[i]); | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | static void | 
|  | __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | long delay, delay_left; | 
|  |  | 
|  | delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; | 
|  | if (delayed_work_pending(&krcp->monitor_work)) { | 
|  | delay_left = krcp->monitor_work.timer.expires - jiffies; | 
|  | if (delay < delay_left) | 
|  | mod_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); | 
|  | return; | 
|  | } | 
|  | queue_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); | 
|  | } | 
|  |  | 
|  | static void | 
|  | schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | __schedule_delayed_monitor_work(krcp); | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  | } | 
|  |  | 
|  | static void | 
|  | kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | struct list_head bulk_ready[FREE_N_CHANNELS]; | 
|  | struct kvfree_rcu_bulk_data *bnode, *n; | 
|  | struct rcu_head *head_ready = NULL; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) { | 
|  | INIT_LIST_HEAD(&bulk_ready[i]); | 
|  |  | 
|  | list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { | 
|  | if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) | 
|  | break; | 
|  |  | 
|  | atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); | 
|  | list_move(&bnode->list, &bulk_ready[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { | 
|  | head_ready = krcp->head; | 
|  | atomic_set(&krcp->head_count, 0); | 
|  | WRITE_ONCE(krcp->head, NULL); | 
|  | } | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) { | 
|  | list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) | 
|  | kvfree_rcu_bulk(krcp, bnode, i); | 
|  | } | 
|  |  | 
|  | if (head_ready) | 
|  | kvfree_rcu_list(head_ready); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return: %true if a work is queued, %false otherwise. | 
|  | */ | 
|  | static bool | 
|  | kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool queued = false; | 
|  | int i, j; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  |  | 
|  | // Attempt to start a new batch. | 
|  | for (i = 0; i < KFREE_N_BATCHES; i++) { | 
|  | struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); | 
|  |  | 
|  | // Try to detach bulk_head or head and attach it, only when | 
|  | // all channels are free.  Any channel is not free means at krwp | 
|  | // there is on-going rcu work to handle krwp's free business. | 
|  | if (need_wait_for_krwp_work(krwp)) | 
|  | continue; | 
|  |  | 
|  | // kvfree_rcu_drain_ready() might handle this krcp, if so give up. | 
|  | if (need_offload_krc(krcp)) { | 
|  | // Channel 1 corresponds to the SLAB-pointer bulk path. | 
|  | // Channel 2 corresponds to vmalloc-pointer bulk path. | 
|  | for (j = 0; j < FREE_N_CHANNELS; j++) { | 
|  | if (list_empty(&krwp->bulk_head_free[j])) { | 
|  | atomic_set(&krcp->bulk_count[j], 0); | 
|  | list_replace_init(&krcp->bulk_head[j], | 
|  | &krwp->bulk_head_free[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Channel 3 corresponds to both SLAB and vmalloc | 
|  | // objects queued on the linked list. | 
|  | if (!krwp->head_free) { | 
|  | krwp->head_free = krcp->head; | 
|  | get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); | 
|  | atomic_set(&krcp->head_count, 0); | 
|  | WRITE_ONCE(krcp->head, NULL); | 
|  | } | 
|  |  | 
|  | // One work is per one batch, so there are three | 
|  | // "free channels", the batch can handle. Break | 
|  | // the loop since it is done with this CPU thus | 
|  | // queuing an RCU work is _always_ success here. | 
|  | queued = queue_rcu_work(rcu_reclaim_wq, &krwp->rcu_work); | 
|  | WARN_ON_ONCE(!queued); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  | return queued; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. | 
|  | */ | 
|  | static void kfree_rcu_monitor(struct work_struct *work) | 
|  | { | 
|  | struct kfree_rcu_cpu *krcp = container_of(work, | 
|  | struct kfree_rcu_cpu, monitor_work.work); | 
|  |  | 
|  | // Drain ready for reclaim. | 
|  | kvfree_rcu_drain_ready(krcp); | 
|  |  | 
|  | // Queue a batch for a rest. | 
|  | kvfree_rcu_queue_batch(krcp); | 
|  |  | 
|  | // If there is nothing to detach, it means that our job is | 
|  | // successfully done here. In case of having at least one | 
|  | // of the channels that is still busy we should rearm the | 
|  | // work to repeat an attempt. Because previous batches are | 
|  | // still in progress. | 
|  | if (need_offload_krc(krcp)) | 
|  | schedule_delayed_monitor_work(krcp); | 
|  | } | 
|  |  | 
|  | static void fill_page_cache_func(struct work_struct *work) | 
|  | { | 
|  | struct kvfree_rcu_bulk_data *bnode; | 
|  | struct kfree_rcu_cpu *krcp = | 
|  | container_of(work, struct kfree_rcu_cpu, | 
|  | page_cache_work.work); | 
|  | unsigned long flags; | 
|  | int nr_pages; | 
|  | bool pushed; | 
|  | int i; | 
|  |  | 
|  | nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? | 
|  | 1 : rcu_min_cached_objs; | 
|  |  | 
|  | for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { | 
|  | bnode = (struct kvfree_rcu_bulk_data *) | 
|  | __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); | 
|  |  | 
|  | if (!bnode) | 
|  | break; | 
|  |  | 
|  | raw_spin_lock_irqsave(&krcp->lock, flags); | 
|  | pushed = put_cached_bnode(krcp, bnode); | 
|  | raw_spin_unlock_irqrestore(&krcp->lock, flags); | 
|  |  | 
|  | if (!pushed) { | 
|  | free_page((unsigned long) bnode); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | atomic_set(&krcp->work_in_progress, 0); | 
|  | atomic_set(&krcp->backoff_page_cache_fill, 0); | 
|  | } | 
|  |  | 
|  | // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() | 
|  | // state specified by flags.  If can_alloc is true, the caller must | 
|  | // be schedulable and not be holding any locks or mutexes that might be | 
|  | // acquired by the memory allocator or anything that it might invoke. | 
|  | // Returns true if ptr was successfully recorded, else the caller must | 
|  | // use a fallback. | 
|  | static inline bool | 
|  | add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, | 
|  | unsigned long *flags, void *ptr, bool can_alloc) | 
|  | { | 
|  | struct kvfree_rcu_bulk_data *bnode; | 
|  | int idx; | 
|  |  | 
|  | *krcp = krc_this_cpu_lock(flags); | 
|  | if (unlikely(!(*krcp)->initialized)) | 
|  | return false; | 
|  |  | 
|  | idx = !!is_vmalloc_addr(ptr); | 
|  | bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], | 
|  | struct kvfree_rcu_bulk_data, list); | 
|  |  | 
|  | /* Check if a new block is required. */ | 
|  | if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { | 
|  | bnode = get_cached_bnode(*krcp); | 
|  | if (!bnode && can_alloc) { | 
|  | krc_this_cpu_unlock(*krcp, *flags); | 
|  |  | 
|  | // __GFP_NORETRY - allows a light-weight direct reclaim | 
|  | // what is OK from minimizing of fallback hitting point of | 
|  | // view. Apart of that it forbids any OOM invoking what is | 
|  | // also beneficial since we are about to release memory soon. | 
|  | // | 
|  | // __GFP_NOMEMALLOC - prevents from consuming of all the | 
|  | // memory reserves. Please note we have a fallback path. | 
|  | // | 
|  | // __GFP_NOWARN - it is supposed that an allocation can | 
|  | // be failed under low memory or high memory pressure | 
|  | // scenarios. | 
|  | bnode = (struct kvfree_rcu_bulk_data *) | 
|  | __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); | 
|  | raw_spin_lock_irqsave(&(*krcp)->lock, *flags); | 
|  | } | 
|  |  | 
|  | if (!bnode) | 
|  | return false; | 
|  |  | 
|  | // Initialize the new block and attach it. | 
|  | bnode->nr_records = 0; | 
|  | list_add(&bnode->list, &(*krcp)->bulk_head[idx]); | 
|  | } | 
|  |  | 
|  | // Finally insert and update the GP for this page. | 
|  | bnode->nr_records++; | 
|  | bnode->records[bnode->nr_records - 1] = ptr; | 
|  | get_state_synchronize_rcu_full(&bnode->gp_snap); | 
|  | atomic_inc(&(*krcp)->bulk_count[idx]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart | 
|  | schedule_page_work_fn(struct hrtimer *t) | 
|  | { | 
|  | struct kfree_rcu_cpu *krcp = | 
|  | container_of(t, struct kfree_rcu_cpu, hrtimer); | 
|  |  | 
|  | queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | static void | 
|  | run_page_cache_worker(struct kfree_rcu_cpu *krcp) | 
|  | { | 
|  | // If cache disabled, bail out. | 
|  | if (!rcu_min_cached_objs) | 
|  | return; | 
|  |  | 
|  | if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && | 
|  | !atomic_xchg(&krcp->work_in_progress, 1)) { | 
|  | if (atomic_read(&krcp->backoff_page_cache_fill)) { | 
|  | queue_delayed_work(rcu_reclaim_wq, | 
|  | &krcp->page_cache_work, | 
|  | msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); | 
|  | } else { | 
|  | hrtimer_setup(&krcp->hrtimer, schedule_page_work_fn, CLOCK_MONOTONIC, | 
|  | HRTIMER_MODE_REL); | 
|  | hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init kfree_rcu_scheduler_running(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | if (need_offload_krc(krcp)) | 
|  | schedule_delayed_monitor_work(krcp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a request for lazy invocation of the appropriate free routine | 
|  | * after a grace period.  Please note that three paths are maintained, | 
|  | * two for the common case using arrays of pointers and a third one that | 
|  | * is used only when the main paths cannot be used, for example, due to | 
|  | * memory pressure. | 
|  | * | 
|  | * Each kvfree_call_rcu() request is added to a batch. The batch will be drained | 
|  | * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will | 
|  | * be free'd in workqueue context. This allows us to: batch requests together to | 
|  | * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. | 
|  | */ | 
|  | void kvfree_call_rcu(struct rcu_head *head, void *ptr) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct kfree_rcu_cpu *krcp; | 
|  | bool success; | 
|  |  | 
|  | /* | 
|  | * Please note there is a limitation for the head-less | 
|  | * variant, that is why there is a clear rule for such | 
|  | * objects: it can be used from might_sleep() context | 
|  | * only. For other places please embed an rcu_head to | 
|  | * your data. | 
|  | */ | 
|  | if (!head) | 
|  | might_sleep(); | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_PREEMPT_RT) && kfree_rcu_sheaf(ptr)) | 
|  | return; | 
|  |  | 
|  | // Queue the object but don't yet schedule the batch. | 
|  | if (debug_rcu_head_queue(ptr)) { | 
|  | // Probable double kfree_rcu(), just leak. | 
|  | WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", | 
|  | __func__, head); | 
|  |  | 
|  | // Mark as success and leave. | 
|  | return; | 
|  | } | 
|  |  | 
|  | kasan_record_aux_stack(ptr); | 
|  | success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); | 
|  | if (!success) { | 
|  | run_page_cache_worker(krcp); | 
|  |  | 
|  | if (head == NULL) | 
|  | // Inline if kvfree_rcu(one_arg) call. | 
|  | goto unlock_return; | 
|  |  | 
|  | head->func = ptr; | 
|  | head->next = krcp->head; | 
|  | WRITE_ONCE(krcp->head, head); | 
|  | atomic_inc(&krcp->head_count); | 
|  |  | 
|  | // Take a snapshot for this krcp. | 
|  | krcp->head_gp_snap = get_state_synchronize_rcu(); | 
|  | success = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The kvfree_rcu() caller considers the pointer freed at this point | 
|  | * and likely removes any references to it. Since the actual slab | 
|  | * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore | 
|  | * this object (no scanning or false positives reporting). | 
|  | */ | 
|  | kmemleak_ignore(ptr); | 
|  |  | 
|  | // Set timer to drain after KFREE_DRAIN_JIFFIES. | 
|  | if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) | 
|  | __schedule_delayed_monitor_work(krcp); | 
|  |  | 
|  | unlock_return: | 
|  | krc_this_cpu_unlock(krcp, flags); | 
|  |  | 
|  | /* | 
|  | * Inline kvfree() after synchronize_rcu(). We can do | 
|  | * it from might_sleep() context only, so the current | 
|  | * CPU can pass the QS state. | 
|  | */ | 
|  | if (!success) { | 
|  | debug_rcu_head_unqueue((struct rcu_head *) ptr); | 
|  | synchronize_rcu(); | 
|  | kvfree(ptr); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvfree_call_rcu); | 
|  |  | 
|  | /** | 
|  | * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete. | 
|  | * | 
|  | * Note that a single argument of kvfree_rcu() call has a slow path that | 
|  | * triggers synchronize_rcu() following by freeing a pointer. It is done | 
|  | * before the return from the function. Therefore for any single-argument | 
|  | * call that will result in a kfree() to a cache that is to be destroyed | 
|  | * during module exit, it is developer's responsibility to ensure that all | 
|  | * such calls have returned before the call to kmem_cache_destroy(). | 
|  | */ | 
|  | void kvfree_rcu_barrier(void) | 
|  | { | 
|  | struct kfree_rcu_cpu_work *krwp; | 
|  | struct kfree_rcu_cpu *krcp; | 
|  | bool queued; | 
|  | int i, cpu; | 
|  |  | 
|  | flush_all_rcu_sheaves(); | 
|  |  | 
|  | /* | 
|  | * Firstly we detach objects and queue them over an RCU-batch | 
|  | * for all CPUs. Finally queued works are flushed for each CPU. | 
|  | * | 
|  | * Please note. If there are outstanding batches for a particular | 
|  | * CPU, those have to be finished first following by queuing a new. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | /* | 
|  | * Check if this CPU has any objects which have been queued for a | 
|  | * new GP completion. If not(means nothing to detach), we are done | 
|  | * with it. If any batch is pending/running for this "krcp", below | 
|  | * per-cpu flush_rcu_work() waits its completion(see last step). | 
|  | */ | 
|  | if (!need_offload_krc(krcp)) | 
|  | continue; | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * If we are not able to queue a new RCU work it means: | 
|  | * - batches for this CPU are still in flight which should | 
|  | *   be flushed first and then repeat; | 
|  | * - no objects to detach, because of concurrency. | 
|  | */ | 
|  | queued = kvfree_rcu_queue_batch(krcp); | 
|  |  | 
|  | /* | 
|  | * Bail out, if there is no need to offload this "krcp" | 
|  | * anymore. As noted earlier it can run concurrently. | 
|  | */ | 
|  | if (queued || !need_offload_krc(krcp)) | 
|  | break; | 
|  |  | 
|  | /* There are ongoing batches. */ | 
|  | for (i = 0; i < KFREE_N_BATCHES; i++) { | 
|  | krwp = &(krcp->krw_arr[i]); | 
|  | flush_rcu_work(&krwp->rcu_work); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we guarantee that all objects are flushed. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | /* | 
|  | * A monitor work can drain ready to reclaim objects | 
|  | * directly. Wait its completion if running or pending. | 
|  | */ | 
|  | cancel_delayed_work_sync(&krcp->monitor_work); | 
|  |  | 
|  | for (i = 0; i < KFREE_N_BATCHES; i++) { | 
|  | krwp = &(krcp->krw_arr[i]); | 
|  | flush_rcu_work(&krwp->rcu_work); | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvfree_rcu_barrier); | 
|  |  | 
|  | static unsigned long | 
|  | kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long count = 0; | 
|  |  | 
|  | /* Snapshot count of all CPUs */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | count += krc_count(krcp); | 
|  | count += READ_ONCE(krcp->nr_bkv_objs); | 
|  | atomic_set(&krcp->backoff_page_cache_fill, 1); | 
|  | } | 
|  |  | 
|  | return count == 0 ? SHRINK_EMPTY : count; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | int cpu, freed = 0; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | int count; | 
|  | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | count = krc_count(krcp); | 
|  | count += drain_page_cache(krcp); | 
|  | kfree_rcu_monitor(&krcp->monitor_work.work); | 
|  |  | 
|  | sc->nr_to_scan -= count; | 
|  | freed += count; | 
|  |  | 
|  | if (sc->nr_to_scan <= 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return freed == 0 ? SHRINK_STOP : freed; | 
|  | } | 
|  |  | 
|  | void __init kvfree_rcu_init(void) | 
|  | { | 
|  | int cpu; | 
|  | int i, j; | 
|  | struct shrinker *kfree_rcu_shrinker; | 
|  |  | 
|  | rcu_reclaim_wq = alloc_workqueue("kvfree_rcu_reclaim", | 
|  | WQ_UNBOUND | WQ_MEM_RECLAIM, 0); | 
|  | WARN_ON(!rcu_reclaim_wq); | 
|  |  | 
|  | /* Clamp it to [0:100] seconds interval. */ | 
|  | if (rcu_delay_page_cache_fill_msec < 0 || | 
|  | rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { | 
|  |  | 
|  | rcu_delay_page_cache_fill_msec = | 
|  | clamp(rcu_delay_page_cache_fill_msec, 0, | 
|  | (int) (100 * MSEC_PER_SEC)); | 
|  |  | 
|  | pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", | 
|  | rcu_delay_page_cache_fill_msec); | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | 
|  |  | 
|  | for (i = 0; i < KFREE_N_BATCHES; i++) { | 
|  | INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); | 
|  | krcp->krw_arr[i].krcp = krcp; | 
|  |  | 
|  | for (j = 0; j < FREE_N_CHANNELS; j++) | 
|  | INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < FREE_N_CHANNELS; i++) | 
|  | INIT_LIST_HEAD(&krcp->bulk_head[i]); | 
|  |  | 
|  | INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); | 
|  | INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); | 
|  | krcp->initialized = true; | 
|  | } | 
|  |  | 
|  | kfree_rcu_shrinker = shrinker_alloc(0, "slab-kvfree-rcu"); | 
|  | if (!kfree_rcu_shrinker) { | 
|  | pr_err("Failed to allocate kfree_rcu() shrinker!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; | 
|  | kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; | 
|  |  | 
|  | shrinker_register(kfree_rcu_shrinker); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_KVFREE_RCU_BATCHED */ | 
|  |  |