| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  Copyright (C) 1993  Linus Torvalds | 
 |  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
 |  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | 
 |  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | 
 |  *  Numa awareness, Christoph Lameter, SGI, June 2005 | 
 |  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 | 
 |  */ | 
 |  | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/set_memory.h> | 
 | #include <linux/debugobjects.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/list.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/xarray.h> | 
 | #include <linux/io.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/llist.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/rbtree_augmented.h> | 
 | #include <linux/overflow.h> | 
 | #include <linux/pgtable.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/shmparam.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/vmalloc.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "pgalloc-track.h" | 
 |  | 
 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP | 
 | static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; | 
 |  | 
 | static int __init set_nohugeiomap(char *str) | 
 | { | 
 | 	ioremap_max_page_shift = PAGE_SHIFT; | 
 | 	return 0; | 
 | } | 
 | early_param("nohugeiomap", set_nohugeiomap); | 
 | #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ | 
 | static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; | 
 | #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */ | 
 |  | 
 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | 
 | static bool __ro_after_init vmap_allow_huge = true; | 
 |  | 
 | static int __init set_nohugevmalloc(char *str) | 
 | { | 
 | 	vmap_allow_huge = false; | 
 | 	return 0; | 
 | } | 
 | early_param("nohugevmalloc", set_nohugevmalloc); | 
 | #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | 
 | static const bool vmap_allow_huge = false; | 
 | #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | 
 |  | 
 | bool is_vmalloc_addr(const void *x) | 
 | { | 
 | 	unsigned long addr = (unsigned long)kasan_reset_tag(x); | 
 |  | 
 | 	return addr >= VMALLOC_START && addr < VMALLOC_END; | 
 | } | 
 | EXPORT_SYMBOL(is_vmalloc_addr); | 
 |  | 
 | struct vfree_deferred { | 
 | 	struct llist_head list; | 
 | 	struct work_struct wq; | 
 | }; | 
 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | 
 |  | 
 | /*** Page table manipulation functions ***/ | 
 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, | 
 | 			phys_addr_t phys_addr, pgprot_t prot, | 
 | 			unsigned int max_page_shift, pgtbl_mod_mask *mask) | 
 | { | 
 | 	pte_t *pte; | 
 | 	u64 pfn; | 
 | 	unsigned long size = PAGE_SIZE; | 
 |  | 
 | 	pfn = phys_addr >> PAGE_SHIFT; | 
 | 	pte = pte_alloc_kernel_track(pmd, addr, mask); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		BUG_ON(!pte_none(ptep_get(pte))); | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); | 
 | 		if (size != PAGE_SIZE) { | 
 | 			pte_t entry = pfn_pte(pfn, prot); | 
 |  | 
 | 			entry = arch_make_huge_pte(entry, ilog2(size), 0); | 
 | 			set_huge_pte_at(&init_mm, addr, pte, entry, size); | 
 | 			pfn += PFN_DOWN(size); | 
 | 			continue; | 
 | 		} | 
 | #endif | 
 | 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); | 
 | 		pfn++; | 
 | 	} while (pte += PFN_DOWN(size), addr += size, addr != end); | 
 | 	*mask |= PGTBL_PTE_MODIFIED; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, | 
 | 			phys_addr_t phys_addr, pgprot_t prot, | 
 | 			unsigned int max_page_shift) | 
 | { | 
 | 	if (max_page_shift < PMD_SHIFT) | 
 | 		return 0; | 
 |  | 
 | 	if (!arch_vmap_pmd_supported(prot)) | 
 | 		return 0; | 
 |  | 
 | 	if ((end - addr) != PMD_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	if (!IS_ALIGNED(addr, PMD_SIZE)) | 
 | 		return 0; | 
 |  | 
 | 	if (!IS_ALIGNED(phys_addr, PMD_SIZE)) | 
 | 		return 0; | 
 |  | 
 | 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) | 
 | 		return 0; | 
 |  | 
 | 	return pmd_set_huge(pmd, phys_addr, prot); | 
 | } | 
 |  | 
 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | 
 | 			phys_addr_t phys_addr, pgprot_t prot, | 
 | 			unsigned int max_page_shift, pgtbl_mod_mask *mask) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 |  | 
 | 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, | 
 | 					max_page_shift)) { | 
 | 			*mask |= PGTBL_PMD_MODIFIED; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) | 
 | 			return -ENOMEM; | 
 | 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, | 
 | 			phys_addr_t phys_addr, pgprot_t prot, | 
 | 			unsigned int max_page_shift) | 
 | { | 
 | 	if (max_page_shift < PUD_SHIFT) | 
 | 		return 0; | 
 |  | 
 | 	if (!arch_vmap_pud_supported(prot)) | 
 | 		return 0; | 
 |  | 
 | 	if ((end - addr) != PUD_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	if (!IS_ALIGNED(addr, PUD_SIZE)) | 
 | 		return 0; | 
 |  | 
 | 	if (!IS_ALIGNED(phys_addr, PUD_SIZE)) | 
 | 		return 0; | 
 |  | 
 | 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) | 
 | 		return 0; | 
 |  | 
 | 	return pud_set_huge(pud, phys_addr, prot); | 
 | } | 
 |  | 
 | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | 
 | 			phys_addr_t phys_addr, pgprot_t prot, | 
 | 			unsigned int max_page_shift, pgtbl_mod_mask *mask) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_alloc_track(&init_mm, p4d, addr, mask); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 |  | 
 | 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, | 
 | 					max_page_shift)) { | 
 | 			*mask |= PGTBL_PUD_MODIFIED; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot, | 
 | 					max_page_shift, mask)) | 
 | 			return -ENOMEM; | 
 | 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, | 
 | 			phys_addr_t phys_addr, pgprot_t prot, | 
 | 			unsigned int max_page_shift) | 
 | { | 
 | 	if (max_page_shift < P4D_SHIFT) | 
 | 		return 0; | 
 |  | 
 | 	if (!arch_vmap_p4d_supported(prot)) | 
 | 		return 0; | 
 |  | 
 | 	if ((end - addr) != P4D_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	if (!IS_ALIGNED(addr, P4D_SIZE)) | 
 | 		return 0; | 
 |  | 
 | 	if (!IS_ALIGNED(phys_addr, P4D_SIZE)) | 
 | 		return 0; | 
 |  | 
 | 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) | 
 | 		return 0; | 
 |  | 
 | 	return p4d_set_huge(p4d, phys_addr, prot); | 
 | } | 
 |  | 
 | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | 
 | 			phys_addr_t phys_addr, pgprot_t prot, | 
 | 			unsigned int max_page_shift, pgtbl_mod_mask *mask) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	unsigned long next; | 
 |  | 
 | 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); | 
 | 	if (!p4d) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = p4d_addr_end(addr, end); | 
 |  | 
 | 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, | 
 | 					max_page_shift)) { | 
 | 			*mask |= PGTBL_P4D_MODIFIED; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot, | 
 | 					max_page_shift, mask)) | 
 | 			return -ENOMEM; | 
 | 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_range_noflush(unsigned long addr, unsigned long end, | 
 | 			phys_addr_t phys_addr, pgprot_t prot, | 
 | 			unsigned int max_page_shift) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long start; | 
 | 	unsigned long next; | 
 | 	int err; | 
 | 	pgtbl_mod_mask mask = 0; | 
 |  | 
 | 	might_sleep(); | 
 | 	BUG_ON(addr >= end); | 
 |  | 
 | 	start = addr; | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, | 
 | 					max_page_shift, &mask); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end); | 
 |  | 
 | 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | 
 | 		arch_sync_kernel_mappings(start, end); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int vmap_page_range(unsigned long addr, unsigned long end, | 
 | 		    phys_addr_t phys_addr, pgprot_t prot) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), | 
 | 				 ioremap_max_page_shift); | 
 | 	flush_cache_vmap(addr, end); | 
 | 	if (!err) | 
 | 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, | 
 | 					       ioremap_max_page_shift); | 
 | 	return err; | 
 | } | 
 |  | 
 | int ioremap_page_range(unsigned long addr, unsigned long end, | 
 | 		phys_addr_t phys_addr, pgprot_t prot) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	area = find_vm_area((void *)addr); | 
 | 	if (!area || !(area->flags & VM_IOREMAP)) { | 
 | 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (addr != (unsigned long)area->addr || | 
 | 	    (void *)end != area->addr + get_vm_area_size(area)) { | 
 | 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", | 
 | 			  addr, end, (long)area->addr, | 
 | 			  (long)area->addr + get_vm_area_size(area)); | 
 | 		return -ERANGE; | 
 | 	} | 
 | 	return vmap_page_range(addr, end, phys_addr, prot); | 
 | } | 
 |  | 
 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, | 
 | 			     pgtbl_mod_mask *mask) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	do { | 
 | 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | 
 | 		WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	*mask |= PGTBL_PTE_MODIFIED; | 
 | } | 
 |  | 
 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | 
 | 			     pgtbl_mod_mask *mask) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	int cleared; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 |  | 
 | 		cleared = pmd_clear_huge(pmd); | 
 | 		if (cleared || pmd_bad(*pmd)) | 
 | 			*mask |= PGTBL_PMD_MODIFIED; | 
 |  | 
 | 		if (cleared) | 
 | 			continue; | 
 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 			continue; | 
 | 		vunmap_pte_range(pmd, addr, next, mask); | 
 |  | 
 | 		cond_resched(); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | 
 | 			     pgtbl_mod_mask *mask) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	int cleared; | 
 |  | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 |  | 
 | 		cleared = pud_clear_huge(pud); | 
 | 		if (cleared || pud_bad(*pud)) | 
 | 			*mask |= PGTBL_PUD_MODIFIED; | 
 |  | 
 | 		if (cleared) | 
 | 			continue; | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		vunmap_pmd_range(pud, addr, next, mask); | 
 | 	} while (pud++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | 
 | 			     pgtbl_mod_mask *mask) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	unsigned long next; | 
 |  | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	do { | 
 | 		next = p4d_addr_end(addr, end); | 
 |  | 
 | 		p4d_clear_huge(p4d); | 
 | 		if (p4d_bad(*p4d)) | 
 | 			*mask |= PGTBL_P4D_MODIFIED; | 
 |  | 
 | 		if (p4d_none_or_clear_bad(p4d)) | 
 | 			continue; | 
 | 		vunmap_pud_range(p4d, addr, next, mask); | 
 | 	} while (p4d++, addr = next, addr != end); | 
 | } | 
 |  | 
 | /* | 
 |  * vunmap_range_noflush is similar to vunmap_range, but does not | 
 |  * flush caches or TLBs. | 
 |  * | 
 |  * The caller is responsible for calling flush_cache_vmap() before calling | 
 |  * this function, and flush_tlb_kernel_range after it has returned | 
 |  * successfully (and before the addresses are expected to cause a page fault | 
 |  * or be re-mapped for something else, if TLB flushes are being delayed or | 
 |  * coalesced). | 
 |  * | 
 |  * This is an internal function only. Do not use outside mm/. | 
 |  */ | 
 | void __vunmap_range_noflush(unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long next; | 
 | 	pgd_t *pgd; | 
 | 	unsigned long addr = start; | 
 | 	pgtbl_mod_mask mask = 0; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_bad(*pgd)) | 
 | 			mask |= PGTBL_PGD_MODIFIED; | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		vunmap_p4d_range(pgd, addr, next, &mask); | 
 | 	} while (pgd++, addr = next, addr != end); | 
 |  | 
 | 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | 
 | 		arch_sync_kernel_mappings(start, end); | 
 | } | 
 |  | 
 | void vunmap_range_noflush(unsigned long start, unsigned long end) | 
 | { | 
 | 	kmsan_vunmap_range_noflush(start, end); | 
 | 	__vunmap_range_noflush(start, end); | 
 | } | 
 |  | 
 | /** | 
 |  * vunmap_range - unmap kernel virtual addresses | 
 |  * @addr: start of the VM area to unmap | 
 |  * @end: end of the VM area to unmap (non-inclusive) | 
 |  * | 
 |  * Clears any present PTEs in the virtual address range, flushes TLBs and | 
 |  * caches. Any subsequent access to the address before it has been re-mapped | 
 |  * is a kernel bug. | 
 |  */ | 
 | void vunmap_range(unsigned long addr, unsigned long end) | 
 | { | 
 | 	flush_cache_vunmap(addr, end); | 
 | 	vunmap_range_noflush(addr, end); | 
 | 	flush_tlb_kernel_range(addr, end); | 
 | } | 
 |  | 
 | static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr, | 
 | 		pgtbl_mod_mask *mask) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	/* | 
 | 	 * nr is a running index into the array which helps higher level | 
 | 	 * callers keep track of where we're up to. | 
 | 	 */ | 
 |  | 
 | 	pte = pte_alloc_kernel_track(pmd, addr, mask); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		struct page *page = pages[*nr]; | 
 |  | 
 | 		if (WARN_ON(!pte_none(ptep_get(pte)))) | 
 | 			return -EBUSY; | 
 | 		if (WARN_ON(!page)) | 
 | 			return -ENOMEM; | 
 | 		if (WARN_ON(!pfn_valid(page_to_pfn(page)))) | 
 | 			return -EINVAL; | 
 |  | 
 | 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | 
 | 		(*nr)++; | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	*mask |= PGTBL_PTE_MODIFIED; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr, | 
 | 		pgtbl_mod_mask *mask) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) | 
 | 			return -ENOMEM; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr, | 
 | 		pgtbl_mod_mask *mask) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_alloc_track(&init_mm, p4d, addr, mask); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) | 
 | 			return -ENOMEM; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr, | 
 | 		pgtbl_mod_mask *mask) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	unsigned long next; | 
 |  | 
 | 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); | 
 | 	if (!p4d) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = p4d_addr_end(addr, end); | 
 | 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) | 
 | 			return -ENOMEM; | 
 | 	} while (p4d++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, | 
 | 		pgprot_t prot, struct page **pages) | 
 | { | 
 | 	unsigned long start = addr; | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	int err = 0; | 
 | 	int nr = 0; | 
 | 	pgtbl_mod_mask mask = 0; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_bad(*pgd)) | 
 | 			mask |= PGTBL_PGD_MODIFIED; | 
 | 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 |  | 
 | 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | 
 | 		arch_sync_kernel_mappings(start, end); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not | 
 |  * flush caches. | 
 |  * | 
 |  * The caller is responsible for calling flush_cache_vmap() after this | 
 |  * function returns successfully and before the addresses are accessed. | 
 |  * | 
 |  * This is an internal function only. Do not use outside mm/. | 
 |  */ | 
 | int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, | 
 | 		pgprot_t prot, struct page **pages, unsigned int page_shift) | 
 | { | 
 | 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT; | 
 |  | 
 | 	WARN_ON(page_shift < PAGE_SHIFT); | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || | 
 | 			page_shift == PAGE_SHIFT) | 
 | 		return vmap_small_pages_range_noflush(addr, end, prot, pages); | 
 |  | 
 | 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { | 
 | 		int err; | 
 |  | 
 | 		err = vmap_range_noflush(addr, addr + (1UL << page_shift), | 
 | 					page_to_phys(pages[i]), prot, | 
 | 					page_shift); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		addr += 1UL << page_shift; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int vmap_pages_range_noflush(unsigned long addr, unsigned long end, | 
 | 		pgprot_t prot, struct page **pages, unsigned int page_shift) | 
 | { | 
 | 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, | 
 | 						 page_shift); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); | 
 | } | 
 |  | 
 | /** | 
 |  * vmap_pages_range - map pages to a kernel virtual address | 
 |  * @addr: start of the VM area to map | 
 |  * @end: end of the VM area to map (non-inclusive) | 
 |  * @prot: page protection flags to use | 
 |  * @pages: pages to map (always PAGE_SIZE pages) | 
 |  * @page_shift: maximum shift that the pages may be mapped with, @pages must | 
 |  * be aligned and contiguous up to at least this shift. | 
 |  * | 
 |  * RETURNS: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | static int vmap_pages_range(unsigned long addr, unsigned long end, | 
 | 		pgprot_t prot, struct page **pages, unsigned int page_shift) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); | 
 | 	flush_cache_vmap(addr, end); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, | 
 | 				unsigned long end) | 
 | { | 
 | 	might_sleep(); | 
 | 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) | 
 | 		return -EINVAL; | 
 | 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) | 
 | 		return -EINVAL; | 
 | 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) | 
 | 		return -EINVAL; | 
 | 	if ((end - start) >> PAGE_SHIFT > totalram_pages()) | 
 | 		return -E2BIG; | 
 | 	if (start < (unsigned long)area->addr || | 
 | 	    (void *)end > area->addr + get_vm_area_size(area)) | 
 | 		return -ERANGE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * vm_area_map_pages - map pages inside given sparse vm_area | 
 |  * @area: vm_area | 
 |  * @start: start address inside vm_area | 
 |  * @end: end address inside vm_area | 
 |  * @pages: pages to map (always PAGE_SIZE pages) | 
 |  */ | 
 | int vm_area_map_pages(struct vm_struct *area, unsigned long start, | 
 | 		      unsigned long end, struct page **pages) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = check_sparse_vm_area(area, start, end); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); | 
 | } | 
 |  | 
 | /** | 
 |  * vm_area_unmap_pages - unmap pages inside given sparse vm_area | 
 |  * @area: vm_area | 
 |  * @start: start address inside vm_area | 
 |  * @end: end address inside vm_area | 
 |  */ | 
 | void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, | 
 | 			 unsigned long end) | 
 | { | 
 | 	if (check_sparse_vm_area(area, start, end)) | 
 | 		return; | 
 |  | 
 | 	vunmap_range(start, end); | 
 | } | 
 |  | 
 | int is_vmalloc_or_module_addr(const void *x) | 
 | { | 
 | 	/* | 
 | 	 * ARM, x86-64 and sparc64 put modules in a special place, | 
 | 	 * and fall back on vmalloc() if that fails. Others | 
 | 	 * just put it in the vmalloc space. | 
 | 	 */ | 
 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | 
 | 	unsigned long addr = (unsigned long)kasan_reset_tag(x); | 
 | 	if (addr >= MODULES_VADDR && addr < MODULES_END) | 
 | 		return 1; | 
 | #endif | 
 | 	return is_vmalloc_addr(x); | 
 | } | 
 | EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); | 
 |  | 
 | /* | 
 |  * Walk a vmap address to the struct page it maps. Huge vmap mappings will | 
 |  * return the tail page that corresponds to the base page address, which | 
 |  * matches small vmap mappings. | 
 |  */ | 
 | struct page *vmalloc_to_page(const void *vmalloc_addr) | 
 | { | 
 | 	unsigned long addr = (unsigned long) vmalloc_addr; | 
 | 	struct page *page = NULL; | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *ptep, pte; | 
 |  | 
 | 	/* | 
 | 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for | 
 | 	 * architectures that do not vmalloc module space | 
 | 	 */ | 
 | 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); | 
 |  | 
 | 	if (pgd_none(*pgd)) | 
 | 		return NULL; | 
 | 	if (WARN_ON_ONCE(pgd_leaf(*pgd))) | 
 | 		return NULL; /* XXX: no allowance for huge pgd */ | 
 | 	if (WARN_ON_ONCE(pgd_bad(*pgd))) | 
 | 		return NULL; | 
 |  | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	if (p4d_none(*p4d)) | 
 | 		return NULL; | 
 | 	if (p4d_leaf(*p4d)) | 
 | 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); | 
 | 	if (WARN_ON_ONCE(p4d_bad(*p4d))) | 
 | 		return NULL; | 
 |  | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	if (pud_none(*pud)) | 
 | 		return NULL; | 
 | 	if (pud_leaf(*pud)) | 
 | 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | 
 | 	if (WARN_ON_ONCE(pud_bad(*pud))) | 
 | 		return NULL; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	if (pmd_none(*pmd)) | 
 | 		return NULL; | 
 | 	if (pmd_leaf(*pmd)) | 
 | 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | 
 | 	if (WARN_ON_ONCE(pmd_bad(*pmd))) | 
 | 		return NULL; | 
 |  | 
 | 	ptep = pte_offset_kernel(pmd, addr); | 
 | 	pte = ptep_get(ptep); | 
 | 	if (pte_present(pte)) | 
 | 		page = pte_page(pte); | 
 |  | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_to_page); | 
 |  | 
 | /* | 
 |  * Map a vmalloc()-space virtual address to the physical page frame number. | 
 |  */ | 
 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) | 
 | { | 
 | 	return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_to_pfn); | 
 |  | 
 |  | 
 | /*** Global kva allocator ***/ | 
 |  | 
 | #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 | 
 | #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 | 
 |  | 
 |  | 
 | static DEFINE_SPINLOCK(free_vmap_area_lock); | 
 | static bool vmap_initialized __read_mostly; | 
 |  | 
 | /* | 
 |  * This kmem_cache is used for vmap_area objects. Instead of | 
 |  * allocating from slab we reuse an object from this cache to | 
 |  * make things faster. Especially in "no edge" splitting of | 
 |  * free block. | 
 |  */ | 
 | static struct kmem_cache *vmap_area_cachep; | 
 |  | 
 | /* | 
 |  * This linked list is used in pair with free_vmap_area_root. | 
 |  * It gives O(1) access to prev/next to perform fast coalescing. | 
 |  */ | 
 | static LIST_HEAD(free_vmap_area_list); | 
 |  | 
 | /* | 
 |  * This augment red-black tree represents the free vmap space. | 
 |  * All vmap_area objects in this tree are sorted by va->va_start | 
 |  * address. It is used for allocation and merging when a vmap | 
 |  * object is released. | 
 |  * | 
 |  * Each vmap_area node contains a maximum available free block | 
 |  * of its sub-tree, right or left. Therefore it is possible to | 
 |  * find a lowest match of free area. | 
 |  */ | 
 | static struct rb_root free_vmap_area_root = RB_ROOT; | 
 |  | 
 | /* | 
 |  * Preload a CPU with one object for "no edge" split case. The | 
 |  * aim is to get rid of allocations from the atomic context, thus | 
 |  * to use more permissive allocation masks. | 
 |  */ | 
 | static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); | 
 |  | 
 | /* | 
 |  * This structure defines a single, solid model where a list and | 
 |  * rb-tree are part of one entity protected by the lock. Nodes are | 
 |  * sorted in ascending order, thus for O(1) access to left/right | 
 |  * neighbors a list is used as well as for sequential traversal. | 
 |  */ | 
 | struct rb_list { | 
 | 	struct rb_root root; | 
 | 	struct list_head head; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | /* | 
 |  * A fast size storage contains VAs up to 1M size. A pool consists | 
 |  * of linked between each other ready to go VAs of certain sizes. | 
 |  * An index in the pool-array corresponds to number of pages + 1. | 
 |  */ | 
 | #define MAX_VA_SIZE_PAGES 256 | 
 |  | 
 | struct vmap_pool { | 
 | 	struct list_head head; | 
 | 	unsigned long len; | 
 | }; | 
 |  | 
 | /* | 
 |  * An effective vmap-node logic. Users make use of nodes instead | 
 |  * of a global heap. It allows to balance an access and mitigate | 
 |  * contention. | 
 |  */ | 
 | static struct vmap_node { | 
 | 	/* Simple size segregated storage. */ | 
 | 	struct vmap_pool pool[MAX_VA_SIZE_PAGES]; | 
 | 	spinlock_t pool_lock; | 
 | 	bool skip_populate; | 
 |  | 
 | 	/* Bookkeeping data of this node. */ | 
 | 	struct rb_list busy; | 
 | 	struct rb_list lazy; | 
 |  | 
 | 	/* | 
 | 	 * Ready-to-free areas. | 
 | 	 */ | 
 | 	struct list_head purge_list; | 
 | 	struct work_struct purge_work; | 
 | 	unsigned long nr_purged; | 
 | } single; | 
 |  | 
 | /* | 
 |  * Initial setup consists of one single node, i.e. a balancing | 
 |  * is fully disabled. Later on, after vmap is initialized these | 
 |  * parameters are updated based on a system capacity. | 
 |  */ | 
 | static struct vmap_node *vmap_nodes = &single; | 
 | static __read_mostly unsigned int nr_vmap_nodes = 1; | 
 | static __read_mostly unsigned int vmap_zone_size = 1; | 
 |  | 
 | static inline unsigned int | 
 | addr_to_node_id(unsigned long addr) | 
 | { | 
 | 	return (addr / vmap_zone_size) % nr_vmap_nodes; | 
 | } | 
 |  | 
 | static inline struct vmap_node * | 
 | addr_to_node(unsigned long addr) | 
 | { | 
 | 	return &vmap_nodes[addr_to_node_id(addr)]; | 
 | } | 
 |  | 
 | static inline struct vmap_node * | 
 | id_to_node(unsigned int id) | 
 | { | 
 | 	return &vmap_nodes[id % nr_vmap_nodes]; | 
 | } | 
 |  | 
 | /* | 
 |  * We use the value 0 to represent "no node", that is why | 
 |  * an encoded value will be the node-id incremented by 1. | 
 |  * It is always greater then 0. A valid node_id which can | 
 |  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id | 
 |  * is not valid 0 is returned. | 
 |  */ | 
 | static unsigned int | 
 | encode_vn_id(unsigned int node_id) | 
 | { | 
 | 	/* Can store U8_MAX [0:254] nodes. */ | 
 | 	if (node_id < nr_vmap_nodes) | 
 | 		return (node_id + 1) << BITS_PER_BYTE; | 
 |  | 
 | 	/* Warn and no node encoded. */ | 
 | 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns an encoded node-id, the valid range is within | 
 |  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is | 
 |  * returned if extracted data is wrong. | 
 |  */ | 
 | static unsigned int | 
 | decode_vn_id(unsigned int val) | 
 | { | 
 | 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1; | 
 |  | 
 | 	/* Can store U8_MAX [0:254] nodes. */ | 
 | 	if (node_id < nr_vmap_nodes) | 
 | 		return node_id; | 
 |  | 
 | 	/* If it was _not_ zero, warn. */ | 
 | 	WARN_ONCE(node_id != UINT_MAX, | 
 | 		"Decode wrong node id (%d)\n", node_id); | 
 |  | 
 | 	return nr_vmap_nodes; | 
 | } | 
 |  | 
 | static bool | 
 | is_vn_id_valid(unsigned int node_id) | 
 | { | 
 | 	if (node_id < nr_vmap_nodes) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static __always_inline unsigned long | 
 | va_size(struct vmap_area *va) | 
 | { | 
 | 	return (va->va_end - va->va_start); | 
 | } | 
 |  | 
 | static __always_inline unsigned long | 
 | get_subtree_max_size(struct rb_node *node) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	va = rb_entry_safe(node, struct vmap_area, rb_node); | 
 | 	return va ? va->subtree_max_size : 0; | 
 | } | 
 |  | 
 | RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, | 
 | 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) | 
 |  | 
 | static void reclaim_and_purge_vmap_areas(void); | 
 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); | 
 | static void drain_vmap_area_work(struct work_struct *work); | 
 | static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); | 
 |  | 
 | static atomic_long_t nr_vmalloc_pages; | 
 |  | 
 | unsigned long vmalloc_nr_pages(void) | 
 | { | 
 | 	return atomic_long_read(&nr_vmalloc_pages); | 
 | } | 
 |  | 
 | static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) | 
 | { | 
 | 	struct rb_node *n = root->rb_node; | 
 |  | 
 | 	addr = (unsigned long)kasan_reset_tag((void *)addr); | 
 |  | 
 | 	while (n) { | 
 | 		struct vmap_area *va; | 
 |  | 
 | 		va = rb_entry(n, struct vmap_area, rb_node); | 
 | 		if (addr < va->va_start) | 
 | 			n = n->rb_left; | 
 | 		else if (addr >= va->va_end) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return va; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Look up the first VA which satisfies addr < va_end, NULL if none. */ | 
 | static struct vmap_area * | 
 | __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) | 
 | { | 
 | 	struct vmap_area *va = NULL; | 
 | 	struct rb_node *n = root->rb_node; | 
 |  | 
 | 	addr = (unsigned long)kasan_reset_tag((void *)addr); | 
 |  | 
 | 	while (n) { | 
 | 		struct vmap_area *tmp; | 
 |  | 
 | 		tmp = rb_entry(n, struct vmap_area, rb_node); | 
 | 		if (tmp->va_end > addr) { | 
 | 			va = tmp; | 
 | 			if (tmp->va_start <= addr) | 
 | 				break; | 
 |  | 
 | 			n = n->rb_left; | 
 | 		} else | 
 | 			n = n->rb_right; | 
 | 	} | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns a node where a first VA, that satisfies addr < va_end, resides. | 
 |  * If success, a node is locked. A user is responsible to unlock it when a | 
 |  * VA is no longer needed to be accessed. | 
 |  * | 
 |  * Returns NULL if nothing found. | 
 |  */ | 
 | static struct vmap_node * | 
 | find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) | 
 | { | 
 | 	unsigned long va_start_lowest; | 
 | 	struct vmap_node *vn; | 
 | 	int i; | 
 |  | 
 | repeat: | 
 | 	for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) { | 
 | 		vn = &vmap_nodes[i]; | 
 |  | 
 | 		spin_lock(&vn->busy.lock); | 
 | 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); | 
 |  | 
 | 		if (*va) | 
 | 			if (!va_start_lowest || (*va)->va_start < va_start_lowest) | 
 | 				va_start_lowest = (*va)->va_start; | 
 | 		spin_unlock(&vn->busy.lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if found VA exists, it might have gone away.  In this case we | 
 | 	 * repeat the search because a VA has been removed concurrently and we | 
 | 	 * need to proceed to the next one, which is a rare case. | 
 | 	 */ | 
 | 	if (va_start_lowest) { | 
 | 		vn = addr_to_node(va_start_lowest); | 
 |  | 
 | 		spin_lock(&vn->busy.lock); | 
 | 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root); | 
 |  | 
 | 		if (*va) | 
 | 			return vn; | 
 |  | 
 | 		spin_unlock(&vn->busy.lock); | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This function returns back addresses of parent node | 
 |  * and its left or right link for further processing. | 
 |  * | 
 |  * Otherwise NULL is returned. In that case all further | 
 |  * steps regarding inserting of conflicting overlap range | 
 |  * have to be declined and actually considered as a bug. | 
 |  */ | 
 | static __always_inline struct rb_node ** | 
 | find_va_links(struct vmap_area *va, | 
 | 	struct rb_root *root, struct rb_node *from, | 
 | 	struct rb_node **parent) | 
 | { | 
 | 	struct vmap_area *tmp_va; | 
 | 	struct rb_node **link; | 
 |  | 
 | 	if (root) { | 
 | 		link = &root->rb_node; | 
 | 		if (unlikely(!*link)) { | 
 | 			*parent = NULL; | 
 | 			return link; | 
 | 		} | 
 | 	} else { | 
 | 		link = &from; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Go to the bottom of the tree. When we hit the last point | 
 | 	 * we end up with parent rb_node and correct direction, i name | 
 | 	 * it link, where the new va->rb_node will be attached to. | 
 | 	 */ | 
 | 	do { | 
 | 		tmp_va = rb_entry(*link, struct vmap_area, rb_node); | 
 |  | 
 | 		/* | 
 | 		 * During the traversal we also do some sanity check. | 
 | 		 * Trigger the BUG() if there are sides(left/right) | 
 | 		 * or full overlaps. | 
 | 		 */ | 
 | 		if (va->va_end <= tmp_va->va_start) | 
 | 			link = &(*link)->rb_left; | 
 | 		else if (va->va_start >= tmp_va->va_end) | 
 | 			link = &(*link)->rb_right; | 
 | 		else { | 
 | 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", | 
 | 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); | 
 |  | 
 | 			return NULL; | 
 | 		} | 
 | 	} while (*link); | 
 |  | 
 | 	*parent = &tmp_va->rb_node; | 
 | 	return link; | 
 | } | 
 |  | 
 | static __always_inline struct list_head * | 
 | get_va_next_sibling(struct rb_node *parent, struct rb_node **link) | 
 | { | 
 | 	struct list_head *list; | 
 |  | 
 | 	if (unlikely(!parent)) | 
 | 		/* | 
 | 		 * The red-black tree where we try to find VA neighbors | 
 | 		 * before merging or inserting is empty, i.e. it means | 
 | 		 * there is no free vmap space. Normally it does not | 
 | 		 * happen but we handle this case anyway. | 
 | 		 */ | 
 | 		return NULL; | 
 |  | 
 | 	list = &rb_entry(parent, struct vmap_area, rb_node)->list; | 
 | 	return (&parent->rb_right == link ? list->next : list); | 
 | } | 
 |  | 
 | static __always_inline void | 
 | __link_va(struct vmap_area *va, struct rb_root *root, | 
 | 	struct rb_node *parent, struct rb_node **link, | 
 | 	struct list_head *head, bool augment) | 
 | { | 
 | 	/* | 
 | 	 * VA is still not in the list, but we can | 
 | 	 * identify its future previous list_head node. | 
 | 	 */ | 
 | 	if (likely(parent)) { | 
 | 		head = &rb_entry(parent, struct vmap_area, rb_node)->list; | 
 | 		if (&parent->rb_right != link) | 
 | 			head = head->prev; | 
 | 	} | 
 |  | 
 | 	/* Insert to the rb-tree */ | 
 | 	rb_link_node(&va->rb_node, parent, link); | 
 | 	if (augment) { | 
 | 		/* | 
 | 		 * Some explanation here. Just perform simple insertion | 
 | 		 * to the tree. We do not set va->subtree_max_size to | 
 | 		 * its current size before calling rb_insert_augmented(). | 
 | 		 * It is because we populate the tree from the bottom | 
 | 		 * to parent levels when the node _is_ in the tree. | 
 | 		 * | 
 | 		 * Therefore we set subtree_max_size to zero after insertion, | 
 | 		 * to let __augment_tree_propagate_from() puts everything to | 
 | 		 * the correct order later on. | 
 | 		 */ | 
 | 		rb_insert_augmented(&va->rb_node, | 
 | 			root, &free_vmap_area_rb_augment_cb); | 
 | 		va->subtree_max_size = 0; | 
 | 	} else { | 
 | 		rb_insert_color(&va->rb_node, root); | 
 | 	} | 
 |  | 
 | 	/* Address-sort this list */ | 
 | 	list_add(&va->list, head); | 
 | } | 
 |  | 
 | static __always_inline void | 
 | link_va(struct vmap_area *va, struct rb_root *root, | 
 | 	struct rb_node *parent, struct rb_node **link, | 
 | 	struct list_head *head) | 
 | { | 
 | 	__link_va(va, root, parent, link, head, false); | 
 | } | 
 |  | 
 | static __always_inline void | 
 | link_va_augment(struct vmap_area *va, struct rb_root *root, | 
 | 	struct rb_node *parent, struct rb_node **link, | 
 | 	struct list_head *head) | 
 | { | 
 | 	__link_va(va, root, parent, link, head, true); | 
 | } | 
 |  | 
 | static __always_inline void | 
 | __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) | 
 | { | 
 | 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) | 
 | 		return; | 
 |  | 
 | 	if (augment) | 
 | 		rb_erase_augmented(&va->rb_node, | 
 | 			root, &free_vmap_area_rb_augment_cb); | 
 | 	else | 
 | 		rb_erase(&va->rb_node, root); | 
 |  | 
 | 	list_del_init(&va->list); | 
 | 	RB_CLEAR_NODE(&va->rb_node); | 
 | } | 
 |  | 
 | static __always_inline void | 
 | unlink_va(struct vmap_area *va, struct rb_root *root) | 
 | { | 
 | 	__unlink_va(va, root, false); | 
 | } | 
 |  | 
 | static __always_inline void | 
 | unlink_va_augment(struct vmap_area *va, struct rb_root *root) | 
 | { | 
 | 	__unlink_va(va, root, true); | 
 | } | 
 |  | 
 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | 
 | /* | 
 |  * Gets called when remove the node and rotate. | 
 |  */ | 
 | static __always_inline unsigned long | 
 | compute_subtree_max_size(struct vmap_area *va) | 
 | { | 
 | 	return max3(va_size(va), | 
 | 		get_subtree_max_size(va->rb_node.rb_left), | 
 | 		get_subtree_max_size(va->rb_node.rb_right)); | 
 | } | 
 |  | 
 | static void | 
 | augment_tree_propagate_check(void) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	unsigned long computed_size; | 
 |  | 
 | 	list_for_each_entry(va, &free_vmap_area_list, list) { | 
 | 		computed_size = compute_subtree_max_size(va); | 
 | 		if (computed_size != va->subtree_max_size) | 
 | 			pr_emerg("tree is corrupted: %lu, %lu\n", | 
 | 				va_size(va), va->subtree_max_size); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This function populates subtree_max_size from bottom to upper | 
 |  * levels starting from VA point. The propagation must be done | 
 |  * when VA size is modified by changing its va_start/va_end. Or | 
 |  * in case of newly inserting of VA to the tree. | 
 |  * | 
 |  * It means that __augment_tree_propagate_from() must be called: | 
 |  * - After VA has been inserted to the tree(free path); | 
 |  * - After VA has been shrunk(allocation path); | 
 |  * - After VA has been increased(merging path). | 
 |  * | 
 |  * Please note that, it does not mean that upper parent nodes | 
 |  * and their subtree_max_size are recalculated all the time up | 
 |  * to the root node. | 
 |  * | 
 |  *       4--8 | 
 |  *        /\ | 
 |  *       /  \ | 
 |  *      /    \ | 
 |  *    2--2  8--8 | 
 |  * | 
 |  * For example if we modify the node 4, shrinking it to 2, then | 
 |  * no any modification is required. If we shrink the node 2 to 1 | 
 |  * its subtree_max_size is updated only, and set to 1. If we shrink | 
 |  * the node 8 to 6, then its subtree_max_size is set to 6 and parent | 
 |  * node becomes 4--6. | 
 |  */ | 
 | static __always_inline void | 
 | augment_tree_propagate_from(struct vmap_area *va) | 
 | { | 
 | 	/* | 
 | 	 * Populate the tree from bottom towards the root until | 
 | 	 * the calculated maximum available size of checked node | 
 | 	 * is equal to its current one. | 
 | 	 */ | 
 | 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); | 
 |  | 
 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | 
 | 	augment_tree_propagate_check(); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | insert_vmap_area(struct vmap_area *va, | 
 | 	struct rb_root *root, struct list_head *head) | 
 | { | 
 | 	struct rb_node **link; | 
 | 	struct rb_node *parent; | 
 |  | 
 | 	link = find_va_links(va, root, NULL, &parent); | 
 | 	if (link) | 
 | 		link_va(va, root, parent, link, head); | 
 | } | 
 |  | 
 | static void | 
 | insert_vmap_area_augment(struct vmap_area *va, | 
 | 	struct rb_node *from, struct rb_root *root, | 
 | 	struct list_head *head) | 
 | { | 
 | 	struct rb_node **link; | 
 | 	struct rb_node *parent; | 
 |  | 
 | 	if (from) | 
 | 		link = find_va_links(va, NULL, from, &parent); | 
 | 	else | 
 | 		link = find_va_links(va, root, NULL, &parent); | 
 |  | 
 | 	if (link) { | 
 | 		link_va_augment(va, root, parent, link, head); | 
 | 		augment_tree_propagate_from(va); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Merge de-allocated chunk of VA memory with previous | 
 |  * and next free blocks. If coalesce is not done a new | 
 |  * free area is inserted. If VA has been merged, it is | 
 |  * freed. | 
 |  * | 
 |  * Please note, it can return NULL in case of overlap | 
 |  * ranges, followed by WARN() report. Despite it is a | 
 |  * buggy behaviour, a system can be alive and keep | 
 |  * ongoing. | 
 |  */ | 
 | static __always_inline struct vmap_area * | 
 | __merge_or_add_vmap_area(struct vmap_area *va, | 
 | 	struct rb_root *root, struct list_head *head, bool augment) | 
 | { | 
 | 	struct vmap_area *sibling; | 
 | 	struct list_head *next; | 
 | 	struct rb_node **link; | 
 | 	struct rb_node *parent; | 
 | 	bool merged = false; | 
 |  | 
 | 	/* | 
 | 	 * Find a place in the tree where VA potentially will be | 
 | 	 * inserted, unless it is merged with its sibling/siblings. | 
 | 	 */ | 
 | 	link = find_va_links(va, root, NULL, &parent); | 
 | 	if (!link) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Get next node of VA to check if merging can be done. | 
 | 	 */ | 
 | 	next = get_va_next_sibling(parent, link); | 
 | 	if (unlikely(next == NULL)) | 
 | 		goto insert; | 
 |  | 
 | 	/* | 
 | 	 * start            end | 
 | 	 * |                | | 
 | 	 * |<------VA------>|<-----Next----->| | 
 | 	 *                  |                | | 
 | 	 *                  start            end | 
 | 	 */ | 
 | 	if (next != head) { | 
 | 		sibling = list_entry(next, struct vmap_area, list); | 
 | 		if (sibling->va_start == va->va_end) { | 
 | 			sibling->va_start = va->va_start; | 
 |  | 
 | 			/* Free vmap_area object. */ | 
 | 			kmem_cache_free(vmap_area_cachep, va); | 
 |  | 
 | 			/* Point to the new merged area. */ | 
 | 			va = sibling; | 
 | 			merged = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * start            end | 
 | 	 * |                | | 
 | 	 * |<-----Prev----->|<------VA------>| | 
 | 	 *                  |                | | 
 | 	 *                  start            end | 
 | 	 */ | 
 | 	if (next->prev != head) { | 
 | 		sibling = list_entry(next->prev, struct vmap_area, list); | 
 | 		if (sibling->va_end == va->va_start) { | 
 | 			/* | 
 | 			 * If both neighbors are coalesced, it is important | 
 | 			 * to unlink the "next" node first, followed by merging | 
 | 			 * with "previous" one. Otherwise the tree might not be | 
 | 			 * fully populated if a sibling's augmented value is | 
 | 			 * "normalized" because of rotation operations. | 
 | 			 */ | 
 | 			if (merged) | 
 | 				__unlink_va(va, root, augment); | 
 |  | 
 | 			sibling->va_end = va->va_end; | 
 |  | 
 | 			/* Free vmap_area object. */ | 
 | 			kmem_cache_free(vmap_area_cachep, va); | 
 |  | 
 | 			/* Point to the new merged area. */ | 
 | 			va = sibling; | 
 | 			merged = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | insert: | 
 | 	if (!merged) | 
 | 		__link_va(va, root, parent, link, head, augment); | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | static __always_inline struct vmap_area * | 
 | merge_or_add_vmap_area(struct vmap_area *va, | 
 | 	struct rb_root *root, struct list_head *head) | 
 | { | 
 | 	return __merge_or_add_vmap_area(va, root, head, false); | 
 | } | 
 |  | 
 | static __always_inline struct vmap_area * | 
 | merge_or_add_vmap_area_augment(struct vmap_area *va, | 
 | 	struct rb_root *root, struct list_head *head) | 
 | { | 
 | 	va = __merge_or_add_vmap_area(va, root, head, true); | 
 | 	if (va) | 
 | 		augment_tree_propagate_from(va); | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | static __always_inline bool | 
 | is_within_this_va(struct vmap_area *va, unsigned long size, | 
 | 	unsigned long align, unsigned long vstart) | 
 | { | 
 | 	unsigned long nva_start_addr; | 
 |  | 
 | 	if (va->va_start > vstart) | 
 | 		nva_start_addr = ALIGN(va->va_start, align); | 
 | 	else | 
 | 		nva_start_addr = ALIGN(vstart, align); | 
 |  | 
 | 	/* Can be overflowed due to big size or alignment. */ | 
 | 	if (nva_start_addr + size < nva_start_addr || | 
 | 			nva_start_addr < vstart) | 
 | 		return false; | 
 |  | 
 | 	return (nva_start_addr + size <= va->va_end); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the first free block(lowest start address) in the tree, | 
 |  * that will accomplish the request corresponding to passing | 
 |  * parameters. Please note, with an alignment bigger than PAGE_SIZE, | 
 |  * a search length is adjusted to account for worst case alignment | 
 |  * overhead. | 
 |  */ | 
 | static __always_inline struct vmap_area * | 
 | find_vmap_lowest_match(struct rb_root *root, unsigned long size, | 
 | 	unsigned long align, unsigned long vstart, bool adjust_search_size) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct rb_node *node; | 
 | 	unsigned long length; | 
 |  | 
 | 	/* Start from the root. */ | 
 | 	node = root->rb_node; | 
 |  | 
 | 	/* Adjust the search size for alignment overhead. */ | 
 | 	length = adjust_search_size ? size + align - 1 : size; | 
 |  | 
 | 	while (node) { | 
 | 		va = rb_entry(node, struct vmap_area, rb_node); | 
 |  | 
 | 		if (get_subtree_max_size(node->rb_left) >= length && | 
 | 				vstart < va->va_start) { | 
 | 			node = node->rb_left; | 
 | 		} else { | 
 | 			if (is_within_this_va(va, size, align, vstart)) | 
 | 				return va; | 
 |  | 
 | 			/* | 
 | 			 * Does not make sense to go deeper towards the right | 
 | 			 * sub-tree if it does not have a free block that is | 
 | 			 * equal or bigger to the requested search length. | 
 | 			 */ | 
 | 			if (get_subtree_max_size(node->rb_right) >= length) { | 
 | 				node = node->rb_right; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * OK. We roll back and find the first right sub-tree, | 
 | 			 * that will satisfy the search criteria. It can happen | 
 | 			 * due to "vstart" restriction or an alignment overhead | 
 | 			 * that is bigger then PAGE_SIZE. | 
 | 			 */ | 
 | 			while ((node = rb_parent(node))) { | 
 | 				va = rb_entry(node, struct vmap_area, rb_node); | 
 | 				if (is_within_this_va(va, size, align, vstart)) | 
 | 					return va; | 
 |  | 
 | 				if (get_subtree_max_size(node->rb_right) >= length && | 
 | 						vstart <= va->va_start) { | 
 | 					/* | 
 | 					 * Shift the vstart forward. Please note, we update it with | 
 | 					 * parent's start address adding "1" because we do not want | 
 | 					 * to enter same sub-tree after it has already been checked | 
 | 					 * and no suitable free block found there. | 
 | 					 */ | 
 | 					vstart = va->va_start + 1; | 
 | 					node = node->rb_right; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK | 
 | #include <linux/random.h> | 
 |  | 
 | static struct vmap_area * | 
 | find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, | 
 | 	unsigned long align, unsigned long vstart) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	list_for_each_entry(va, head, list) { | 
 | 		if (!is_within_this_va(va, size, align, vstart)) | 
 | 			continue; | 
 |  | 
 | 		return va; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void | 
 | find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, | 
 | 			     unsigned long size, unsigned long align) | 
 | { | 
 | 	struct vmap_area *va_1, *va_2; | 
 | 	unsigned long vstart; | 
 | 	unsigned int rnd; | 
 |  | 
 | 	get_random_bytes(&rnd, sizeof(rnd)); | 
 | 	vstart = VMALLOC_START + rnd; | 
 |  | 
 | 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false); | 
 | 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); | 
 |  | 
 | 	if (va_1 != va_2) | 
 | 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", | 
 | 			va_1, va_2, vstart); | 
 | } | 
 | #endif | 
 |  | 
 | enum fit_type { | 
 | 	NOTHING_FIT = 0, | 
 | 	FL_FIT_TYPE = 1,	/* full fit */ | 
 | 	LE_FIT_TYPE = 2,	/* left edge fit */ | 
 | 	RE_FIT_TYPE = 3,	/* right edge fit */ | 
 | 	NE_FIT_TYPE = 4		/* no edge fit */ | 
 | }; | 
 |  | 
 | static __always_inline enum fit_type | 
 | classify_va_fit_type(struct vmap_area *va, | 
 | 	unsigned long nva_start_addr, unsigned long size) | 
 | { | 
 | 	enum fit_type type; | 
 |  | 
 | 	/* Check if it is within VA. */ | 
 | 	if (nva_start_addr < va->va_start || | 
 | 			nva_start_addr + size > va->va_end) | 
 | 		return NOTHING_FIT; | 
 |  | 
 | 	/* Now classify. */ | 
 | 	if (va->va_start == nva_start_addr) { | 
 | 		if (va->va_end == nva_start_addr + size) | 
 | 			type = FL_FIT_TYPE; | 
 | 		else | 
 | 			type = LE_FIT_TYPE; | 
 | 	} else if (va->va_end == nva_start_addr + size) { | 
 | 		type = RE_FIT_TYPE; | 
 | 	} else { | 
 | 		type = NE_FIT_TYPE; | 
 | 	} | 
 |  | 
 | 	return type; | 
 | } | 
 |  | 
 | static __always_inline int | 
 | va_clip(struct rb_root *root, struct list_head *head, | 
 | 		struct vmap_area *va, unsigned long nva_start_addr, | 
 | 		unsigned long size) | 
 | { | 
 | 	struct vmap_area *lva = NULL; | 
 | 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); | 
 |  | 
 | 	if (type == FL_FIT_TYPE) { | 
 | 		/* | 
 | 		 * No need to split VA, it fully fits. | 
 | 		 * | 
 | 		 * |               | | 
 | 		 * V      NVA      V | 
 | 		 * |---------------| | 
 | 		 */ | 
 | 		unlink_va_augment(va, root); | 
 | 		kmem_cache_free(vmap_area_cachep, va); | 
 | 	} else if (type == LE_FIT_TYPE) { | 
 | 		/* | 
 | 		 * Split left edge of fit VA. | 
 | 		 * | 
 | 		 * |       | | 
 | 		 * V  NVA  V   R | 
 | 		 * |-------|-------| | 
 | 		 */ | 
 | 		va->va_start += size; | 
 | 	} else if (type == RE_FIT_TYPE) { | 
 | 		/* | 
 | 		 * Split right edge of fit VA. | 
 | 		 * | 
 | 		 *         |       | | 
 | 		 *     L   V  NVA  V | 
 | 		 * |-------|-------| | 
 | 		 */ | 
 | 		va->va_end = nva_start_addr; | 
 | 	} else if (type == NE_FIT_TYPE) { | 
 | 		/* | 
 | 		 * Split no edge of fit VA. | 
 | 		 * | 
 | 		 *     |       | | 
 | 		 *   L V  NVA  V R | 
 | 		 * |---|-------|---| | 
 | 		 */ | 
 | 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL); | 
 | 		if (unlikely(!lva)) { | 
 | 			/* | 
 | 			 * For percpu allocator we do not do any pre-allocation | 
 | 			 * and leave it as it is. The reason is it most likely | 
 | 			 * never ends up with NE_FIT_TYPE splitting. In case of | 
 | 			 * percpu allocations offsets and sizes are aligned to | 
 | 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE | 
 | 			 * are its main fitting cases. | 
 | 			 * | 
 | 			 * There are a few exceptions though, as an example it is | 
 | 			 * a first allocation (early boot up) when we have "one" | 
 | 			 * big free space that has to be split. | 
 | 			 * | 
 | 			 * Also we can hit this path in case of regular "vmap" | 
 | 			 * allocations, if "this" current CPU was not preloaded. | 
 | 			 * See the comment in alloc_vmap_area() why. If so, then | 
 | 			 * GFP_NOWAIT is used instead to get an extra object for | 
 | 			 * split purpose. That is rare and most time does not | 
 | 			 * occur. | 
 | 			 * | 
 | 			 * What happens if an allocation gets failed. Basically, | 
 | 			 * an "overflow" path is triggered to purge lazily freed | 
 | 			 * areas to free some memory, then, the "retry" path is | 
 | 			 * triggered to repeat one more time. See more details | 
 | 			 * in alloc_vmap_area() function. | 
 | 			 */ | 
 | 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); | 
 | 			if (!lva) | 
 | 				return -1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Build the remainder. | 
 | 		 */ | 
 | 		lva->va_start = va->va_start; | 
 | 		lva->va_end = nva_start_addr; | 
 |  | 
 | 		/* | 
 | 		 * Shrink this VA to remaining size. | 
 | 		 */ | 
 | 		va->va_start = nva_start_addr + size; | 
 | 	} else { | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (type != FL_FIT_TYPE) { | 
 | 		augment_tree_propagate_from(va); | 
 |  | 
 | 		if (lva)	/* type == NE_FIT_TYPE */ | 
 | 			insert_vmap_area_augment(lva, &va->rb_node, root, head); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long | 
 | va_alloc(struct vmap_area *va, | 
 | 		struct rb_root *root, struct list_head *head, | 
 | 		unsigned long size, unsigned long align, | 
 | 		unsigned long vstart, unsigned long vend) | 
 | { | 
 | 	unsigned long nva_start_addr; | 
 | 	int ret; | 
 |  | 
 | 	if (va->va_start > vstart) | 
 | 		nva_start_addr = ALIGN(va->va_start, align); | 
 | 	else | 
 | 		nva_start_addr = ALIGN(vstart, align); | 
 |  | 
 | 	/* Check the "vend" restriction. */ | 
 | 	if (nva_start_addr + size > vend) | 
 | 		return vend; | 
 |  | 
 | 	/* Update the free vmap_area. */ | 
 | 	ret = va_clip(root, head, va, nva_start_addr, size); | 
 | 	if (WARN_ON_ONCE(ret)) | 
 | 		return vend; | 
 |  | 
 | 	return nva_start_addr; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns a start address of the newly allocated area, if success. | 
 |  * Otherwise a vend is returned that indicates failure. | 
 |  */ | 
 | static __always_inline unsigned long | 
 | __alloc_vmap_area(struct rb_root *root, struct list_head *head, | 
 | 	unsigned long size, unsigned long align, | 
 | 	unsigned long vstart, unsigned long vend) | 
 | { | 
 | 	bool adjust_search_size = true; | 
 | 	unsigned long nva_start_addr; | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	/* | 
 | 	 * Do not adjust when: | 
 | 	 *   a) align <= PAGE_SIZE, because it does not make any sense. | 
 | 	 *      All blocks(their start addresses) are at least PAGE_SIZE | 
 | 	 *      aligned anyway; | 
 | 	 *   b) a short range where a requested size corresponds to exactly | 
 | 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE. | 
 | 	 *      With adjusted search length an allocation would not succeed. | 
 | 	 */ | 
 | 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) | 
 | 		adjust_search_size = false; | 
 |  | 
 | 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); | 
 | 	if (unlikely(!va)) | 
 | 		return vend; | 
 |  | 
 | 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); | 
 | 	if (nva_start_addr == vend) | 
 | 		return vend; | 
 |  | 
 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK | 
 | 	find_vmap_lowest_match_check(root, head, size, align); | 
 | #endif | 
 |  | 
 | 	return nva_start_addr; | 
 | } | 
 |  | 
 | /* | 
 |  * Free a region of KVA allocated by alloc_vmap_area | 
 |  */ | 
 | static void free_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	struct vmap_node *vn = addr_to_node(va->va_start); | 
 |  | 
 | 	/* | 
 | 	 * Remove from the busy tree/list. | 
 | 	 */ | 
 | 	spin_lock(&vn->busy.lock); | 
 | 	unlink_va(va, &vn->busy.root); | 
 | 	spin_unlock(&vn->busy.lock); | 
 |  | 
 | 	/* | 
 | 	 * Insert/Merge it back to the free tree/list. | 
 | 	 */ | 
 | 	spin_lock(&free_vmap_area_lock); | 
 | 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); | 
 | 	spin_unlock(&free_vmap_area_lock); | 
 | } | 
 |  | 
 | static inline void | 
 | preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) | 
 | { | 
 | 	struct vmap_area *va = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Preload this CPU with one extra vmap_area object. It is used | 
 | 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that | 
 | 	 * a CPU that does an allocation is preloaded. | 
 | 	 * | 
 | 	 * We do it in non-atomic context, thus it allows us to use more | 
 | 	 * permissive allocation masks to be more stable under low memory | 
 | 	 * condition and high memory pressure. | 
 | 	 */ | 
 | 	if (!this_cpu_read(ne_fit_preload_node)) | 
 | 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); | 
 |  | 
 | 	spin_lock(lock); | 
 |  | 
 | 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) | 
 | 		kmem_cache_free(vmap_area_cachep, va); | 
 | } | 
 |  | 
 | static struct vmap_pool * | 
 | size_to_va_pool(struct vmap_node *vn, unsigned long size) | 
 | { | 
 | 	unsigned int idx = (size - 1) / PAGE_SIZE; | 
 |  | 
 | 	if (idx < MAX_VA_SIZE_PAGES) | 
 | 		return &vn->pool[idx]; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static bool | 
 | node_pool_add_va(struct vmap_node *n, struct vmap_area *va) | 
 | { | 
 | 	struct vmap_pool *vp; | 
 |  | 
 | 	vp = size_to_va_pool(n, va_size(va)); | 
 | 	if (!vp) | 
 | 		return false; | 
 |  | 
 | 	spin_lock(&n->pool_lock); | 
 | 	list_add(&va->list, &vp->head); | 
 | 	WRITE_ONCE(vp->len, vp->len + 1); | 
 | 	spin_unlock(&n->pool_lock); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct vmap_area * | 
 | node_pool_del_va(struct vmap_node *vn, unsigned long size, | 
 | 		unsigned long align, unsigned long vstart, | 
 | 		unsigned long vend) | 
 | { | 
 | 	struct vmap_area *va = NULL; | 
 | 	struct vmap_pool *vp; | 
 | 	int err = 0; | 
 |  | 
 | 	vp = size_to_va_pool(vn, size); | 
 | 	if (!vp || list_empty(&vp->head)) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock(&vn->pool_lock); | 
 | 	if (!list_empty(&vp->head)) { | 
 | 		va = list_first_entry(&vp->head, struct vmap_area, list); | 
 |  | 
 | 		if (IS_ALIGNED(va->va_start, align)) { | 
 | 			/* | 
 | 			 * Do some sanity check and emit a warning | 
 | 			 * if one of below checks detects an error. | 
 | 			 */ | 
 | 			err |= (va_size(va) != size); | 
 | 			err |= (va->va_start < vstart); | 
 | 			err |= (va->va_end > vend); | 
 |  | 
 | 			if (!WARN_ON_ONCE(err)) { | 
 | 				list_del_init(&va->list); | 
 | 				WRITE_ONCE(vp->len, vp->len - 1); | 
 | 			} else { | 
 | 				va = NULL; | 
 | 			} | 
 | 		} else { | 
 | 			list_move_tail(&va->list, &vp->head); | 
 | 			va = NULL; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&vn->pool_lock); | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | static struct vmap_area * | 
 | node_alloc(unsigned long size, unsigned long align, | 
 | 		unsigned long vstart, unsigned long vend, | 
 | 		unsigned long *addr, unsigned int *vn_id) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	*vn_id = 0; | 
 | 	*addr = vend; | 
 |  | 
 | 	/* | 
 | 	 * Fallback to a global heap if not vmalloc or there | 
 | 	 * is only one node. | 
 | 	 */ | 
 | 	if (vstart != VMALLOC_START || vend != VMALLOC_END || | 
 | 			nr_vmap_nodes == 1) | 
 | 		return NULL; | 
 |  | 
 | 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes; | 
 | 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); | 
 | 	*vn_id = encode_vn_id(*vn_id); | 
 |  | 
 | 	if (va) | 
 | 		*addr = va->va_start; | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a region of KVA of the specified size and alignment, within the | 
 |  * vstart and vend. | 
 |  */ | 
 | static struct vmap_area *alloc_vmap_area(unsigned long size, | 
 | 				unsigned long align, | 
 | 				unsigned long vstart, unsigned long vend, | 
 | 				int node, gfp_t gfp_mask, | 
 | 				unsigned long va_flags) | 
 | { | 
 | 	struct vmap_node *vn; | 
 | 	struct vmap_area *va; | 
 | 	unsigned long freed; | 
 | 	unsigned long addr; | 
 | 	unsigned int vn_id; | 
 | 	int purged = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (unlikely(!vmap_initialized)) | 
 | 		return ERR_PTR(-EBUSY); | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	/* | 
 | 	 * If a VA is obtained from a global heap(if it fails here) | 
 | 	 * it is anyway marked with this "vn_id" so it is returned | 
 | 	 * to this pool's node later. Such way gives a possibility | 
 | 	 * to populate pools based on users demand. | 
 | 	 * | 
 | 	 * On success a ready to go VA is returned. | 
 | 	 */ | 
 | 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id); | 
 | 	if (!va) { | 
 | 		gfp_mask = gfp_mask & GFP_RECLAIM_MASK; | 
 |  | 
 | 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); | 
 | 		if (unlikely(!va)) | 
 | 			return ERR_PTR(-ENOMEM); | 
 |  | 
 | 		/* | 
 | 		 * Only scan the relevant parts containing pointers to other objects | 
 | 		 * to avoid false negatives. | 
 | 		 */ | 
 | 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); | 
 | 	} | 
 |  | 
 | retry: | 
 | 	if (addr == vend) { | 
 | 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); | 
 | 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, | 
 | 			size, align, vstart, vend); | 
 | 		spin_unlock(&free_vmap_area_lock); | 
 | 	} | 
 |  | 
 | 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); | 
 |  | 
 | 	/* | 
 | 	 * If an allocation fails, the "vend" address is | 
 | 	 * returned. Therefore trigger the overflow path. | 
 | 	 */ | 
 | 	if (unlikely(addr == vend)) | 
 | 		goto overflow; | 
 |  | 
 | 	va->va_start = addr; | 
 | 	va->va_end = addr + size; | 
 | 	va->vm = NULL; | 
 | 	va->flags = (va_flags | vn_id); | 
 |  | 
 | 	vn = addr_to_node(va->va_start); | 
 |  | 
 | 	spin_lock(&vn->busy.lock); | 
 | 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head); | 
 | 	spin_unlock(&vn->busy.lock); | 
 |  | 
 | 	BUG_ON(!IS_ALIGNED(va->va_start, align)); | 
 | 	BUG_ON(va->va_start < vstart); | 
 | 	BUG_ON(va->va_end > vend); | 
 |  | 
 | 	ret = kasan_populate_vmalloc(addr, size); | 
 | 	if (ret) { | 
 | 		free_vmap_area(va); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	return va; | 
 |  | 
 | overflow: | 
 | 	if (!purged) { | 
 | 		reclaim_and_purge_vmap_areas(); | 
 | 		purged = 1; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	freed = 0; | 
 | 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | 
 |  | 
 | 	if (freed > 0) { | 
 | 		purged = 0; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) | 
 | 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", | 
 | 			size); | 
 |  | 
 | 	kmem_cache_free(vmap_area_cachep, va); | 
 | 	return ERR_PTR(-EBUSY); | 
 | } | 
 |  | 
 | int register_vmap_purge_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return blocking_notifier_chain_register(&vmap_notify_list, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | 
 |  | 
 | int unregister_vmap_purge_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | 
 |  | 
 | /* | 
 |  * lazy_max_pages is the maximum amount of virtual address space we gather up | 
 |  * before attempting to purge with a TLB flush. | 
 |  * | 
 |  * There is a tradeoff here: a larger number will cover more kernel page tables | 
 |  * and take slightly longer to purge, but it will linearly reduce the number of | 
 |  * global TLB flushes that must be performed. It would seem natural to scale | 
 |  * this number up linearly with the number of CPUs (because vmapping activity | 
 |  * could also scale linearly with the number of CPUs), however it is likely | 
 |  * that in practice, workloads might be constrained in other ways that mean | 
 |  * vmap activity will not scale linearly with CPUs. Also, I want to be | 
 |  * conservative and not introduce a big latency on huge systems, so go with | 
 |  * a less aggressive log scale. It will still be an improvement over the old | 
 |  * code, and it will be simple to change the scale factor if we find that it | 
 |  * becomes a problem on bigger systems. | 
 |  */ | 
 | static unsigned long lazy_max_pages(void) | 
 | { | 
 | 	unsigned int log; | 
 |  | 
 | 	log = fls(num_online_cpus()); | 
 |  | 
 | 	return log * (32UL * 1024 * 1024 / PAGE_SIZE); | 
 | } | 
 |  | 
 | static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); | 
 |  | 
 | /* | 
 |  * Serialize vmap purging.  There is no actual critical section protected | 
 |  * by this lock, but we want to avoid concurrent calls for performance | 
 |  * reasons and to make the pcpu_get_vm_areas more deterministic. | 
 |  */ | 
 | static DEFINE_MUTEX(vmap_purge_lock); | 
 |  | 
 | /* for per-CPU blocks */ | 
 | static void purge_fragmented_blocks_allcpus(void); | 
 | static cpumask_t purge_nodes; | 
 |  | 
 | static void | 
 | reclaim_list_global(struct list_head *head) | 
 | { | 
 | 	struct vmap_area *va, *n; | 
 |  | 
 | 	if (list_empty(head)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&free_vmap_area_lock); | 
 | 	list_for_each_entry_safe(va, n, head, list) | 
 | 		merge_or_add_vmap_area_augment(va, | 
 | 			&free_vmap_area_root, &free_vmap_area_list); | 
 | 	spin_unlock(&free_vmap_area_lock); | 
 | } | 
 |  | 
 | static void | 
 | decay_va_pool_node(struct vmap_node *vn, bool full_decay) | 
 | { | 
 | 	struct vmap_area *va, *nva; | 
 | 	struct list_head decay_list; | 
 | 	struct rb_root decay_root; | 
 | 	unsigned long n_decay; | 
 | 	int i; | 
 |  | 
 | 	decay_root = RB_ROOT; | 
 | 	INIT_LIST_HEAD(&decay_list); | 
 |  | 
 | 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { | 
 | 		struct list_head tmp_list; | 
 |  | 
 | 		if (list_empty(&vn->pool[i].head)) | 
 | 			continue; | 
 |  | 
 | 		INIT_LIST_HEAD(&tmp_list); | 
 |  | 
 | 		/* Detach the pool, so no-one can access it. */ | 
 | 		spin_lock(&vn->pool_lock); | 
 | 		list_replace_init(&vn->pool[i].head, &tmp_list); | 
 | 		spin_unlock(&vn->pool_lock); | 
 |  | 
 | 		if (full_decay) | 
 | 			WRITE_ONCE(vn->pool[i].len, 0); | 
 |  | 
 | 		/* Decay a pool by ~25% out of left objects. */ | 
 | 		n_decay = vn->pool[i].len >> 2; | 
 |  | 
 | 		list_for_each_entry_safe(va, nva, &tmp_list, list) { | 
 | 			list_del_init(&va->list); | 
 | 			merge_or_add_vmap_area(va, &decay_root, &decay_list); | 
 |  | 
 | 			if (!full_decay) { | 
 | 				WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1); | 
 |  | 
 | 				if (!--n_decay) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Attach the pool back if it has been partly decayed. | 
 | 		 * Please note, it is supposed that nobody(other contexts) | 
 | 		 * can populate the pool therefore a simple list replace | 
 | 		 * operation takes place here. | 
 | 		 */ | 
 | 		if (!full_decay && !list_empty(&tmp_list)) { | 
 | 			spin_lock(&vn->pool_lock); | 
 | 			list_replace_init(&tmp_list, &vn->pool[i].head); | 
 | 			spin_unlock(&vn->pool_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	reclaim_list_global(&decay_list); | 
 | } | 
 |  | 
 | static void purge_vmap_node(struct work_struct *work) | 
 | { | 
 | 	struct vmap_node *vn = container_of(work, | 
 | 		struct vmap_node, purge_work); | 
 | 	struct vmap_area *va, *n_va; | 
 | 	LIST_HEAD(local_list); | 
 |  | 
 | 	vn->nr_purged = 0; | 
 |  | 
 | 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { | 
 | 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; | 
 | 		unsigned long orig_start = va->va_start; | 
 | 		unsigned long orig_end = va->va_end; | 
 | 		unsigned int vn_id = decode_vn_id(va->flags); | 
 |  | 
 | 		list_del_init(&va->list); | 
 |  | 
 | 		if (is_vmalloc_or_module_addr((void *)orig_start)) | 
 | 			kasan_release_vmalloc(orig_start, orig_end, | 
 | 					      va->va_start, va->va_end); | 
 |  | 
 | 		atomic_long_sub(nr, &vmap_lazy_nr); | 
 | 		vn->nr_purged++; | 
 |  | 
 | 		if (is_vn_id_valid(vn_id) && !vn->skip_populate) | 
 | 			if (node_pool_add_va(vn, va)) | 
 | 				continue; | 
 |  | 
 | 		/* Go back to global. */ | 
 | 		list_add(&va->list, &local_list); | 
 | 	} | 
 |  | 
 | 	reclaim_list_global(&local_list); | 
 | } | 
 |  | 
 | /* | 
 |  * Purges all lazily-freed vmap areas. | 
 |  */ | 
 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, | 
 | 		bool full_pool_decay) | 
 | { | 
 | 	unsigned long nr_purged_areas = 0; | 
 | 	unsigned int nr_purge_helpers; | 
 | 	unsigned int nr_purge_nodes; | 
 | 	struct vmap_node *vn; | 
 | 	int i; | 
 |  | 
 | 	lockdep_assert_held(&vmap_purge_lock); | 
 |  | 
 | 	/* | 
 | 	 * Use cpumask to mark which node has to be processed. | 
 | 	 */ | 
 | 	purge_nodes = CPU_MASK_NONE; | 
 |  | 
 | 	for (i = 0; i < nr_vmap_nodes; i++) { | 
 | 		vn = &vmap_nodes[i]; | 
 |  | 
 | 		INIT_LIST_HEAD(&vn->purge_list); | 
 | 		vn->skip_populate = full_pool_decay; | 
 | 		decay_va_pool_node(vn, full_pool_decay); | 
 |  | 
 | 		if (RB_EMPTY_ROOT(&vn->lazy.root)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&vn->lazy.lock); | 
 | 		WRITE_ONCE(vn->lazy.root.rb_node, NULL); | 
 | 		list_replace_init(&vn->lazy.head, &vn->purge_list); | 
 | 		spin_unlock(&vn->lazy.lock); | 
 |  | 
 | 		start = min(start, list_first_entry(&vn->purge_list, | 
 | 			struct vmap_area, list)->va_start); | 
 |  | 
 | 		end = max(end, list_last_entry(&vn->purge_list, | 
 | 			struct vmap_area, list)->va_end); | 
 |  | 
 | 		cpumask_set_cpu(i, &purge_nodes); | 
 | 	} | 
 |  | 
 | 	nr_purge_nodes = cpumask_weight(&purge_nodes); | 
 | 	if (nr_purge_nodes > 0) { | 
 | 		flush_tlb_kernel_range(start, end); | 
 |  | 
 | 		/* One extra worker is per a lazy_max_pages() full set minus one. */ | 
 | 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); | 
 | 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; | 
 |  | 
 | 		for_each_cpu(i, &purge_nodes) { | 
 | 			vn = &vmap_nodes[i]; | 
 |  | 
 | 			if (nr_purge_helpers > 0) { | 
 | 				INIT_WORK(&vn->purge_work, purge_vmap_node); | 
 |  | 
 | 				if (cpumask_test_cpu(i, cpu_online_mask)) | 
 | 					schedule_work_on(i, &vn->purge_work); | 
 | 				else | 
 | 					schedule_work(&vn->purge_work); | 
 |  | 
 | 				nr_purge_helpers--; | 
 | 			} else { | 
 | 				vn->purge_work.func = NULL; | 
 | 				purge_vmap_node(&vn->purge_work); | 
 | 				nr_purged_areas += vn->nr_purged; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for_each_cpu(i, &purge_nodes) { | 
 | 			vn = &vmap_nodes[i]; | 
 |  | 
 | 			if (vn->purge_work.func) { | 
 | 				flush_work(&vn->purge_work); | 
 | 				nr_purged_areas += vn->nr_purged; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas); | 
 | 	return nr_purged_areas > 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. | 
 |  */ | 
 | static void reclaim_and_purge_vmap_areas(void) | 
 |  | 
 | { | 
 | 	mutex_lock(&vmap_purge_lock); | 
 | 	purge_fragmented_blocks_allcpus(); | 
 | 	__purge_vmap_area_lazy(ULONG_MAX, 0, true); | 
 | 	mutex_unlock(&vmap_purge_lock); | 
 | } | 
 |  | 
 | static void drain_vmap_area_work(struct work_struct *work) | 
 | { | 
 | 	mutex_lock(&vmap_purge_lock); | 
 | 	__purge_vmap_area_lazy(ULONG_MAX, 0, false); | 
 | 	mutex_unlock(&vmap_purge_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Free a vmap area, caller ensuring that the area has been unmapped, | 
 |  * unlinked and flush_cache_vunmap had been called for the correct | 
 |  * range previously. | 
 |  */ | 
 | static void free_vmap_area_noflush(struct vmap_area *va) | 
 | { | 
 | 	unsigned long nr_lazy_max = lazy_max_pages(); | 
 | 	unsigned long va_start = va->va_start; | 
 | 	unsigned int vn_id = decode_vn_id(va->flags); | 
 | 	struct vmap_node *vn; | 
 | 	unsigned long nr_lazy; | 
 |  | 
 | 	if (WARN_ON_ONCE(!list_empty(&va->list))) | 
 | 		return; | 
 |  | 
 | 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> | 
 | 				PAGE_SHIFT, &vmap_lazy_nr); | 
 |  | 
 | 	/* | 
 | 	 * If it was request by a certain node we would like to | 
 | 	 * return it to that node, i.e. its pool for later reuse. | 
 | 	 */ | 
 | 	vn = is_vn_id_valid(vn_id) ? | 
 | 		id_to_node(vn_id):addr_to_node(va->va_start); | 
 |  | 
 | 	spin_lock(&vn->lazy.lock); | 
 | 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); | 
 | 	spin_unlock(&vn->lazy.lock); | 
 |  | 
 | 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); | 
 |  | 
 | 	/* After this point, we may free va at any time */ | 
 | 	if (unlikely(nr_lazy > nr_lazy_max)) | 
 | 		schedule_work(&drain_vmap_work); | 
 | } | 
 |  | 
 | /* | 
 |  * Free and unmap a vmap area | 
 |  */ | 
 | static void free_unmap_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	flush_cache_vunmap(va->va_start, va->va_end); | 
 | 	vunmap_range_noflush(va->va_start, va->va_end); | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		flush_tlb_kernel_range(va->va_start, va->va_end); | 
 |  | 
 | 	free_vmap_area_noflush(va); | 
 | } | 
 |  | 
 | struct vmap_area *find_vmap_area(unsigned long addr) | 
 | { | 
 | 	struct vmap_node *vn; | 
 | 	struct vmap_area *va; | 
 | 	int i, j; | 
 |  | 
 | 	if (unlikely(!vmap_initialized)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * An addr_to_node_id(addr) converts an address to a node index | 
 | 	 * where a VA is located. If VA spans several zones and passed | 
 | 	 * addr is not the same as va->va_start, what is not common, we | 
 | 	 * may need to scan extra nodes. See an example: | 
 | 	 * | 
 | 	 *      <----va----> | 
 | 	 * -|-----|-----|-----|-----|- | 
 | 	 *     1     2     0     1 | 
 | 	 * | 
 | 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed | 
 | 	 * addr is within 2 or 0 nodes we should do extra work. | 
 | 	 */ | 
 | 	i = j = addr_to_node_id(addr); | 
 | 	do { | 
 | 		vn = &vmap_nodes[i]; | 
 |  | 
 | 		spin_lock(&vn->busy.lock); | 
 | 		va = __find_vmap_area(addr, &vn->busy.root); | 
 | 		spin_unlock(&vn->busy.lock); | 
 |  | 
 | 		if (va) | 
 | 			return va; | 
 | 	} while ((i = (i + 1) % nr_vmap_nodes) != j); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct vmap_area *find_unlink_vmap_area(unsigned long addr) | 
 | { | 
 | 	struct vmap_node *vn; | 
 | 	struct vmap_area *va; | 
 | 	int i, j; | 
 |  | 
 | 	/* | 
 | 	 * Check the comment in the find_vmap_area() about the loop. | 
 | 	 */ | 
 | 	i = j = addr_to_node_id(addr); | 
 | 	do { | 
 | 		vn = &vmap_nodes[i]; | 
 |  | 
 | 		spin_lock(&vn->busy.lock); | 
 | 		va = __find_vmap_area(addr, &vn->busy.root); | 
 | 		if (va) | 
 | 			unlink_va(va, &vn->busy.root); | 
 | 		spin_unlock(&vn->busy.lock); | 
 |  | 
 | 		if (va) | 
 | 			return va; | 
 | 	} while ((i = (i + 1) % nr_vmap_nodes) != j); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /*** Per cpu kva allocator ***/ | 
 |  | 
 | /* | 
 |  * vmap space is limited especially on 32 bit architectures. Ensure there is | 
 |  * room for at least 16 percpu vmap blocks per CPU. | 
 |  */ | 
 | /* | 
 |  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | 
 |  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess | 
 |  * instead (we just need a rough idea) | 
 |  */ | 
 | #if BITS_PER_LONG == 32 | 
 | #define VMALLOC_SPACE		(128UL*1024*1024) | 
 | #else | 
 | #define VMALLOC_SPACE		(128UL*1024*1024*1024) | 
 | #endif | 
 |  | 
 | #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE) | 
 | #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */ | 
 | #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */ | 
 | #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2) | 
 | #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */ | 
 | #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */ | 
 | #define VMAP_BBMAP_BITS		\ | 
 | 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\ | 
 | 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\ | 
 | 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | 
 |  | 
 | #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE) | 
 |  | 
 | /* | 
 |  * Purge threshold to prevent overeager purging of fragmented blocks for | 
 |  * regular operations: Purge if vb->free is less than 1/4 of the capacity. | 
 |  */ | 
 | #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4) | 
 |  | 
 | #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/ | 
 | #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/ | 
 | #define VMAP_FLAGS_MASK		0x3 | 
 |  | 
 | struct vmap_block_queue { | 
 | 	spinlock_t lock; | 
 | 	struct list_head free; | 
 |  | 
 | 	/* | 
 | 	 * An xarray requires an extra memory dynamically to | 
 | 	 * be allocated. If it is an issue, we can use rb-tree | 
 | 	 * instead. | 
 | 	 */ | 
 | 	struct xarray vmap_blocks; | 
 | }; | 
 |  | 
 | struct vmap_block { | 
 | 	spinlock_t lock; | 
 | 	struct vmap_area *va; | 
 | 	unsigned long free, dirty; | 
 | 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); | 
 | 	unsigned long dirty_min, dirty_max; /*< dirty range */ | 
 | 	struct list_head free_list; | 
 | 	struct rcu_head rcu_head; | 
 | 	struct list_head purge; | 
 | }; | 
 |  | 
 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | 
 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | 
 |  | 
 | /* | 
 |  * In order to fast access to any "vmap_block" associated with a | 
 |  * specific address, we use a hash. | 
 |  * | 
 |  * A per-cpu vmap_block_queue is used in both ways, to serialize | 
 |  * an access to free block chains among CPUs(alloc path) and it | 
 |  * also acts as a vmap_block hash(alloc/free paths). It means we | 
 |  * overload it, since we already have the per-cpu array which is | 
 |  * used as a hash table. When used as a hash a 'cpu' passed to | 
 |  * per_cpu() is not actually a CPU but rather a hash index. | 
 |  * | 
 |  * A hash function is addr_to_vb_xa() which hashes any address | 
 |  * to a specific index(in a hash) it belongs to. This then uses a | 
 |  * per_cpu() macro to access an array with generated index. | 
 |  * | 
 |  * An example: | 
 |  * | 
 |  *  CPU_1  CPU_2  CPU_0 | 
 |  *    |      |      | | 
 |  *    V      V      V | 
 |  * 0     10     20     30     40     50     60 | 
 |  * |------|------|------|------|------|------|...<vmap address space> | 
 |  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2 | 
 |  * | 
 |  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus | 
 |  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; | 
 |  * | 
 |  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus | 
 |  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; | 
 |  * | 
 |  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus | 
 |  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. | 
 |  * | 
 |  * This technique almost always avoids lock contention on insert/remove, | 
 |  * however xarray spinlocks protect against any contention that remains. | 
 |  */ | 
 | static struct xarray * | 
 | addr_to_vb_xa(unsigned long addr) | 
 | { | 
 | 	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus(); | 
 |  | 
 | 	return &per_cpu(vmap_block_queue, index).vmap_blocks; | 
 | } | 
 |  | 
 | /* | 
 |  * We should probably have a fallback mechanism to allocate virtual memory | 
 |  * out of partially filled vmap blocks. However vmap block sizing should be | 
 |  * fairly reasonable according to the vmalloc size, so it shouldn't be a | 
 |  * big problem. | 
 |  */ | 
 |  | 
 | static unsigned long addr_to_vb_idx(unsigned long addr) | 
 | { | 
 | 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | 
 | 	addr /= VMAP_BLOCK_SIZE; | 
 | 	return addr; | 
 | } | 
 |  | 
 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) | 
 | { | 
 | 	unsigned long addr; | 
 |  | 
 | 	addr = va_start + (pages_off << PAGE_SHIFT); | 
 | 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | 
 | 	return (void *)addr; | 
 | } | 
 |  | 
 | /** | 
 |  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | 
 |  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS | 
 |  * @order:    how many 2^order pages should be occupied in newly allocated block | 
 |  * @gfp_mask: flags for the page level allocator | 
 |  * | 
 |  * Return: virtual address in a newly allocated block or ERR_PTR(-errno) | 
 |  */ | 
 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | 
 | { | 
 | 	struct vmap_block_queue *vbq; | 
 | 	struct vmap_block *vb; | 
 | 	struct vmap_area *va; | 
 | 	struct xarray *xa; | 
 | 	unsigned long vb_idx; | 
 | 	int node, err; | 
 | 	void *vaddr; | 
 |  | 
 | 	node = numa_node_id(); | 
 |  | 
 | 	vb = kmalloc_node(sizeof(struct vmap_block), | 
 | 			gfp_mask & GFP_RECLAIM_MASK, node); | 
 | 	if (unlikely(!vb)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | 
 | 					VMALLOC_START, VMALLOC_END, | 
 | 					node, gfp_mask, | 
 | 					VMAP_RAM|VMAP_BLOCK); | 
 | 	if (IS_ERR(va)) { | 
 | 		kfree(vb); | 
 | 		return ERR_CAST(va); | 
 | 	} | 
 |  | 
 | 	vaddr = vmap_block_vaddr(va->va_start, 0); | 
 | 	spin_lock_init(&vb->lock); | 
 | 	vb->va = va; | 
 | 	/* At least something should be left free */ | 
 | 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | 
 | 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); | 
 | 	vb->free = VMAP_BBMAP_BITS - (1UL << order); | 
 | 	vb->dirty = 0; | 
 | 	vb->dirty_min = VMAP_BBMAP_BITS; | 
 | 	vb->dirty_max = 0; | 
 | 	bitmap_set(vb->used_map, 0, (1UL << order)); | 
 | 	INIT_LIST_HEAD(&vb->free_list); | 
 |  | 
 | 	xa = addr_to_vb_xa(va->va_start); | 
 | 	vb_idx = addr_to_vb_idx(va->va_start); | 
 | 	err = xa_insert(xa, vb_idx, vb, gfp_mask); | 
 | 	if (err) { | 
 | 		kfree(vb); | 
 | 		free_vmap_area(va); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	vbq = raw_cpu_ptr(&vmap_block_queue); | 
 | 	spin_lock(&vbq->lock); | 
 | 	list_add_tail_rcu(&vb->free_list, &vbq->free); | 
 | 	spin_unlock(&vbq->lock); | 
 |  | 
 | 	return vaddr; | 
 | } | 
 |  | 
 | static void free_vmap_block(struct vmap_block *vb) | 
 | { | 
 | 	struct vmap_node *vn; | 
 | 	struct vmap_block *tmp; | 
 | 	struct xarray *xa; | 
 |  | 
 | 	xa = addr_to_vb_xa(vb->va->va_start); | 
 | 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); | 
 | 	BUG_ON(tmp != vb); | 
 |  | 
 | 	vn = addr_to_node(vb->va->va_start); | 
 | 	spin_lock(&vn->busy.lock); | 
 | 	unlink_va(vb->va, &vn->busy.root); | 
 | 	spin_unlock(&vn->busy.lock); | 
 |  | 
 | 	free_vmap_area_noflush(vb->va); | 
 | 	kfree_rcu(vb, rcu_head); | 
 | } | 
 |  | 
 | static bool purge_fragmented_block(struct vmap_block *vb, | 
 | 		struct vmap_block_queue *vbq, struct list_head *purge_list, | 
 | 		bool force_purge) | 
 | { | 
 | 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS || | 
 | 	    vb->dirty == VMAP_BBMAP_BITS) | 
 | 		return false; | 
 |  | 
 | 	/* Don't overeagerly purge usable blocks unless requested */ | 
 | 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) | 
 | 		return false; | 
 |  | 
 | 	/* prevent further allocs after releasing lock */ | 
 | 	WRITE_ONCE(vb->free, 0); | 
 | 	/* prevent purging it again */ | 
 | 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); | 
 | 	vb->dirty_min = 0; | 
 | 	vb->dirty_max = VMAP_BBMAP_BITS; | 
 | 	spin_lock(&vbq->lock); | 
 | 	list_del_rcu(&vb->free_list); | 
 | 	spin_unlock(&vbq->lock); | 
 | 	list_add_tail(&vb->purge, purge_list); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void free_purged_blocks(struct list_head *purge_list) | 
 | { | 
 | 	struct vmap_block *vb, *n_vb; | 
 |  | 
 | 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) { | 
 | 		list_del(&vb->purge); | 
 | 		free_vmap_block(vb); | 
 | 	} | 
 | } | 
 |  | 
 | static void purge_fragmented_blocks(int cpu) | 
 | { | 
 | 	LIST_HEAD(purge); | 
 | 	struct vmap_block *vb; | 
 | 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
 | 		unsigned long free = READ_ONCE(vb->free); | 
 | 		unsigned long dirty = READ_ONCE(vb->dirty); | 
 |  | 
 | 		if (free + dirty != VMAP_BBMAP_BITS || | 
 | 		    dirty == VMAP_BBMAP_BITS) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&vb->lock); | 
 | 		purge_fragmented_block(vb, vbq, &purge, true); | 
 | 		spin_unlock(&vb->lock); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	free_purged_blocks(&purge); | 
 | } | 
 |  | 
 | static void purge_fragmented_blocks_allcpus(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		purge_fragmented_blocks(cpu); | 
 | } | 
 |  | 
 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | 
 | { | 
 | 	struct vmap_block_queue *vbq; | 
 | 	struct vmap_block *vb; | 
 | 	void *vaddr = NULL; | 
 | 	unsigned int order; | 
 |  | 
 | 	BUG_ON(offset_in_page(size)); | 
 | 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | 
 | 	if (WARN_ON(size == 0)) { | 
 | 		/* | 
 | 		 * Allocating 0 bytes isn't what caller wants since | 
 | 		 * get_order(0) returns funny result. Just warn and terminate | 
 | 		 * early. | 
 | 		 */ | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 | 	order = get_order(size); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	vbq = raw_cpu_ptr(&vmap_block_queue); | 
 | 	list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
 | 		unsigned long pages_off; | 
 |  | 
 | 		if (READ_ONCE(vb->free) < (1UL << order)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&vb->lock); | 
 | 		if (vb->free < (1UL << order)) { | 
 | 			spin_unlock(&vb->lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pages_off = VMAP_BBMAP_BITS - vb->free; | 
 | 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | 
 | 		WRITE_ONCE(vb->free, vb->free - (1UL << order)); | 
 | 		bitmap_set(vb->used_map, pages_off, (1UL << order)); | 
 | 		if (vb->free == 0) { | 
 | 			spin_lock(&vbq->lock); | 
 | 			list_del_rcu(&vb->free_list); | 
 | 			spin_unlock(&vbq->lock); | 
 | 		} | 
 |  | 
 | 		spin_unlock(&vb->lock); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* Allocate new block if nothing was found */ | 
 | 	if (!vaddr) | 
 | 		vaddr = new_vmap_block(order, gfp_mask); | 
 |  | 
 | 	return vaddr; | 
 | } | 
 |  | 
 | static void vb_free(unsigned long addr, unsigned long size) | 
 | { | 
 | 	unsigned long offset; | 
 | 	unsigned int order; | 
 | 	struct vmap_block *vb; | 
 | 	struct xarray *xa; | 
 |  | 
 | 	BUG_ON(offset_in_page(size)); | 
 | 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | 
 |  | 
 | 	flush_cache_vunmap(addr, addr + size); | 
 |  | 
 | 	order = get_order(size); | 
 | 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; | 
 |  | 
 | 	xa = addr_to_vb_xa(addr); | 
 | 	vb = xa_load(xa, addr_to_vb_idx(addr)); | 
 |  | 
 | 	spin_lock(&vb->lock); | 
 | 	bitmap_clear(vb->used_map, offset, (1UL << order)); | 
 | 	spin_unlock(&vb->lock); | 
 |  | 
 | 	vunmap_range_noflush(addr, addr + size); | 
 |  | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		flush_tlb_kernel_range(addr, addr + size); | 
 |  | 
 | 	spin_lock(&vb->lock); | 
 |  | 
 | 	/* Expand the not yet TLB flushed dirty range */ | 
 | 	vb->dirty_min = min(vb->dirty_min, offset); | 
 | 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | 
 |  | 
 | 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); | 
 | 	if (vb->dirty == VMAP_BBMAP_BITS) { | 
 | 		BUG_ON(vb->free); | 
 | 		spin_unlock(&vb->lock); | 
 | 		free_vmap_block(vb); | 
 | 	} else | 
 | 		spin_unlock(&vb->lock); | 
 | } | 
 |  | 
 | static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) | 
 | { | 
 | 	LIST_HEAD(purge_list); | 
 | 	int cpu; | 
 |  | 
 | 	if (unlikely(!vmap_initialized)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&vmap_purge_lock); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | 
 | 		struct vmap_block *vb; | 
 | 		unsigned long idx; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		xa_for_each(&vbq->vmap_blocks, idx, vb) { | 
 | 			spin_lock(&vb->lock); | 
 |  | 
 | 			/* | 
 | 			 * Try to purge a fragmented block first. If it's | 
 | 			 * not purgeable, check whether there is dirty | 
 | 			 * space to be flushed. | 
 | 			 */ | 
 | 			if (!purge_fragmented_block(vb, vbq, &purge_list, false) && | 
 | 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { | 
 | 				unsigned long va_start = vb->va->va_start; | 
 | 				unsigned long s, e; | 
 |  | 
 | 				s = va_start + (vb->dirty_min << PAGE_SHIFT); | 
 | 				e = va_start + (vb->dirty_max << PAGE_SHIFT); | 
 |  | 
 | 				start = min(s, start); | 
 | 				end   = max(e, end); | 
 |  | 
 | 				/* Prevent that this is flushed again */ | 
 | 				vb->dirty_min = VMAP_BBMAP_BITS; | 
 | 				vb->dirty_max = 0; | 
 |  | 
 | 				flush = 1; | 
 | 			} | 
 | 			spin_unlock(&vb->lock); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | 	free_purged_blocks(&purge_list); | 
 |  | 
 | 	if (!__purge_vmap_area_lazy(start, end, false) && flush) | 
 | 		flush_tlb_kernel_range(start, end); | 
 | 	mutex_unlock(&vmap_purge_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | 
 |  * | 
 |  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | 
 |  * to amortize TLB flushing overheads. What this means is that any page you | 
 |  * have now, may, in a former life, have been mapped into kernel virtual | 
 |  * address by the vmap layer and so there might be some CPUs with TLB entries | 
 |  * still referencing that page (additional to the regular 1:1 kernel mapping). | 
 |  * | 
 |  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | 
 |  * be sure that none of the pages we have control over will have any aliases | 
 |  * from the vmap layer. | 
 |  */ | 
 | void vm_unmap_aliases(void) | 
 | { | 
 | 	unsigned long start = ULONG_MAX, end = 0; | 
 | 	int flush = 0; | 
 |  | 
 | 	_vm_unmap_aliases(start, end, flush); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | 
 |  | 
 | /** | 
 |  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | 
 |  * @mem: the pointer returned by vm_map_ram | 
 |  * @count: the count passed to that vm_map_ram call (cannot unmap partial) | 
 |  */ | 
 | void vm_unmap_ram(const void *mem, unsigned int count) | 
 | { | 
 | 	unsigned long size = (unsigned long)count << PAGE_SHIFT; | 
 | 	unsigned long addr = (unsigned long)kasan_reset_tag(mem); | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	might_sleep(); | 
 | 	BUG_ON(!addr); | 
 | 	BUG_ON(addr < VMALLOC_START); | 
 | 	BUG_ON(addr > VMALLOC_END); | 
 | 	BUG_ON(!PAGE_ALIGNED(addr)); | 
 |  | 
 | 	kasan_poison_vmalloc(mem, size); | 
 |  | 
 | 	if (likely(count <= VMAP_MAX_ALLOC)) { | 
 | 		debug_check_no_locks_freed(mem, size); | 
 | 		vb_free(addr, size); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	va = find_unlink_vmap_area(addr); | 
 | 	if (WARN_ON_ONCE(!va)) | 
 | 		return; | 
 |  | 
 | 	debug_check_no_locks_freed((void *)va->va_start, | 
 | 				    (va->va_end - va->va_start)); | 
 | 	free_unmap_vmap_area(va); | 
 | } | 
 | EXPORT_SYMBOL(vm_unmap_ram); | 
 |  | 
 | /** | 
 |  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | 
 |  * @pages: an array of pointers to the pages to be mapped | 
 |  * @count: number of pages | 
 |  * @node: prefer to allocate data structures on this node | 
 |  * | 
 |  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be | 
 |  * faster than vmap so it's good.  But if you mix long-life and short-life | 
 |  * objects with vm_map_ram(), it could consume lots of address space through | 
 |  * fragmentation (especially on a 32bit machine).  You could see failures in | 
 |  * the end.  Please use this function for short-lived objects. | 
 |  * | 
 |  * Returns: a pointer to the address that has been mapped, or %NULL on failure | 
 |  */ | 
 | void *vm_map_ram(struct page **pages, unsigned int count, int node) | 
 | { | 
 | 	unsigned long size = (unsigned long)count << PAGE_SHIFT; | 
 | 	unsigned long addr; | 
 | 	void *mem; | 
 |  | 
 | 	if (likely(count <= VMAP_MAX_ALLOC)) { | 
 | 		mem = vb_alloc(size, GFP_KERNEL); | 
 | 		if (IS_ERR(mem)) | 
 | 			return NULL; | 
 | 		addr = (unsigned long)mem; | 
 | 	} else { | 
 | 		struct vmap_area *va; | 
 | 		va = alloc_vmap_area(size, PAGE_SIZE, | 
 | 				VMALLOC_START, VMALLOC_END, | 
 | 				node, GFP_KERNEL, VMAP_RAM); | 
 | 		if (IS_ERR(va)) | 
 | 			return NULL; | 
 |  | 
 | 		addr = va->va_start; | 
 | 		mem = (void *)addr; | 
 | 	} | 
 |  | 
 | 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, | 
 | 				pages, PAGE_SHIFT) < 0) { | 
 | 		vm_unmap_ram(mem, count); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mark the pages as accessible, now that they are mapped. | 
 | 	 * With hardware tag-based KASAN, marking is skipped for | 
 | 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | 
 | 	 */ | 
 | 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); | 
 |  | 
 | 	return mem; | 
 | } | 
 | EXPORT_SYMBOL(vm_map_ram); | 
 |  | 
 | static struct vm_struct *vmlist __initdata; | 
 |  | 
 | static inline unsigned int vm_area_page_order(struct vm_struct *vm) | 
 | { | 
 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | 
 | 	return vm->page_order; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) | 
 | { | 
 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | 
 | 	vm->page_order = order; | 
 | #else | 
 | 	BUG_ON(order != 0); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * vm_area_add_early - add vmap area early during boot | 
 |  * @vm: vm_struct to add | 
 |  * | 
 |  * This function is used to add fixed kernel vm area to vmlist before | 
 |  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags | 
 |  * should contain proper values and the other fields should be zero. | 
 |  * | 
 |  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | 
 |  */ | 
 | void __init vm_area_add_early(struct vm_struct *vm) | 
 | { | 
 | 	struct vm_struct *tmp, **p; | 
 |  | 
 | 	BUG_ON(vmap_initialized); | 
 | 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | 
 | 		if (tmp->addr >= vm->addr) { | 
 | 			BUG_ON(tmp->addr < vm->addr + vm->size); | 
 | 			break; | 
 | 		} else | 
 | 			BUG_ON(tmp->addr + tmp->size > vm->addr); | 
 | 	} | 
 | 	vm->next = *p; | 
 | 	*p = vm; | 
 | } | 
 |  | 
 | /** | 
 |  * vm_area_register_early - register vmap area early during boot | 
 |  * @vm: vm_struct to register | 
 |  * @align: requested alignment | 
 |  * | 
 |  * This function is used to register kernel vm area before | 
 |  * vmalloc_init() is called.  @vm->size and @vm->flags should contain | 
 |  * proper values on entry and other fields should be zero.  On return, | 
 |  * vm->addr contains the allocated address. | 
 |  * | 
 |  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | 
 |  */ | 
 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) | 
 | { | 
 | 	unsigned long addr = ALIGN(VMALLOC_START, align); | 
 | 	struct vm_struct *cur, **p; | 
 |  | 
 | 	BUG_ON(vmap_initialized); | 
 |  | 
 | 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { | 
 | 		if ((unsigned long)cur->addr - addr >= vm->size) | 
 | 			break; | 
 | 		addr = ALIGN((unsigned long)cur->addr + cur->size, align); | 
 | 	} | 
 |  | 
 | 	BUG_ON(addr > VMALLOC_END - vm->size); | 
 | 	vm->addr = (void *)addr; | 
 | 	vm->next = *p; | 
 | 	*p = vm; | 
 | 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size); | 
 | } | 
 |  | 
 | static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, | 
 | 	struct vmap_area *va, unsigned long flags, const void *caller) | 
 | { | 
 | 	vm->flags = flags; | 
 | 	vm->addr = (void *)va->va_start; | 
 | 	vm->size = va->va_end - va->va_start; | 
 | 	vm->caller = caller; | 
 | 	va->vm = vm; | 
 | } | 
 |  | 
 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, | 
 | 			      unsigned long flags, const void *caller) | 
 | { | 
 | 	struct vmap_node *vn = addr_to_node(va->va_start); | 
 |  | 
 | 	spin_lock(&vn->busy.lock); | 
 | 	setup_vmalloc_vm_locked(vm, va, flags, caller); | 
 | 	spin_unlock(&vn->busy.lock); | 
 | } | 
 |  | 
 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) | 
 | { | 
 | 	/* | 
 | 	 * Before removing VM_UNINITIALIZED, | 
 | 	 * we should make sure that vm has proper values. | 
 | 	 * Pair with smp_rmb() in show_numa_info(). | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	vm->flags &= ~VM_UNINITIALIZED; | 
 | } | 
 |  | 
 | static struct vm_struct *__get_vm_area_node(unsigned long size, | 
 | 		unsigned long align, unsigned long shift, unsigned long flags, | 
 | 		unsigned long start, unsigned long end, int node, | 
 | 		gfp_t gfp_mask, const void *caller) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *area; | 
 | 	unsigned long requested_size = size; | 
 |  | 
 | 	BUG_ON(in_interrupt()); | 
 | 	size = ALIGN(size, 1ul << shift); | 
 | 	if (unlikely(!size)) | 
 | 		return NULL; | 
 |  | 
 | 	if (flags & VM_IOREMAP) | 
 | 		align = 1ul << clamp_t(int, get_count_order_long(size), | 
 | 				       PAGE_SHIFT, IOREMAP_MAX_ORDER); | 
 |  | 
 | 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); | 
 | 	if (unlikely(!area)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!(flags & VM_NO_GUARD)) | 
 | 		size += PAGE_SIZE; | 
 |  | 
 | 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0); | 
 | 	if (IS_ERR(va)) { | 
 | 		kfree(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	setup_vmalloc_vm(area, va, flags, caller); | 
 |  | 
 | 	/* | 
 | 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a | 
 | 	 * best-effort approach, as they can be mapped outside of vmalloc code. | 
 | 	 * For VM_ALLOC mappings, the pages are marked as accessible after | 
 | 	 * getting mapped in __vmalloc_node_range(). | 
 | 	 * With hardware tag-based KASAN, marking is skipped for | 
 | 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | 
 | 	 */ | 
 | 	if (!(flags & VM_ALLOC)) | 
 | 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, | 
 | 						    KASAN_VMALLOC_PROT_NORMAL); | 
 |  | 
 | 	return area; | 
 | } | 
 |  | 
 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, | 
 | 				       unsigned long start, unsigned long end, | 
 | 				       const void *caller) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, | 
 | 				  NUMA_NO_NODE, GFP_KERNEL, caller); | 
 | } | 
 |  | 
 | /** | 
 |  * get_vm_area - reserve a contiguous kernel virtual area | 
 |  * @size:	 size of the area | 
 |  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC | 
 |  * | 
 |  * Search an area of @size in the kernel virtual mapping area, | 
 |  * and reserved it for out purposes.  Returns the area descriptor | 
 |  * on success or %NULL on failure. | 
 |  * | 
 |  * Return: the area descriptor on success or %NULL on failure. | 
 |  */ | 
 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, | 
 | 				  VMALLOC_START, VMALLOC_END, | 
 | 				  NUMA_NO_NODE, GFP_KERNEL, | 
 | 				  __builtin_return_address(0)); | 
 | } | 
 |  | 
 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | 
 | 				const void *caller) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, | 
 | 				  VMALLOC_START, VMALLOC_END, | 
 | 				  NUMA_NO_NODE, GFP_KERNEL, caller); | 
 | } | 
 |  | 
 | /** | 
 |  * find_vm_area - find a continuous kernel virtual area | 
 |  * @addr:	  base address | 
 |  * | 
 |  * Search for the kernel VM area starting at @addr, and return it. | 
 |  * It is up to the caller to do all required locking to keep the returned | 
 |  * pointer valid. | 
 |  * | 
 |  * Return: the area descriptor on success or %NULL on failure. | 
 |  */ | 
 | struct vm_struct *find_vm_area(const void *addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	va = find_vmap_area((unsigned long)addr); | 
 | 	if (!va) | 
 | 		return NULL; | 
 |  | 
 | 	return va->vm; | 
 | } | 
 |  | 
 | /** | 
 |  * remove_vm_area - find and remove a continuous kernel virtual area | 
 |  * @addr:	    base address | 
 |  * | 
 |  * Search for the kernel VM area starting at @addr, and remove it. | 
 |  * This function returns the found VM area, but using it is NOT safe | 
 |  * on SMP machines, except for its size or flags. | 
 |  * | 
 |  * Return: the area descriptor on success or %NULL on failure. | 
 |  */ | 
 | struct vm_struct *remove_vm_area(const void *addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *vm; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", | 
 | 			addr)) | 
 | 		return NULL; | 
 |  | 
 | 	va = find_unlink_vmap_area((unsigned long)addr); | 
 | 	if (!va || !va->vm) | 
 | 		return NULL; | 
 | 	vm = va->vm; | 
 |  | 
 | 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); | 
 | 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); | 
 | 	kasan_free_module_shadow(vm); | 
 | 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); | 
 |  | 
 | 	free_unmap_vmap_area(va); | 
 | 	return vm; | 
 | } | 
 |  | 
 | static inline void set_area_direct_map(const struct vm_struct *area, | 
 | 				       int (*set_direct_map)(struct page *page)) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* HUGE_VMALLOC passes small pages to set_direct_map */ | 
 | 	for (i = 0; i < area->nr_pages; i++) | 
 | 		if (page_address(area->pages[i])) | 
 | 			set_direct_map(area->pages[i]); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush the vm mapping and reset the direct map. | 
 |  */ | 
 | static void vm_reset_perms(struct vm_struct *area) | 
 | { | 
 | 	unsigned long start = ULONG_MAX, end = 0; | 
 | 	unsigned int page_order = vm_area_page_order(area); | 
 | 	int flush_dmap = 0; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Find the start and end range of the direct mappings to make sure that | 
 | 	 * the vm_unmap_aliases() flush includes the direct map. | 
 | 	 */ | 
 | 	for (i = 0; i < area->nr_pages; i += 1U << page_order) { | 
 | 		unsigned long addr = (unsigned long)page_address(area->pages[i]); | 
 |  | 
 | 		if (addr) { | 
 | 			unsigned long page_size; | 
 |  | 
 | 			page_size = PAGE_SIZE << page_order; | 
 | 			start = min(addr, start); | 
 | 			end = max(addr + page_size, end); | 
 | 			flush_dmap = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set direct map to something invalid so that it won't be cached if | 
 | 	 * there are any accesses after the TLB flush, then flush the TLB and | 
 | 	 * reset the direct map permissions to the default. | 
 | 	 */ | 
 | 	set_area_direct_map(area, set_direct_map_invalid_noflush); | 
 | 	_vm_unmap_aliases(start, end, flush_dmap); | 
 | 	set_area_direct_map(area, set_direct_map_default_noflush); | 
 | } | 
 |  | 
 | static void delayed_vfree_work(struct work_struct *w) | 
 | { | 
 | 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | 
 | 	struct llist_node *t, *llnode; | 
 |  | 
 | 	llist_for_each_safe(llnode, t, llist_del_all(&p->list)) | 
 | 		vfree(llnode); | 
 | } | 
 |  | 
 | /** | 
 |  * vfree_atomic - release memory allocated by vmalloc() | 
 |  * @addr:	  memory base address | 
 |  * | 
 |  * This one is just like vfree() but can be called in any atomic context | 
 |  * except NMIs. | 
 |  */ | 
 | void vfree_atomic(const void *addr) | 
 | { | 
 | 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); | 
 |  | 
 | 	BUG_ON(in_nmi()); | 
 | 	kmemleak_free(addr); | 
 |  | 
 | 	/* | 
 | 	 * Use raw_cpu_ptr() because this can be called from preemptible | 
 | 	 * context. Preemption is absolutely fine here, because the llist_add() | 
 | 	 * implementation is lockless, so it works even if we are adding to | 
 | 	 * another cpu's list. schedule_work() should be fine with this too. | 
 | 	 */ | 
 | 	if (addr && llist_add((struct llist_node *)addr, &p->list)) | 
 | 		schedule_work(&p->wq); | 
 | } | 
 |  | 
 | /** | 
 |  * vfree - Release memory allocated by vmalloc() | 
 |  * @addr:  Memory base address | 
 |  * | 
 |  * Free the virtually continuous memory area starting at @addr, as obtained | 
 |  * from one of the vmalloc() family of APIs.  This will usually also free the | 
 |  * physical memory underlying the virtual allocation, but that memory is | 
 |  * reference counted, so it will not be freed until the last user goes away. | 
 |  * | 
 |  * If @addr is NULL, no operation is performed. | 
 |  * | 
 |  * Context: | 
 |  * May sleep if called *not* from interrupt context. | 
 |  * Must not be called in NMI context (strictly speaking, it could be | 
 |  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | 
 |  * conventions for vfree() arch-dependent would be a really bad idea). | 
 |  */ | 
 | void vfree(const void *addr) | 
 | { | 
 | 	struct vm_struct *vm; | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(in_interrupt())) { | 
 | 		vfree_atomic(addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	BUG_ON(in_nmi()); | 
 | 	kmemleak_free(addr); | 
 | 	might_sleep(); | 
 |  | 
 | 	if (!addr) | 
 | 		return; | 
 |  | 
 | 	vm = remove_vm_area(addr); | 
 | 	if (unlikely(!vm)) { | 
 | 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | 
 | 				addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) | 
 | 		vm_reset_perms(vm); | 
 | 	for (i = 0; i < vm->nr_pages; i++) { | 
 | 		struct page *page = vm->pages[i]; | 
 |  | 
 | 		BUG_ON(!page); | 
 | 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1); | 
 | 		/* | 
 | 		 * High-order allocs for huge vmallocs are split, so | 
 | 		 * can be freed as an array of order-0 allocations | 
 | 		 */ | 
 | 		__free_page(page); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); | 
 | 	kvfree(vm->pages); | 
 | 	kfree(vm); | 
 | } | 
 | EXPORT_SYMBOL(vfree); | 
 |  | 
 | /** | 
 |  * vunmap - release virtual mapping obtained by vmap() | 
 |  * @addr:   memory base address | 
 |  * | 
 |  * Free the virtually contiguous memory area starting at @addr, | 
 |  * which was created from the page array passed to vmap(). | 
 |  * | 
 |  * Must not be called in interrupt context. | 
 |  */ | 
 | void vunmap(const void *addr) | 
 | { | 
 | 	struct vm_struct *vm; | 
 |  | 
 | 	BUG_ON(in_interrupt()); | 
 | 	might_sleep(); | 
 |  | 
 | 	if (!addr) | 
 | 		return; | 
 | 	vm = remove_vm_area(addr); | 
 | 	if (unlikely(!vm)) { | 
 | 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", | 
 | 				addr); | 
 | 		return; | 
 | 	} | 
 | 	kfree(vm); | 
 | } | 
 | EXPORT_SYMBOL(vunmap); | 
 |  | 
 | /** | 
 |  * vmap - map an array of pages into virtually contiguous space | 
 |  * @pages: array of page pointers | 
 |  * @count: number of pages to map | 
 |  * @flags: vm_area->flags | 
 |  * @prot: page protection for the mapping | 
 |  * | 
 |  * Maps @count pages from @pages into contiguous kernel virtual space. | 
 |  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself | 
 |  * (which must be kmalloc or vmalloc memory) and one reference per pages in it | 
 |  * are transferred from the caller to vmap(), and will be freed / dropped when | 
 |  * vfree() is called on the return value. | 
 |  * | 
 |  * Return: the address of the area or %NULL on failure | 
 |  */ | 
 | void *vmap(struct page **pages, unsigned int count, | 
 | 	   unsigned long flags, pgprot_t prot) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	unsigned long addr; | 
 | 	unsigned long size;		/* In bytes */ | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Your top guard is someone else's bottom guard. Not having a top | 
 | 	 * guard compromises someone else's mappings too. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(flags & VM_NO_GUARD)) | 
 | 		flags &= ~VM_NO_GUARD; | 
 |  | 
 | 	if (count > totalram_pages()) | 
 | 		return NULL; | 
 |  | 
 | 	size = (unsigned long)count << PAGE_SHIFT; | 
 | 	area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | 
 | 	if (!area) | 
 | 		return NULL; | 
 |  | 
 | 	addr = (unsigned long)area->addr; | 
 | 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), | 
 | 				pages, PAGE_SHIFT) < 0) { | 
 | 		vunmap(area->addr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (flags & VM_MAP_PUT_PAGES) { | 
 | 		area->pages = pages; | 
 | 		area->nr_pages = count; | 
 | 	} | 
 | 	return area->addr; | 
 | } | 
 | EXPORT_SYMBOL(vmap); | 
 |  | 
 | #ifdef CONFIG_VMAP_PFN | 
 | struct vmap_pfn_data { | 
 | 	unsigned long	*pfns; | 
 | 	pgprot_t	prot; | 
 | 	unsigned int	idx; | 
 | }; | 
 |  | 
 | static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) | 
 | { | 
 | 	struct vmap_pfn_data *data = private; | 
 | 	unsigned long pfn = data->pfns[data->idx]; | 
 | 	pte_t ptent; | 
 |  | 
 | 	if (WARN_ON_ONCE(pfn_valid(pfn))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); | 
 | 	set_pte_at(&init_mm, addr, pte, ptent); | 
 |  | 
 | 	data->idx++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * vmap_pfn - map an array of PFNs into virtually contiguous space | 
 |  * @pfns: array of PFNs | 
 |  * @count: number of pages to map | 
 |  * @prot: page protection for the mapping | 
 |  * | 
 |  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns | 
 |  * the start address of the mapping. | 
 |  */ | 
 | void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) | 
 | { | 
 | 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, | 
 | 			__builtin_return_address(0)); | 
 | 	if (!area) | 
 | 		return NULL; | 
 | 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | 
 | 			count * PAGE_SIZE, vmap_pfn_apply, &data)) { | 
 | 		free_vm_area(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	flush_cache_vmap((unsigned long)area->addr, | 
 | 			 (unsigned long)area->addr + count * PAGE_SIZE); | 
 |  | 
 | 	return area->addr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(vmap_pfn); | 
 | #endif /* CONFIG_VMAP_PFN */ | 
 |  | 
 | static inline unsigned int | 
 | vm_area_alloc_pages(gfp_t gfp, int nid, | 
 | 		unsigned int order, unsigned int nr_pages, struct page **pages) | 
 | { | 
 | 	unsigned int nr_allocated = 0; | 
 | 	gfp_t alloc_gfp = gfp; | 
 | 	bool nofail = false; | 
 | 	struct page *page; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * For order-0 pages we make use of bulk allocator, if | 
 | 	 * the page array is partly or not at all populated due | 
 | 	 * to fails, fallback to a single page allocator that is | 
 | 	 * more permissive. | 
 | 	 */ | 
 | 	if (!order) { | 
 | 		/* bulk allocator doesn't support nofail req. officially */ | 
 | 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; | 
 |  | 
 | 		while (nr_allocated < nr_pages) { | 
 | 			unsigned int nr, nr_pages_request; | 
 |  | 
 | 			/* | 
 | 			 * A maximum allowed request is hard-coded and is 100 | 
 | 			 * pages per call. That is done in order to prevent a | 
 | 			 * long preemption off scenario in the bulk-allocator | 
 | 			 * so the range is [1:100]. | 
 | 			 */ | 
 | 			nr_pages_request = min(100U, nr_pages - nr_allocated); | 
 |  | 
 | 			/* memory allocation should consider mempolicy, we can't | 
 | 			 * wrongly use nearest node when nid == NUMA_NO_NODE, | 
 | 			 * otherwise memory may be allocated in only one node, | 
 | 			 * but mempolicy wants to alloc memory by interleaving. | 
 | 			 */ | 
 | 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) | 
 | 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, | 
 | 							nr_pages_request, | 
 | 							pages + nr_allocated); | 
 |  | 
 | 			else | 
 | 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid, | 
 | 							nr_pages_request, | 
 | 							pages + nr_allocated); | 
 |  | 
 | 			nr_allocated += nr; | 
 | 			cond_resched(); | 
 |  | 
 | 			/* | 
 | 			 * If zero or pages were obtained partly, | 
 | 			 * fallback to a single page allocator. | 
 | 			 */ | 
 | 			if (nr != nr_pages_request) | 
 | 				break; | 
 | 		} | 
 | 	} else if (gfp & __GFP_NOFAIL) { | 
 | 		/* | 
 | 		 * Higher order nofail allocations are really expensive and | 
 | 		 * potentially dangerous (pre-mature OOM, disruptive reclaim | 
 | 		 * and compaction etc. | 
 | 		 */ | 
 | 		alloc_gfp &= ~__GFP_NOFAIL; | 
 | 		nofail = true; | 
 | 	} | 
 |  | 
 | 	/* High-order pages or fallback path if "bulk" fails. */ | 
 | 	while (nr_allocated < nr_pages) { | 
 | 		if (fatal_signal_pending(current)) | 
 | 			break; | 
 |  | 
 | 		if (nid == NUMA_NO_NODE) | 
 | 			page = alloc_pages(alloc_gfp, order); | 
 | 		else | 
 | 			page = alloc_pages_node(nid, alloc_gfp, order); | 
 | 		if (unlikely(!page)) { | 
 | 			if (!nofail) | 
 | 				break; | 
 |  | 
 | 			/* fall back to the zero order allocations */ | 
 | 			alloc_gfp |= __GFP_NOFAIL; | 
 | 			order = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Higher order allocations must be able to be treated as | 
 | 		 * indepdenent small pages by callers (as they can with | 
 | 		 * small-page vmallocs). Some drivers do their own refcounting | 
 | 		 * on vmalloc_to_page() pages, some use page->mapping, | 
 | 		 * page->lru, etc. | 
 | 		 */ | 
 | 		if (order) | 
 | 			split_page(page, order); | 
 |  | 
 | 		/* | 
 | 		 * Careful, we allocate and map page-order pages, but | 
 | 		 * tracking is done per PAGE_SIZE page so as to keep the | 
 | 		 * vm_struct APIs independent of the physical/mapped size. | 
 | 		 */ | 
 | 		for (i = 0; i < (1U << order); i++) | 
 | 			pages[nr_allocated + i] = page + i; | 
 |  | 
 | 		cond_resched(); | 
 | 		nr_allocated += 1U << order; | 
 | 	} | 
 |  | 
 | 	return nr_allocated; | 
 | } | 
 |  | 
 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, | 
 | 				 pgprot_t prot, unsigned int page_shift, | 
 | 				 int node) | 
 | { | 
 | 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; | 
 | 	bool nofail = gfp_mask & __GFP_NOFAIL; | 
 | 	unsigned long addr = (unsigned long)area->addr; | 
 | 	unsigned long size = get_vm_area_size(area); | 
 | 	unsigned long array_size; | 
 | 	unsigned int nr_small_pages = size >> PAGE_SHIFT; | 
 | 	unsigned int page_order; | 
 | 	unsigned int flags; | 
 | 	int ret; | 
 |  | 
 | 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *); | 
 |  | 
 | 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) | 
 | 		gfp_mask |= __GFP_HIGHMEM; | 
 |  | 
 | 	/* Please note that the recursion is strictly bounded. */ | 
 | 	if (array_size > PAGE_SIZE) { | 
 | 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, | 
 | 					area->caller); | 
 | 	} else { | 
 | 		area->pages = kmalloc_node(array_size, nested_gfp, node); | 
 | 	} | 
 |  | 
 | 	if (!area->pages) { | 
 | 		warn_alloc(gfp_mask, NULL, | 
 | 			"vmalloc error: size %lu, failed to allocated page array size %lu", | 
 | 			nr_small_pages * PAGE_SIZE, array_size); | 
 | 		free_vm_area(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT); | 
 | 	page_order = vm_area_page_order(area); | 
 |  | 
 | 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, | 
 | 		node, page_order, nr_small_pages, area->pages); | 
 |  | 
 | 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages); | 
 | 	if (gfp_mask & __GFP_ACCOUNT) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < area->nr_pages; i++) | 
 | 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If not enough pages were obtained to accomplish an | 
 | 	 * allocation request, free them via vfree() if any. | 
 | 	 */ | 
 | 	if (area->nr_pages != nr_small_pages) { | 
 | 		/* | 
 | 		 * vm_area_alloc_pages() can fail due to insufficient memory but | 
 | 		 * also:- | 
 | 		 * | 
 | 		 * - a pending fatal signal | 
 | 		 * - insufficient huge page-order pages | 
 | 		 * | 
 | 		 * Since we always retry allocations at order-0 in the huge page | 
 | 		 * case a warning for either is spurious. | 
 | 		 */ | 
 | 		if (!fatal_signal_pending(current) && page_order == 0) | 
 | 			warn_alloc(gfp_mask, NULL, | 
 | 				"vmalloc error: size %lu, failed to allocate pages", | 
 | 				area->nr_pages * PAGE_SIZE); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * page tables allocations ignore external gfp mask, enforce it | 
 | 	 * by the scope API | 
 | 	 */ | 
 | 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) | 
 | 		flags = memalloc_nofs_save(); | 
 | 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) | 
 | 		flags = memalloc_noio_save(); | 
 |  | 
 | 	do { | 
 | 		ret = vmap_pages_range(addr, addr + size, prot, area->pages, | 
 | 			page_shift); | 
 | 		if (nofail && (ret < 0)) | 
 | 			schedule_timeout_uninterruptible(1); | 
 | 	} while (nofail && (ret < 0)); | 
 |  | 
 | 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) | 
 | 		memalloc_nofs_restore(flags); | 
 | 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) | 
 | 		memalloc_noio_restore(flags); | 
 |  | 
 | 	if (ret < 0) { | 
 | 		warn_alloc(gfp_mask, NULL, | 
 | 			"vmalloc error: size %lu, failed to map pages", | 
 | 			area->nr_pages * PAGE_SIZE); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	return area->addr; | 
 |  | 
 | fail: | 
 | 	vfree(area->addr); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * __vmalloc_node_range - allocate virtually contiguous memory | 
 |  * @size:		  allocation size | 
 |  * @align:		  desired alignment | 
 |  * @start:		  vm area range start | 
 |  * @end:		  vm area range end | 
 |  * @gfp_mask:		  flags for the page level allocator | 
 |  * @prot:		  protection mask for the allocated pages | 
 |  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD) | 
 |  * @node:		  node to use for allocation or NUMA_NO_NODE | 
 |  * @caller:		  caller's return address | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator with @gfp_mask flags. Please note that the full set of gfp | 
 |  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all | 
 |  * supported. | 
 |  * Zone modifiers are not supported. From the reclaim modifiers | 
 |  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) | 
 |  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and | 
 |  * __GFP_RETRY_MAYFAIL are not supported). | 
 |  * | 
 |  * __GFP_NOWARN can be used to suppress failures messages. | 
 |  * | 
 |  * Map them into contiguous kernel virtual space, using a pagetable | 
 |  * protection of @prot. | 
 |  * | 
 |  * Return: the address of the area or %NULL on failure | 
 |  */ | 
 | void *__vmalloc_node_range(unsigned long size, unsigned long align, | 
 | 			unsigned long start, unsigned long end, gfp_t gfp_mask, | 
 | 			pgprot_t prot, unsigned long vm_flags, int node, | 
 | 			const void *caller) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	void *ret; | 
 | 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; | 
 | 	unsigned long real_size = size; | 
 | 	unsigned long real_align = align; | 
 | 	unsigned int shift = PAGE_SHIFT; | 
 |  | 
 | 	if (WARN_ON_ONCE(!size)) | 
 | 		return NULL; | 
 |  | 
 | 	if ((size >> PAGE_SHIFT) > totalram_pages()) { | 
 | 		warn_alloc(gfp_mask, NULL, | 
 | 			"vmalloc error: size %lu, exceeds total pages", | 
 | 			real_size); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { | 
 | 		unsigned long size_per_node; | 
 |  | 
 | 		/* | 
 | 		 * Try huge pages. Only try for PAGE_KERNEL allocations, | 
 | 		 * others like modules don't yet expect huge pages in | 
 | 		 * their allocations due to apply_to_page_range not | 
 | 		 * supporting them. | 
 | 		 */ | 
 |  | 
 | 		size_per_node = size; | 
 | 		if (node == NUMA_NO_NODE) | 
 | 			size_per_node /= num_online_nodes(); | 
 | 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) | 
 | 			shift = PMD_SHIFT; | 
 | 		else | 
 | 			shift = arch_vmap_pte_supported_shift(size_per_node); | 
 |  | 
 | 		align = max(real_align, 1UL << shift); | 
 | 		size = ALIGN(real_size, 1UL << shift); | 
 | 	} | 
 |  | 
 | again: | 
 | 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | | 
 | 				  VM_UNINITIALIZED | vm_flags, start, end, node, | 
 | 				  gfp_mask, caller); | 
 | 	if (!area) { | 
 | 		bool nofail = gfp_mask & __GFP_NOFAIL; | 
 | 		warn_alloc(gfp_mask, NULL, | 
 | 			"vmalloc error: size %lu, vm_struct allocation failed%s", | 
 | 			real_size, (nofail) ? ". Retrying." : ""); | 
 | 		if (nofail) { | 
 | 			schedule_timeout_uninterruptible(1); | 
 | 			goto again; | 
 | 		} | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Prepare arguments for __vmalloc_area_node() and | 
 | 	 * kasan_unpoison_vmalloc(). | 
 | 	 */ | 
 | 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { | 
 | 		if (kasan_hw_tags_enabled()) { | 
 | 			/* | 
 | 			 * Modify protection bits to allow tagging. | 
 | 			 * This must be done before mapping. | 
 | 			 */ | 
 | 			prot = arch_vmap_pgprot_tagged(prot); | 
 |  | 
 | 			/* | 
 | 			 * Skip page_alloc poisoning and zeroing for physical | 
 | 			 * pages backing VM_ALLOC mapping. Memory is instead | 
 | 			 * poisoned and zeroed by kasan_unpoison_vmalloc(). | 
 | 			 */ | 
 | 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; | 
 | 		} | 
 |  | 
 | 		/* Take note that the mapping is PAGE_KERNEL. */ | 
 | 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; | 
 | 	} | 
 |  | 
 | 	/* Allocate physical pages and map them into vmalloc space. */ | 
 | 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); | 
 | 	if (!ret) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * Mark the pages as accessible, now that they are mapped. | 
 | 	 * The condition for setting KASAN_VMALLOC_INIT should complement the | 
 | 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check | 
 | 	 * to make sure that memory is initialized under the same conditions. | 
 | 	 * Tag-based KASAN modes only assign tags to normal non-executable | 
 | 	 * allocations, see __kasan_unpoison_vmalloc(). | 
 | 	 */ | 
 | 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC; | 
 | 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && | 
 | 	    (gfp_mask & __GFP_SKIP_ZERO)) | 
 | 		kasan_flags |= KASAN_VMALLOC_INIT; | 
 | 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */ | 
 | 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); | 
 |  | 
 | 	/* | 
 | 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED | 
 | 	 * flag. It means that vm_struct is not fully initialized. | 
 | 	 * Now, it is fully initialized, so remove this flag here. | 
 | 	 */ | 
 | 	clear_vm_uninitialized_flag(area); | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (!(vm_flags & VM_DEFER_KMEMLEAK)) | 
 | 		kmemleak_vmalloc(area, size, gfp_mask); | 
 |  | 
 | 	return area->addr; | 
 |  | 
 | fail: | 
 | 	if (shift > PAGE_SHIFT) { | 
 | 		shift = PAGE_SHIFT; | 
 | 		align = real_align; | 
 | 		size = real_size; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * __vmalloc_node - allocate virtually contiguous memory | 
 |  * @size:	    allocation size | 
 |  * @align:	    desired alignment | 
 |  * @gfp_mask:	    flags for the page level allocator | 
 |  * @node:	    node to use for allocation or NUMA_NO_NODE | 
 |  * @caller:	    caller's return address | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level allocator with | 
 |  * @gfp_mask flags.  Map them into contiguous kernel virtual space. | 
 |  * | 
 |  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL | 
 |  * and __GFP_NOFAIL are not supported | 
 |  * | 
 |  * Any use of gfp flags outside of GFP_KERNEL should be consulted | 
 |  * with mm people. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *__vmalloc_node(unsigned long size, unsigned long align, | 
 | 			    gfp_t gfp_mask, int node, const void *caller) | 
 | { | 
 | 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | 
 | 				gfp_mask, PAGE_KERNEL, 0, node, caller); | 
 | } | 
 | /* | 
 |  * This is only for performance analysis of vmalloc and stress purpose. | 
 |  * It is required by vmalloc test module, therefore do not use it other | 
 |  * than that. | 
 |  */ | 
 | #ifdef CONFIG_TEST_VMALLOC_MODULE | 
 | EXPORT_SYMBOL_GPL(__vmalloc_node); | 
 | #endif | 
 |  | 
 | void *__vmalloc(unsigned long size, gfp_t gfp_mask) | 
 | { | 
 | 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(__vmalloc); | 
 |  | 
 | /** | 
 |  * vmalloc - allocate virtually contiguous memory | 
 |  * @size:    allocation size | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  * For tight control over page level allocator and protection flags | 
 |  * use __vmalloc() instead. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc); | 
 |  | 
 | /** | 
 |  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages | 
 |  * @size:      allocation size | 
 |  * @gfp_mask:  flags for the page level allocator | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * If @size is greater than or equal to PMD_SIZE, allow using | 
 |  * huge pages for the memory | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) | 
 | { | 
 | 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, | 
 | 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, | 
 | 				    NUMA_NO_NODE, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vmalloc_huge); | 
 |  | 
 | /** | 
 |  * vzalloc - allocate virtually contiguous memory with zero fill | 
 |  * @size:    allocation size | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * The memory allocated is set to zero. | 
 |  * | 
 |  * For tight control over page level allocator and protection flags | 
 |  * use __vmalloc() instead. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vzalloc(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vzalloc); | 
 |  | 
 | /** | 
 |  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace | 
 |  * @size: allocation size | 
 |  * | 
 |  * The resulting memory area is zeroed so it can be mapped to userspace | 
 |  * without leaking data. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_user(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END, | 
 | 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, | 
 | 				    VM_USERMAP, NUMA_NO_NODE, | 
 | 				    __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_user); | 
 |  | 
 | /** | 
 |  * vmalloc_node - allocate memory on a specific node | 
 |  * @size:	  allocation size | 
 |  * @node:	  numa node | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  * For tight control over page level allocator and protection flags | 
 |  * use __vmalloc() instead. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_node(unsigned long size, int node) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_KERNEL, node, | 
 | 			__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_node); | 
 |  | 
 | /** | 
 |  * vzalloc_node - allocate memory on a specific node with zero fill | 
 |  * @size:	allocation size | 
 |  * @node:	numa node | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * The memory allocated is set to zero. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vzalloc_node(unsigned long size, int node) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vzalloc_node); | 
 |  | 
 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) | 
 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) | 
 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) | 
 | #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) | 
 | #else | 
 | /* | 
 |  * 64b systems should always have either DMA or DMA32 zones. For others | 
 |  * GFP_DMA32 should do the right thing and use the normal zone. | 
 |  */ | 
 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) | 
 | #endif | 
 |  | 
 | /** | 
 |  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | 
 |  * @size:	allocation size | 
 |  * | 
 |  * Allocate enough 32bit PA addressable pages to cover @size from the | 
 |  * page level allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_32(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, | 
 | 			__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_32); | 
 |  | 
 | /** | 
 |  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory | 
 |  * @size:	     allocation size | 
 |  * | 
 |  * The resulting memory area is 32bit addressable and zeroed so it can be | 
 |  * mapped to userspace without leaking data. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_32_user(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END, | 
 | 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, | 
 | 				    VM_USERMAP, NUMA_NO_NODE, | 
 | 				    __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_32_user); | 
 |  | 
 | /* | 
 |  * Atomically zero bytes in the iterator. | 
 |  * | 
 |  * Returns the number of zeroed bytes. | 
 |  */ | 
 | static size_t zero_iter(struct iov_iter *iter, size_t count) | 
 | { | 
 | 	size_t remains = count; | 
 |  | 
 | 	while (remains > 0) { | 
 | 		size_t num, copied; | 
 |  | 
 | 		num = min_t(size_t, remains, PAGE_SIZE); | 
 | 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); | 
 | 		remains -= copied; | 
 |  | 
 | 		if (copied < num) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return count - remains; | 
 | } | 
 |  | 
 | /* | 
 |  * small helper routine, copy contents to iter from addr. | 
 |  * If the page is not present, fill zero. | 
 |  * | 
 |  * Returns the number of copied bytes. | 
 |  */ | 
 | static size_t aligned_vread_iter(struct iov_iter *iter, | 
 | 				 const char *addr, size_t count) | 
 | { | 
 | 	size_t remains = count; | 
 | 	struct page *page; | 
 |  | 
 | 	while (remains > 0) { | 
 | 		unsigned long offset, length; | 
 | 		size_t copied = 0; | 
 |  | 
 | 		offset = offset_in_page(addr); | 
 | 		length = PAGE_SIZE - offset; | 
 | 		if (length > remains) | 
 | 			length = remains; | 
 | 		page = vmalloc_to_page(addr); | 
 | 		/* | 
 | 		 * To do safe access to this _mapped_ area, we need lock. But | 
 | 		 * adding lock here means that we need to add overhead of | 
 | 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely | 
 | 		 * used. Instead of that, we'll use an local mapping via | 
 | 		 * copy_page_to_iter_nofault() and accept a small overhead in | 
 | 		 * this access function. | 
 | 		 */ | 
 | 		if (page) | 
 | 			copied = copy_page_to_iter_nofault(page, offset, | 
 | 							   length, iter); | 
 | 		else | 
 | 			copied = zero_iter(iter, length); | 
 |  | 
 | 		addr += copied; | 
 | 		remains -= copied; | 
 |  | 
 | 		if (copied != length) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return count - remains; | 
 | } | 
 |  | 
 | /* | 
 |  * Read from a vm_map_ram region of memory. | 
 |  * | 
 |  * Returns the number of copied bytes. | 
 |  */ | 
 | static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, | 
 | 				  size_t count, unsigned long flags) | 
 | { | 
 | 	char *start; | 
 | 	struct vmap_block *vb; | 
 | 	struct xarray *xa; | 
 | 	unsigned long offset; | 
 | 	unsigned int rs, re; | 
 | 	size_t remains, n; | 
 |  | 
 | 	/* | 
 | 	 * If it's area created by vm_map_ram() interface directly, but | 
 | 	 * not further subdividing and delegating management to vmap_block, | 
 | 	 * handle it here. | 
 | 	 */ | 
 | 	if (!(flags & VMAP_BLOCK)) | 
 | 		return aligned_vread_iter(iter, addr, count); | 
 |  | 
 | 	remains = count; | 
 |  | 
 | 	/* | 
 | 	 * Area is split into regions and tracked with vmap_block, read out | 
 | 	 * each region and zero fill the hole between regions. | 
 | 	 */ | 
 | 	xa = addr_to_vb_xa((unsigned long) addr); | 
 | 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); | 
 | 	if (!vb) | 
 | 		goto finished_zero; | 
 |  | 
 | 	spin_lock(&vb->lock); | 
 | 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { | 
 | 		spin_unlock(&vb->lock); | 
 | 		goto finished_zero; | 
 | 	} | 
 |  | 
 | 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { | 
 | 		size_t copied; | 
 |  | 
 | 		if (remains == 0) | 
 | 			goto finished; | 
 |  | 
 | 		start = vmap_block_vaddr(vb->va->va_start, rs); | 
 |  | 
 | 		if (addr < start) { | 
 | 			size_t to_zero = min_t(size_t, start - addr, remains); | 
 | 			size_t zeroed = zero_iter(iter, to_zero); | 
 |  | 
 | 			addr += zeroed; | 
 | 			remains -= zeroed; | 
 |  | 
 | 			if (remains == 0 || zeroed != to_zero) | 
 | 				goto finished; | 
 | 		} | 
 |  | 
 | 		/*it could start reading from the middle of used region*/ | 
 | 		offset = offset_in_page(addr); | 
 | 		n = ((re - rs + 1) << PAGE_SHIFT) - offset; | 
 | 		if (n > remains) | 
 | 			n = remains; | 
 |  | 
 | 		copied = aligned_vread_iter(iter, start + offset, n); | 
 |  | 
 | 		addr += copied; | 
 | 		remains -= copied; | 
 |  | 
 | 		if (copied != n) | 
 | 			goto finished; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&vb->lock); | 
 |  | 
 | finished_zero: | 
 | 	/* zero-fill the left dirty or free regions */ | 
 | 	return count - remains + zero_iter(iter, remains); | 
 | finished: | 
 | 	/* We couldn't copy/zero everything */ | 
 | 	spin_unlock(&vb->lock); | 
 | 	return count - remains; | 
 | } | 
 |  | 
 | /** | 
 |  * vread_iter() - read vmalloc area in a safe way to an iterator. | 
 |  * @iter:         the iterator to which data should be written. | 
 |  * @addr:         vm address. | 
 |  * @count:        number of bytes to be read. | 
 |  * | 
 |  * This function checks that addr is a valid vmalloc'ed area, and | 
 |  * copy data from that area to a given buffer. If the given memory range | 
 |  * of [addr...addr+count) includes some valid address, data is copied to | 
 |  * proper area of @buf. If there are memory holes, they'll be zero-filled. | 
 |  * IOREMAP area is treated as memory hole and no copy is done. | 
 |  * | 
 |  * If [addr...addr+count) doesn't includes any intersects with alive | 
 |  * vm_struct area, returns 0. @buf should be kernel's buffer. | 
 |  * | 
 |  * Note: In usual ops, vread() is never necessary because the caller | 
 |  * should know vmalloc() area is valid and can use memcpy(). | 
 |  * This is for routines which have to access vmalloc area without | 
 |  * any information, as /proc/kcore. | 
 |  * | 
 |  * Return: number of bytes for which addr and buf should be increased | 
 |  * (same number as @count) or %0 if [addr...addr+count) doesn't | 
 |  * include any intersection with valid vmalloc area | 
 |  */ | 
 | long vread_iter(struct iov_iter *iter, const char *addr, size_t count) | 
 | { | 
 | 	struct vmap_node *vn; | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *vm; | 
 | 	char *vaddr; | 
 | 	size_t n, size, flags, remains; | 
 | 	unsigned long next; | 
 |  | 
 | 	addr = kasan_reset_tag(addr); | 
 |  | 
 | 	/* Don't allow overflow */ | 
 | 	if ((unsigned long) addr + count < count) | 
 | 		count = -(unsigned long) addr; | 
 |  | 
 | 	remains = count; | 
 |  | 
 | 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); | 
 | 	if (!vn) | 
 | 		goto finished_zero; | 
 |  | 
 | 	/* no intersects with alive vmap_area */ | 
 | 	if ((unsigned long)addr + remains <= va->va_start) | 
 | 		goto finished_zero; | 
 |  | 
 | 	do { | 
 | 		size_t copied; | 
 |  | 
 | 		if (remains == 0) | 
 | 			goto finished; | 
 |  | 
 | 		vm = va->vm; | 
 | 		flags = va->flags & VMAP_FLAGS_MASK; | 
 | 		/* | 
 | 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need | 
 | 		 * be set together with VMAP_RAM. | 
 | 		 */ | 
 | 		WARN_ON(flags == VMAP_BLOCK); | 
 |  | 
 | 		if (!vm && !flags) | 
 | 			goto next_va; | 
 |  | 
 | 		if (vm && (vm->flags & VM_UNINITIALIZED)) | 
 | 			goto next_va; | 
 |  | 
 | 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		vaddr = (char *) va->va_start; | 
 | 		size = vm ? get_vm_area_size(vm) : va_size(va); | 
 |  | 
 | 		if (addr >= vaddr + size) | 
 | 			goto next_va; | 
 |  | 
 | 		if (addr < vaddr) { | 
 | 			size_t to_zero = min_t(size_t, vaddr - addr, remains); | 
 | 			size_t zeroed = zero_iter(iter, to_zero); | 
 |  | 
 | 			addr += zeroed; | 
 | 			remains -= zeroed; | 
 |  | 
 | 			if (remains == 0 || zeroed != to_zero) | 
 | 				goto finished; | 
 | 		} | 
 |  | 
 | 		n = vaddr + size - addr; | 
 | 		if (n > remains) | 
 | 			n = remains; | 
 |  | 
 | 		if (flags & VMAP_RAM) | 
 | 			copied = vmap_ram_vread_iter(iter, addr, n, flags); | 
 | 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) | 
 | 			copied = aligned_vread_iter(iter, addr, n); | 
 | 		else /* IOREMAP | SPARSE area is treated as memory hole */ | 
 | 			copied = zero_iter(iter, n); | 
 |  | 
 | 		addr += copied; | 
 | 		remains -= copied; | 
 |  | 
 | 		if (copied != n) | 
 | 			goto finished; | 
 |  | 
 | 	next_va: | 
 | 		next = va->va_end; | 
 | 		spin_unlock(&vn->busy.lock); | 
 | 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); | 
 |  | 
 | finished_zero: | 
 | 	if (vn) | 
 | 		spin_unlock(&vn->busy.lock); | 
 |  | 
 | 	/* zero-fill memory holes */ | 
 | 	return count - remains + zero_iter(iter, remains); | 
 | finished: | 
 | 	/* Nothing remains, or We couldn't copy/zero everything. */ | 
 | 	if (vn) | 
 | 		spin_unlock(&vn->busy.lock); | 
 |  | 
 | 	return count - remains; | 
 | } | 
 |  | 
 | /** | 
 |  * remap_vmalloc_range_partial - map vmalloc pages to userspace | 
 |  * @vma:		vma to cover | 
 |  * @uaddr:		target user address to start at | 
 |  * @kaddr:		virtual address of vmalloc kernel memory | 
 |  * @pgoff:		offset from @kaddr to start at | 
 |  * @size:		size of map area | 
 |  * | 
 |  * Returns:	0 for success, -Exxx on failure | 
 |  * | 
 |  * This function checks that @kaddr is a valid vmalloc'ed area, | 
 |  * and that it is big enough to cover the range starting at | 
 |  * @uaddr in @vma. Will return failure if that criteria isn't | 
 |  * met. | 
 |  * | 
 |  * Similar to remap_pfn_range() (see mm/memory.c) | 
 |  */ | 
 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, | 
 | 				void *kaddr, unsigned long pgoff, | 
 | 				unsigned long size) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	unsigned long off; | 
 | 	unsigned long end_index; | 
 |  | 
 | 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	area = find_vm_area(kaddr); | 
 | 	if (!area) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (check_add_overflow(size, off, &end_index) || | 
 | 	    end_index > get_vm_area_size(area)) | 
 | 		return -EINVAL; | 
 | 	kaddr += off; | 
 |  | 
 | 	do { | 
 | 		struct page *page = vmalloc_to_page(kaddr); | 
 | 		int ret; | 
 |  | 
 | 		ret = vm_insert_page(vma, uaddr, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		uaddr += PAGE_SIZE; | 
 | 		kaddr += PAGE_SIZE; | 
 | 		size -= PAGE_SIZE; | 
 | 	} while (size > 0); | 
 |  | 
 | 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * remap_vmalloc_range - map vmalloc pages to userspace | 
 |  * @vma:		vma to cover (map full range of vma) | 
 |  * @addr:		vmalloc memory | 
 |  * @pgoff:		number of pages into addr before first page to map | 
 |  * | 
 |  * Returns:	0 for success, -Exxx on failure | 
 |  * | 
 |  * This function checks that addr is a valid vmalloc'ed area, and | 
 |  * that it is big enough to cover the vma. Will return failure if | 
 |  * that criteria isn't met. | 
 |  * | 
 |  * Similar to remap_pfn_range() (see mm/memory.c) | 
 |  */ | 
 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | 
 | 						unsigned long pgoff) | 
 | { | 
 | 	return remap_vmalloc_range_partial(vma, vma->vm_start, | 
 | 					   addr, pgoff, | 
 | 					   vma->vm_end - vma->vm_start); | 
 | } | 
 | EXPORT_SYMBOL(remap_vmalloc_range); | 
 |  | 
 | void free_vm_area(struct vm_struct *area) | 
 | { | 
 | 	struct vm_struct *ret; | 
 | 	ret = remove_vm_area(area->addr); | 
 | 	BUG_ON(ret != area); | 
 | 	kfree(area); | 
 | } | 
 | EXPORT_SYMBOL_GPL(free_vm_area); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static struct vmap_area *node_to_va(struct rb_node *n) | 
 | { | 
 | 	return rb_entry_safe(n, struct vmap_area, rb_node); | 
 | } | 
 |  | 
 | /** | 
 |  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to | 
 |  * @addr: target address | 
 |  * | 
 |  * Returns: vmap_area if it is found. If there is no such area | 
 |  *   the first highest(reverse order) vmap_area is returned | 
 |  *   i.e. va->va_start < addr && va->va_end < addr or NULL | 
 |  *   if there are no any areas before @addr. | 
 |  */ | 
 | static struct vmap_area * | 
 | pvm_find_va_enclose_addr(unsigned long addr) | 
 | { | 
 | 	struct vmap_area *va, *tmp; | 
 | 	struct rb_node *n; | 
 |  | 
 | 	n = free_vmap_area_root.rb_node; | 
 | 	va = NULL; | 
 |  | 
 | 	while (n) { | 
 | 		tmp = rb_entry(n, struct vmap_area, rb_node); | 
 | 		if (tmp->va_start <= addr) { | 
 | 			va = tmp; | 
 | 			if (tmp->va_end >= addr) | 
 | 				break; | 
 |  | 
 | 			n = n->rb_right; | 
 | 		} else { | 
 | 			n = n->rb_left; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | /** | 
 |  * pvm_determine_end_from_reverse - find the highest aligned address | 
 |  * of free block below VMALLOC_END | 
 |  * @va: | 
 |  *   in - the VA we start the search(reverse order); | 
 |  *   out - the VA with the highest aligned end address. | 
 |  * @align: alignment for required highest address | 
 |  * | 
 |  * Returns: determined end address within vmap_area | 
 |  */ | 
 | static unsigned long | 
 | pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) | 
 | { | 
 | 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (likely(*va)) { | 
 | 		list_for_each_entry_from_reverse((*va), | 
 | 				&free_vmap_area_list, list) { | 
 | 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end); | 
 | 			if ((*va)->va_start < addr) | 
 | 				return addr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | 
 |  * @offsets: array containing offset of each area | 
 |  * @sizes: array containing size of each area | 
 |  * @nr_vms: the number of areas to allocate | 
 |  * @align: alignment, all entries in @offsets and @sizes must be aligned to this | 
 |  * | 
 |  * Returns: kmalloc'd vm_struct pointer array pointing to allocated | 
 |  *	    vm_structs on success, %NULL on failure | 
 |  * | 
 |  * Percpu allocator wants to use congruent vm areas so that it can | 
 |  * maintain the offsets among percpu areas.  This function allocates | 
 |  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to | 
 |  * be scattered pretty far, distance between two areas easily going up | 
 |  * to gigabytes.  To avoid interacting with regular vmallocs, these | 
 |  * areas are allocated from top. | 
 |  * | 
 |  * Despite its complicated look, this allocator is rather simple. It | 
 |  * does everything top-down and scans free blocks from the end looking | 
 |  * for matching base. While scanning, if any of the areas do not fit the | 
 |  * base address is pulled down to fit the area. Scanning is repeated till | 
 |  * all the areas fit and then all necessary data structures are inserted | 
 |  * and the result is returned. | 
 |  */ | 
 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | 
 | 				     const size_t *sizes, int nr_vms, | 
 | 				     size_t align) | 
 | { | 
 | 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | 
 | 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | 
 | 	struct vmap_area **vas, *va; | 
 | 	struct vm_struct **vms; | 
 | 	int area, area2, last_area, term_area; | 
 | 	unsigned long base, start, size, end, last_end, orig_start, orig_end; | 
 | 	bool purged = false; | 
 |  | 
 | 	/* verify parameters and allocate data structures */ | 
 | 	BUG_ON(offset_in_page(align) || !is_power_of_2(align)); | 
 | 	for (last_area = 0, area = 0; area < nr_vms; area++) { | 
 | 		start = offsets[area]; | 
 | 		end = start + sizes[area]; | 
 |  | 
 | 		/* is everything aligned properly? */ | 
 | 		BUG_ON(!IS_ALIGNED(offsets[area], align)); | 
 | 		BUG_ON(!IS_ALIGNED(sizes[area], align)); | 
 |  | 
 | 		/* detect the area with the highest address */ | 
 | 		if (start > offsets[last_area]) | 
 | 			last_area = area; | 
 |  | 
 | 		for (area2 = area + 1; area2 < nr_vms; area2++) { | 
 | 			unsigned long start2 = offsets[area2]; | 
 | 			unsigned long end2 = start2 + sizes[area2]; | 
 |  | 
 | 			BUG_ON(start2 < end && start < end2); | 
 | 		} | 
 | 	} | 
 | 	last_end = offsets[last_area] + sizes[last_area]; | 
 |  | 
 | 	if (vmalloc_end - vmalloc_start < last_end) { | 
 | 		WARN_ON(true); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); | 
 | 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | 
 | 	if (!vas || !vms) | 
 | 		goto err_free2; | 
 |  | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); | 
 | 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | 
 | 		if (!vas[area] || !vms[area]) | 
 | 			goto err_free; | 
 | 	} | 
 | retry: | 
 | 	spin_lock(&free_vmap_area_lock); | 
 |  | 
 | 	/* start scanning - we scan from the top, begin with the last area */ | 
 | 	area = term_area = last_area; | 
 | 	start = offsets[area]; | 
 | 	end = start + sizes[area]; | 
 |  | 
 | 	va = pvm_find_va_enclose_addr(vmalloc_end); | 
 | 	base = pvm_determine_end_from_reverse(&va, align) - end; | 
 |  | 
 | 	while (true) { | 
 | 		/* | 
 | 		 * base might have underflowed, add last_end before | 
 | 		 * comparing. | 
 | 		 */ | 
 | 		if (base + last_end < vmalloc_start + last_end) | 
 | 			goto overflow; | 
 |  | 
 | 		/* | 
 | 		 * Fitting base has not been found. | 
 | 		 */ | 
 | 		if (va == NULL) | 
 | 			goto overflow; | 
 |  | 
 | 		/* | 
 | 		 * If required width exceeds current VA block, move | 
 | 		 * base downwards and then recheck. | 
 | 		 */ | 
 | 		if (base + end > va->va_end) { | 
 | 			base = pvm_determine_end_from_reverse(&va, align) - end; | 
 | 			term_area = area; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If this VA does not fit, move base downwards and recheck. | 
 | 		 */ | 
 | 		if (base + start < va->va_start) { | 
 | 			va = node_to_va(rb_prev(&va->rb_node)); | 
 | 			base = pvm_determine_end_from_reverse(&va, align) - end; | 
 | 			term_area = area; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This area fits, move on to the previous one.  If | 
 | 		 * the previous one is the terminal one, we're done. | 
 | 		 */ | 
 | 		area = (area + nr_vms - 1) % nr_vms; | 
 | 		if (area == term_area) | 
 | 			break; | 
 |  | 
 | 		start = offsets[area]; | 
 | 		end = start + sizes[area]; | 
 | 		va = pvm_find_va_enclose_addr(base + end); | 
 | 	} | 
 |  | 
 | 	/* we've found a fitting base, insert all va's */ | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		int ret; | 
 |  | 
 | 		start = base + offsets[area]; | 
 | 		size = sizes[area]; | 
 |  | 
 | 		va = pvm_find_va_enclose_addr(start); | 
 | 		if (WARN_ON_ONCE(va == NULL)) | 
 | 			/* It is a BUG(), but trigger recovery instead. */ | 
 | 			goto recovery; | 
 |  | 
 | 		ret = va_clip(&free_vmap_area_root, | 
 | 			&free_vmap_area_list, va, start, size); | 
 | 		if (WARN_ON_ONCE(unlikely(ret))) | 
 | 			/* It is a BUG(), but trigger recovery instead. */ | 
 | 			goto recovery; | 
 |  | 
 | 		/* Allocated area. */ | 
 | 		va = vas[area]; | 
 | 		va->va_start = start; | 
 | 		va->va_end = start + size; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&free_vmap_area_lock); | 
 |  | 
 | 	/* populate the kasan shadow space */ | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) | 
 | 			goto err_free_shadow; | 
 | 	} | 
 |  | 
 | 	/* insert all vm's */ | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		struct vmap_node *vn = addr_to_node(vas[area]->va_start); | 
 |  | 
 | 		spin_lock(&vn->busy.lock); | 
 | 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); | 
 | 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, | 
 | 				 pcpu_get_vm_areas); | 
 | 		spin_unlock(&vn->busy.lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mark allocated areas as accessible. Do it now as a best-effort | 
 | 	 * approach, as they can be mapped outside of vmalloc code. | 
 | 	 * With hardware tag-based KASAN, marking is skipped for | 
 | 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | 
 | 	 */ | 
 | 	for (area = 0; area < nr_vms; area++) | 
 | 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, | 
 | 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); | 
 |  | 
 | 	kfree(vas); | 
 | 	return vms; | 
 |  | 
 | recovery: | 
 | 	/* | 
 | 	 * Remove previously allocated areas. There is no | 
 | 	 * need in removing these areas from the busy tree, | 
 | 	 * because they are inserted only on the final step | 
 | 	 * and when pcpu_get_vm_areas() is success. | 
 | 	 */ | 
 | 	while (area--) { | 
 | 		orig_start = vas[area]->va_start; | 
 | 		orig_end = vas[area]->va_end; | 
 | 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, | 
 | 				&free_vmap_area_list); | 
 | 		if (va) | 
 | 			kasan_release_vmalloc(orig_start, orig_end, | 
 | 				va->va_start, va->va_end); | 
 | 		vas[area] = NULL; | 
 | 	} | 
 |  | 
 | overflow: | 
 | 	spin_unlock(&free_vmap_area_lock); | 
 | 	if (!purged) { | 
 | 		reclaim_and_purge_vmap_areas(); | 
 | 		purged = true; | 
 |  | 
 | 		/* Before "retry", check if we recover. */ | 
 | 		for (area = 0; area < nr_vms; area++) { | 
 | 			if (vas[area]) | 
 | 				continue; | 
 |  | 
 | 			vas[area] = kmem_cache_zalloc( | 
 | 				vmap_area_cachep, GFP_KERNEL); | 
 | 			if (!vas[area]) | 
 | 				goto err_free; | 
 | 		} | 
 |  | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | err_free: | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		if (vas[area]) | 
 | 			kmem_cache_free(vmap_area_cachep, vas[area]); | 
 |  | 
 | 		kfree(vms[area]); | 
 | 	} | 
 | err_free2: | 
 | 	kfree(vas); | 
 | 	kfree(vms); | 
 | 	return NULL; | 
 |  | 
 | err_free_shadow: | 
 | 	spin_lock(&free_vmap_area_lock); | 
 | 	/* | 
 | 	 * We release all the vmalloc shadows, even the ones for regions that | 
 | 	 * hadn't been successfully added. This relies on kasan_release_vmalloc | 
 | 	 * being able to tolerate this case. | 
 | 	 */ | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		orig_start = vas[area]->va_start; | 
 | 		orig_end = vas[area]->va_end; | 
 | 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, | 
 | 				&free_vmap_area_list); | 
 | 		if (va) | 
 | 			kasan_release_vmalloc(orig_start, orig_end, | 
 | 				va->va_start, va->va_end); | 
 | 		vas[area] = NULL; | 
 | 		kfree(vms[area]); | 
 | 	} | 
 | 	spin_unlock(&free_vmap_area_lock); | 
 | 	kfree(vas); | 
 | 	kfree(vms); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | 
 |  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | 
 |  * @nr_vms: the number of allocated areas | 
 |  * | 
 |  * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | 
 |  */ | 
 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_vms; i++) | 
 | 		free_vm_area(vms[i]); | 
 | 	kfree(vms); | 
 | } | 
 | #endif	/* CONFIG_SMP */ | 
 |  | 
 | #ifdef CONFIG_PRINTK | 
 | bool vmalloc_dump_obj(void *object) | 
 | { | 
 | 	const void *caller; | 
 | 	struct vm_struct *vm; | 
 | 	struct vmap_area *va; | 
 | 	struct vmap_node *vn; | 
 | 	unsigned long addr; | 
 | 	unsigned int nr_pages; | 
 |  | 
 | 	addr = PAGE_ALIGN((unsigned long) object); | 
 | 	vn = addr_to_node(addr); | 
 |  | 
 | 	if (!spin_trylock(&vn->busy.lock)) | 
 | 		return false; | 
 |  | 
 | 	va = __find_vmap_area(addr, &vn->busy.root); | 
 | 	if (!va || !va->vm) { | 
 | 		spin_unlock(&vn->busy.lock); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	vm = va->vm; | 
 | 	addr = (unsigned long) vm->addr; | 
 | 	caller = vm->caller; | 
 | 	nr_pages = vm->nr_pages; | 
 | 	spin_unlock(&vn->busy.lock); | 
 |  | 
 | 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", | 
 | 		nr_pages, addr, caller); | 
 |  | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) { | 
 | 		unsigned int nr, *counters = m->private; | 
 | 		unsigned int step = 1U << vm_area_page_order(v); | 
 |  | 
 | 		if (!counters) | 
 | 			return; | 
 |  | 
 | 		if (v->flags & VM_UNINITIALIZED) | 
 | 			return; | 
 | 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | 
 |  | 
 | 		for (nr = 0; nr < v->nr_pages; nr += step) | 
 | 			counters[page_to_nid(v->pages[nr])] += step; | 
 | 		for_each_node_state(nr, N_HIGH_MEMORY) | 
 | 			if (counters[nr]) | 
 | 				seq_printf(m, " N%u=%u", nr, counters[nr]); | 
 | 	} | 
 | } | 
 |  | 
 | static void show_purge_info(struct seq_file *m) | 
 | { | 
 | 	struct vmap_node *vn; | 
 | 	struct vmap_area *va; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_vmap_nodes; i++) { | 
 | 		vn = &vmap_nodes[i]; | 
 |  | 
 | 		spin_lock(&vn->lazy.lock); | 
 | 		list_for_each_entry(va, &vn->lazy.head, list) { | 
 | 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", | 
 | 				(void *)va->va_start, (void *)va->va_end, | 
 | 				va->va_end - va->va_start); | 
 | 		} | 
 | 		spin_unlock(&vn->lazy.lock); | 
 | 	} | 
 | } | 
 |  | 
 | static int vmalloc_info_show(struct seq_file *m, void *p) | 
 | { | 
 | 	struct vmap_node *vn; | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *v; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_vmap_nodes; i++) { | 
 | 		vn = &vmap_nodes[i]; | 
 |  | 
 | 		spin_lock(&vn->busy.lock); | 
 | 		list_for_each_entry(va, &vn->busy.head, list) { | 
 | 			if (!va->vm) { | 
 | 				if (va->flags & VMAP_RAM) | 
 | 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", | 
 | 						(void *)va->va_start, (void *)va->va_end, | 
 | 						va->va_end - va->va_start); | 
 |  | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			v = va->vm; | 
 |  | 
 | 			seq_printf(m, "0x%pK-0x%pK %7ld", | 
 | 				v->addr, v->addr + v->size, v->size); | 
 |  | 
 | 			if (v->caller) | 
 | 				seq_printf(m, " %pS", v->caller); | 
 |  | 
 | 			if (v->nr_pages) | 
 | 				seq_printf(m, " pages=%d", v->nr_pages); | 
 |  | 
 | 			if (v->phys_addr) | 
 | 				seq_printf(m, " phys=%pa", &v->phys_addr); | 
 |  | 
 | 			if (v->flags & VM_IOREMAP) | 
 | 				seq_puts(m, " ioremap"); | 
 |  | 
 | 			if (v->flags & VM_SPARSE) | 
 | 				seq_puts(m, " sparse"); | 
 |  | 
 | 			if (v->flags & VM_ALLOC) | 
 | 				seq_puts(m, " vmalloc"); | 
 |  | 
 | 			if (v->flags & VM_MAP) | 
 | 				seq_puts(m, " vmap"); | 
 |  | 
 | 			if (v->flags & VM_USERMAP) | 
 | 				seq_puts(m, " user"); | 
 |  | 
 | 			if (v->flags & VM_DMA_COHERENT) | 
 | 				seq_puts(m, " dma-coherent"); | 
 |  | 
 | 			if (is_vmalloc_addr(v->pages)) | 
 | 				seq_puts(m, " vpages"); | 
 |  | 
 | 			show_numa_info(m, v); | 
 | 			seq_putc(m, '\n'); | 
 | 		} | 
 | 		spin_unlock(&vn->busy.lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * As a final step, dump "unpurged" areas. | 
 | 	 */ | 
 | 	show_purge_info(m); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init proc_vmalloc_init(void) | 
 | { | 
 | 	void *priv_data = NULL; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) | 
 | 		priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | 
 |  | 
 | 	proc_create_single_data("vmallocinfo", | 
 | 		0400, NULL, vmalloc_info_show, priv_data); | 
 |  | 
 | 	return 0; | 
 | } | 
 | module_init(proc_vmalloc_init); | 
 |  | 
 | #endif | 
 |  | 
 | static void __init vmap_init_free_space(void) | 
 | { | 
 | 	unsigned long vmap_start = 1; | 
 | 	const unsigned long vmap_end = ULONG_MAX; | 
 | 	struct vmap_area *free; | 
 | 	struct vm_struct *busy; | 
 |  | 
 | 	/* | 
 | 	 *     B     F     B     B     B     F | 
 | 	 * -|-----|.....|-----|-----|-----|.....|- | 
 | 	 *  |           The KVA space           | | 
 | 	 *  |<--------------------------------->| | 
 | 	 */ | 
 | 	for (busy = vmlist; busy; busy = busy->next) { | 
 | 		if ((unsigned long) busy->addr - vmap_start > 0) { | 
 | 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
 | 			if (!WARN_ON_ONCE(!free)) { | 
 | 				free->va_start = vmap_start; | 
 | 				free->va_end = (unsigned long) busy->addr; | 
 |  | 
 | 				insert_vmap_area_augment(free, NULL, | 
 | 					&free_vmap_area_root, | 
 | 						&free_vmap_area_list); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		vmap_start = (unsigned long) busy->addr + busy->size; | 
 | 	} | 
 |  | 
 | 	if (vmap_end - vmap_start > 0) { | 
 | 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
 | 		if (!WARN_ON_ONCE(!free)) { | 
 | 			free->va_start = vmap_start; | 
 | 			free->va_end = vmap_end; | 
 |  | 
 | 			insert_vmap_area_augment(free, NULL, | 
 | 				&free_vmap_area_root, | 
 | 					&free_vmap_area_list); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void vmap_init_nodes(void) | 
 | { | 
 | 	struct vmap_node *vn; | 
 | 	int i, n; | 
 |  | 
 | #if BITS_PER_LONG == 64 | 
 | 	/* | 
 | 	 * A high threshold of max nodes is fixed and bound to 128, | 
 | 	 * thus a scale factor is 1 for systems where number of cores | 
 | 	 * are less or equal to specified threshold. | 
 | 	 * | 
 | 	 * As for NUMA-aware notes. For bigger systems, for example | 
 | 	 * NUMA with multi-sockets, where we can end-up with thousands | 
 | 	 * of cores in total, a "sub-numa-clustering" should be added. | 
 | 	 * | 
 | 	 * In this case a NUMA domain is considered as a single entity | 
 | 	 * with dedicated sub-nodes in it which describe one group or | 
 | 	 * set of cores. Therefore a per-domain purging is supposed to | 
 | 	 * be added as well as a per-domain balancing. | 
 | 	 */ | 
 | 	n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); | 
 |  | 
 | 	if (n > 1) { | 
 | 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); | 
 | 		if (vn) { | 
 | 			/* Node partition is 16 pages. */ | 
 | 			vmap_zone_size = (1 << 4) * PAGE_SIZE; | 
 | 			nr_vmap_nodes = n; | 
 | 			vmap_nodes = vn; | 
 | 		} else { | 
 | 			pr_err("Failed to allocate an array. Disable a node layer\n"); | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	for (n = 0; n < nr_vmap_nodes; n++) { | 
 | 		vn = &vmap_nodes[n]; | 
 | 		vn->busy.root = RB_ROOT; | 
 | 		INIT_LIST_HEAD(&vn->busy.head); | 
 | 		spin_lock_init(&vn->busy.lock); | 
 |  | 
 | 		vn->lazy.root = RB_ROOT; | 
 | 		INIT_LIST_HEAD(&vn->lazy.head); | 
 | 		spin_lock_init(&vn->lazy.lock); | 
 |  | 
 | 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { | 
 | 			INIT_LIST_HEAD(&vn->pool[i].head); | 
 | 			WRITE_ONCE(vn->pool[i].len, 0); | 
 | 		} | 
 |  | 
 | 		spin_lock_init(&vn->pool_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long | 
 | vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | 
 | { | 
 | 	unsigned long count; | 
 | 	struct vmap_node *vn; | 
 | 	int i, j; | 
 |  | 
 | 	for (count = 0, i = 0; i < nr_vmap_nodes; i++) { | 
 | 		vn = &vmap_nodes[i]; | 
 |  | 
 | 		for (j = 0; j < MAX_VA_SIZE_PAGES; j++) | 
 | 			count += READ_ONCE(vn->pool[j].len); | 
 | 	} | 
 |  | 
 | 	return count ? count : SHRINK_EMPTY; | 
 | } | 
 |  | 
 | static unsigned long | 
 | vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_vmap_nodes; i++) | 
 | 		decay_va_pool_node(&vmap_nodes[i], true); | 
 |  | 
 | 	return SHRINK_STOP; | 
 | } | 
 |  | 
 | void __init vmalloc_init(void) | 
 | { | 
 | 	struct shrinker *vmap_node_shrinker; | 
 | 	struct vmap_area *va; | 
 | 	struct vmap_node *vn; | 
 | 	struct vm_struct *tmp; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Create the cache for vmap_area objects. | 
 | 	 */ | 
 | 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct vmap_block_queue *vbq; | 
 | 		struct vfree_deferred *p; | 
 |  | 
 | 		vbq = &per_cpu(vmap_block_queue, i); | 
 | 		spin_lock_init(&vbq->lock); | 
 | 		INIT_LIST_HEAD(&vbq->free); | 
 | 		p = &per_cpu(vfree_deferred, i); | 
 | 		init_llist_head(&p->list); | 
 | 		INIT_WORK(&p->wq, delayed_vfree_work); | 
 | 		xa_init(&vbq->vmap_blocks); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Setup nodes before importing vmlist. | 
 | 	 */ | 
 | 	vmap_init_nodes(); | 
 |  | 
 | 	/* Import existing vmlist entries. */ | 
 | 	for (tmp = vmlist; tmp; tmp = tmp->next) { | 
 | 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
 | 		if (WARN_ON_ONCE(!va)) | 
 | 			continue; | 
 |  | 
 | 		va->va_start = (unsigned long)tmp->addr; | 
 | 		va->va_end = va->va_start + tmp->size; | 
 | 		va->vm = tmp; | 
 |  | 
 | 		vn = addr_to_node(va->va_start); | 
 | 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we can initialize a free vmap space. | 
 | 	 */ | 
 | 	vmap_init_free_space(); | 
 | 	vmap_initialized = true; | 
 |  | 
 | 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); | 
 | 	if (!vmap_node_shrinker) { | 
 | 		pr_err("Failed to allocate vmap-node shrinker!\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	vmap_node_shrinker->count_objects = vmap_node_shrink_count; | 
 | 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; | 
 | 	shrinker_register(vmap_node_shrinker); | 
 | } |