| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * fs/kernfs/dir.c - kernfs directory implementation | 
 |  * | 
 |  * Copyright (c) 2001-3 Patrick Mochel | 
 |  * Copyright (c) 2007 SUSE Linux Products GmbH | 
 |  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/security.h> | 
 | #include <linux/hash.h> | 
 |  | 
 | #include "kernfs-internal.h" | 
 |  | 
 | static DEFINE_RWLOCK(kernfs_rename_lock);	/* kn->parent and ->name */ | 
 | /* | 
 |  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to | 
 |  * call pr_cont() while holding rename_lock. Because sometimes pr_cont() | 
 |  * will perform wakeups when releasing console_sem. Holding rename_lock | 
 |  * will introduce deadlock if the scheduler reads the kernfs_name in the | 
 |  * wakeup path. | 
 |  */ | 
 | static DEFINE_SPINLOCK(kernfs_pr_cont_lock); | 
 | static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */ | 
 | static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */ | 
 |  | 
 | #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) | 
 |  | 
 | static bool __kernfs_active(struct kernfs_node *kn) | 
 | { | 
 | 	return atomic_read(&kn->active) >= 0; | 
 | } | 
 |  | 
 | static bool kernfs_active(struct kernfs_node *kn) | 
 | { | 
 | 	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); | 
 | 	return __kernfs_active(kn); | 
 | } | 
 |  | 
 | static bool kernfs_lockdep(struct kernfs_node *kn) | 
 | { | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | 	return kn->flags & KERNFS_LOCKDEP; | 
 | #else | 
 | 	return false; | 
 | #endif | 
 | } | 
 |  | 
 | static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) | 
 | { | 
 | 	if (!kn) | 
 | 		return strscpy(buf, "(null)", buflen); | 
 |  | 
 | 	return strscpy(buf, kn->parent ? kn->name : "/", buflen); | 
 | } | 
 |  | 
 | /* kernfs_node_depth - compute depth from @from to @to */ | 
 | static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) | 
 | { | 
 | 	size_t depth = 0; | 
 |  | 
 | 	while (to->parent && to != from) { | 
 | 		depth++; | 
 | 		to = to->parent; | 
 | 	} | 
 | 	return depth; | 
 | } | 
 |  | 
 | static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, | 
 | 						  struct kernfs_node *b) | 
 | { | 
 | 	size_t da, db; | 
 | 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); | 
 |  | 
 | 	if (ra != rb) | 
 | 		return NULL; | 
 |  | 
 | 	da = kernfs_depth(ra->kn, a); | 
 | 	db = kernfs_depth(rb->kn, b); | 
 |  | 
 | 	while (da > db) { | 
 | 		a = a->parent; | 
 | 		da--; | 
 | 	} | 
 | 	while (db > da) { | 
 | 		b = b->parent; | 
 | 		db--; | 
 | 	} | 
 |  | 
 | 	/* worst case b and a will be the same at root */ | 
 | 	while (b != a) { | 
 | 		b = b->parent; | 
 | 		a = a->parent; | 
 | 	} | 
 |  | 
 | 	return a; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, | 
 |  * where kn_from is treated as root of the path. | 
 |  * @kn_from: kernfs node which should be treated as root for the path | 
 |  * @kn_to: kernfs node to which path is needed | 
 |  * @buf: buffer to copy the path into | 
 |  * @buflen: size of @buf | 
 |  * | 
 |  * We need to handle couple of scenarios here: | 
 |  * [1] when @kn_from is an ancestor of @kn_to at some level | 
 |  * kn_from: /n1/n2/n3 | 
 |  * kn_to:   /n1/n2/n3/n4/n5 | 
 |  * result:  /n4/n5 | 
 |  * | 
 |  * [2] when @kn_from is on a different hierarchy and we need to find common | 
 |  * ancestor between @kn_from and @kn_to. | 
 |  * kn_from: /n1/n2/n3/n4 | 
 |  * kn_to:   /n1/n2/n5 | 
 |  * result:  /../../n5 | 
 |  * OR | 
 |  * kn_from: /n1/n2/n3/n4/n5   [depth=5] | 
 |  * kn_to:   /n1/n2/n3         [depth=3] | 
 |  * result:  /../.. | 
 |  * | 
 |  * [3] when @kn_to is %NULL result will be "(null)" | 
 |  * | 
 |  * Return: the length of the constructed path.  If the path would have been | 
 |  * greater than @buflen, @buf contains the truncated path with the trailing | 
 |  * '\0'.  On error, -errno is returned. | 
 |  */ | 
 | static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, | 
 | 					struct kernfs_node *kn_from, | 
 | 					char *buf, size_t buflen) | 
 | { | 
 | 	struct kernfs_node *kn, *common; | 
 | 	const char parent_str[] = "/.."; | 
 | 	size_t depth_from, depth_to, len = 0; | 
 | 	ssize_t copied; | 
 | 	int i, j; | 
 |  | 
 | 	if (!kn_to) | 
 | 		return strscpy(buf, "(null)", buflen); | 
 |  | 
 | 	if (!kn_from) | 
 | 		kn_from = kernfs_root(kn_to)->kn; | 
 |  | 
 | 	if (kn_from == kn_to) | 
 | 		return strscpy(buf, "/", buflen); | 
 |  | 
 | 	common = kernfs_common_ancestor(kn_from, kn_to); | 
 | 	if (WARN_ON(!common)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	depth_to = kernfs_depth(common, kn_to); | 
 | 	depth_from = kernfs_depth(common, kn_from); | 
 |  | 
 | 	buf[0] = '\0'; | 
 |  | 
 | 	for (i = 0; i < depth_from; i++) { | 
 | 		copied = strscpy(buf + len, parent_str, buflen - len); | 
 | 		if (copied < 0) | 
 | 			return copied; | 
 | 		len += copied; | 
 | 	} | 
 |  | 
 | 	/* Calculate how many bytes we need for the rest */ | 
 | 	for (i = depth_to - 1; i >= 0; i--) { | 
 | 		for (kn = kn_to, j = 0; j < i; j++) | 
 | 			kn = kn->parent; | 
 |  | 
 | 		len += scnprintf(buf + len, buflen - len, "/%s", kn->name); | 
 | 	} | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_name - obtain the name of a given node | 
 |  * @kn: kernfs_node of interest | 
 |  * @buf: buffer to copy @kn's name into | 
 |  * @buflen: size of @buf | 
 |  * | 
 |  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is | 
 |  * similar to strscpy(). | 
 |  * | 
 |  * Fills buffer with "(null)" if @kn is %NULL. | 
 |  * | 
 |  * Return: the resulting length of @buf. If @buf isn't long enough, | 
 |  * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG. | 
 |  * | 
 |  * This function can be called from any context. | 
 |  */ | 
 | int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	read_lock_irqsave(&kernfs_rename_lock, flags); | 
 | 	ret = kernfs_name_locked(kn, buf, buflen); | 
 | 	read_unlock_irqrestore(&kernfs_rename_lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_path_from_node - build path of node @to relative to @from. | 
 |  * @from: parent kernfs_node relative to which we need to build the path | 
 |  * @to: kernfs_node of interest | 
 |  * @buf: buffer to copy @to's path into | 
 |  * @buflen: size of @buf | 
 |  * | 
 |  * Builds @to's path relative to @from in @buf. @from and @to must | 
 |  * be on the same kernfs-root. If @from is not parent of @to, then a relative | 
 |  * path (which includes '..'s) as needed to reach from @from to @to is | 
 |  * returned. | 
 |  * | 
 |  * Return: the length of the constructed path.  If the path would have been | 
 |  * greater than @buflen, @buf contains the truncated path with the trailing | 
 |  * '\0'.  On error, -errno is returned. | 
 |  */ | 
 | int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, | 
 | 			  char *buf, size_t buflen) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	read_lock_irqsave(&kernfs_rename_lock, flags); | 
 | 	ret = kernfs_path_from_node_locked(to, from, buf, buflen); | 
 | 	read_unlock_irqrestore(&kernfs_rename_lock, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kernfs_path_from_node); | 
 |  | 
 | /** | 
 |  * pr_cont_kernfs_name - pr_cont name of a kernfs_node | 
 |  * @kn: kernfs_node of interest | 
 |  * | 
 |  * This function can be called from any context. | 
 |  */ | 
 | void pr_cont_kernfs_name(struct kernfs_node *kn) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags); | 
 |  | 
 | 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); | 
 | 	pr_cont("%s", kernfs_pr_cont_buf); | 
 |  | 
 | 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * pr_cont_kernfs_path - pr_cont path of a kernfs_node | 
 |  * @kn: kernfs_node of interest | 
 |  * | 
 |  * This function can be called from any context. | 
 |  */ | 
 | void pr_cont_kernfs_path(struct kernfs_node *kn) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int sz; | 
 |  | 
 | 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags); | 
 |  | 
 | 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, | 
 | 				   sizeof(kernfs_pr_cont_buf)); | 
 | 	if (sz < 0) { | 
 | 		if (sz == -E2BIG) | 
 | 			pr_cont("(name too long)"); | 
 | 		else | 
 | 			pr_cont("(error)"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	pr_cont("%s", kernfs_pr_cont_buf); | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_get_parent - determine the parent node and pin it | 
 |  * @kn: kernfs_node of interest | 
 |  * | 
 |  * Determines @kn's parent, pins and returns it.  This function can be | 
 |  * called from any context. | 
 |  * | 
 |  * Return: parent node of @kn | 
 |  */ | 
 | struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) | 
 | { | 
 | 	struct kernfs_node *parent; | 
 | 	unsigned long flags; | 
 |  | 
 | 	read_lock_irqsave(&kernfs_rename_lock, flags); | 
 | 	parent = kn->parent; | 
 | 	kernfs_get(parent); | 
 | 	read_unlock_irqrestore(&kernfs_rename_lock, flags); | 
 |  | 
 | 	return parent; | 
 | } | 
 |  | 
 | /** | 
 |  *	kernfs_name_hash - calculate hash of @ns + @name | 
 |  *	@name: Null terminated string to hash | 
 |  *	@ns:   Namespace tag to hash | 
 |  * | 
 |  *	Return: 31-bit hash of ns + name (so it fits in an off_t) | 
 |  */ | 
 | static unsigned int kernfs_name_hash(const char *name, const void *ns) | 
 | { | 
 | 	unsigned long hash = init_name_hash(ns); | 
 | 	unsigned int len = strlen(name); | 
 | 	while (len--) | 
 | 		hash = partial_name_hash(*name++, hash); | 
 | 	hash = end_name_hash(hash); | 
 | 	hash &= 0x7fffffffU; | 
 | 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ | 
 | 	if (hash < 2) | 
 | 		hash += 2; | 
 | 	if (hash >= INT_MAX) | 
 | 		hash = INT_MAX - 1; | 
 | 	return hash; | 
 | } | 
 |  | 
 | static int kernfs_name_compare(unsigned int hash, const char *name, | 
 | 			       const void *ns, const struct kernfs_node *kn) | 
 | { | 
 | 	if (hash < kn->hash) | 
 | 		return -1; | 
 | 	if (hash > kn->hash) | 
 | 		return 1; | 
 | 	if (ns < kn->ns) | 
 | 		return -1; | 
 | 	if (ns > kn->ns) | 
 | 		return 1; | 
 | 	return strcmp(name, kn->name); | 
 | } | 
 |  | 
 | static int kernfs_sd_compare(const struct kernfs_node *left, | 
 | 			     const struct kernfs_node *right) | 
 | { | 
 | 	return kernfs_name_compare(left->hash, left->name, left->ns, right); | 
 | } | 
 |  | 
 | /** | 
 |  *	kernfs_link_sibling - link kernfs_node into sibling rbtree | 
 |  *	@kn: kernfs_node of interest | 
 |  * | 
 |  *	Link @kn into its sibling rbtree which starts from | 
 |  *	@kn->parent->dir.children. | 
 |  * | 
 |  *	Locking: | 
 |  *	kernfs_rwsem held exclusive | 
 |  * | 
 |  *	Return: | 
 |  *	%0 on success, -EEXIST on failure. | 
 |  */ | 
 | static int kernfs_link_sibling(struct kernfs_node *kn) | 
 | { | 
 | 	struct rb_node **node = &kn->parent->dir.children.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 |  | 
 | 	while (*node) { | 
 | 		struct kernfs_node *pos; | 
 | 		int result; | 
 |  | 
 | 		pos = rb_to_kn(*node); | 
 | 		parent = *node; | 
 | 		result = kernfs_sd_compare(kn, pos); | 
 | 		if (result < 0) | 
 | 			node = &pos->rb.rb_left; | 
 | 		else if (result > 0) | 
 | 			node = &pos->rb.rb_right; | 
 | 		else | 
 | 			return -EEXIST; | 
 | 	} | 
 |  | 
 | 	/* add new node and rebalance the tree */ | 
 | 	rb_link_node(&kn->rb, parent, node); | 
 | 	rb_insert_color(&kn->rb, &kn->parent->dir.children); | 
 |  | 
 | 	/* successfully added, account subdir number */ | 
 | 	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); | 
 | 	if (kernfs_type(kn) == KERNFS_DIR) | 
 | 		kn->parent->dir.subdirs++; | 
 | 	kernfs_inc_rev(kn->parent); | 
 | 	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree | 
 |  *	@kn: kernfs_node of interest | 
 |  * | 
 |  *	Try to unlink @kn from its sibling rbtree which starts from | 
 |  *	kn->parent->dir.children. | 
 |  * | 
 |  *	Return: %true if @kn was actually removed, | 
 |  *	%false if @kn wasn't on the rbtree. | 
 |  * | 
 |  *	Locking: | 
 |  *	kernfs_rwsem held exclusive | 
 |  */ | 
 | static bool kernfs_unlink_sibling(struct kernfs_node *kn) | 
 | { | 
 | 	if (RB_EMPTY_NODE(&kn->rb)) | 
 | 		return false; | 
 |  | 
 | 	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); | 
 | 	if (kernfs_type(kn) == KERNFS_DIR) | 
 | 		kn->parent->dir.subdirs--; | 
 | 	kernfs_inc_rev(kn->parent); | 
 | 	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); | 
 |  | 
 | 	rb_erase(&kn->rb, &kn->parent->dir.children); | 
 | 	RB_CLEAR_NODE(&kn->rb); | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  *	kernfs_get_active - get an active reference to kernfs_node | 
 |  *	@kn: kernfs_node to get an active reference to | 
 |  * | 
 |  *	Get an active reference of @kn.  This function is noop if @kn | 
 |  *	is %NULL. | 
 |  * | 
 |  *	Return: | 
 |  *	Pointer to @kn on success, %NULL on failure. | 
 |  */ | 
 | struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) | 
 | { | 
 | 	if (unlikely(!kn)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!atomic_inc_unless_negative(&kn->active)) | 
 | 		return NULL; | 
 |  | 
 | 	if (kernfs_lockdep(kn)) | 
 | 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); | 
 | 	return kn; | 
 | } | 
 |  | 
 | /** | 
 |  *	kernfs_put_active - put an active reference to kernfs_node | 
 |  *	@kn: kernfs_node to put an active reference to | 
 |  * | 
 |  *	Put an active reference to @kn.  This function is noop if @kn | 
 |  *	is %NULL. | 
 |  */ | 
 | void kernfs_put_active(struct kernfs_node *kn) | 
 | { | 
 | 	int v; | 
 |  | 
 | 	if (unlikely(!kn)) | 
 | 		return; | 
 |  | 
 | 	if (kernfs_lockdep(kn)) | 
 | 		rwsem_release(&kn->dep_map, _RET_IP_); | 
 | 	v = atomic_dec_return(&kn->active); | 
 | 	if (likely(v != KN_DEACTIVATED_BIAS)) | 
 | 		return; | 
 |  | 
 | 	wake_up_all(&kernfs_root(kn)->deactivate_waitq); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_drain - drain kernfs_node | 
 |  * @kn: kernfs_node to drain | 
 |  * | 
 |  * Drain existing usages and nuke all existing mmaps of @kn.  Multiple | 
 |  * removers may invoke this function concurrently on @kn and all will | 
 |  * return after draining is complete. | 
 |  */ | 
 | static void kernfs_drain(struct kernfs_node *kn) | 
 | 	__releases(&kernfs_root(kn)->kernfs_rwsem) | 
 | 	__acquires(&kernfs_root(kn)->kernfs_rwsem) | 
 | { | 
 | 	struct kernfs_root *root = kernfs_root(kn); | 
 |  | 
 | 	lockdep_assert_held_write(&root->kernfs_rwsem); | 
 | 	WARN_ON_ONCE(kernfs_active(kn)); | 
 |  | 
 | 	/* | 
 | 	 * Skip draining if already fully drained. This avoids draining and its | 
 | 	 * lockdep annotations for nodes which have never been activated | 
 | 	 * allowing embedding kernfs_remove() in create error paths without | 
 | 	 * worrying about draining. | 
 | 	 */ | 
 | 	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && | 
 | 	    !kernfs_should_drain_open_files(kn)) | 
 | 		return; | 
 |  | 
 | 	up_write(&root->kernfs_rwsem); | 
 |  | 
 | 	if (kernfs_lockdep(kn)) { | 
 | 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); | 
 | 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) | 
 | 			lock_contended(&kn->dep_map, _RET_IP_); | 
 | 	} | 
 |  | 
 | 	wait_event(root->deactivate_waitq, | 
 | 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); | 
 |  | 
 | 	if (kernfs_lockdep(kn)) { | 
 | 		lock_acquired(&kn->dep_map, _RET_IP_); | 
 | 		rwsem_release(&kn->dep_map, _RET_IP_); | 
 | 	} | 
 |  | 
 | 	if (kernfs_should_drain_open_files(kn)) | 
 | 		kernfs_drain_open_files(kn); | 
 |  | 
 | 	down_write(&root->kernfs_rwsem); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_get - get a reference count on a kernfs_node | 
 |  * @kn: the target kernfs_node | 
 |  */ | 
 | void kernfs_get(struct kernfs_node *kn) | 
 | { | 
 | 	if (kn) { | 
 | 		WARN_ON(!atomic_read(&kn->count)); | 
 | 		atomic_inc(&kn->count); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kernfs_get); | 
 |  | 
 | static void kernfs_free_rcu(struct rcu_head *rcu) | 
 | { | 
 | 	struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu); | 
 |  | 
 | 	kfree_const(kn->name); | 
 |  | 
 | 	if (kn->iattr) { | 
 | 		simple_xattrs_free(&kn->iattr->xattrs, NULL); | 
 | 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr); | 
 | 	} | 
 |  | 
 | 	kmem_cache_free(kernfs_node_cache, kn); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_put - put a reference count on a kernfs_node | 
 |  * @kn: the target kernfs_node | 
 |  * | 
 |  * Put a reference count of @kn and destroy it if it reached zero. | 
 |  */ | 
 | void kernfs_put(struct kernfs_node *kn) | 
 | { | 
 | 	struct kernfs_node *parent; | 
 | 	struct kernfs_root *root; | 
 |  | 
 | 	if (!kn || !atomic_dec_and_test(&kn->count)) | 
 | 		return; | 
 | 	root = kernfs_root(kn); | 
 |  repeat: | 
 | 	/* | 
 | 	 * Moving/renaming is always done while holding reference. | 
 | 	 * kn->parent won't change beneath us. | 
 | 	 */ | 
 | 	parent = kn->parent; | 
 |  | 
 | 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, | 
 | 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n", | 
 | 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active)); | 
 |  | 
 | 	if (kernfs_type(kn) == KERNFS_LINK) | 
 | 		kernfs_put(kn->symlink.target_kn); | 
 |  | 
 | 	spin_lock(&kernfs_idr_lock); | 
 | 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); | 
 | 	spin_unlock(&kernfs_idr_lock); | 
 |  | 
 | 	call_rcu(&kn->rcu, kernfs_free_rcu); | 
 |  | 
 | 	kn = parent; | 
 | 	if (kn) { | 
 | 		if (atomic_dec_and_test(&kn->count)) | 
 | 			goto repeat; | 
 | 	} else { | 
 | 		/* just released the root kn, free @root too */ | 
 | 		idr_destroy(&root->ino_idr); | 
 | 		kfree_rcu(root, rcu); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kernfs_put); | 
 |  | 
 | /** | 
 |  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry | 
 |  * @dentry: the dentry in question | 
 |  * | 
 |  * Return: the kernfs_node associated with @dentry.  If @dentry is not a | 
 |  * kernfs one, %NULL is returned. | 
 |  * | 
 |  * While the returned kernfs_node will stay accessible as long as @dentry | 
 |  * is accessible, the returned node can be in any state and the caller is | 
 |  * fully responsible for determining what's accessible. | 
 |  */ | 
 | struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) | 
 | { | 
 | 	if (dentry->d_sb->s_op == &kernfs_sops) | 
 | 		return kernfs_dentry_node(dentry); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, | 
 | 					     struct kernfs_node *parent, | 
 | 					     const char *name, umode_t mode, | 
 | 					     kuid_t uid, kgid_t gid, | 
 | 					     unsigned flags) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 | 	u32 id_highbits; | 
 | 	int ret; | 
 |  | 
 | 	name = kstrdup_const(name, GFP_KERNEL); | 
 | 	if (!name) | 
 | 		return NULL; | 
 |  | 
 | 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); | 
 | 	if (!kn) | 
 | 		goto err_out1; | 
 |  | 
 | 	idr_preload(GFP_KERNEL); | 
 | 	spin_lock(&kernfs_idr_lock); | 
 | 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); | 
 | 	if (ret >= 0 && ret < root->last_id_lowbits) | 
 | 		root->id_highbits++; | 
 | 	id_highbits = root->id_highbits; | 
 | 	root->last_id_lowbits = ret; | 
 | 	spin_unlock(&kernfs_idr_lock); | 
 | 	idr_preload_end(); | 
 | 	if (ret < 0) | 
 | 		goto err_out2; | 
 |  | 
 | 	kn->id = (u64)id_highbits << 32 | ret; | 
 |  | 
 | 	atomic_set(&kn->count, 1); | 
 | 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS); | 
 | 	RB_CLEAR_NODE(&kn->rb); | 
 |  | 
 | 	kn->name = name; | 
 | 	kn->mode = mode; | 
 | 	kn->flags = flags; | 
 |  | 
 | 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { | 
 | 		struct iattr iattr = { | 
 | 			.ia_valid = ATTR_UID | ATTR_GID, | 
 | 			.ia_uid = uid, | 
 | 			.ia_gid = gid, | 
 | 		}; | 
 |  | 
 | 		ret = __kernfs_setattr(kn, &iattr); | 
 | 		if (ret < 0) | 
 | 			goto err_out3; | 
 | 	} | 
 |  | 
 | 	if (parent) { | 
 | 		ret = security_kernfs_init_security(parent, kn); | 
 | 		if (ret) | 
 | 			goto err_out3; | 
 | 	} | 
 |  | 
 | 	return kn; | 
 |  | 
 |  err_out3: | 
 | 	spin_lock(&kernfs_idr_lock); | 
 | 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); | 
 | 	spin_unlock(&kernfs_idr_lock); | 
 |  err_out2: | 
 | 	kmem_cache_free(kernfs_node_cache, kn); | 
 |  err_out1: | 
 | 	kfree_const(name); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, | 
 | 				    const char *name, umode_t mode, | 
 | 				    kuid_t uid, kgid_t gid, | 
 | 				    unsigned flags) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 |  | 
 | 	if (parent->mode & S_ISGID) { | 
 | 		/* this code block imitates inode_init_owner() for | 
 | 		 * kernfs | 
 | 		 */ | 
 |  | 
 | 		if (parent->iattr) | 
 | 			gid = parent->iattr->ia_gid; | 
 |  | 
 | 		if (flags & KERNFS_DIR) | 
 | 			mode |= S_ISGID; | 
 | 	} | 
 |  | 
 | 	kn = __kernfs_new_node(kernfs_root(parent), parent, | 
 | 			       name, mode, uid, gid, flags); | 
 | 	if (kn) { | 
 | 		kernfs_get(parent); | 
 | 		kn->parent = parent; | 
 | 	} | 
 | 	return kn; | 
 | } | 
 |  | 
 | /* | 
 |  * kernfs_find_and_get_node_by_id - get kernfs_node from node id | 
 |  * @root: the kernfs root | 
 |  * @id: the target node id | 
 |  * | 
 |  * @id's lower 32bits encode ino and upper gen.  If the gen portion is | 
 |  * zero, all generations are matched. | 
 |  * | 
 |  * Return: %NULL on failure, | 
 |  * otherwise a kernfs node with reference counter incremented. | 
 |  */ | 
 | struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, | 
 | 						   u64 id) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 | 	ino_t ino = kernfs_id_ino(id); | 
 | 	u32 gen = kernfs_id_gen(id); | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	kn = idr_find(&root->ino_idr, (u32)ino); | 
 | 	if (!kn) | 
 | 		goto err_unlock; | 
 |  | 
 | 	if (sizeof(ino_t) >= sizeof(u64)) { | 
 | 		/* we looked up with the low 32bits, compare the whole */ | 
 | 		if (kernfs_ino(kn) != ino) | 
 | 			goto err_unlock; | 
 | 	} else { | 
 | 		/* 0 matches all generations */ | 
 | 		if (unlikely(gen && kernfs_gen(kn) != gen)) | 
 | 			goto err_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We should fail if @kn has never been activated and guarantee success | 
 | 	 * if the caller knows that @kn is active. Both can be achieved by | 
 | 	 * __kernfs_active() which tests @kn->active without kernfs_rwsem. | 
 | 	 */ | 
 | 	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) | 
 | 		goto err_unlock; | 
 |  | 
 | 	rcu_read_unlock(); | 
 | 	return kn; | 
 | err_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  *	kernfs_add_one - add kernfs_node to parent without warning | 
 |  *	@kn: kernfs_node to be added | 
 |  * | 
 |  *	The caller must already have initialized @kn->parent.  This | 
 |  *	function increments nlink of the parent's inode if @kn is a | 
 |  *	directory and link into the children list of the parent. | 
 |  * | 
 |  *	Return: | 
 |  *	%0 on success, -EEXIST if entry with the given name already | 
 |  *	exists. | 
 |  */ | 
 | int kernfs_add_one(struct kernfs_node *kn) | 
 | { | 
 | 	struct kernfs_node *parent = kn->parent; | 
 | 	struct kernfs_root *root = kernfs_root(parent); | 
 | 	struct kernfs_iattrs *ps_iattr; | 
 | 	bool has_ns; | 
 | 	int ret; | 
 |  | 
 | 	down_write(&root->kernfs_rwsem); | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	has_ns = kernfs_ns_enabled(parent); | 
 | 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", | 
 | 		 has_ns ? "required" : "invalid", parent->name, kn->name)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (kernfs_type(parent) != KERNFS_DIR) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = -ENOENT; | 
 | 	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	kn->hash = kernfs_name_hash(kn->name, kn->ns); | 
 |  | 
 | 	ret = kernfs_link_sibling(kn); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Update timestamps on the parent */ | 
 | 	down_write(&root->kernfs_iattr_rwsem); | 
 |  | 
 | 	ps_iattr = parent->iattr; | 
 | 	if (ps_iattr) { | 
 | 		ktime_get_real_ts64(&ps_iattr->ia_ctime); | 
 | 		ps_iattr->ia_mtime = ps_iattr->ia_ctime; | 
 | 	} | 
 |  | 
 | 	up_write(&root->kernfs_iattr_rwsem); | 
 | 	up_write(&root->kernfs_rwsem); | 
 |  | 
 | 	/* | 
 | 	 * Activate the new node unless CREATE_DEACTIVATED is requested. | 
 | 	 * If not activated here, the kernfs user is responsible for | 
 | 	 * activating the node with kernfs_activate().  A node which hasn't | 
 | 	 * been activated is not visible to userland and its removal won't | 
 | 	 * trigger deactivation. | 
 | 	 */ | 
 | 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) | 
 | 		kernfs_activate(kn); | 
 | 	return 0; | 
 |  | 
 | out_unlock: | 
 | 	up_write(&root->kernfs_rwsem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_find_ns - find kernfs_node with the given name | 
 |  * @parent: kernfs_node to search under | 
 |  * @name: name to look for | 
 |  * @ns: the namespace tag to use | 
 |  * | 
 |  * Look for kernfs_node with name @name under @parent. | 
 |  * | 
 |  * Return: pointer to the found kernfs_node on success, %NULL on failure. | 
 |  */ | 
 | static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, | 
 | 					  const unsigned char *name, | 
 | 					  const void *ns) | 
 | { | 
 | 	struct rb_node *node = parent->dir.children.rb_node; | 
 | 	bool has_ns = kernfs_ns_enabled(parent); | 
 | 	unsigned int hash; | 
 |  | 
 | 	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); | 
 |  | 
 | 	if (has_ns != (bool)ns) { | 
 | 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", | 
 | 		     has_ns ? "required" : "invalid", parent->name, name); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	hash = kernfs_name_hash(name, ns); | 
 | 	while (node) { | 
 | 		struct kernfs_node *kn; | 
 | 		int result; | 
 |  | 
 | 		kn = rb_to_kn(node); | 
 | 		result = kernfs_name_compare(hash, name, ns, kn); | 
 | 		if (result < 0) | 
 | 			node = node->rb_left; | 
 | 		else if (result > 0) | 
 | 			node = node->rb_right; | 
 | 		else | 
 | 			return kn; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, | 
 | 					  const unsigned char *path, | 
 | 					  const void *ns) | 
 | { | 
 | 	ssize_t len; | 
 | 	char *p, *name; | 
 |  | 
 | 	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); | 
 |  | 
 | 	spin_lock_irq(&kernfs_pr_cont_lock); | 
 |  | 
 | 	len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); | 
 |  | 
 | 	if (len < 0) { | 
 | 		spin_unlock_irq(&kernfs_pr_cont_lock); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	p = kernfs_pr_cont_buf; | 
 |  | 
 | 	while ((name = strsep(&p, "/")) && parent) { | 
 | 		if (*name == '\0') | 
 | 			continue; | 
 | 		parent = kernfs_find_ns(parent, name, ns); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&kernfs_pr_cont_lock); | 
 |  | 
 | 	return parent; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_find_and_get_ns - find and get kernfs_node with the given name | 
 |  * @parent: kernfs_node to search under | 
 |  * @name: name to look for | 
 |  * @ns: the namespace tag to use | 
 |  * | 
 |  * Look for kernfs_node with name @name under @parent and get a reference | 
 |  * if found.  This function may sleep. | 
 |  * | 
 |  * Return: pointer to the found kernfs_node on success, %NULL on failure. | 
 |  */ | 
 | struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, | 
 | 					   const char *name, const void *ns) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 | 	struct kernfs_root *root = kernfs_root(parent); | 
 |  | 
 | 	down_read(&root->kernfs_rwsem); | 
 | 	kn = kernfs_find_ns(parent, name, ns); | 
 | 	kernfs_get(kn); | 
 | 	up_read(&root->kernfs_rwsem); | 
 |  | 
 | 	return kn; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); | 
 |  | 
 | /** | 
 |  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path | 
 |  * @parent: kernfs_node to search under | 
 |  * @path: path to look for | 
 |  * @ns: the namespace tag to use | 
 |  * | 
 |  * Look for kernfs_node with path @path under @parent and get a reference | 
 |  * if found.  This function may sleep. | 
 |  * | 
 |  * Return: pointer to the found kernfs_node on success, %NULL on failure. | 
 |  */ | 
 | struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, | 
 | 					   const char *path, const void *ns) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 | 	struct kernfs_root *root = kernfs_root(parent); | 
 |  | 
 | 	down_read(&root->kernfs_rwsem); | 
 | 	kn = kernfs_walk_ns(parent, path, ns); | 
 | 	kernfs_get(kn); | 
 | 	up_read(&root->kernfs_rwsem); | 
 |  | 
 | 	return kn; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_create_root - create a new kernfs hierarchy | 
 |  * @scops: optional syscall operations for the hierarchy | 
 |  * @flags: KERNFS_ROOT_* flags | 
 |  * @priv: opaque data associated with the new directory | 
 |  * | 
 |  * Return: the root of the new hierarchy on success, ERR_PTR() value on | 
 |  * failure. | 
 |  */ | 
 | struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, | 
 | 				       unsigned int flags, void *priv) | 
 | { | 
 | 	struct kernfs_root *root; | 
 | 	struct kernfs_node *kn; | 
 |  | 
 | 	root = kzalloc(sizeof(*root), GFP_KERNEL); | 
 | 	if (!root) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	idr_init(&root->ino_idr); | 
 | 	init_rwsem(&root->kernfs_rwsem); | 
 | 	init_rwsem(&root->kernfs_iattr_rwsem); | 
 | 	init_rwsem(&root->kernfs_supers_rwsem); | 
 | 	INIT_LIST_HEAD(&root->supers); | 
 |  | 
 | 	/* | 
 | 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino. | 
 | 	 * High bits generation.  The starting value for both ino and | 
 | 	 * genenration is 1.  Initialize upper 32bit allocation | 
 | 	 * accordingly. | 
 | 	 */ | 
 | 	if (sizeof(ino_t) >= sizeof(u64)) | 
 | 		root->id_highbits = 0; | 
 | 	else | 
 | 		root->id_highbits = 1; | 
 |  | 
 | 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, | 
 | 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, | 
 | 			       KERNFS_DIR); | 
 | 	if (!kn) { | 
 | 		idr_destroy(&root->ino_idr); | 
 | 		kfree(root); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	kn->priv = priv; | 
 | 	kn->dir.root = root; | 
 |  | 
 | 	root->syscall_ops = scops; | 
 | 	root->flags = flags; | 
 | 	root->kn = kn; | 
 | 	init_waitqueue_head(&root->deactivate_waitq); | 
 |  | 
 | 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) | 
 | 		kernfs_activate(kn); | 
 |  | 
 | 	return root; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_destroy_root - destroy a kernfs hierarchy | 
 |  * @root: root of the hierarchy to destroy | 
 |  * | 
 |  * Destroy the hierarchy anchored at @root by removing all existing | 
 |  * directories and destroying @root. | 
 |  */ | 
 | void kernfs_destroy_root(struct kernfs_root *root) | 
 | { | 
 | 	/* | 
 | 	 *  kernfs_remove holds kernfs_rwsem from the root so the root | 
 | 	 *  shouldn't be freed during the operation. | 
 | 	 */ | 
 | 	kernfs_get(root->kn); | 
 | 	kernfs_remove(root->kn); | 
 | 	kernfs_put(root->kn); /* will also free @root */ | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root | 
 |  * @root: root to use to lookup | 
 |  * | 
 |  * Return: @root's kernfs_node | 
 |  */ | 
 | struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) | 
 | { | 
 | 	return root->kn; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_create_dir_ns - create a directory | 
 |  * @parent: parent in which to create a new directory | 
 |  * @name: name of the new directory | 
 |  * @mode: mode of the new directory | 
 |  * @uid: uid of the new directory | 
 |  * @gid: gid of the new directory | 
 |  * @priv: opaque data associated with the new directory | 
 |  * @ns: optional namespace tag of the directory | 
 |  * | 
 |  * Return: the created node on success, ERR_PTR() value on failure. | 
 |  */ | 
 | struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, | 
 | 					 const char *name, umode_t mode, | 
 | 					 kuid_t uid, kgid_t gid, | 
 | 					 void *priv, const void *ns) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 | 	int rc; | 
 |  | 
 | 	/* allocate */ | 
 | 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, | 
 | 			     uid, gid, KERNFS_DIR); | 
 | 	if (!kn) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	kn->dir.root = parent->dir.root; | 
 | 	kn->ns = ns; | 
 | 	kn->priv = priv; | 
 |  | 
 | 	/* link in */ | 
 | 	rc = kernfs_add_one(kn); | 
 | 	if (!rc) | 
 | 		return kn; | 
 |  | 
 | 	kernfs_put(kn); | 
 | 	return ERR_PTR(rc); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_create_empty_dir - create an always empty directory | 
 |  * @parent: parent in which to create a new directory | 
 |  * @name: name of the new directory | 
 |  * | 
 |  * Return: the created node on success, ERR_PTR() value on failure. | 
 |  */ | 
 | struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, | 
 | 					    const char *name) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 | 	int rc; | 
 |  | 
 | 	/* allocate */ | 
 | 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, | 
 | 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); | 
 | 	if (!kn) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	kn->flags |= KERNFS_EMPTY_DIR; | 
 | 	kn->dir.root = parent->dir.root; | 
 | 	kn->ns = NULL; | 
 | 	kn->priv = NULL; | 
 |  | 
 | 	/* link in */ | 
 | 	rc = kernfs_add_one(kn); | 
 | 	if (!rc) | 
 | 		return kn; | 
 |  | 
 | 	kernfs_put(kn); | 
 | 	return ERR_PTR(rc); | 
 | } | 
 |  | 
 | static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 | 	struct kernfs_root *root; | 
 |  | 
 | 	if (flags & LOOKUP_RCU) | 
 | 		return -ECHILD; | 
 |  | 
 | 	/* Negative hashed dentry? */ | 
 | 	if (d_really_is_negative(dentry)) { | 
 | 		struct kernfs_node *parent; | 
 |  | 
 | 		/* If the kernfs parent node has changed discard and | 
 | 		 * proceed to ->lookup. | 
 | 		 * | 
 | 		 * There's nothing special needed here when getting the | 
 | 		 * dentry parent, even if a concurrent rename is in | 
 | 		 * progress. That's because the dentry is negative so | 
 | 		 * it can only be the target of the rename and it will | 
 | 		 * be doing a d_move() not a replace. Consequently the | 
 | 		 * dentry d_parent won't change over the d_move(). | 
 | 		 * | 
 | 		 * Also kernfs negative dentries transitioning from | 
 | 		 * negative to positive during revalidate won't happen | 
 | 		 * because they are invalidated on containing directory | 
 | 		 * changes and the lookup re-done so that a new positive | 
 | 		 * dentry can be properly created. | 
 | 		 */ | 
 | 		root = kernfs_root_from_sb(dentry->d_sb); | 
 | 		down_read(&root->kernfs_rwsem); | 
 | 		parent = kernfs_dentry_node(dentry->d_parent); | 
 | 		if (parent) { | 
 | 			if (kernfs_dir_changed(parent, dentry)) { | 
 | 				up_read(&root->kernfs_rwsem); | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | 		up_read(&root->kernfs_rwsem); | 
 |  | 
 | 		/* The kernfs parent node hasn't changed, leave the | 
 | 		 * dentry negative and return success. | 
 | 		 */ | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	kn = kernfs_dentry_node(dentry); | 
 | 	root = kernfs_root(kn); | 
 | 	down_read(&root->kernfs_rwsem); | 
 |  | 
 | 	/* The kernfs node has been deactivated */ | 
 | 	if (!kernfs_active(kn)) | 
 | 		goto out_bad; | 
 |  | 
 | 	/* The kernfs node has been moved? */ | 
 | 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent) | 
 | 		goto out_bad; | 
 |  | 
 | 	/* The kernfs node has been renamed */ | 
 | 	if (strcmp(dentry->d_name.name, kn->name) != 0) | 
 | 		goto out_bad; | 
 |  | 
 | 	/* The kernfs node has been moved to a different namespace */ | 
 | 	if (kn->parent && kernfs_ns_enabled(kn->parent) && | 
 | 	    kernfs_info(dentry->d_sb)->ns != kn->ns) | 
 | 		goto out_bad; | 
 |  | 
 | 	up_read(&root->kernfs_rwsem); | 
 | 	return 1; | 
 | out_bad: | 
 | 	up_read(&root->kernfs_rwsem); | 
 | 	return 0; | 
 | } | 
 |  | 
 | const struct dentry_operations kernfs_dops = { | 
 | 	.d_revalidate	= kernfs_dop_revalidate, | 
 | }; | 
 |  | 
 | static struct dentry *kernfs_iop_lookup(struct inode *dir, | 
 | 					struct dentry *dentry, | 
 | 					unsigned int flags) | 
 | { | 
 | 	struct kernfs_node *parent = dir->i_private; | 
 | 	struct kernfs_node *kn; | 
 | 	struct kernfs_root *root; | 
 | 	struct inode *inode = NULL; | 
 | 	const void *ns = NULL; | 
 |  | 
 | 	root = kernfs_root(parent); | 
 | 	down_read(&root->kernfs_rwsem); | 
 | 	if (kernfs_ns_enabled(parent)) | 
 | 		ns = kernfs_info(dir->i_sb)->ns; | 
 |  | 
 | 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns); | 
 | 	/* attach dentry and inode */ | 
 | 	if (kn) { | 
 | 		/* Inactive nodes are invisible to the VFS so don't | 
 | 		 * create a negative. | 
 | 		 */ | 
 | 		if (!kernfs_active(kn)) { | 
 | 			up_read(&root->kernfs_rwsem); | 
 | 			return NULL; | 
 | 		} | 
 | 		inode = kernfs_get_inode(dir->i_sb, kn); | 
 | 		if (!inode) | 
 | 			inode = ERR_PTR(-ENOMEM); | 
 | 	} | 
 | 	/* | 
 | 	 * Needed for negative dentry validation. | 
 | 	 * The negative dentry can be created in kernfs_iop_lookup() | 
 | 	 * or transforms from positive dentry in dentry_unlink_inode() | 
 | 	 * called from vfs_rmdir(). | 
 | 	 */ | 
 | 	if (!IS_ERR(inode)) | 
 | 		kernfs_set_rev(parent, dentry); | 
 | 	up_read(&root->kernfs_rwsem); | 
 |  | 
 | 	/* instantiate and hash (possibly negative) dentry */ | 
 | 	return d_splice_alias(inode, dentry); | 
 | } | 
 |  | 
 | static int kernfs_iop_mkdir(struct mnt_idmap *idmap, | 
 | 			    struct inode *dir, struct dentry *dentry, | 
 | 			    umode_t mode) | 
 | { | 
 | 	struct kernfs_node *parent = dir->i_private; | 
 | 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; | 
 | 	int ret; | 
 |  | 
 | 	if (!scops || !scops->mkdir) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (!kernfs_get_active(parent)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = scops->mkdir(parent, dentry->d_name.name, mode); | 
 |  | 
 | 	kernfs_put_active(parent); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct kernfs_node *kn  = kernfs_dentry_node(dentry); | 
 | 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; | 
 | 	int ret; | 
 |  | 
 | 	if (!scops || !scops->rmdir) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (!kernfs_get_active(kn)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = scops->rmdir(kn); | 
 |  | 
 | 	kernfs_put_active(kn); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kernfs_iop_rename(struct mnt_idmap *idmap, | 
 | 			     struct inode *old_dir, struct dentry *old_dentry, | 
 | 			     struct inode *new_dir, struct dentry *new_dentry, | 
 | 			     unsigned int flags) | 
 | { | 
 | 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry); | 
 | 	struct kernfs_node *new_parent = new_dir->i_private; | 
 | 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; | 
 | 	int ret; | 
 |  | 
 | 	if (flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!scops || !scops->rename) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (!kernfs_get_active(kn)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!kernfs_get_active(new_parent)) { | 
 | 		kernfs_put_active(kn); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name); | 
 |  | 
 | 	kernfs_put_active(new_parent); | 
 | 	kernfs_put_active(kn); | 
 | 	return ret; | 
 | } | 
 |  | 
 | const struct inode_operations kernfs_dir_iops = { | 
 | 	.lookup		= kernfs_iop_lookup, | 
 | 	.permission	= kernfs_iop_permission, | 
 | 	.setattr	= kernfs_iop_setattr, | 
 | 	.getattr	= kernfs_iop_getattr, | 
 | 	.listxattr	= kernfs_iop_listxattr, | 
 |  | 
 | 	.mkdir		= kernfs_iop_mkdir, | 
 | 	.rmdir		= kernfs_iop_rmdir, | 
 | 	.rename		= kernfs_iop_rename, | 
 | }; | 
 |  | 
 | static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) | 
 | { | 
 | 	struct kernfs_node *last; | 
 |  | 
 | 	while (true) { | 
 | 		struct rb_node *rbn; | 
 |  | 
 | 		last = pos; | 
 |  | 
 | 		if (kernfs_type(pos) != KERNFS_DIR) | 
 | 			break; | 
 |  | 
 | 		rbn = rb_first(&pos->dir.children); | 
 | 		if (!rbn) | 
 | 			break; | 
 |  | 
 | 		pos = rb_to_kn(rbn); | 
 | 	} | 
 |  | 
 | 	return last; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_next_descendant_post - find the next descendant for post-order walk | 
 |  * @pos: the current position (%NULL to initiate traversal) | 
 |  * @root: kernfs_node whose descendants to walk | 
 |  * | 
 |  * Find the next descendant to visit for post-order traversal of @root's | 
 |  * descendants.  @root is included in the iteration and the last node to be | 
 |  * visited. | 
 |  * | 
 |  * Return: the next descendant to visit or %NULL when done. | 
 |  */ | 
 | static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, | 
 | 						       struct kernfs_node *root) | 
 | { | 
 | 	struct rb_node *rbn; | 
 |  | 
 | 	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); | 
 |  | 
 | 	/* if first iteration, visit leftmost descendant which may be root */ | 
 | 	if (!pos) | 
 | 		return kernfs_leftmost_descendant(root); | 
 |  | 
 | 	/* if we visited @root, we're done */ | 
 | 	if (pos == root) | 
 | 		return NULL; | 
 |  | 
 | 	/* if there's an unvisited sibling, visit its leftmost descendant */ | 
 | 	rbn = rb_next(&pos->rb); | 
 | 	if (rbn) | 
 | 		return kernfs_leftmost_descendant(rb_to_kn(rbn)); | 
 |  | 
 | 	/* no sibling left, visit parent */ | 
 | 	return pos->parent; | 
 | } | 
 |  | 
 | static void kernfs_activate_one(struct kernfs_node *kn) | 
 | { | 
 | 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); | 
 |  | 
 | 	kn->flags |= KERNFS_ACTIVATED; | 
 |  | 
 | 	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) | 
 | 		return; | 
 |  | 
 | 	WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); | 
 | 	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); | 
 |  | 
 | 	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_activate - activate a node which started deactivated | 
 |  * @kn: kernfs_node whose subtree is to be activated | 
 |  * | 
 |  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node | 
 |  * needs to be explicitly activated.  A node which hasn't been activated | 
 |  * isn't visible to userland and deactivation is skipped during its | 
 |  * removal.  This is useful to construct atomic init sequences where | 
 |  * creation of multiple nodes should either succeed or fail atomically. | 
 |  * | 
 |  * The caller is responsible for ensuring that this function is not called | 
 |  * after kernfs_remove*() is invoked on @kn. | 
 |  */ | 
 | void kernfs_activate(struct kernfs_node *kn) | 
 | { | 
 | 	struct kernfs_node *pos; | 
 | 	struct kernfs_root *root = kernfs_root(kn); | 
 |  | 
 | 	down_write(&root->kernfs_rwsem); | 
 |  | 
 | 	pos = NULL; | 
 | 	while ((pos = kernfs_next_descendant_post(pos, kn))) | 
 | 		kernfs_activate_one(pos); | 
 |  | 
 | 	up_write(&root->kernfs_rwsem); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_show - show or hide a node | 
 |  * @kn: kernfs_node to show or hide | 
 |  * @show: whether to show or hide | 
 |  * | 
 |  * If @show is %false, @kn is marked hidden and deactivated. A hidden node is | 
 |  * ignored in future activaitons. If %true, the mark is removed and activation | 
 |  * state is restored. This function won't implicitly activate a new node in a | 
 |  * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. | 
 |  * | 
 |  * To avoid recursion complexities, directories aren't supported for now. | 
 |  */ | 
 | void kernfs_show(struct kernfs_node *kn, bool show) | 
 | { | 
 | 	struct kernfs_root *root = kernfs_root(kn); | 
 |  | 
 | 	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) | 
 | 		return; | 
 |  | 
 | 	down_write(&root->kernfs_rwsem); | 
 |  | 
 | 	if (show) { | 
 | 		kn->flags &= ~KERNFS_HIDDEN; | 
 | 		if (kn->flags & KERNFS_ACTIVATED) | 
 | 			kernfs_activate_one(kn); | 
 | 	} else { | 
 | 		kn->flags |= KERNFS_HIDDEN; | 
 | 		if (kernfs_active(kn)) | 
 | 			atomic_add(KN_DEACTIVATED_BIAS, &kn->active); | 
 | 		kernfs_drain(kn); | 
 | 	} | 
 |  | 
 | 	up_write(&root->kernfs_rwsem); | 
 | } | 
 |  | 
 | static void __kernfs_remove(struct kernfs_node *kn) | 
 | { | 
 | 	struct kernfs_node *pos; | 
 |  | 
 | 	/* Short-circuit if non-root @kn has already finished removal. */ | 
 | 	if (!kn) | 
 | 		return; | 
 |  | 
 | 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); | 
 |  | 
 | 	/* | 
 | 	 * This is for kernfs_remove_self() which plays with active ref | 
 | 	 * after removal. | 
 | 	 */ | 
 | 	if (kn->parent && RB_EMPTY_NODE(&kn->rb)) | 
 | 		return; | 
 |  | 
 | 	pr_debug("kernfs %s: removing\n", kn->name); | 
 |  | 
 | 	/* prevent new usage by marking all nodes removing and deactivating */ | 
 | 	pos = NULL; | 
 | 	while ((pos = kernfs_next_descendant_post(pos, kn))) { | 
 | 		pos->flags |= KERNFS_REMOVING; | 
 | 		if (kernfs_active(pos)) | 
 | 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active); | 
 | 	} | 
 |  | 
 | 	/* deactivate and unlink the subtree node-by-node */ | 
 | 	do { | 
 | 		pos = kernfs_leftmost_descendant(kn); | 
 |  | 
 | 		/* | 
 | 		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's | 
 | 		 * base ref could have been put by someone else by the time | 
 | 		 * the function returns.  Make sure it doesn't go away | 
 | 		 * underneath us. | 
 | 		 */ | 
 | 		kernfs_get(pos); | 
 |  | 
 | 		kernfs_drain(pos); | 
 |  | 
 | 		/* | 
 | 		 * kernfs_unlink_sibling() succeeds once per node.  Use it | 
 | 		 * to decide who's responsible for cleanups. | 
 | 		 */ | 
 | 		if (!pos->parent || kernfs_unlink_sibling(pos)) { | 
 | 			struct kernfs_iattrs *ps_iattr = | 
 | 				pos->parent ? pos->parent->iattr : NULL; | 
 |  | 
 | 			/* update timestamps on the parent */ | 
 | 			down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); | 
 |  | 
 | 			if (ps_iattr) { | 
 | 				ktime_get_real_ts64(&ps_iattr->ia_ctime); | 
 | 				ps_iattr->ia_mtime = ps_iattr->ia_ctime; | 
 | 			} | 
 |  | 
 | 			up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); | 
 | 			kernfs_put(pos); | 
 | 		} | 
 |  | 
 | 		kernfs_put(pos); | 
 | 	} while (pos != kn); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_remove - remove a kernfs_node recursively | 
 |  * @kn: the kernfs_node to remove | 
 |  * | 
 |  * Remove @kn along with all its subdirectories and files. | 
 |  */ | 
 | void kernfs_remove(struct kernfs_node *kn) | 
 | { | 
 | 	struct kernfs_root *root; | 
 |  | 
 | 	if (!kn) | 
 | 		return; | 
 |  | 
 | 	root = kernfs_root(kn); | 
 |  | 
 | 	down_write(&root->kernfs_rwsem); | 
 | 	__kernfs_remove(kn); | 
 | 	up_write(&root->kernfs_rwsem); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_break_active_protection - break out of active protection | 
 |  * @kn: the self kernfs_node | 
 |  * | 
 |  * The caller must be running off of a kernfs operation which is invoked | 
 |  * with an active reference - e.g. one of kernfs_ops.  Each invocation of | 
 |  * this function must also be matched with an invocation of | 
 |  * kernfs_unbreak_active_protection(). | 
 |  * | 
 |  * This function releases the active reference of @kn the caller is | 
 |  * holding.  Once this function is called, @kn may be removed at any point | 
 |  * and the caller is solely responsible for ensuring that the objects it | 
 |  * dereferences are accessible. | 
 |  */ | 
 | void kernfs_break_active_protection(struct kernfs_node *kn) | 
 | { | 
 | 	/* | 
 | 	 * Take out ourself out of the active ref dependency chain.  If | 
 | 	 * we're called without an active ref, lockdep will complain. | 
 | 	 */ | 
 | 	kernfs_put_active(kn); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() | 
 |  * @kn: the self kernfs_node | 
 |  * | 
 |  * If kernfs_break_active_protection() was called, this function must be | 
 |  * invoked before finishing the kernfs operation.  Note that while this | 
 |  * function restores the active reference, it doesn't and can't actually | 
 |  * restore the active protection - @kn may already or be in the process of | 
 |  * being removed.  Once kernfs_break_active_protection() is invoked, that | 
 |  * protection is irreversibly gone for the kernfs operation instance. | 
 |  * | 
 |  * While this function may be called at any point after | 
 |  * kernfs_break_active_protection() is invoked, its most useful location | 
 |  * would be right before the enclosing kernfs operation returns. | 
 |  */ | 
 | void kernfs_unbreak_active_protection(struct kernfs_node *kn) | 
 | { | 
 | 	/* | 
 | 	 * @kn->active could be in any state; however, the increment we do | 
 | 	 * here will be undone as soon as the enclosing kernfs operation | 
 | 	 * finishes and this temporary bump can't break anything.  If @kn | 
 | 	 * is alive, nothing changes.  If @kn is being deactivated, the | 
 | 	 * soon-to-follow put will either finish deactivation or restore | 
 | 	 * deactivated state.  If @kn is already removed, the temporary | 
 | 	 * bump is guaranteed to be gone before @kn is released. | 
 | 	 */ | 
 | 	atomic_inc(&kn->active); | 
 | 	if (kernfs_lockdep(kn)) | 
 | 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_remove_self - remove a kernfs_node from its own method | 
 |  * @kn: the self kernfs_node to remove | 
 |  * | 
 |  * The caller must be running off of a kernfs operation which is invoked | 
 |  * with an active reference - e.g. one of kernfs_ops.  This can be used to | 
 |  * implement a file operation which deletes itself. | 
 |  * | 
 |  * For example, the "delete" file for a sysfs device directory can be | 
 |  * implemented by invoking kernfs_remove_self() on the "delete" file | 
 |  * itself.  This function breaks the circular dependency of trying to | 
 |  * deactivate self while holding an active ref itself.  It isn't necessary | 
 |  * to modify the usual removal path to use kernfs_remove_self().  The | 
 |  * "delete" implementation can simply invoke kernfs_remove_self() on self | 
 |  * before proceeding with the usual removal path.  kernfs will ignore later | 
 |  * kernfs_remove() on self. | 
 |  * | 
 |  * kernfs_remove_self() can be called multiple times concurrently on the | 
 |  * same kernfs_node.  Only the first one actually performs removal and | 
 |  * returns %true.  All others will wait until the kernfs operation which | 
 |  * won self-removal finishes and return %false.  Note that the losers wait | 
 |  * for the completion of not only the winning kernfs_remove_self() but also | 
 |  * the whole kernfs_ops which won the arbitration.  This can be used to | 
 |  * guarantee, for example, all concurrent writes to a "delete" file to | 
 |  * finish only after the whole operation is complete. | 
 |  * | 
 |  * Return: %true if @kn is removed by this call, otherwise %false. | 
 |  */ | 
 | bool kernfs_remove_self(struct kernfs_node *kn) | 
 | { | 
 | 	bool ret; | 
 | 	struct kernfs_root *root = kernfs_root(kn); | 
 |  | 
 | 	down_write(&root->kernfs_rwsem); | 
 | 	kernfs_break_active_protection(kn); | 
 |  | 
 | 	/* | 
 | 	 * SUICIDAL is used to arbitrate among competing invocations.  Only | 
 | 	 * the first one will actually perform removal.  When the removal | 
 | 	 * is complete, SUICIDED is set and the active ref is restored | 
 | 	 * while kernfs_rwsem for held exclusive.  The ones which lost | 
 | 	 * arbitration waits for SUICIDED && drained which can happen only | 
 | 	 * after the enclosing kernfs operation which executed the winning | 
 | 	 * instance of kernfs_remove_self() finished. | 
 | 	 */ | 
 | 	if (!(kn->flags & KERNFS_SUICIDAL)) { | 
 | 		kn->flags |= KERNFS_SUICIDAL; | 
 | 		__kernfs_remove(kn); | 
 | 		kn->flags |= KERNFS_SUICIDED; | 
 | 		ret = true; | 
 | 	} else { | 
 | 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; | 
 | 		DEFINE_WAIT(wait); | 
 |  | 
 | 		while (true) { | 
 | 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); | 
 |  | 
 | 			if ((kn->flags & KERNFS_SUICIDED) && | 
 | 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) | 
 | 				break; | 
 |  | 
 | 			up_write(&root->kernfs_rwsem); | 
 | 			schedule(); | 
 | 			down_write(&root->kernfs_rwsem); | 
 | 		} | 
 | 		finish_wait(waitq, &wait); | 
 | 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); | 
 | 		ret = false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This must be done while kernfs_rwsem held exclusive; otherwise, | 
 | 	 * waiting for SUICIDED && deactivated could finish prematurely. | 
 | 	 */ | 
 | 	kernfs_unbreak_active_protection(kn); | 
 |  | 
 | 	up_write(&root->kernfs_rwsem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it | 
 |  * @parent: parent of the target | 
 |  * @name: name of the kernfs_node to remove | 
 |  * @ns: namespace tag of the kernfs_node to remove | 
 |  * | 
 |  * Look for the kernfs_node with @name and @ns under @parent and remove it. | 
 |  * | 
 |  * Return: %0 on success, -ENOENT if such entry doesn't exist. | 
 |  */ | 
 | int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, | 
 | 			     const void *ns) | 
 | { | 
 | 	struct kernfs_node *kn; | 
 | 	struct kernfs_root *root; | 
 |  | 
 | 	if (!parent) { | 
 | 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", | 
 | 			name); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	root = kernfs_root(parent); | 
 | 	down_write(&root->kernfs_rwsem); | 
 |  | 
 | 	kn = kernfs_find_ns(parent, name, ns); | 
 | 	if (kn) { | 
 | 		kernfs_get(kn); | 
 | 		__kernfs_remove(kn); | 
 | 		kernfs_put(kn); | 
 | 	} | 
 |  | 
 | 	up_write(&root->kernfs_rwsem); | 
 |  | 
 | 	if (kn) | 
 | 		return 0; | 
 | 	else | 
 | 		return -ENOENT; | 
 | } | 
 |  | 
 | /** | 
 |  * kernfs_rename_ns - move and rename a kernfs_node | 
 |  * @kn: target node | 
 |  * @new_parent: new parent to put @sd under | 
 |  * @new_name: new name | 
 |  * @new_ns: new namespace tag | 
 |  * | 
 |  * Return: %0 on success, -errno on failure. | 
 |  */ | 
 | int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, | 
 | 		     const char *new_name, const void *new_ns) | 
 | { | 
 | 	struct kernfs_node *old_parent; | 
 | 	struct kernfs_root *root; | 
 | 	const char *old_name = NULL; | 
 | 	int error; | 
 |  | 
 | 	/* can't move or rename root */ | 
 | 	if (!kn->parent) | 
 | 		return -EINVAL; | 
 |  | 
 | 	root = kernfs_root(kn); | 
 | 	down_write(&root->kernfs_rwsem); | 
 |  | 
 | 	error = -ENOENT; | 
 | 	if (!kernfs_active(kn) || !kernfs_active(new_parent) || | 
 | 	    (new_parent->flags & KERNFS_EMPTY_DIR)) | 
 | 		goto out; | 
 |  | 
 | 	error = 0; | 
 | 	if ((kn->parent == new_parent) && (kn->ns == new_ns) && | 
 | 	    (strcmp(kn->name, new_name) == 0)) | 
 | 		goto out;	/* nothing to rename */ | 
 |  | 
 | 	error = -EEXIST; | 
 | 	if (kernfs_find_ns(new_parent, new_name, new_ns)) | 
 | 		goto out; | 
 |  | 
 | 	/* rename kernfs_node */ | 
 | 	if (strcmp(kn->name, new_name) != 0) { | 
 | 		error = -ENOMEM; | 
 | 		new_name = kstrdup_const(new_name, GFP_KERNEL); | 
 | 		if (!new_name) | 
 | 			goto out; | 
 | 	} else { | 
 | 		new_name = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Move to the appropriate place in the appropriate directories rbtree. | 
 | 	 */ | 
 | 	kernfs_unlink_sibling(kn); | 
 | 	kernfs_get(new_parent); | 
 |  | 
 | 	/* rename_lock protects ->parent and ->name accessors */ | 
 | 	write_lock_irq(&kernfs_rename_lock); | 
 |  | 
 | 	old_parent = kn->parent; | 
 | 	kn->parent = new_parent; | 
 |  | 
 | 	kn->ns = new_ns; | 
 | 	if (new_name) { | 
 | 		old_name = kn->name; | 
 | 		kn->name = new_name; | 
 | 	} | 
 |  | 
 | 	write_unlock_irq(&kernfs_rename_lock); | 
 |  | 
 | 	kn->hash = kernfs_name_hash(kn->name, kn->ns); | 
 | 	kernfs_link_sibling(kn); | 
 |  | 
 | 	kernfs_put(old_parent); | 
 | 	kfree_const(old_name); | 
 |  | 
 | 	error = 0; | 
 |  out: | 
 | 	up_write(&root->kernfs_rwsem); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) | 
 | { | 
 | 	kernfs_put(filp->private_data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kernfs_node *kernfs_dir_pos(const void *ns, | 
 | 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) | 
 | { | 
 | 	if (pos) { | 
 | 		int valid = kernfs_active(pos) && | 
 | 			pos->parent == parent && hash == pos->hash; | 
 | 		kernfs_put(pos); | 
 | 		if (!valid) | 
 | 			pos = NULL; | 
 | 	} | 
 | 	if (!pos && (hash > 1) && (hash < INT_MAX)) { | 
 | 		struct rb_node *node = parent->dir.children.rb_node; | 
 | 		while (node) { | 
 | 			pos = rb_to_kn(node); | 
 |  | 
 | 			if (hash < pos->hash) | 
 | 				node = node->rb_left; | 
 | 			else if (hash > pos->hash) | 
 | 				node = node->rb_right; | 
 | 			else | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	/* Skip over entries which are dying/dead or in the wrong namespace */ | 
 | 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) { | 
 | 		struct rb_node *node = rb_next(&pos->rb); | 
 | 		if (!node) | 
 | 			pos = NULL; | 
 | 		else | 
 | 			pos = rb_to_kn(node); | 
 | 	} | 
 | 	return pos; | 
 | } | 
 |  | 
 | static struct kernfs_node *kernfs_dir_next_pos(const void *ns, | 
 | 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) | 
 | { | 
 | 	pos = kernfs_dir_pos(ns, parent, ino, pos); | 
 | 	if (pos) { | 
 | 		do { | 
 | 			struct rb_node *node = rb_next(&pos->rb); | 
 | 			if (!node) | 
 | 				pos = NULL; | 
 | 			else | 
 | 				pos = rb_to_kn(node); | 
 | 		} while (pos && (!kernfs_active(pos) || pos->ns != ns)); | 
 | 	} | 
 | 	return pos; | 
 | } | 
 |  | 
 | static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) | 
 | { | 
 | 	struct dentry *dentry = file->f_path.dentry; | 
 | 	struct kernfs_node *parent = kernfs_dentry_node(dentry); | 
 | 	struct kernfs_node *pos = file->private_data; | 
 | 	struct kernfs_root *root; | 
 | 	const void *ns = NULL; | 
 |  | 
 | 	if (!dir_emit_dots(file, ctx)) | 
 | 		return 0; | 
 |  | 
 | 	root = kernfs_root(parent); | 
 | 	down_read(&root->kernfs_rwsem); | 
 |  | 
 | 	if (kernfs_ns_enabled(parent)) | 
 | 		ns = kernfs_info(dentry->d_sb)->ns; | 
 |  | 
 | 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); | 
 | 	     pos; | 
 | 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { | 
 | 		const char *name = pos->name; | 
 | 		unsigned int type = fs_umode_to_dtype(pos->mode); | 
 | 		int len = strlen(name); | 
 | 		ino_t ino = kernfs_ino(pos); | 
 |  | 
 | 		ctx->pos = pos->hash; | 
 | 		file->private_data = pos; | 
 | 		kernfs_get(pos); | 
 |  | 
 | 		up_read(&root->kernfs_rwsem); | 
 | 		if (!dir_emit(ctx, name, len, ino, type)) | 
 | 			return 0; | 
 | 		down_read(&root->kernfs_rwsem); | 
 | 	} | 
 | 	up_read(&root->kernfs_rwsem); | 
 | 	file->private_data = NULL; | 
 | 	ctx->pos = INT_MAX; | 
 | 	return 0; | 
 | } | 
 |  | 
 | const struct file_operations kernfs_dir_fops = { | 
 | 	.read		= generic_read_dir, | 
 | 	.iterate_shared	= kernfs_fop_readdir, | 
 | 	.release	= kernfs_dir_fop_release, | 
 | 	.llseek		= generic_file_llseek, | 
 | }; |