| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * Generic Error-Correcting Code (ECC) engine | 
 |  * | 
 |  * Copyright (C) 2019 Macronix | 
 |  * Author: | 
 |  *     Miquèl RAYNAL <miquel.raynal@bootlin.com> | 
 |  * | 
 |  * | 
 |  * This file describes the abstraction of any NAND ECC engine. It has been | 
 |  * designed to fit most cases, including parallel NANDs and SPI-NANDs. | 
 |  * | 
 |  * There are three main situations where instantiating this ECC engine makes | 
 |  * sense: | 
 |  *   - external: The ECC engine is outside the NAND pipeline, typically this | 
 |  *               is a software ECC engine, or an hardware engine that is | 
 |  *               outside the NAND controller pipeline. | 
 |  *   - pipelined: The ECC engine is inside the NAND pipeline, ie. on the | 
 |  *                controller's side. This is the case of most of the raw NAND | 
 |  *                controllers. In the pipeline case, the ECC bytes are | 
 |  *                generated/data corrected on the fly when a page is | 
 |  *                written/read. | 
 |  *   - ondie: The ECC engine is inside the NAND pipeline, on the chip's side. | 
 |  *            Some NAND chips can correct themselves the data. | 
 |  * | 
 |  * Besides the initial setup and final cleanups, the interfaces are rather | 
 |  * simple: | 
 |  *   - prepare: Prepare an I/O request. Enable/disable the ECC engine based on | 
 |  *              the I/O request type. In case of software correction or external | 
 |  *              engine, this step may involve to derive the ECC bytes and place | 
 |  *              them in the OOB area before a write. | 
 |  *   - finish: Finish an I/O request. Correct the data in case of a read | 
 |  *             request and report the number of corrected bits/uncorrectable | 
 |  *             errors. Most likely empty for write operations, unless you have | 
 |  *             hardware specific stuff to do, like shutting down the engine to | 
 |  *             save power. | 
 |  * | 
 |  * The I/O request should be enclosed in a prepare()/finish() pair of calls | 
 |  * and will behave differently depending on the requested I/O type: | 
 |  *   - raw: Correction disabled | 
 |  *   - ecc: Correction enabled | 
 |  * | 
 |  * The request direction is impacting the logic as well: | 
 |  *   - read: Load data from the NAND chip | 
 |  *   - write: Store data in the NAND chip | 
 |  * | 
 |  * Mixing all this combinations together gives the following behavior. | 
 |  * Those are just examples, drivers are free to add custom steps in their | 
 |  * prepare/finish hook. | 
 |  * | 
 |  * [external ECC engine] | 
 |  *   - external + prepare + raw + read: do nothing | 
 |  *   - external + finish  + raw + read: do nothing | 
 |  *   - external + prepare + raw + write: do nothing | 
 |  *   - external + finish  + raw + write: do nothing | 
 |  *   - external + prepare + ecc + read: do nothing | 
 |  *   - external + finish  + ecc + read: calculate expected ECC bytes, extract | 
 |  *                                      ECC bytes from OOB buffer, correct | 
 |  *                                      and report any bitflip/error | 
 |  *   - external + prepare + ecc + write: calculate ECC bytes and store them at | 
 |  *                                       the right place in the OOB buffer based | 
 |  *                                       on the OOB layout | 
 |  *   - external + finish  + ecc + write: do nothing | 
 |  * | 
 |  * [pipelined ECC engine] | 
 |  *   - pipelined + prepare + raw + read: disable the controller's ECC engine if | 
 |  *                                       activated | 
 |  *   - pipelined + finish  + raw + read: do nothing | 
 |  *   - pipelined + prepare + raw + write: disable the controller's ECC engine if | 
 |  *                                        activated | 
 |  *   - pipelined + finish  + raw + write: do nothing | 
 |  *   - pipelined + prepare + ecc + read: enable the controller's ECC engine if | 
 |  *                                       deactivated | 
 |  *   - pipelined + finish  + ecc + read: check the status, report any | 
 |  *                                       error/bitflip | 
 |  *   - pipelined + prepare + ecc + write: enable the controller's ECC engine if | 
 |  *                                        deactivated | 
 |  *   - pipelined + finish  + ecc + write: do nothing | 
 |  * | 
 |  * [ondie ECC engine] | 
 |  *   - ondie + prepare + raw + read: send commands to disable the on-chip ECC | 
 |  *                                   engine if activated | 
 |  *   - ondie + finish  + raw + read: do nothing | 
 |  *   - ondie + prepare + raw + write: send commands to disable the on-chip ECC | 
 |  *                                    engine if activated | 
 |  *   - ondie + finish  + raw + write: do nothing | 
 |  *   - ondie + prepare + ecc + read: send commands to enable the on-chip ECC | 
 |  *                                   engine if deactivated | 
 |  *   - ondie + finish  + ecc + read: send commands to check the status, report | 
 |  *                                   any error/bitflip | 
 |  *   - ondie + prepare + ecc + write: send commands to enable the on-chip ECC | 
 |  *                                    engine if deactivated | 
 |  *   - ondie + finish  + ecc + write: do nothing | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_platform.h> | 
 |  | 
 | static LIST_HEAD(on_host_hw_engines); | 
 | static DEFINE_MUTEX(on_host_hw_engines_mutex); | 
 |  | 
 | /** | 
 |  * nand_ecc_init_ctx - Init the ECC engine context | 
 |  * @nand: the NAND device | 
 |  * | 
 |  * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx(). | 
 |  */ | 
 | int nand_ecc_init_ctx(struct nand_device *nand) | 
 | { | 
 | 	if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx) | 
 | 		return 0; | 
 |  | 
 | 	return nand->ecc.engine->ops->init_ctx(nand); | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_init_ctx); | 
 |  | 
 | /** | 
 |  * nand_ecc_cleanup_ctx - Cleanup the ECC engine context | 
 |  * @nand: the NAND device | 
 |  */ | 
 | void nand_ecc_cleanup_ctx(struct nand_device *nand) | 
 | { | 
 | 	if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx) | 
 | 		nand->ecc.engine->ops->cleanup_ctx(nand); | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_cleanup_ctx); | 
 |  | 
 | /** | 
 |  * nand_ecc_prepare_io_req - Prepare an I/O request | 
 |  * @nand: the NAND device | 
 |  * @req: the I/O request | 
 |  */ | 
 | int nand_ecc_prepare_io_req(struct nand_device *nand, | 
 | 			    struct nand_page_io_req *req) | 
 | { | 
 | 	if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req) | 
 | 		return 0; | 
 |  | 
 | 	return nand->ecc.engine->ops->prepare_io_req(nand, req); | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_prepare_io_req); | 
 |  | 
 | /** | 
 |  * nand_ecc_finish_io_req - Finish an I/O request | 
 |  * @nand: the NAND device | 
 |  * @req: the I/O request | 
 |  */ | 
 | int nand_ecc_finish_io_req(struct nand_device *nand, | 
 | 			   struct nand_page_io_req *req) | 
 | { | 
 | 	if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req) | 
 | 		return 0; | 
 |  | 
 | 	return nand->ecc.engine->ops->finish_io_req(nand, req); | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_finish_io_req); | 
 |  | 
 | /* Define default OOB placement schemes for large and small page devices */ | 
 | static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, | 
 | 				 struct mtd_oob_region *oobregion) | 
 | { | 
 | 	struct nand_device *nand = mtd_to_nanddev(mtd); | 
 | 	unsigned int total_ecc_bytes = nand->ecc.ctx.total; | 
 |  | 
 | 	if (section > 1) | 
 | 		return -ERANGE; | 
 |  | 
 | 	if (!section) { | 
 | 		oobregion->offset = 0; | 
 | 		if (mtd->oobsize == 16) | 
 | 			oobregion->length = 4; | 
 | 		else | 
 | 			oobregion->length = 3; | 
 | 	} else { | 
 | 		if (mtd->oobsize == 8) | 
 | 			return -ERANGE; | 
 |  | 
 | 		oobregion->offset = 6; | 
 | 		oobregion->length = total_ecc_bytes - 4; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, | 
 | 				  struct mtd_oob_region *oobregion) | 
 | { | 
 | 	if (section > 1) | 
 | 		return -ERANGE; | 
 |  | 
 | 	if (mtd->oobsize == 16) { | 
 | 		if (section) | 
 | 			return -ERANGE; | 
 |  | 
 | 		oobregion->length = 8; | 
 | 		oobregion->offset = 8; | 
 | 	} else { | 
 | 		oobregion->length = 2; | 
 | 		if (!section) | 
 | 			oobregion->offset = 3; | 
 | 		else | 
 | 			oobregion->offset = 6; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { | 
 | 	.ecc = nand_ooblayout_ecc_sp, | 
 | 	.free = nand_ooblayout_free_sp, | 
 | }; | 
 |  | 
 | const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void) | 
 | { | 
 | 	return &nand_ooblayout_sp_ops; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout); | 
 |  | 
 | static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, | 
 | 				 struct mtd_oob_region *oobregion) | 
 | { | 
 | 	struct nand_device *nand = mtd_to_nanddev(mtd); | 
 | 	unsigned int total_ecc_bytes = nand->ecc.ctx.total; | 
 |  | 
 | 	if (section || !total_ecc_bytes) | 
 | 		return -ERANGE; | 
 |  | 
 | 	oobregion->length = total_ecc_bytes; | 
 | 	oobregion->offset = mtd->oobsize - oobregion->length; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, | 
 | 				  struct mtd_oob_region *oobregion) | 
 | { | 
 | 	struct nand_device *nand = mtd_to_nanddev(mtd); | 
 | 	unsigned int total_ecc_bytes = nand->ecc.ctx.total; | 
 |  | 
 | 	if (section) | 
 | 		return -ERANGE; | 
 |  | 
 | 	oobregion->length = mtd->oobsize - total_ecc_bytes - 2; | 
 | 	oobregion->offset = 2; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { | 
 | 	.ecc = nand_ooblayout_ecc_lp, | 
 | 	.free = nand_ooblayout_free_lp, | 
 | }; | 
 |  | 
 | const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void) | 
 | { | 
 | 	return &nand_ooblayout_lp_ops; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout); | 
 |  | 
 | /* | 
 |  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC | 
 |  * are placed at a fixed offset. | 
 |  */ | 
 | static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, | 
 | 					 struct mtd_oob_region *oobregion) | 
 | { | 
 | 	struct nand_device *nand = mtd_to_nanddev(mtd); | 
 | 	unsigned int total_ecc_bytes = nand->ecc.ctx.total; | 
 |  | 
 | 	if (section) | 
 | 		return -ERANGE; | 
 |  | 
 | 	switch (mtd->oobsize) { | 
 | 	case 64: | 
 | 		oobregion->offset = 40; | 
 | 		break; | 
 | 	case 128: | 
 | 		oobregion->offset = 80; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	oobregion->length = total_ecc_bytes; | 
 | 	if (oobregion->offset + oobregion->length > mtd->oobsize) | 
 | 		return -ERANGE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, | 
 | 					  struct mtd_oob_region *oobregion) | 
 | { | 
 | 	struct nand_device *nand = mtd_to_nanddev(mtd); | 
 | 	unsigned int total_ecc_bytes = nand->ecc.ctx.total; | 
 | 	int ecc_offset = 0; | 
 |  | 
 | 	if (section < 0 || section > 1) | 
 | 		return -ERANGE; | 
 |  | 
 | 	switch (mtd->oobsize) { | 
 | 	case 64: | 
 | 		ecc_offset = 40; | 
 | 		break; | 
 | 	case 128: | 
 | 		ecc_offset = 80; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (section == 0) { | 
 | 		oobregion->offset = 2; | 
 | 		oobregion->length = ecc_offset - 2; | 
 | 	} else { | 
 | 		oobregion->offset = ecc_offset + total_ecc_bytes; | 
 | 		oobregion->length = mtd->oobsize - oobregion->offset; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { | 
 | 	.ecc = nand_ooblayout_ecc_lp_hamming, | 
 | 	.free = nand_ooblayout_free_lp_hamming, | 
 | }; | 
 |  | 
 | const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void) | 
 | { | 
 | 	return &nand_ooblayout_lp_hamming_ops; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout); | 
 |  | 
 | static enum nand_ecc_engine_type | 
 | of_get_nand_ecc_engine_type(struct device_node *np) | 
 | { | 
 | 	struct device_node *eng_np; | 
 |  | 
 | 	if (of_property_read_bool(np, "nand-no-ecc-engine")) | 
 | 		return NAND_ECC_ENGINE_TYPE_NONE; | 
 |  | 
 | 	if (of_property_read_bool(np, "nand-use-soft-ecc-engine")) | 
 | 		return NAND_ECC_ENGINE_TYPE_SOFT; | 
 |  | 
 | 	eng_np = of_parse_phandle(np, "nand-ecc-engine", 0); | 
 | 	of_node_put(eng_np); | 
 |  | 
 | 	if (eng_np) { | 
 | 		if (eng_np == np) | 
 | 			return NAND_ECC_ENGINE_TYPE_ON_DIE; | 
 | 		else | 
 | 			return NAND_ECC_ENGINE_TYPE_ON_HOST; | 
 | 	} | 
 |  | 
 | 	return NAND_ECC_ENGINE_TYPE_INVALID; | 
 | } | 
 |  | 
 | static const char * const nand_ecc_placement[] = { | 
 | 	[NAND_ECC_PLACEMENT_OOB] = "oob", | 
 | 	[NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved", | 
 | }; | 
 |  | 
 | static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np) | 
 | { | 
 | 	enum nand_ecc_placement placement; | 
 | 	const char *pm; | 
 | 	int err; | 
 |  | 
 | 	err = of_property_read_string(np, "nand-ecc-placement", &pm); | 
 | 	if (!err) { | 
 | 		for (placement = NAND_ECC_PLACEMENT_OOB; | 
 | 		     placement < ARRAY_SIZE(nand_ecc_placement); placement++) { | 
 | 			if (!strcasecmp(pm, nand_ecc_placement[placement])) | 
 | 				return placement; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NAND_ECC_PLACEMENT_UNKNOWN; | 
 | } | 
 |  | 
 | static const char * const nand_ecc_algos[] = { | 
 | 	[NAND_ECC_ALGO_HAMMING] = "hamming", | 
 | 	[NAND_ECC_ALGO_BCH] = "bch", | 
 | 	[NAND_ECC_ALGO_RS] = "rs", | 
 | }; | 
 |  | 
 | static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np) | 
 | { | 
 | 	enum nand_ecc_algo ecc_algo; | 
 | 	const char *pm; | 
 | 	int err; | 
 |  | 
 | 	err = of_property_read_string(np, "nand-ecc-algo", &pm); | 
 | 	if (!err) { | 
 | 		for (ecc_algo = NAND_ECC_ALGO_HAMMING; | 
 | 		     ecc_algo < ARRAY_SIZE(nand_ecc_algos); | 
 | 		     ecc_algo++) { | 
 | 			if (!strcasecmp(pm, nand_ecc_algos[ecc_algo])) | 
 | 				return ecc_algo; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NAND_ECC_ALGO_UNKNOWN; | 
 | } | 
 |  | 
 | static int of_get_nand_ecc_step_size(struct device_node *np) | 
 | { | 
 | 	int ret; | 
 | 	u32 val; | 
 |  | 
 | 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val); | 
 | 	return ret ? ret : val; | 
 | } | 
 |  | 
 | static int of_get_nand_ecc_strength(struct device_node *np) | 
 | { | 
 | 	int ret; | 
 | 	u32 val; | 
 |  | 
 | 	ret = of_property_read_u32(np, "nand-ecc-strength", &val); | 
 | 	return ret ? ret : val; | 
 | } | 
 |  | 
 | void of_get_nand_ecc_user_config(struct nand_device *nand) | 
 | { | 
 | 	struct device_node *dn = nanddev_get_of_node(nand); | 
 | 	int strength, size; | 
 |  | 
 | 	nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn); | 
 | 	nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn); | 
 | 	nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn); | 
 |  | 
 | 	strength = of_get_nand_ecc_strength(dn); | 
 | 	if (strength >= 0) | 
 | 		nand->ecc.user_conf.strength = strength; | 
 |  | 
 | 	size = of_get_nand_ecc_step_size(dn); | 
 | 	if (size >= 0) | 
 | 		nand->ecc.user_conf.step_size = size; | 
 |  | 
 | 	if (of_property_read_bool(dn, "nand-ecc-maximize")) | 
 | 		nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH; | 
 | } | 
 | EXPORT_SYMBOL(of_get_nand_ecc_user_config); | 
 |  | 
 | /** | 
 |  * nand_ecc_is_strong_enough - Check if the chip configuration meets the | 
 |  *                             datasheet requirements. | 
 |  * | 
 |  * @nand: Device to check | 
 |  * | 
 |  * If our configuration corrects A bits per B bytes and the minimum | 
 |  * required correction level is X bits per Y bytes, then we must ensure | 
 |  * both of the following are true: | 
 |  * | 
 |  * (1) A / B >= X / Y | 
 |  * (2) A >= X | 
 |  * | 
 |  * Requirement (1) ensures we can correct for the required bitflip density. | 
 |  * Requirement (2) ensures we can correct even when all bitflips are clumped | 
 |  * in the same sector. | 
 |  */ | 
 | bool nand_ecc_is_strong_enough(struct nand_device *nand) | 
 | { | 
 | 	const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand); | 
 | 	const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand); | 
 | 	struct mtd_info *mtd = nanddev_to_mtd(nand); | 
 | 	int corr, ds_corr; | 
 |  | 
 | 	if (conf->step_size == 0 || reqs->step_size == 0) | 
 | 		/* Not enough information */ | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * We get the number of corrected bits per page to compare | 
 | 	 * the correction density. | 
 | 	 */ | 
 | 	corr = (mtd->writesize * conf->strength) / conf->step_size; | 
 | 	ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size; | 
 |  | 
 | 	return corr >= ds_corr && conf->strength >= reqs->strength; | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_is_strong_enough); | 
 |  | 
 | /* ECC engine driver internal helpers */ | 
 | int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx, | 
 | 			       struct nand_device *nand) | 
 | { | 
 | 	unsigned int total_buffer_size; | 
 |  | 
 | 	ctx->nand = nand; | 
 |  | 
 | 	/* Let the user decide the exact length of each buffer */ | 
 | 	if (!ctx->page_buffer_size) | 
 | 		ctx->page_buffer_size = nanddev_page_size(nand); | 
 | 	if (!ctx->oob_buffer_size) | 
 | 		ctx->oob_buffer_size = nanddev_per_page_oobsize(nand); | 
 |  | 
 | 	total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size; | 
 |  | 
 | 	ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL); | 
 | 	if (!ctx->spare_databuf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking); | 
 |  | 
 | void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx) | 
 | { | 
 | 	kfree(ctx->spare_databuf); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking); | 
 |  | 
 | /* | 
 |  * Ensure data and OOB area is fully read/written otherwise the correction might | 
 |  * not work as expected. | 
 |  */ | 
 | void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx, | 
 | 			struct nand_page_io_req *req) | 
 | { | 
 | 	struct nand_device *nand = ctx->nand; | 
 | 	struct nand_page_io_req *orig, *tweak; | 
 |  | 
 | 	/* Save the original request */ | 
 | 	ctx->orig_req = *req; | 
 | 	ctx->bounce_data = false; | 
 | 	ctx->bounce_oob = false; | 
 | 	orig = &ctx->orig_req; | 
 | 	tweak = req; | 
 |  | 
 | 	/* Ensure the request covers the entire page */ | 
 | 	if (orig->datalen < nanddev_page_size(nand)) { | 
 | 		ctx->bounce_data = true; | 
 | 		tweak->dataoffs = 0; | 
 | 		tweak->datalen = nanddev_page_size(nand); | 
 | 		tweak->databuf.in = ctx->spare_databuf; | 
 | 		memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size); | 
 | 	} | 
 |  | 
 | 	if (orig->ooblen < nanddev_per_page_oobsize(nand)) { | 
 | 		ctx->bounce_oob = true; | 
 | 		tweak->ooboffs = 0; | 
 | 		tweak->ooblen = nanddev_per_page_oobsize(nand); | 
 | 		tweak->oobbuf.in = ctx->spare_oobbuf; | 
 | 		memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size); | 
 | 	} | 
 |  | 
 | 	/* Copy the data that must be writen in the bounce buffers, if needed */ | 
 | 	if (orig->type == NAND_PAGE_WRITE) { | 
 | 		if (ctx->bounce_data) | 
 | 			memcpy((void *)tweak->databuf.out + orig->dataoffs, | 
 | 			       orig->databuf.out, orig->datalen); | 
 |  | 
 | 		if (ctx->bounce_oob) | 
 | 			memcpy((void *)tweak->oobbuf.out + orig->ooboffs, | 
 | 			       orig->oobbuf.out, orig->ooblen); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_ecc_tweak_req); | 
 |  | 
 | void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx, | 
 | 			  struct nand_page_io_req *req) | 
 | { | 
 | 	struct nand_page_io_req *orig, *tweak; | 
 |  | 
 | 	orig = &ctx->orig_req; | 
 | 	tweak = req; | 
 |  | 
 | 	/* Restore the data read from the bounce buffers, if needed */ | 
 | 	if (orig->type == NAND_PAGE_READ) { | 
 | 		if (ctx->bounce_data) | 
 | 			memcpy(orig->databuf.in, | 
 | 			       tweak->databuf.in + orig->dataoffs, | 
 | 			       orig->datalen); | 
 |  | 
 | 		if (ctx->bounce_oob) | 
 | 			memcpy(orig->oobbuf.in, | 
 | 			       tweak->oobbuf.in + orig->ooboffs, | 
 | 			       orig->ooblen); | 
 | 	} | 
 |  | 
 | 	/* Ensure the original request is restored */ | 
 | 	*req = *orig; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_ecc_restore_req); | 
 |  | 
 | struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand) | 
 | { | 
 | 	unsigned int algo = nand->ecc.user_conf.algo; | 
 |  | 
 | 	if (algo == NAND_ECC_ALGO_UNKNOWN) | 
 | 		algo = nand->ecc.defaults.algo; | 
 |  | 
 | 	switch (algo) { | 
 | 	case NAND_ECC_ALGO_HAMMING: | 
 | 		return nand_ecc_sw_hamming_get_engine(); | 
 | 	case NAND_ECC_ALGO_BCH: | 
 | 		return nand_ecc_sw_bch_get_engine(); | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_get_sw_engine); | 
 |  | 
 | struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand) | 
 | { | 
 | 	return nand->ecc.ondie_engine; | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine); | 
 |  | 
 | int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine) | 
 | { | 
 | 	struct nand_ecc_engine *item; | 
 |  | 
 | 	if (!engine) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Prevent multiple registrations of one engine */ | 
 | 	list_for_each_entry(item, &on_host_hw_engines, node) | 
 | 		if (item == engine) | 
 | 			return 0; | 
 |  | 
 | 	mutex_lock(&on_host_hw_engines_mutex); | 
 | 	list_add_tail(&engine->node, &on_host_hw_engines); | 
 | 	mutex_unlock(&on_host_hw_engines_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_register_on_host_hw_engine); | 
 |  | 
 | int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine) | 
 | { | 
 | 	if (!engine) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&on_host_hw_engines_mutex); | 
 | 	list_del(&engine->node); | 
 | 	mutex_unlock(&on_host_hw_engines_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_unregister_on_host_hw_engine); | 
 |  | 
 | static struct nand_ecc_engine *nand_ecc_match_on_host_hw_engine(struct device *dev) | 
 | { | 
 | 	struct nand_ecc_engine *item; | 
 |  | 
 | 	list_for_each_entry(item, &on_host_hw_engines, node) | 
 | 		if (item->dev == dev) | 
 | 			return item; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand) | 
 | { | 
 | 	struct nand_ecc_engine *engine = NULL; | 
 | 	struct device *dev = &nand->mtd.dev; | 
 | 	struct platform_device *pdev; | 
 | 	struct device_node *np; | 
 |  | 
 | 	if (list_empty(&on_host_hw_engines)) | 
 | 		return NULL; | 
 |  | 
 | 	/* Check for an explicit nand-ecc-engine property */ | 
 | 	np = of_parse_phandle(dev->of_node, "nand-ecc-engine", 0); | 
 | 	if (np) { | 
 | 		pdev = of_find_device_by_node(np); | 
 | 		if (!pdev) | 
 | 			return ERR_PTR(-EPROBE_DEFER); | 
 |  | 
 | 		engine = nand_ecc_match_on_host_hw_engine(&pdev->dev); | 
 | 		platform_device_put(pdev); | 
 | 		of_node_put(np); | 
 |  | 
 | 		if (!engine) | 
 | 			return ERR_PTR(-EPROBE_DEFER); | 
 | 	} | 
 |  | 
 | 	if (engine) | 
 | 		get_device(engine->dev); | 
 |  | 
 | 	return engine; | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_get_on_host_hw_engine); | 
 |  | 
 | void nand_ecc_put_on_host_hw_engine(struct nand_device *nand) | 
 | { | 
 | 	put_device(nand->ecc.engine->dev); | 
 | } | 
 | EXPORT_SYMBOL(nand_ecc_put_on_host_hw_engine); | 
 |  | 
 | /* | 
 |  * In the case of a pipelined engine, the device registering the ECC | 
 |  * engine is not necessarily the ECC engine itself but may be a host controller. | 
 |  * It is then useful to provide a helper to retrieve the right device object | 
 |  * which actually represents the ECC engine. | 
 |  */ | 
 | struct device *nand_ecc_get_engine_dev(struct device *host) | 
 | { | 
 | 	struct platform_device *ecc_pdev; | 
 | 	struct device_node *np; | 
 |  | 
 | 	/* | 
 | 	 * If the device node contains this property, it means we need to follow | 
 | 	 * it in order to get the right ECC engine device we are looking for. | 
 | 	 */ | 
 | 	np = of_parse_phandle(host->of_node, "nand-ecc-engine", 0); | 
 | 	if (!np) | 
 | 		return host; | 
 |  | 
 | 	ecc_pdev = of_find_device_by_node(np); | 
 | 	if (!ecc_pdev) { | 
 | 		of_node_put(np); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	platform_device_put(ecc_pdev); | 
 | 	of_node_put(np); | 
 |  | 
 | 	return &ecc_pdev->dev; | 
 | } | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); | 
 | MODULE_DESCRIPTION("Generic ECC engine"); |