|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007,2008 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/mm.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "print-tree.h" | 
|  | #include "locking.h" | 
|  | #include "volumes.h" | 
|  |  | 
|  | static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root | 
|  | *root, struct btrfs_path *path, int level); | 
|  | static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | const struct btrfs_key *ins_key, struct btrfs_path *path, | 
|  | int data_size, int extend); | 
|  | static int push_node_left(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *dst, | 
|  | struct extent_buffer *src, int empty); | 
|  | static int balance_node_right(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *dst_buf, | 
|  | struct extent_buffer *src_buf); | 
|  | static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, | 
|  | int level, int slot); | 
|  |  | 
|  | struct btrfs_path *btrfs_alloc_path(void) | 
|  | { | 
|  | return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set all locked nodes in the path to blocking locks.  This should | 
|  | * be done before scheduling | 
|  | */ | 
|  | noinline void btrfs_set_path_blocking(struct btrfs_path *p) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < BTRFS_MAX_LEVEL; i++) { | 
|  | if (!p->nodes[i] || !p->locks[i]) | 
|  | continue; | 
|  | btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); | 
|  | if (p->locks[i] == BTRFS_READ_LOCK) | 
|  | p->locks[i] = BTRFS_READ_LOCK_BLOCKING; | 
|  | else if (p->locks[i] == BTRFS_WRITE_LOCK) | 
|  | p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* this also releases the path */ | 
|  | void btrfs_free_path(struct btrfs_path *p) | 
|  | { | 
|  | if (!p) | 
|  | return; | 
|  | btrfs_release_path(p); | 
|  | kmem_cache_free(btrfs_path_cachep, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * path release drops references on the extent buffers in the path | 
|  | * and it drops any locks held by this path | 
|  | * | 
|  | * It is safe to call this on paths that no locks or extent buffers held. | 
|  | */ | 
|  | noinline void btrfs_release_path(struct btrfs_path *p) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BTRFS_MAX_LEVEL; i++) { | 
|  | p->slots[i] = 0; | 
|  | if (!p->nodes[i]) | 
|  | continue; | 
|  | if (p->locks[i]) { | 
|  | btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); | 
|  | p->locks[i] = 0; | 
|  | } | 
|  | free_extent_buffer(p->nodes[i]); | 
|  | p->nodes[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * safely gets a reference on the root node of a tree.  A lock | 
|  | * is not taken, so a concurrent writer may put a different node | 
|  | * at the root of the tree.  See btrfs_lock_root_node for the | 
|  | * looping required. | 
|  | * | 
|  | * The extent buffer returned by this has a reference taken, so | 
|  | * it won't disappear.  It may stop being the root of the tree | 
|  | * at any time because there are no locks held. | 
|  | */ | 
|  | struct extent_buffer *btrfs_root_node(struct btrfs_root *root) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | while (1) { | 
|  | rcu_read_lock(); | 
|  | eb = rcu_dereference(root->node); | 
|  |  | 
|  | /* | 
|  | * RCU really hurts here, we could free up the root node because | 
|  | * it was COWed but we may not get the new root node yet so do | 
|  | * the inc_not_zero dance and if it doesn't work then | 
|  | * synchronize_rcu and try again. | 
|  | */ | 
|  | if (atomic_inc_not_zero(&eb->refs)) { | 
|  | rcu_read_unlock(); | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | synchronize_rcu(); | 
|  | } | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | /* loop around taking references on and locking the root node of the | 
|  | * tree until you end up with a lock on the root.  A locked buffer | 
|  | * is returned, with a reference held. | 
|  | */ | 
|  | struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | while (1) { | 
|  | eb = btrfs_root_node(root); | 
|  | btrfs_tree_lock(eb); | 
|  | if (eb == root->node) | 
|  | break; | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | /* loop around taking references on and locking the root node of the | 
|  | * tree until you end up with a lock on the root.  A locked buffer | 
|  | * is returned, with a reference held. | 
|  | */ | 
|  | struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | while (1) { | 
|  | eb = btrfs_root_node(root); | 
|  | btrfs_tree_read_lock(eb); | 
|  | if (eb == root->node) | 
|  | break; | 
|  | btrfs_tree_read_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | /* cowonly root (everything not a reference counted cow subvolume), just get | 
|  | * put onto a simple dirty list.  transaction.c walks this to make sure they | 
|  | * get properly updated on disk. | 
|  | */ | 
|  | static void add_root_to_dirty_list(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || | 
|  | !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { | 
|  | /* Want the extent tree to be the last on the list */ | 
|  | if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
|  | list_move_tail(&root->dirty_list, | 
|  | &fs_info->dirty_cowonly_roots); | 
|  | else | 
|  | list_move(&root->dirty_list, | 
|  | &fs_info->dirty_cowonly_roots); | 
|  | } | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used by snapshot creation to make a copy of a root for a tree with | 
|  | * a given objectid.  The buffer with the new root node is returned in | 
|  | * cow_ret, and this func returns zero on success or a negative error code. | 
|  | */ | 
|  | int btrfs_copy_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | struct extent_buffer **cow_ret, u64 new_root_objectid) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *cow; | 
|  | int ret = 0; | 
|  | int level; | 
|  | struct btrfs_disk_key disk_key; | 
|  |  | 
|  | WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && | 
|  | trans->transid != fs_info->running_transaction->transid); | 
|  | WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && | 
|  | trans->transid != root->last_trans); | 
|  |  | 
|  | level = btrfs_header_level(buf); | 
|  | if (level == 0) | 
|  | btrfs_item_key(buf, &disk_key, 0); | 
|  | else | 
|  | btrfs_node_key(buf, &disk_key, 0); | 
|  |  | 
|  | cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, | 
|  | &disk_key, level, buf->start, 0); | 
|  | if (IS_ERR(cow)) | 
|  | return PTR_ERR(cow); | 
|  |  | 
|  | copy_extent_buffer_full(cow, buf); | 
|  | btrfs_set_header_bytenr(cow, cow->start); | 
|  | btrfs_set_header_generation(cow, trans->transid); | 
|  | btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); | 
|  | btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | | 
|  | BTRFS_HEADER_FLAG_RELOC); | 
|  | if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) | 
|  | btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); | 
|  | else | 
|  | btrfs_set_header_owner(cow, new_root_objectid); | 
|  |  | 
|  | write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); | 
|  |  | 
|  | WARN_ON(btrfs_header_generation(buf) > trans->transid); | 
|  | if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) | 
|  | ret = btrfs_inc_ref(trans, root, cow, 1); | 
|  | else | 
|  | ret = btrfs_inc_ref(trans, root, cow, 0); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | btrfs_mark_buffer_dirty(cow); | 
|  | *cow_ret = cow; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum mod_log_op { | 
|  | MOD_LOG_KEY_REPLACE, | 
|  | MOD_LOG_KEY_ADD, | 
|  | MOD_LOG_KEY_REMOVE, | 
|  | MOD_LOG_KEY_REMOVE_WHILE_FREEING, | 
|  | MOD_LOG_KEY_REMOVE_WHILE_MOVING, | 
|  | MOD_LOG_MOVE_KEYS, | 
|  | MOD_LOG_ROOT_REPLACE, | 
|  | }; | 
|  |  | 
|  | struct tree_mod_root { | 
|  | u64 logical; | 
|  | u8 level; | 
|  | }; | 
|  |  | 
|  | struct tree_mod_elem { | 
|  | struct rb_node node; | 
|  | u64 logical; | 
|  | u64 seq; | 
|  | enum mod_log_op op; | 
|  |  | 
|  | /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ | 
|  | int slot; | 
|  |  | 
|  | /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ | 
|  | u64 generation; | 
|  |  | 
|  | /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ | 
|  | struct btrfs_disk_key key; | 
|  | u64 blockptr; | 
|  |  | 
|  | /* this is used for op == MOD_LOG_MOVE_KEYS */ | 
|  | struct { | 
|  | int dst_slot; | 
|  | int nr_items; | 
|  | } move; | 
|  |  | 
|  | /* this is used for op == MOD_LOG_ROOT_REPLACE */ | 
|  | struct tree_mod_root old_root; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Pull a new tree mod seq number for our operation. | 
|  | */ | 
|  | static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | return atomic64_inc_return(&fs_info->tree_mod_seq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This adds a new blocker to the tree mod log's blocker list if the @elem | 
|  | * passed does not already have a sequence number set. So when a caller expects | 
|  | * to record tree modifications, it should ensure to set elem->seq to zero | 
|  | * before calling btrfs_get_tree_mod_seq. | 
|  | * Returns a fresh, unused tree log modification sequence number, even if no new | 
|  | * blocker was added. | 
|  | */ | 
|  | u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, | 
|  | struct seq_list *elem) | 
|  | { | 
|  | write_lock(&fs_info->tree_mod_log_lock); | 
|  | spin_lock(&fs_info->tree_mod_seq_lock); | 
|  | if (!elem->seq) { | 
|  | elem->seq = btrfs_inc_tree_mod_seq(fs_info); | 
|  | list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); | 
|  | } | 
|  | spin_unlock(&fs_info->tree_mod_seq_lock); | 
|  | write_unlock(&fs_info->tree_mod_log_lock); | 
|  |  | 
|  | return elem->seq; | 
|  | } | 
|  |  | 
|  | void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, | 
|  | struct seq_list *elem) | 
|  | { | 
|  | struct rb_root *tm_root; | 
|  | struct rb_node *node; | 
|  | struct rb_node *next; | 
|  | struct seq_list *cur_elem; | 
|  | struct tree_mod_elem *tm; | 
|  | u64 min_seq = (u64)-1; | 
|  | u64 seq_putting = elem->seq; | 
|  |  | 
|  | if (!seq_putting) | 
|  | return; | 
|  |  | 
|  | spin_lock(&fs_info->tree_mod_seq_lock); | 
|  | list_del(&elem->list); | 
|  | elem->seq = 0; | 
|  |  | 
|  | list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { | 
|  | if (cur_elem->seq < min_seq) { | 
|  | if (seq_putting > cur_elem->seq) { | 
|  | /* | 
|  | * blocker with lower sequence number exists, we | 
|  | * cannot remove anything from the log | 
|  | */ | 
|  | spin_unlock(&fs_info->tree_mod_seq_lock); | 
|  | return; | 
|  | } | 
|  | min_seq = cur_elem->seq; | 
|  | } | 
|  | } | 
|  | spin_unlock(&fs_info->tree_mod_seq_lock); | 
|  |  | 
|  | /* | 
|  | * anything that's lower than the lowest existing (read: blocked) | 
|  | * sequence number can be removed from the tree. | 
|  | */ | 
|  | write_lock(&fs_info->tree_mod_log_lock); | 
|  | tm_root = &fs_info->tree_mod_log; | 
|  | for (node = rb_first(tm_root); node; node = next) { | 
|  | next = rb_next(node); | 
|  | tm = rb_entry(node, struct tree_mod_elem, node); | 
|  | if (tm->seq > min_seq) | 
|  | continue; | 
|  | rb_erase(node, tm_root); | 
|  | kfree(tm); | 
|  | } | 
|  | write_unlock(&fs_info->tree_mod_log_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * key order of the log: | 
|  | *       node/leaf start address -> sequence | 
|  | * | 
|  | * The 'start address' is the logical address of the *new* root node | 
|  | * for root replace operations, or the logical address of the affected | 
|  | * block for all other operations. | 
|  | * | 
|  | * Note: must be called with write lock for fs_info::tree_mod_log_lock. | 
|  | */ | 
|  | static noinline int | 
|  | __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) | 
|  | { | 
|  | struct rb_root *tm_root; | 
|  | struct rb_node **new; | 
|  | struct rb_node *parent = NULL; | 
|  | struct tree_mod_elem *cur; | 
|  |  | 
|  | tm->seq = btrfs_inc_tree_mod_seq(fs_info); | 
|  |  | 
|  | tm_root = &fs_info->tree_mod_log; | 
|  | new = &tm_root->rb_node; | 
|  | while (*new) { | 
|  | cur = rb_entry(*new, struct tree_mod_elem, node); | 
|  | parent = *new; | 
|  | if (cur->logical < tm->logical) | 
|  | new = &((*new)->rb_left); | 
|  | else if (cur->logical > tm->logical) | 
|  | new = &((*new)->rb_right); | 
|  | else if (cur->seq < tm->seq) | 
|  | new = &((*new)->rb_left); | 
|  | else if (cur->seq > tm->seq) | 
|  | new = &((*new)->rb_right); | 
|  | else | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | rb_link_node(&tm->node, parent, new); | 
|  | rb_insert_color(&tm->node, tm_root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it | 
|  | * returns zero with the tree_mod_log_lock acquired. The caller must hold | 
|  | * this until all tree mod log insertions are recorded in the rb tree and then | 
|  | * write unlock fs_info::tree_mod_log_lock. | 
|  | */ | 
|  | static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *eb) { | 
|  | smp_mb(); | 
|  | if (list_empty(&(fs_info)->tree_mod_seq_list)) | 
|  | return 1; | 
|  | if (eb && btrfs_header_level(eb) == 0) | 
|  | return 1; | 
|  |  | 
|  | write_lock(&fs_info->tree_mod_log_lock); | 
|  | if (list_empty(&(fs_info)->tree_mod_seq_list)) { | 
|  | write_unlock(&fs_info->tree_mod_log_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ | 
|  | static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *eb) | 
|  | { | 
|  | smp_mb(); | 
|  | if (list_empty(&(fs_info)->tree_mod_seq_list)) | 
|  | return 0; | 
|  | if (eb && btrfs_header_level(eb) == 0) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct tree_mod_elem * | 
|  | alloc_tree_mod_elem(struct extent_buffer *eb, int slot, | 
|  | enum mod_log_op op, gfp_t flags) | 
|  | { | 
|  | struct tree_mod_elem *tm; | 
|  |  | 
|  | tm = kzalloc(sizeof(*tm), flags); | 
|  | if (!tm) | 
|  | return NULL; | 
|  |  | 
|  | tm->logical = eb->start; | 
|  | if (op != MOD_LOG_KEY_ADD) { | 
|  | btrfs_node_key(eb, &tm->key, slot); | 
|  | tm->blockptr = btrfs_node_blockptr(eb, slot); | 
|  | } | 
|  | tm->op = op; | 
|  | tm->slot = slot; | 
|  | tm->generation = btrfs_node_ptr_generation(eb, slot); | 
|  | RB_CLEAR_NODE(&tm->node); | 
|  |  | 
|  | return tm; | 
|  | } | 
|  |  | 
|  | static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, | 
|  | enum mod_log_op op, gfp_t flags) | 
|  | { | 
|  | struct tree_mod_elem *tm; | 
|  | int ret; | 
|  |  | 
|  | if (!tree_mod_need_log(eb->fs_info, eb)) | 
|  | return 0; | 
|  |  | 
|  | tm = alloc_tree_mod_elem(eb, slot, op, flags); | 
|  | if (!tm) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (tree_mod_dont_log(eb->fs_info, eb)) { | 
|  | kfree(tm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = __tree_mod_log_insert(eb->fs_info, tm); | 
|  | write_unlock(&eb->fs_info->tree_mod_log_lock); | 
|  | if (ret) | 
|  | kfree(tm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, | 
|  | int dst_slot, int src_slot, int nr_items) | 
|  | { | 
|  | struct tree_mod_elem *tm = NULL; | 
|  | struct tree_mod_elem **tm_list = NULL; | 
|  | int ret = 0; | 
|  | int i; | 
|  | int locked = 0; | 
|  |  | 
|  | if (!tree_mod_need_log(eb->fs_info, eb)) | 
|  | return 0; | 
|  |  | 
|  | tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); | 
|  | if (!tm_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | tm = kzalloc(sizeof(*tm), GFP_NOFS); | 
|  | if (!tm) { | 
|  | ret = -ENOMEM; | 
|  | goto free_tms; | 
|  | } | 
|  |  | 
|  | tm->logical = eb->start; | 
|  | tm->slot = src_slot; | 
|  | tm->move.dst_slot = dst_slot; | 
|  | tm->move.nr_items = nr_items; | 
|  | tm->op = MOD_LOG_MOVE_KEYS; | 
|  |  | 
|  | for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { | 
|  | tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, | 
|  | MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); | 
|  | if (!tm_list[i]) { | 
|  | ret = -ENOMEM; | 
|  | goto free_tms; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tree_mod_dont_log(eb->fs_info, eb)) | 
|  | goto free_tms; | 
|  | locked = 1; | 
|  |  | 
|  | /* | 
|  | * When we override something during the move, we log these removals. | 
|  | * This can only happen when we move towards the beginning of the | 
|  | * buffer, i.e. dst_slot < src_slot. | 
|  | */ | 
|  | for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { | 
|  | ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); | 
|  | if (ret) | 
|  | goto free_tms; | 
|  | } | 
|  |  | 
|  | ret = __tree_mod_log_insert(eb->fs_info, tm); | 
|  | if (ret) | 
|  | goto free_tms; | 
|  | write_unlock(&eb->fs_info->tree_mod_log_lock); | 
|  | kfree(tm_list); | 
|  |  | 
|  | return 0; | 
|  | free_tms: | 
|  | for (i = 0; i < nr_items; i++) { | 
|  | if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) | 
|  | rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); | 
|  | kfree(tm_list[i]); | 
|  | } | 
|  | if (locked) | 
|  | write_unlock(&eb->fs_info->tree_mod_log_lock); | 
|  | kfree(tm_list); | 
|  | kfree(tm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, | 
|  | struct tree_mod_elem **tm_list, | 
|  | int nritems) | 
|  | { | 
|  | int i, j; | 
|  | int ret; | 
|  |  | 
|  | for (i = nritems - 1; i >= 0; i--) { | 
|  | ret = __tree_mod_log_insert(fs_info, tm_list[i]); | 
|  | if (ret) { | 
|  | for (j = nritems - 1; j > i; j--) | 
|  | rb_erase(&tm_list[j]->node, | 
|  | &fs_info->tree_mod_log); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, | 
|  | struct extent_buffer *new_root, int log_removal) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = old_root->fs_info; | 
|  | struct tree_mod_elem *tm = NULL; | 
|  | struct tree_mod_elem **tm_list = NULL; | 
|  | int nritems = 0; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | if (!tree_mod_need_log(fs_info, NULL)) | 
|  | return 0; | 
|  |  | 
|  | if (log_removal && btrfs_header_level(old_root) > 0) { | 
|  | nritems = btrfs_header_nritems(old_root); | 
|  | tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), | 
|  | GFP_NOFS); | 
|  | if (!tm_list) { | 
|  | ret = -ENOMEM; | 
|  | goto free_tms; | 
|  | } | 
|  | for (i = 0; i < nritems; i++) { | 
|  | tm_list[i] = alloc_tree_mod_elem(old_root, i, | 
|  | MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); | 
|  | if (!tm_list[i]) { | 
|  | ret = -ENOMEM; | 
|  | goto free_tms; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | tm = kzalloc(sizeof(*tm), GFP_NOFS); | 
|  | if (!tm) { | 
|  | ret = -ENOMEM; | 
|  | goto free_tms; | 
|  | } | 
|  |  | 
|  | tm->logical = new_root->start; | 
|  | tm->old_root.logical = old_root->start; | 
|  | tm->old_root.level = btrfs_header_level(old_root); | 
|  | tm->generation = btrfs_header_generation(old_root); | 
|  | tm->op = MOD_LOG_ROOT_REPLACE; | 
|  |  | 
|  | if (tree_mod_dont_log(fs_info, NULL)) | 
|  | goto free_tms; | 
|  |  | 
|  | if (tm_list) | 
|  | ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); | 
|  | if (!ret) | 
|  | ret = __tree_mod_log_insert(fs_info, tm); | 
|  |  | 
|  | write_unlock(&fs_info->tree_mod_log_lock); | 
|  | if (ret) | 
|  | goto free_tms; | 
|  | kfree(tm_list); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | free_tms: | 
|  | if (tm_list) { | 
|  | for (i = 0; i < nritems; i++) | 
|  | kfree(tm_list[i]); | 
|  | kfree(tm_list); | 
|  | } | 
|  | kfree(tm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct tree_mod_elem * | 
|  | __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, | 
|  | int smallest) | 
|  | { | 
|  | struct rb_root *tm_root; | 
|  | struct rb_node *node; | 
|  | struct tree_mod_elem *cur = NULL; | 
|  | struct tree_mod_elem *found = NULL; | 
|  |  | 
|  | read_lock(&fs_info->tree_mod_log_lock); | 
|  | tm_root = &fs_info->tree_mod_log; | 
|  | node = tm_root->rb_node; | 
|  | while (node) { | 
|  | cur = rb_entry(node, struct tree_mod_elem, node); | 
|  | if (cur->logical < start) { | 
|  | node = node->rb_left; | 
|  | } else if (cur->logical > start) { | 
|  | node = node->rb_right; | 
|  | } else if (cur->seq < min_seq) { | 
|  | node = node->rb_left; | 
|  | } else if (!smallest) { | 
|  | /* we want the node with the highest seq */ | 
|  | if (found) | 
|  | BUG_ON(found->seq > cur->seq); | 
|  | found = cur; | 
|  | node = node->rb_left; | 
|  | } else if (cur->seq > min_seq) { | 
|  | /* we want the node with the smallest seq */ | 
|  | if (found) | 
|  | BUG_ON(found->seq < cur->seq); | 
|  | found = cur; | 
|  | node = node->rb_right; | 
|  | } else { | 
|  | found = cur; | 
|  | break; | 
|  | } | 
|  | } | 
|  | read_unlock(&fs_info->tree_mod_log_lock); | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this returns the element from the log with the smallest time sequence | 
|  | * value that's in the log (the oldest log item). any element with a time | 
|  | * sequence lower than min_seq will be ignored. | 
|  | */ | 
|  | static struct tree_mod_elem * | 
|  | tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, | 
|  | u64 min_seq) | 
|  | { | 
|  | return __tree_mod_log_search(fs_info, start, min_seq, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this returns the element from the log with the largest time sequence | 
|  | * value that's in the log (the most recent log item). any element with | 
|  | * a time sequence lower than min_seq will be ignored. | 
|  | */ | 
|  | static struct tree_mod_elem * | 
|  | tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) | 
|  | { | 
|  | return __tree_mod_log_search(fs_info, start, min_seq, 0); | 
|  | } | 
|  |  | 
|  | static noinline int | 
|  | tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, | 
|  | struct extent_buffer *src, unsigned long dst_offset, | 
|  | unsigned long src_offset, int nr_items) | 
|  | { | 
|  | int ret = 0; | 
|  | struct tree_mod_elem **tm_list = NULL; | 
|  | struct tree_mod_elem **tm_list_add, **tm_list_rem; | 
|  | int i; | 
|  | int locked = 0; | 
|  |  | 
|  | if (!tree_mod_need_log(fs_info, NULL)) | 
|  | return 0; | 
|  |  | 
|  | if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) | 
|  | return 0; | 
|  |  | 
|  | tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), | 
|  | GFP_NOFS); | 
|  | if (!tm_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | tm_list_add = tm_list; | 
|  | tm_list_rem = tm_list + nr_items; | 
|  | for (i = 0; i < nr_items; i++) { | 
|  | tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, | 
|  | MOD_LOG_KEY_REMOVE, GFP_NOFS); | 
|  | if (!tm_list_rem[i]) { | 
|  | ret = -ENOMEM; | 
|  | goto free_tms; | 
|  | } | 
|  |  | 
|  | tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, | 
|  | MOD_LOG_KEY_ADD, GFP_NOFS); | 
|  | if (!tm_list_add[i]) { | 
|  | ret = -ENOMEM; | 
|  | goto free_tms; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tree_mod_dont_log(fs_info, NULL)) | 
|  | goto free_tms; | 
|  | locked = 1; | 
|  |  | 
|  | for (i = 0; i < nr_items; i++) { | 
|  | ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); | 
|  | if (ret) | 
|  | goto free_tms; | 
|  | ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); | 
|  | if (ret) | 
|  | goto free_tms; | 
|  | } | 
|  |  | 
|  | write_unlock(&fs_info->tree_mod_log_lock); | 
|  | kfree(tm_list); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_tms: | 
|  | for (i = 0; i < nr_items * 2; i++) { | 
|  | if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) | 
|  | rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); | 
|  | kfree(tm_list[i]); | 
|  | } | 
|  | if (locked) | 
|  | write_unlock(&fs_info->tree_mod_log_lock); | 
|  | kfree(tm_list); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) | 
|  | { | 
|  | struct tree_mod_elem **tm_list = NULL; | 
|  | int nritems = 0; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | if (btrfs_header_level(eb) == 0) | 
|  | return 0; | 
|  |  | 
|  | if (!tree_mod_need_log(eb->fs_info, NULL)) | 
|  | return 0; | 
|  |  | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); | 
|  | if (!tm_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < nritems; i++) { | 
|  | tm_list[i] = alloc_tree_mod_elem(eb, i, | 
|  | MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); | 
|  | if (!tm_list[i]) { | 
|  | ret = -ENOMEM; | 
|  | goto free_tms; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tree_mod_dont_log(eb->fs_info, eb)) | 
|  | goto free_tms; | 
|  |  | 
|  | ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); | 
|  | write_unlock(&eb->fs_info->tree_mod_log_lock); | 
|  | if (ret) | 
|  | goto free_tms; | 
|  | kfree(tm_list); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_tms: | 
|  | for (i = 0; i < nritems; i++) | 
|  | kfree(tm_list[i]); | 
|  | kfree(tm_list); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check if the tree block can be shared by multiple trees | 
|  | */ | 
|  | int btrfs_block_can_be_shared(struct btrfs_root *root, | 
|  | struct extent_buffer *buf) | 
|  | { | 
|  | /* | 
|  | * Tree blocks not in reference counted trees and tree roots | 
|  | * are never shared. If a block was allocated after the last | 
|  | * snapshot and the block was not allocated by tree relocation, | 
|  | * we know the block is not shared. | 
|  | */ | 
|  | if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && | 
|  | buf != root->node && buf != root->commit_root && | 
|  | (btrfs_header_generation(buf) <= | 
|  | btrfs_root_last_snapshot(&root->root_item) || | 
|  | btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | struct extent_buffer *cow, | 
|  | int *last_ref) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 refs; | 
|  | u64 owner; | 
|  | u64 flags; | 
|  | u64 new_flags = 0; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Backrefs update rules: | 
|  | * | 
|  | * Always use full backrefs for extent pointers in tree block | 
|  | * allocated by tree relocation. | 
|  | * | 
|  | * If a shared tree block is no longer referenced by its owner | 
|  | * tree (btrfs_header_owner(buf) == root->root_key.objectid), | 
|  | * use full backrefs for extent pointers in tree block. | 
|  | * | 
|  | * If a tree block is been relocating | 
|  | * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), | 
|  | * use full backrefs for extent pointers in tree block. | 
|  | * The reason for this is some operations (such as drop tree) | 
|  | * are only allowed for blocks use full backrefs. | 
|  | */ | 
|  |  | 
|  | if (btrfs_block_can_be_shared(root, buf)) { | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, | 
|  | btrfs_header_level(buf), 1, | 
|  | &refs, &flags); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (refs == 0) { | 
|  | ret = -EROFS; | 
|  | btrfs_handle_fs_error(fs_info, ret, NULL); | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | refs = 1; | 
|  | if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || | 
|  | btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) | 
|  | flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | else | 
|  | flags = 0; | 
|  | } | 
|  |  | 
|  | owner = btrfs_header_owner(buf); | 
|  | BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && | 
|  | !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); | 
|  |  | 
|  | if (refs > 1) { | 
|  | if ((owner == root->root_key.objectid || | 
|  | root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && | 
|  | !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { | 
|  | ret = btrfs_inc_ref(trans, root, buf, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (root->root_key.objectid == | 
|  | BTRFS_TREE_RELOC_OBJECTID) { | 
|  | ret = btrfs_dec_ref(trans, root, buf, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = btrfs_inc_ref(trans, root, cow, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | } else { | 
|  |  | 
|  | if (root->root_key.objectid == | 
|  | BTRFS_TREE_RELOC_OBJECTID) | 
|  | ret = btrfs_inc_ref(trans, root, cow, 1); | 
|  | else | 
|  | ret = btrfs_inc_ref(trans, root, cow, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | if (new_flags != 0) { | 
|  | int level = btrfs_header_level(buf); | 
|  |  | 
|  | ret = btrfs_set_disk_extent_flags(trans, fs_info, | 
|  | buf->start, | 
|  | buf->len, | 
|  | new_flags, level, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { | 
|  | if (root->root_key.objectid == | 
|  | BTRFS_TREE_RELOC_OBJECTID) | 
|  | ret = btrfs_inc_ref(trans, root, cow, 1); | 
|  | else | 
|  | ret = btrfs_inc_ref(trans, root, cow, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = btrfs_dec_ref(trans, root, buf, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | clean_tree_block(fs_info, buf); | 
|  | *last_ref = 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * does the dirty work in cow of a single block.  The parent block (if | 
|  | * supplied) is updated to point to the new cow copy.  The new buffer is marked | 
|  | * dirty and returned locked.  If you modify the block it needs to be marked | 
|  | * dirty again. | 
|  | * | 
|  | * search_start -- an allocation hint for the new block | 
|  | * | 
|  | * empty_size -- a hint that you plan on doing more cow.  This is the size in | 
|  | * bytes the allocator should try to find free next to the block it returns. | 
|  | * This is just a hint and may be ignored by the allocator. | 
|  | */ | 
|  | static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | struct extent_buffer *parent, int parent_slot, | 
|  | struct extent_buffer **cow_ret, | 
|  | u64 search_start, u64 empty_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_disk_key disk_key; | 
|  | struct extent_buffer *cow; | 
|  | int level, ret; | 
|  | int last_ref = 0; | 
|  | int unlock_orig = 0; | 
|  | u64 parent_start = 0; | 
|  |  | 
|  | if (*cow_ret == buf) | 
|  | unlock_orig = 1; | 
|  |  | 
|  | btrfs_assert_tree_locked(buf); | 
|  |  | 
|  | WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && | 
|  | trans->transid != fs_info->running_transaction->transid); | 
|  | WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && | 
|  | trans->transid != root->last_trans); | 
|  |  | 
|  | level = btrfs_header_level(buf); | 
|  |  | 
|  | if (level == 0) | 
|  | btrfs_item_key(buf, &disk_key, 0); | 
|  | else | 
|  | btrfs_node_key(buf, &disk_key, 0); | 
|  |  | 
|  | if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) | 
|  | parent_start = parent->start; | 
|  |  | 
|  | /* | 
|  | * If we are COWing a node/leaf from the extent, chunk or device trees, | 
|  | * make sure that we do not finish block group creation of pending block | 
|  | * groups. We do this to avoid a deadlock. | 
|  | * COWing can result in allocation of a new chunk, and flushing pending | 
|  | * block groups (btrfs_create_pending_block_groups()) can be triggered | 
|  | * when finishing allocation of a new chunk. Creation of a pending block | 
|  | * group modifies the extent, chunk and device trees, therefore we could | 
|  | * deadlock with ourselves since we are holding a lock on an extent | 
|  | * buffer that btrfs_create_pending_block_groups() may try to COW later. | 
|  | */ | 
|  | if (root == fs_info->extent_root || | 
|  | root == fs_info->chunk_root || | 
|  | root == fs_info->dev_root) | 
|  | trans->can_flush_pending_bgs = false; | 
|  |  | 
|  | cow = btrfs_alloc_tree_block(trans, root, parent_start, | 
|  | root->root_key.objectid, &disk_key, level, | 
|  | search_start, empty_size); | 
|  | trans->can_flush_pending_bgs = true; | 
|  | if (IS_ERR(cow)) | 
|  | return PTR_ERR(cow); | 
|  |  | 
|  | /* cow is set to blocking by btrfs_init_new_buffer */ | 
|  |  | 
|  | copy_extent_buffer_full(cow, buf); | 
|  | btrfs_set_header_bytenr(cow, cow->start); | 
|  | btrfs_set_header_generation(cow, trans->transid); | 
|  | btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); | 
|  | btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | | 
|  | BTRFS_HEADER_FLAG_RELOC); | 
|  | if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) | 
|  | btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); | 
|  | else | 
|  | btrfs_set_header_owner(cow, root->root_key.objectid); | 
|  |  | 
|  | write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); | 
|  |  | 
|  | ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { | 
|  | ret = btrfs_reloc_cow_block(trans, root, buf, cow); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (buf == root->node) { | 
|  | WARN_ON(parent && parent != buf); | 
|  | if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || | 
|  | btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) | 
|  | parent_start = buf->start; | 
|  |  | 
|  | extent_buffer_get(cow); | 
|  | ret = tree_mod_log_insert_root(root->node, cow, 1); | 
|  | BUG_ON(ret < 0); | 
|  | rcu_assign_pointer(root->node, cow); | 
|  |  | 
|  | btrfs_free_tree_block(trans, root, buf, parent_start, | 
|  | last_ref); | 
|  | free_extent_buffer(buf); | 
|  | add_root_to_dirty_list(root); | 
|  | } else { | 
|  | WARN_ON(trans->transid != btrfs_header_generation(parent)); | 
|  | tree_mod_log_insert_key(parent, parent_slot, | 
|  | MOD_LOG_KEY_REPLACE, GFP_NOFS); | 
|  | btrfs_set_node_blockptr(parent, parent_slot, | 
|  | cow->start); | 
|  | btrfs_set_node_ptr_generation(parent, parent_slot, | 
|  | trans->transid); | 
|  | btrfs_mark_buffer_dirty(parent); | 
|  | if (last_ref) { | 
|  | ret = tree_mod_log_free_eb(buf); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | btrfs_free_tree_block(trans, root, buf, parent_start, | 
|  | last_ref); | 
|  | } | 
|  | if (unlock_orig) | 
|  | btrfs_tree_unlock(buf); | 
|  | free_extent_buffer_stale(buf); | 
|  | btrfs_mark_buffer_dirty(cow); | 
|  | *cow_ret = cow; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns the logical address of the oldest predecessor of the given root. | 
|  | * entries older than time_seq are ignored. | 
|  | */ | 
|  | static struct tree_mod_elem *__tree_mod_log_oldest_root( | 
|  | struct extent_buffer *eb_root, u64 time_seq) | 
|  | { | 
|  | struct tree_mod_elem *tm; | 
|  | struct tree_mod_elem *found = NULL; | 
|  | u64 root_logical = eb_root->start; | 
|  | int looped = 0; | 
|  |  | 
|  | if (!time_seq) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * the very last operation that's logged for a root is the | 
|  | * replacement operation (if it is replaced at all). this has | 
|  | * the logical address of the *new* root, making it the very | 
|  | * first operation that's logged for this root. | 
|  | */ | 
|  | while (1) { | 
|  | tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, | 
|  | time_seq); | 
|  | if (!looped && !tm) | 
|  | return NULL; | 
|  | /* | 
|  | * if there are no tree operation for the oldest root, we simply | 
|  | * return it. this should only happen if that (old) root is at | 
|  | * level 0. | 
|  | */ | 
|  | if (!tm) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * if there's an operation that's not a root replacement, we | 
|  | * found the oldest version of our root. normally, we'll find a | 
|  | * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. | 
|  | */ | 
|  | if (tm->op != MOD_LOG_ROOT_REPLACE) | 
|  | break; | 
|  |  | 
|  | found = tm; | 
|  | root_logical = tm->old_root.logical; | 
|  | looped = 1; | 
|  | } | 
|  |  | 
|  | /* if there's no old root to return, return what we found instead */ | 
|  | if (!found) | 
|  | found = tm; | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * tm is a pointer to the first operation to rewind within eb. then, all | 
|  | * previous operations will be rewound (until we reach something older than | 
|  | * time_seq). | 
|  | */ | 
|  | static void | 
|  | __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, | 
|  | u64 time_seq, struct tree_mod_elem *first_tm) | 
|  | { | 
|  | u32 n; | 
|  | struct rb_node *next; | 
|  | struct tree_mod_elem *tm = first_tm; | 
|  | unsigned long o_dst; | 
|  | unsigned long o_src; | 
|  | unsigned long p_size = sizeof(struct btrfs_key_ptr); | 
|  |  | 
|  | n = btrfs_header_nritems(eb); | 
|  | read_lock(&fs_info->tree_mod_log_lock); | 
|  | while (tm && tm->seq >= time_seq) { | 
|  | /* | 
|  | * all the operations are recorded with the operator used for | 
|  | * the modification. as we're going backwards, we do the | 
|  | * opposite of each operation here. | 
|  | */ | 
|  | switch (tm->op) { | 
|  | case MOD_LOG_KEY_REMOVE_WHILE_FREEING: | 
|  | BUG_ON(tm->slot < n); | 
|  | /* Fallthrough */ | 
|  | case MOD_LOG_KEY_REMOVE_WHILE_MOVING: | 
|  | case MOD_LOG_KEY_REMOVE: | 
|  | btrfs_set_node_key(eb, &tm->key, tm->slot); | 
|  | btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); | 
|  | btrfs_set_node_ptr_generation(eb, tm->slot, | 
|  | tm->generation); | 
|  | n++; | 
|  | break; | 
|  | case MOD_LOG_KEY_REPLACE: | 
|  | BUG_ON(tm->slot >= n); | 
|  | btrfs_set_node_key(eb, &tm->key, tm->slot); | 
|  | btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); | 
|  | btrfs_set_node_ptr_generation(eb, tm->slot, | 
|  | tm->generation); | 
|  | break; | 
|  | case MOD_LOG_KEY_ADD: | 
|  | /* if a move operation is needed it's in the log */ | 
|  | n--; | 
|  | break; | 
|  | case MOD_LOG_MOVE_KEYS: | 
|  | o_dst = btrfs_node_key_ptr_offset(tm->slot); | 
|  | o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); | 
|  | memmove_extent_buffer(eb, o_dst, o_src, | 
|  | tm->move.nr_items * p_size); | 
|  | break; | 
|  | case MOD_LOG_ROOT_REPLACE: | 
|  | /* | 
|  | * this operation is special. for roots, this must be | 
|  | * handled explicitly before rewinding. | 
|  | * for non-roots, this operation may exist if the node | 
|  | * was a root: root A -> child B; then A gets empty and | 
|  | * B is promoted to the new root. in the mod log, we'll | 
|  | * have a root-replace operation for B, a tree block | 
|  | * that is no root. we simply ignore that operation. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | next = rb_next(&tm->node); | 
|  | if (!next) | 
|  | break; | 
|  | tm = rb_entry(next, struct tree_mod_elem, node); | 
|  | if (tm->logical != first_tm->logical) | 
|  | break; | 
|  | } | 
|  | read_unlock(&fs_info->tree_mod_log_lock); | 
|  | btrfs_set_header_nritems(eb, n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with eb read locked. If the buffer cannot be rewound, the same buffer | 
|  | * is returned. If rewind operations happen, a fresh buffer is returned. The | 
|  | * returned buffer is always read-locked. If the returned buffer is not the | 
|  | * input buffer, the lock on the input buffer is released and the input buffer | 
|  | * is freed (its refcount is decremented). | 
|  | */ | 
|  | static struct extent_buffer * | 
|  | tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, | 
|  | struct extent_buffer *eb, u64 time_seq) | 
|  | { | 
|  | struct extent_buffer *eb_rewin; | 
|  | struct tree_mod_elem *tm; | 
|  |  | 
|  | if (!time_seq) | 
|  | return eb; | 
|  |  | 
|  | if (btrfs_header_level(eb) == 0) | 
|  | return eb; | 
|  |  | 
|  | tm = tree_mod_log_search(fs_info, eb->start, time_seq); | 
|  | if (!tm) | 
|  | return eb; | 
|  |  | 
|  | btrfs_set_path_blocking(path); | 
|  | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  |  | 
|  | if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { | 
|  | BUG_ON(tm->slot != 0); | 
|  | eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); | 
|  | if (!eb_rewin) { | 
|  | btrfs_tree_read_unlock_blocking(eb); | 
|  | free_extent_buffer(eb); | 
|  | return NULL; | 
|  | } | 
|  | btrfs_set_header_bytenr(eb_rewin, eb->start); | 
|  | btrfs_set_header_backref_rev(eb_rewin, | 
|  | btrfs_header_backref_rev(eb)); | 
|  | btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); | 
|  | btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); | 
|  | } else { | 
|  | eb_rewin = btrfs_clone_extent_buffer(eb); | 
|  | if (!eb_rewin) { | 
|  | btrfs_tree_read_unlock_blocking(eb); | 
|  | free_extent_buffer(eb); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_tree_read_unlock_blocking(eb); | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | btrfs_tree_read_lock(eb_rewin); | 
|  | __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); | 
|  | WARN_ON(btrfs_header_nritems(eb_rewin) > | 
|  | BTRFS_NODEPTRS_PER_BLOCK(fs_info)); | 
|  |  | 
|  | return eb_rewin; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_old_root() rewinds the state of @root's root node to the given @time_seq | 
|  | * value. If there are no changes, the current root->root_node is returned. If | 
|  | * anything changed in between, there's a fresh buffer allocated on which the | 
|  | * rewind operations are done. In any case, the returned buffer is read locked. | 
|  | * Returns NULL on error (with no locks held). | 
|  | */ | 
|  | static inline struct extent_buffer * | 
|  | get_old_root(struct btrfs_root *root, u64 time_seq) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct tree_mod_elem *tm; | 
|  | struct extent_buffer *eb = NULL; | 
|  | struct extent_buffer *eb_root; | 
|  | struct extent_buffer *old; | 
|  | struct tree_mod_root *old_root = NULL; | 
|  | u64 old_generation = 0; | 
|  | u64 logical; | 
|  | int level; | 
|  |  | 
|  | eb_root = btrfs_read_lock_root_node(root); | 
|  | tm = __tree_mod_log_oldest_root(eb_root, time_seq); | 
|  | if (!tm) | 
|  | return eb_root; | 
|  |  | 
|  | if (tm->op == MOD_LOG_ROOT_REPLACE) { | 
|  | old_root = &tm->old_root; | 
|  | old_generation = tm->generation; | 
|  | logical = old_root->logical; | 
|  | level = old_root->level; | 
|  | } else { | 
|  | logical = eb_root->start; | 
|  | level = btrfs_header_level(eb_root); | 
|  | } | 
|  |  | 
|  | tm = tree_mod_log_search(fs_info, logical, time_seq); | 
|  | if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { | 
|  | btrfs_tree_read_unlock(eb_root); | 
|  | free_extent_buffer(eb_root); | 
|  | old = read_tree_block(fs_info, logical, 0, level, NULL); | 
|  | if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { | 
|  | if (!IS_ERR(old)) | 
|  | free_extent_buffer(old); | 
|  | btrfs_warn(fs_info, | 
|  | "failed to read tree block %llu from get_old_root", | 
|  | logical); | 
|  | } else { | 
|  | eb = btrfs_clone_extent_buffer(old); | 
|  | free_extent_buffer(old); | 
|  | } | 
|  | } else if (old_root) { | 
|  | btrfs_tree_read_unlock(eb_root); | 
|  | free_extent_buffer(eb_root); | 
|  | eb = alloc_dummy_extent_buffer(fs_info, logical); | 
|  | } else { | 
|  | btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); | 
|  | eb = btrfs_clone_extent_buffer(eb_root); | 
|  | btrfs_tree_read_unlock_blocking(eb_root); | 
|  | free_extent_buffer(eb_root); | 
|  | } | 
|  |  | 
|  | if (!eb) | 
|  | return NULL; | 
|  | btrfs_tree_read_lock(eb); | 
|  | if (old_root) { | 
|  | btrfs_set_header_bytenr(eb, eb->start); | 
|  | btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); | 
|  | btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); | 
|  | btrfs_set_header_level(eb, old_root->level); | 
|  | btrfs_set_header_generation(eb, old_generation); | 
|  | } | 
|  | if (tm) | 
|  | __tree_mod_log_rewind(fs_info, eb, time_seq, tm); | 
|  | else | 
|  | WARN_ON(btrfs_header_level(eb) != 0); | 
|  | WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); | 
|  |  | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) | 
|  | { | 
|  | struct tree_mod_elem *tm; | 
|  | int level; | 
|  | struct extent_buffer *eb_root = btrfs_root_node(root); | 
|  |  | 
|  | tm = __tree_mod_log_oldest_root(eb_root, time_seq); | 
|  | if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { | 
|  | level = tm->old_root.level; | 
|  | } else { | 
|  | level = btrfs_header_level(eb_root); | 
|  | } | 
|  | free_extent_buffer(eb_root); | 
|  |  | 
|  | return level; | 
|  | } | 
|  |  | 
|  | static inline int should_cow_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf) | 
|  | { | 
|  | if (btrfs_is_testing(root->fs_info)) | 
|  | return 0; | 
|  |  | 
|  | /* Ensure we can see the FORCE_COW bit */ | 
|  | smp_mb__before_atomic(); | 
|  |  | 
|  | /* | 
|  | * We do not need to cow a block if | 
|  | * 1) this block is not created or changed in this transaction; | 
|  | * 2) this block does not belong to TREE_RELOC tree; | 
|  | * 3) the root is not forced COW. | 
|  | * | 
|  | * What is forced COW: | 
|  | *    when we create snapshot during committing the transaction, | 
|  | *    after we've finished copying src root, we must COW the shared | 
|  | *    block to ensure the metadata consistency. | 
|  | */ | 
|  | if (btrfs_header_generation(buf) == trans->transid && | 
|  | !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && | 
|  | !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && | 
|  | btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && | 
|  | !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cows a single block, see __btrfs_cow_block for the real work. | 
|  | * This version of it has extra checks so that a block isn't COWed more than | 
|  | * once per transaction, as long as it hasn't been written yet | 
|  | */ | 
|  | noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct extent_buffer *buf, | 
|  | struct extent_buffer *parent, int parent_slot, | 
|  | struct extent_buffer **cow_ret) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 search_start; | 
|  | int ret; | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_DELETING, &root->state)) | 
|  | btrfs_err(fs_info, | 
|  | "COW'ing blocks on a fs root that's being dropped"); | 
|  |  | 
|  | if (trans->transaction != fs_info->running_transaction) | 
|  | WARN(1, KERN_CRIT "trans %llu running %llu\n", | 
|  | trans->transid, | 
|  | fs_info->running_transaction->transid); | 
|  |  | 
|  | if (trans->transid != fs_info->generation) | 
|  | WARN(1, KERN_CRIT "trans %llu running %llu\n", | 
|  | trans->transid, fs_info->generation); | 
|  |  | 
|  | if (!should_cow_block(trans, root, buf)) { | 
|  | trans->dirty = true; | 
|  | *cow_ret = buf; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | search_start = buf->start & ~((u64)SZ_1G - 1); | 
|  |  | 
|  | if (parent) | 
|  | btrfs_set_lock_blocking(parent); | 
|  | btrfs_set_lock_blocking(buf); | 
|  |  | 
|  | ret = __btrfs_cow_block(trans, root, buf, parent, | 
|  | parent_slot, cow_ret, search_start, 0); | 
|  |  | 
|  | trace_btrfs_cow_block(root, buf, *cow_ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function for defrag to decide if two blocks pointed to by a | 
|  | * node are actually close by | 
|  | */ | 
|  | static int close_blocks(u64 blocknr, u64 other, u32 blocksize) | 
|  | { | 
|  | if (blocknr < other && other - (blocknr + blocksize) < 32768) | 
|  | return 1; | 
|  | if (blocknr > other && blocknr - (other + blocksize) < 32768) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compare two keys in a memcmp fashion | 
|  | */ | 
|  | static int comp_keys(const struct btrfs_disk_key *disk, | 
|  | const struct btrfs_key *k2) | 
|  | { | 
|  | struct btrfs_key k1; | 
|  |  | 
|  | btrfs_disk_key_to_cpu(&k1, disk); | 
|  |  | 
|  | return btrfs_comp_cpu_keys(&k1, k2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * same as comp_keys only with two btrfs_key's | 
|  | */ | 
|  | int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) | 
|  | { | 
|  | if (k1->objectid > k2->objectid) | 
|  | return 1; | 
|  | if (k1->objectid < k2->objectid) | 
|  | return -1; | 
|  | if (k1->type > k2->type) | 
|  | return 1; | 
|  | if (k1->type < k2->type) | 
|  | return -1; | 
|  | if (k1->offset > k2->offset) | 
|  | return 1; | 
|  | if (k1->offset < k2->offset) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used by the defrag code to go through all the | 
|  | * leaves pointed to by a node and reallocate them so that | 
|  | * disk order is close to key order | 
|  | */ | 
|  | int btrfs_realloc_node(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct extent_buffer *parent, | 
|  | int start_slot, u64 *last_ret, | 
|  | struct btrfs_key *progress) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *cur; | 
|  | u64 blocknr; | 
|  | u64 gen; | 
|  | u64 search_start = *last_ret; | 
|  | u64 last_block = 0; | 
|  | u64 other; | 
|  | u32 parent_nritems; | 
|  | int end_slot; | 
|  | int i; | 
|  | int err = 0; | 
|  | int parent_level; | 
|  | int uptodate; | 
|  | u32 blocksize; | 
|  | int progress_passed = 0; | 
|  | struct btrfs_disk_key disk_key; | 
|  |  | 
|  | parent_level = btrfs_header_level(parent); | 
|  |  | 
|  | WARN_ON(trans->transaction != fs_info->running_transaction); | 
|  | WARN_ON(trans->transid != fs_info->generation); | 
|  |  | 
|  | parent_nritems = btrfs_header_nritems(parent); | 
|  | blocksize = fs_info->nodesize; | 
|  | end_slot = parent_nritems - 1; | 
|  |  | 
|  | if (parent_nritems <= 1) | 
|  | return 0; | 
|  |  | 
|  | btrfs_set_lock_blocking(parent); | 
|  |  | 
|  | for (i = start_slot; i <= end_slot; i++) { | 
|  | struct btrfs_key first_key; | 
|  | int close = 1; | 
|  |  | 
|  | btrfs_node_key(parent, &disk_key, i); | 
|  | if (!progress_passed && comp_keys(&disk_key, progress) < 0) | 
|  | continue; | 
|  |  | 
|  | progress_passed = 1; | 
|  | blocknr = btrfs_node_blockptr(parent, i); | 
|  | gen = btrfs_node_ptr_generation(parent, i); | 
|  | btrfs_node_key_to_cpu(parent, &first_key, i); | 
|  | if (last_block == 0) | 
|  | last_block = blocknr; | 
|  |  | 
|  | if (i > 0) { | 
|  | other = btrfs_node_blockptr(parent, i - 1); | 
|  | close = close_blocks(blocknr, other, blocksize); | 
|  | } | 
|  | if (!close && i < end_slot) { | 
|  | other = btrfs_node_blockptr(parent, i + 1); | 
|  | close = close_blocks(blocknr, other, blocksize); | 
|  | } | 
|  | if (close) { | 
|  | last_block = blocknr; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | cur = find_extent_buffer(fs_info, blocknr); | 
|  | if (cur) | 
|  | uptodate = btrfs_buffer_uptodate(cur, gen, 0); | 
|  | else | 
|  | uptodate = 0; | 
|  | if (!cur || !uptodate) { | 
|  | if (!cur) { | 
|  | cur = read_tree_block(fs_info, blocknr, gen, | 
|  | parent_level - 1, | 
|  | &first_key); | 
|  | if (IS_ERR(cur)) { | 
|  | return PTR_ERR(cur); | 
|  | } else if (!extent_buffer_uptodate(cur)) { | 
|  | free_extent_buffer(cur); | 
|  | return -EIO; | 
|  | } | 
|  | } else if (!uptodate) { | 
|  | err = btrfs_read_buffer(cur, gen, | 
|  | parent_level - 1,&first_key); | 
|  | if (err) { | 
|  | free_extent_buffer(cur); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (search_start == 0) | 
|  | search_start = last_block; | 
|  |  | 
|  | btrfs_tree_lock(cur); | 
|  | btrfs_set_lock_blocking(cur); | 
|  | err = __btrfs_cow_block(trans, root, cur, parent, i, | 
|  | &cur, search_start, | 
|  | min(16 * blocksize, | 
|  | (end_slot - i) * blocksize)); | 
|  | if (err) { | 
|  | btrfs_tree_unlock(cur); | 
|  | free_extent_buffer(cur); | 
|  | break; | 
|  | } | 
|  | search_start = cur->start; | 
|  | last_block = cur->start; | 
|  | *last_ret = search_start; | 
|  | btrfs_tree_unlock(cur); | 
|  | free_extent_buffer(cur); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search for key in the extent_buffer.  The items start at offset p, | 
|  | * and they are item_size apart.  There are 'max' items in p. | 
|  | * | 
|  | * the slot in the array is returned via slot, and it points to | 
|  | * the place where you would insert key if it is not found in | 
|  | * the array. | 
|  | * | 
|  | * slot may point to max if the key is bigger than all of the keys | 
|  | */ | 
|  | static noinline int generic_bin_search(struct extent_buffer *eb, | 
|  | unsigned long p, int item_size, | 
|  | const struct btrfs_key *key, | 
|  | int max, int *slot) | 
|  | { | 
|  | int low = 0; | 
|  | int high = max; | 
|  | int mid; | 
|  | int ret; | 
|  | struct btrfs_disk_key *tmp = NULL; | 
|  | struct btrfs_disk_key unaligned; | 
|  | unsigned long offset; | 
|  | char *kaddr = NULL; | 
|  | unsigned long map_start = 0; | 
|  | unsigned long map_len = 0; | 
|  | int err; | 
|  |  | 
|  | if (low > high) { | 
|  | btrfs_err(eb->fs_info, | 
|  | "%s: low (%d) > high (%d) eb %llu owner %llu level %d", | 
|  | __func__, low, high, eb->start, | 
|  | btrfs_header_owner(eb), btrfs_header_level(eb)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (low < high) { | 
|  | mid = (low + high) / 2; | 
|  | offset = p + mid * item_size; | 
|  |  | 
|  | if (!kaddr || offset < map_start || | 
|  | (offset + sizeof(struct btrfs_disk_key)) > | 
|  | map_start + map_len) { | 
|  |  | 
|  | err = map_private_extent_buffer(eb, offset, | 
|  | sizeof(struct btrfs_disk_key), | 
|  | &kaddr, &map_start, &map_len); | 
|  |  | 
|  | if (!err) { | 
|  | tmp = (struct btrfs_disk_key *)(kaddr + offset - | 
|  | map_start); | 
|  | } else if (err == 1) { | 
|  | read_extent_buffer(eb, &unaligned, | 
|  | offset, sizeof(unaligned)); | 
|  | tmp = &unaligned; | 
|  | } else { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | tmp = (struct btrfs_disk_key *)(kaddr + offset - | 
|  | map_start); | 
|  | } | 
|  | ret = comp_keys(tmp, key); | 
|  |  | 
|  | if (ret < 0) | 
|  | low = mid + 1; | 
|  | else if (ret > 0) | 
|  | high = mid; | 
|  | else { | 
|  | *slot = mid; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | *slot = low; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * simple bin_search frontend that does the right thing for | 
|  | * leaves vs nodes | 
|  | */ | 
|  | int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, | 
|  | int level, int *slot) | 
|  | { | 
|  | if (level == 0) | 
|  | return generic_bin_search(eb, | 
|  | offsetof(struct btrfs_leaf, items), | 
|  | sizeof(struct btrfs_item), | 
|  | key, btrfs_header_nritems(eb), | 
|  | slot); | 
|  | else | 
|  | return generic_bin_search(eb, | 
|  | offsetof(struct btrfs_node, ptrs), | 
|  | sizeof(struct btrfs_key_ptr), | 
|  | key, btrfs_header_nritems(eb), | 
|  | slot); | 
|  | } | 
|  |  | 
|  | static void root_add_used(struct btrfs_root *root, u32 size) | 
|  | { | 
|  | spin_lock(&root->accounting_lock); | 
|  | btrfs_set_root_used(&root->root_item, | 
|  | btrfs_root_used(&root->root_item) + size); | 
|  | spin_unlock(&root->accounting_lock); | 
|  | } | 
|  |  | 
|  | static void root_sub_used(struct btrfs_root *root, u32 size) | 
|  | { | 
|  | spin_lock(&root->accounting_lock); | 
|  | btrfs_set_root_used(&root->root_item, | 
|  | btrfs_root_used(&root->root_item) - size); | 
|  | spin_unlock(&root->accounting_lock); | 
|  | } | 
|  |  | 
|  | /* given a node and slot number, this reads the blocks it points to.  The | 
|  | * extent buffer is returned with a reference taken (but unlocked). | 
|  | */ | 
|  | static noinline struct extent_buffer * | 
|  | read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, | 
|  | int slot) | 
|  | { | 
|  | int level = btrfs_header_level(parent); | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_key first_key; | 
|  |  | 
|  | if (slot < 0 || slot >= btrfs_header_nritems(parent)) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | BUG_ON(level == 0); | 
|  |  | 
|  | btrfs_node_key_to_cpu(parent, &first_key, slot); | 
|  | eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), | 
|  | btrfs_node_ptr_generation(parent, slot), | 
|  | level - 1, &first_key); | 
|  | if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { | 
|  | free_extent_buffer(eb); | 
|  | eb = ERR_PTR(-EIO); | 
|  | } | 
|  |  | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * node level balancing, used to make sure nodes are in proper order for | 
|  | * item deletion.  We balance from the top down, so we have to make sure | 
|  | * that a deletion won't leave an node completely empty later on. | 
|  | */ | 
|  | static noinline int balance_level(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *right = NULL; | 
|  | struct extent_buffer *mid; | 
|  | struct extent_buffer *left = NULL; | 
|  | struct extent_buffer *parent = NULL; | 
|  | int ret = 0; | 
|  | int wret; | 
|  | int pslot; | 
|  | int orig_slot = path->slots[level]; | 
|  | u64 orig_ptr; | 
|  |  | 
|  | ASSERT(level > 0); | 
|  |  | 
|  | mid = path->nodes[level]; | 
|  |  | 
|  | WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && | 
|  | path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); | 
|  | WARN_ON(btrfs_header_generation(mid) != trans->transid); | 
|  |  | 
|  | orig_ptr = btrfs_node_blockptr(mid, orig_slot); | 
|  |  | 
|  | if (level < BTRFS_MAX_LEVEL - 1) { | 
|  | parent = path->nodes[level + 1]; | 
|  | pslot = path->slots[level + 1]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deal with the case where there is only one pointer in the root | 
|  | * by promoting the node below to a root | 
|  | */ | 
|  | if (!parent) { | 
|  | struct extent_buffer *child; | 
|  |  | 
|  | if (btrfs_header_nritems(mid) != 1) | 
|  | return 0; | 
|  |  | 
|  | /* promote the child to a root */ | 
|  | child = read_node_slot(fs_info, mid, 0); | 
|  | if (IS_ERR(child)) { | 
|  | ret = PTR_ERR(child); | 
|  | btrfs_handle_fs_error(fs_info, ret, NULL); | 
|  | goto enospc; | 
|  | } | 
|  |  | 
|  | btrfs_tree_lock(child); | 
|  | btrfs_set_lock_blocking(child); | 
|  | ret = btrfs_cow_block(trans, root, child, mid, 0, &child); | 
|  | if (ret) { | 
|  | btrfs_tree_unlock(child); | 
|  | free_extent_buffer(child); | 
|  | goto enospc; | 
|  | } | 
|  |  | 
|  | ret = tree_mod_log_insert_root(root->node, child, 1); | 
|  | BUG_ON(ret < 0); | 
|  | rcu_assign_pointer(root->node, child); | 
|  |  | 
|  | add_root_to_dirty_list(root); | 
|  | btrfs_tree_unlock(child); | 
|  |  | 
|  | path->locks[level] = 0; | 
|  | path->nodes[level] = NULL; | 
|  | clean_tree_block(fs_info, mid); | 
|  | btrfs_tree_unlock(mid); | 
|  | /* once for the path */ | 
|  | free_extent_buffer(mid); | 
|  |  | 
|  | root_sub_used(root, mid->len); | 
|  | btrfs_free_tree_block(trans, root, mid, 0, 1); | 
|  | /* once for the root ptr */ | 
|  | free_extent_buffer_stale(mid); | 
|  | return 0; | 
|  | } | 
|  | if (btrfs_header_nritems(mid) > | 
|  | BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) | 
|  | return 0; | 
|  |  | 
|  | left = read_node_slot(fs_info, parent, pslot - 1); | 
|  | if (IS_ERR(left)) | 
|  | left = NULL; | 
|  |  | 
|  | if (left) { | 
|  | btrfs_tree_lock(left); | 
|  | btrfs_set_lock_blocking(left); | 
|  | wret = btrfs_cow_block(trans, root, left, | 
|  | parent, pslot - 1, &left); | 
|  | if (wret) { | 
|  | ret = wret; | 
|  | goto enospc; | 
|  | } | 
|  | } | 
|  |  | 
|  | right = read_node_slot(fs_info, parent, pslot + 1); | 
|  | if (IS_ERR(right)) | 
|  | right = NULL; | 
|  |  | 
|  | if (right) { | 
|  | btrfs_tree_lock(right); | 
|  | btrfs_set_lock_blocking(right); | 
|  | wret = btrfs_cow_block(trans, root, right, | 
|  | parent, pslot + 1, &right); | 
|  | if (wret) { | 
|  | ret = wret; | 
|  | goto enospc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* first, try to make some room in the middle buffer */ | 
|  | if (left) { | 
|  | orig_slot += btrfs_header_nritems(left); | 
|  | wret = push_node_left(trans, fs_info, left, mid, 1); | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * then try to empty the right most buffer into the middle | 
|  | */ | 
|  | if (right) { | 
|  | wret = push_node_left(trans, fs_info, mid, right, 1); | 
|  | if (wret < 0 && wret != -ENOSPC) | 
|  | ret = wret; | 
|  | if (btrfs_header_nritems(right) == 0) { | 
|  | clean_tree_block(fs_info, right); | 
|  | btrfs_tree_unlock(right); | 
|  | del_ptr(root, path, level + 1, pslot + 1); | 
|  | root_sub_used(root, right->len); | 
|  | btrfs_free_tree_block(trans, root, right, 0, 1); | 
|  | free_extent_buffer_stale(right); | 
|  | right = NULL; | 
|  | } else { | 
|  | struct btrfs_disk_key right_key; | 
|  | btrfs_node_key(right, &right_key, 0); | 
|  | ret = tree_mod_log_insert_key(parent, pslot + 1, | 
|  | MOD_LOG_KEY_REPLACE, GFP_NOFS); | 
|  | BUG_ON(ret < 0); | 
|  | btrfs_set_node_key(parent, &right_key, pslot + 1); | 
|  | btrfs_mark_buffer_dirty(parent); | 
|  | } | 
|  | } | 
|  | if (btrfs_header_nritems(mid) == 1) { | 
|  | /* | 
|  | * we're not allowed to leave a node with one item in the | 
|  | * tree during a delete.  A deletion from lower in the tree | 
|  | * could try to delete the only pointer in this node. | 
|  | * So, pull some keys from the left. | 
|  | * There has to be a left pointer at this point because | 
|  | * otherwise we would have pulled some pointers from the | 
|  | * right | 
|  | */ | 
|  | if (!left) { | 
|  | ret = -EROFS; | 
|  | btrfs_handle_fs_error(fs_info, ret, NULL); | 
|  | goto enospc; | 
|  | } | 
|  | wret = balance_node_right(trans, fs_info, mid, left); | 
|  | if (wret < 0) { | 
|  | ret = wret; | 
|  | goto enospc; | 
|  | } | 
|  | if (wret == 1) { | 
|  | wret = push_node_left(trans, fs_info, left, mid, 1); | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  | } | 
|  | BUG_ON(wret == 1); | 
|  | } | 
|  | if (btrfs_header_nritems(mid) == 0) { | 
|  | clean_tree_block(fs_info, mid); | 
|  | btrfs_tree_unlock(mid); | 
|  | del_ptr(root, path, level + 1, pslot); | 
|  | root_sub_used(root, mid->len); | 
|  | btrfs_free_tree_block(trans, root, mid, 0, 1); | 
|  | free_extent_buffer_stale(mid); | 
|  | mid = NULL; | 
|  | } else { | 
|  | /* update the parent key to reflect our changes */ | 
|  | struct btrfs_disk_key mid_key; | 
|  | btrfs_node_key(mid, &mid_key, 0); | 
|  | ret = tree_mod_log_insert_key(parent, pslot, | 
|  | MOD_LOG_KEY_REPLACE, GFP_NOFS); | 
|  | BUG_ON(ret < 0); | 
|  | btrfs_set_node_key(parent, &mid_key, pslot); | 
|  | btrfs_mark_buffer_dirty(parent); | 
|  | } | 
|  |  | 
|  | /* update the path */ | 
|  | if (left) { | 
|  | if (btrfs_header_nritems(left) > orig_slot) { | 
|  | extent_buffer_get(left); | 
|  | /* left was locked after cow */ | 
|  | path->nodes[level] = left; | 
|  | path->slots[level + 1] -= 1; | 
|  | path->slots[level] = orig_slot; | 
|  | if (mid) { | 
|  | btrfs_tree_unlock(mid); | 
|  | free_extent_buffer(mid); | 
|  | } | 
|  | } else { | 
|  | orig_slot -= btrfs_header_nritems(left); | 
|  | path->slots[level] = orig_slot; | 
|  | } | 
|  | } | 
|  | /* double check we haven't messed things up */ | 
|  | if (orig_ptr != | 
|  | btrfs_node_blockptr(path->nodes[level], path->slots[level])) | 
|  | BUG(); | 
|  | enospc: | 
|  | if (right) { | 
|  | btrfs_tree_unlock(right); | 
|  | free_extent_buffer(right); | 
|  | } | 
|  | if (left) { | 
|  | if (path->nodes[level] != left) | 
|  | btrfs_tree_unlock(left); | 
|  | free_extent_buffer(left); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Node balancing for insertion.  Here we only split or push nodes around | 
|  | * when they are completely full.  This is also done top down, so we | 
|  | * have to be pessimistic. | 
|  | */ | 
|  | static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *right = NULL; | 
|  | struct extent_buffer *mid; | 
|  | struct extent_buffer *left = NULL; | 
|  | struct extent_buffer *parent = NULL; | 
|  | int ret = 0; | 
|  | int wret; | 
|  | int pslot; | 
|  | int orig_slot = path->slots[level]; | 
|  |  | 
|  | if (level == 0) | 
|  | return 1; | 
|  |  | 
|  | mid = path->nodes[level]; | 
|  | WARN_ON(btrfs_header_generation(mid) != trans->transid); | 
|  |  | 
|  | if (level < BTRFS_MAX_LEVEL - 1) { | 
|  | parent = path->nodes[level + 1]; | 
|  | pslot = path->slots[level + 1]; | 
|  | } | 
|  |  | 
|  | if (!parent) | 
|  | return 1; | 
|  |  | 
|  | left = read_node_slot(fs_info, parent, pslot - 1); | 
|  | if (IS_ERR(left)) | 
|  | left = NULL; | 
|  |  | 
|  | /* first, try to make some room in the middle buffer */ | 
|  | if (left) { | 
|  | u32 left_nr; | 
|  |  | 
|  | btrfs_tree_lock(left); | 
|  | btrfs_set_lock_blocking(left); | 
|  |  | 
|  | left_nr = btrfs_header_nritems(left); | 
|  | if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { | 
|  | wret = 1; | 
|  | } else { | 
|  | ret = btrfs_cow_block(trans, root, left, parent, | 
|  | pslot - 1, &left); | 
|  | if (ret) | 
|  | wret = 1; | 
|  | else { | 
|  | wret = push_node_left(trans, fs_info, | 
|  | left, mid, 0); | 
|  | } | 
|  | } | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  | if (wret == 0) { | 
|  | struct btrfs_disk_key disk_key; | 
|  | orig_slot += left_nr; | 
|  | btrfs_node_key(mid, &disk_key, 0); | 
|  | ret = tree_mod_log_insert_key(parent, pslot, | 
|  | MOD_LOG_KEY_REPLACE, GFP_NOFS); | 
|  | BUG_ON(ret < 0); | 
|  | btrfs_set_node_key(parent, &disk_key, pslot); | 
|  | btrfs_mark_buffer_dirty(parent); | 
|  | if (btrfs_header_nritems(left) > orig_slot) { | 
|  | path->nodes[level] = left; | 
|  | path->slots[level + 1] -= 1; | 
|  | path->slots[level] = orig_slot; | 
|  | btrfs_tree_unlock(mid); | 
|  | free_extent_buffer(mid); | 
|  | } else { | 
|  | orig_slot -= | 
|  | btrfs_header_nritems(left); | 
|  | path->slots[level] = orig_slot; | 
|  | btrfs_tree_unlock(left); | 
|  | free_extent_buffer(left); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | btrfs_tree_unlock(left); | 
|  | free_extent_buffer(left); | 
|  | } | 
|  | right = read_node_slot(fs_info, parent, pslot + 1); | 
|  | if (IS_ERR(right)) | 
|  | right = NULL; | 
|  |  | 
|  | /* | 
|  | * then try to empty the right most buffer into the middle | 
|  | */ | 
|  | if (right) { | 
|  | u32 right_nr; | 
|  |  | 
|  | btrfs_tree_lock(right); | 
|  | btrfs_set_lock_blocking(right); | 
|  |  | 
|  | right_nr = btrfs_header_nritems(right); | 
|  | if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { | 
|  | wret = 1; | 
|  | } else { | 
|  | ret = btrfs_cow_block(trans, root, right, | 
|  | parent, pslot + 1, | 
|  | &right); | 
|  | if (ret) | 
|  | wret = 1; | 
|  | else { | 
|  | wret = balance_node_right(trans, fs_info, | 
|  | right, mid); | 
|  | } | 
|  | } | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  | if (wret == 0) { | 
|  | struct btrfs_disk_key disk_key; | 
|  |  | 
|  | btrfs_node_key(right, &disk_key, 0); | 
|  | ret = tree_mod_log_insert_key(parent, pslot + 1, | 
|  | MOD_LOG_KEY_REPLACE, GFP_NOFS); | 
|  | BUG_ON(ret < 0); | 
|  | btrfs_set_node_key(parent, &disk_key, pslot + 1); | 
|  | btrfs_mark_buffer_dirty(parent); | 
|  |  | 
|  | if (btrfs_header_nritems(mid) <= orig_slot) { | 
|  | path->nodes[level] = right; | 
|  | path->slots[level + 1] += 1; | 
|  | path->slots[level] = orig_slot - | 
|  | btrfs_header_nritems(mid); | 
|  | btrfs_tree_unlock(mid); | 
|  | free_extent_buffer(mid); | 
|  | } else { | 
|  | btrfs_tree_unlock(right); | 
|  | free_extent_buffer(right); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | btrfs_tree_unlock(right); | 
|  | free_extent_buffer(right); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readahead one full node of leaves, finding things that are close | 
|  | * to the block in 'slot', and triggering ra on them. | 
|  | */ | 
|  | static void reada_for_search(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | int level, int slot, u64 objectid) | 
|  | { | 
|  | struct extent_buffer *node; | 
|  | struct btrfs_disk_key disk_key; | 
|  | u32 nritems; | 
|  | u64 search; | 
|  | u64 target; | 
|  | u64 nread = 0; | 
|  | struct extent_buffer *eb; | 
|  | u32 nr; | 
|  | u32 blocksize; | 
|  | u32 nscan = 0; | 
|  |  | 
|  | if (level != 1) | 
|  | return; | 
|  |  | 
|  | if (!path->nodes[level]) | 
|  | return; | 
|  |  | 
|  | node = path->nodes[level]; | 
|  |  | 
|  | search = btrfs_node_blockptr(node, slot); | 
|  | blocksize = fs_info->nodesize; | 
|  | eb = find_extent_buffer(fs_info, search); | 
|  | if (eb) { | 
|  | free_extent_buffer(eb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | target = search; | 
|  |  | 
|  | nritems = btrfs_header_nritems(node); | 
|  | nr = slot; | 
|  |  | 
|  | while (1) { | 
|  | if (path->reada == READA_BACK) { | 
|  | if (nr == 0) | 
|  | break; | 
|  | nr--; | 
|  | } else if (path->reada == READA_FORWARD) { | 
|  | nr++; | 
|  | if (nr >= nritems) | 
|  | break; | 
|  | } | 
|  | if (path->reada == READA_BACK && objectid) { | 
|  | btrfs_node_key(node, &disk_key, nr); | 
|  | if (btrfs_disk_key_objectid(&disk_key) != objectid) | 
|  | break; | 
|  | } | 
|  | search = btrfs_node_blockptr(node, nr); | 
|  | if ((search <= target && target - search <= 65536) || | 
|  | (search > target && search - target <= 65536)) { | 
|  | readahead_tree_block(fs_info, search); | 
|  | nread += blocksize; | 
|  | } | 
|  | nscan++; | 
|  | if ((nread > 65536 || nscan > 32)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, int level) | 
|  | { | 
|  | int slot; | 
|  | int nritems; | 
|  | struct extent_buffer *parent; | 
|  | struct extent_buffer *eb; | 
|  | u64 gen; | 
|  | u64 block1 = 0; | 
|  | u64 block2 = 0; | 
|  |  | 
|  | parent = path->nodes[level + 1]; | 
|  | if (!parent) | 
|  | return; | 
|  |  | 
|  | nritems = btrfs_header_nritems(parent); | 
|  | slot = path->slots[level + 1]; | 
|  |  | 
|  | if (slot > 0) { | 
|  | block1 = btrfs_node_blockptr(parent, slot - 1); | 
|  | gen = btrfs_node_ptr_generation(parent, slot - 1); | 
|  | eb = find_extent_buffer(fs_info, block1); | 
|  | /* | 
|  | * if we get -eagain from btrfs_buffer_uptodate, we | 
|  | * don't want to return eagain here.  That will loop | 
|  | * forever | 
|  | */ | 
|  | if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) | 
|  | block1 = 0; | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  | if (slot + 1 < nritems) { | 
|  | block2 = btrfs_node_blockptr(parent, slot + 1); | 
|  | gen = btrfs_node_ptr_generation(parent, slot + 1); | 
|  | eb = find_extent_buffer(fs_info, block2); | 
|  | if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) | 
|  | block2 = 0; | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | if (block1) | 
|  | readahead_tree_block(fs_info, block1); | 
|  | if (block2) | 
|  | readahead_tree_block(fs_info, block2); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * when we walk down the tree, it is usually safe to unlock the higher layers | 
|  | * in the tree.  The exceptions are when our path goes through slot 0, because | 
|  | * operations on the tree might require changing key pointers higher up in the | 
|  | * tree. | 
|  | * | 
|  | * callers might also have set path->keep_locks, which tells this code to keep | 
|  | * the lock if the path points to the last slot in the block.  This is part of | 
|  | * walking through the tree, and selecting the next slot in the higher block. | 
|  | * | 
|  | * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so | 
|  | * if lowest_unlock is 1, level 0 won't be unlocked | 
|  | */ | 
|  | static noinline void unlock_up(struct btrfs_path *path, int level, | 
|  | int lowest_unlock, int min_write_lock_level, | 
|  | int *write_lock_level) | 
|  | { | 
|  | int i; | 
|  | int skip_level = level; | 
|  | int no_skips = 0; | 
|  | struct extent_buffer *t; | 
|  |  | 
|  | for (i = level; i < BTRFS_MAX_LEVEL; i++) { | 
|  | if (!path->nodes[i]) | 
|  | break; | 
|  | if (!path->locks[i]) | 
|  | break; | 
|  | if (!no_skips && path->slots[i] == 0) { | 
|  | skip_level = i + 1; | 
|  | continue; | 
|  | } | 
|  | if (!no_skips && path->keep_locks) { | 
|  | u32 nritems; | 
|  | t = path->nodes[i]; | 
|  | nritems = btrfs_header_nritems(t); | 
|  | if (nritems < 1 || path->slots[i] >= nritems - 1) { | 
|  | skip_level = i + 1; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (skip_level < i && i >= lowest_unlock) | 
|  | no_skips = 1; | 
|  |  | 
|  | t = path->nodes[i]; | 
|  | if (i >= lowest_unlock && i > skip_level) { | 
|  | btrfs_tree_unlock_rw(t, path->locks[i]); | 
|  | path->locks[i] = 0; | 
|  | if (write_lock_level && | 
|  | i > min_write_lock_level && | 
|  | i <= *write_lock_level) { | 
|  | *write_lock_level = i - 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This releases any locks held in the path starting at level and | 
|  | * going all the way up to the root. | 
|  | * | 
|  | * btrfs_search_slot will keep the lock held on higher nodes in a few | 
|  | * corner cases, such as COW of the block at slot zero in the node.  This | 
|  | * ignores those rules, and it should only be called when there are no | 
|  | * more updates to be done higher up in the tree. | 
|  | */ | 
|  | noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (path->keep_locks) | 
|  | return; | 
|  |  | 
|  | for (i = level; i < BTRFS_MAX_LEVEL; i++) { | 
|  | if (!path->nodes[i]) | 
|  | continue; | 
|  | if (!path->locks[i]) | 
|  | continue; | 
|  | btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); | 
|  | path->locks[i] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function for btrfs_search_slot.  The goal is to find a block | 
|  | * in cache without setting the path to blocking.  If we find the block | 
|  | * we return zero and the path is unchanged. | 
|  | * | 
|  | * If we can't find the block, we set the path blocking and do some | 
|  | * reada.  -EAGAIN is returned and the search must be repeated. | 
|  | */ | 
|  | static int | 
|  | read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, | 
|  | struct extent_buffer **eb_ret, int level, int slot, | 
|  | const struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 blocknr; | 
|  | u64 gen; | 
|  | struct extent_buffer *b = *eb_ret; | 
|  | struct extent_buffer *tmp; | 
|  | struct btrfs_key first_key; | 
|  | int ret; | 
|  | int parent_level; | 
|  |  | 
|  | blocknr = btrfs_node_blockptr(b, slot); | 
|  | gen = btrfs_node_ptr_generation(b, slot); | 
|  | parent_level = btrfs_header_level(b); | 
|  | btrfs_node_key_to_cpu(b, &first_key, slot); | 
|  |  | 
|  | tmp = find_extent_buffer(fs_info, blocknr); | 
|  | if (tmp) { | 
|  | /* first we do an atomic uptodate check */ | 
|  | if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { | 
|  | *eb_ret = tmp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* the pages were up to date, but we failed | 
|  | * the generation number check.  Do a full | 
|  | * read for the generation number that is correct. | 
|  | * We must do this without dropping locks so | 
|  | * we can trust our generation number | 
|  | */ | 
|  | btrfs_set_path_blocking(p); | 
|  |  | 
|  | /* now we're allowed to do a blocking uptodate check */ | 
|  | ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); | 
|  | if (!ret) { | 
|  | *eb_ret = tmp; | 
|  | return 0; | 
|  | } | 
|  | free_extent_buffer(tmp); | 
|  | btrfs_release_path(p); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reduce lock contention at high levels | 
|  | * of the btree by dropping locks before | 
|  | * we read.  Don't release the lock on the current | 
|  | * level because we need to walk this node to figure | 
|  | * out which blocks to read. | 
|  | */ | 
|  | btrfs_unlock_up_safe(p, level + 1); | 
|  | btrfs_set_path_blocking(p); | 
|  |  | 
|  | if (p->reada != READA_NONE) | 
|  | reada_for_search(fs_info, p, level, slot, key->objectid); | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, | 
|  | &first_key); | 
|  | if (!IS_ERR(tmp)) { | 
|  | /* | 
|  | * If the read above didn't mark this buffer up to date, | 
|  | * it will never end up being up to date.  Set ret to EIO now | 
|  | * and give up so that our caller doesn't loop forever | 
|  | * on our EAGAINs. | 
|  | */ | 
|  | if (!extent_buffer_uptodate(tmp)) | 
|  | ret = -EIO; | 
|  | free_extent_buffer(tmp); | 
|  | } else { | 
|  | ret = PTR_ERR(tmp); | 
|  | } | 
|  |  | 
|  | btrfs_release_path(p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function for btrfs_search_slot.  This does all of the checks | 
|  | * for node-level blocks and does any balancing required based on | 
|  | * the ins_len. | 
|  | * | 
|  | * If no extra work was required, zero is returned.  If we had to | 
|  | * drop the path, -EAGAIN is returned and btrfs_search_slot must | 
|  | * start over | 
|  | */ | 
|  | static int | 
|  | setup_nodes_for_search(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_path *p, | 
|  | struct extent_buffer *b, int level, int ins_len, | 
|  | int *write_lock_level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  |  | 
|  | if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= | 
|  | BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { | 
|  | int sret; | 
|  |  | 
|  | if (*write_lock_level < level + 1) { | 
|  | *write_lock_level = level + 1; | 
|  | btrfs_release_path(p); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_set_path_blocking(p); | 
|  | reada_for_balance(fs_info, p, level); | 
|  | sret = split_node(trans, root, p, level); | 
|  |  | 
|  | BUG_ON(sret > 0); | 
|  | if (sret) { | 
|  | ret = sret; | 
|  | goto done; | 
|  | } | 
|  | b = p->nodes[level]; | 
|  | } else if (ins_len < 0 && btrfs_header_nritems(b) < | 
|  | BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { | 
|  | int sret; | 
|  |  | 
|  | if (*write_lock_level < level + 1) { | 
|  | *write_lock_level = level + 1; | 
|  | btrfs_release_path(p); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_set_path_blocking(p); | 
|  | reada_for_balance(fs_info, p, level); | 
|  | sret = balance_level(trans, root, p, level); | 
|  |  | 
|  | if (sret) { | 
|  | ret = sret; | 
|  | goto done; | 
|  | } | 
|  | b = p->nodes[level]; | 
|  | if (!b) { | 
|  | btrfs_release_path(p); | 
|  | goto again; | 
|  | } | 
|  | BUG_ON(btrfs_header_nritems(b) == 1); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | again: | 
|  | ret = -EAGAIN; | 
|  | done: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void key_search_validate(struct extent_buffer *b, | 
|  | const struct btrfs_key *key, | 
|  | int level) | 
|  | { | 
|  | #ifdef CONFIG_BTRFS_ASSERT | 
|  | struct btrfs_disk_key disk_key; | 
|  |  | 
|  | btrfs_cpu_key_to_disk(&disk_key, key); | 
|  |  | 
|  | if (level == 0) | 
|  | ASSERT(!memcmp_extent_buffer(b, &disk_key, | 
|  | offsetof(struct btrfs_leaf, items[0].key), | 
|  | sizeof(disk_key))); | 
|  | else | 
|  | ASSERT(!memcmp_extent_buffer(b, &disk_key, | 
|  | offsetof(struct btrfs_node, ptrs[0].key), | 
|  | sizeof(disk_key))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int key_search(struct extent_buffer *b, const struct btrfs_key *key, | 
|  | int level, int *prev_cmp, int *slot) | 
|  | { | 
|  | if (*prev_cmp != 0) { | 
|  | *prev_cmp = btrfs_bin_search(b, key, level, slot); | 
|  | return *prev_cmp; | 
|  | } | 
|  |  | 
|  | key_search_validate(b, key, level); | 
|  | *slot = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, | 
|  | u64 iobjectid, u64 ioff, u8 key_type, | 
|  | struct btrfs_key *found_key) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | ASSERT(path); | 
|  | ASSERT(found_key); | 
|  |  | 
|  | key.type = key_type; | 
|  | key.objectid = iobjectid; | 
|  | key.offset = ioff; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { | 
|  | ret = btrfs_next_leaf(fs_root, path); | 
|  | if (ret) | 
|  | return ret; | 
|  | eb = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); | 
|  | if (found_key->type != key.type || | 
|  | found_key->objectid != key.objectid) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, | 
|  | struct btrfs_path *p, | 
|  | int write_lock_level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *b; | 
|  | int root_lock; | 
|  | int level = 0; | 
|  |  | 
|  | /* We try very hard to do read locks on the root */ | 
|  | root_lock = BTRFS_READ_LOCK; | 
|  |  | 
|  | if (p->search_commit_root) { | 
|  | /* | 
|  | * The commit roots are read only so we always do read locks, | 
|  | * and we always must hold the commit_root_sem when doing | 
|  | * searches on them, the only exception is send where we don't | 
|  | * want to block transaction commits for a long time, so | 
|  | * we need to clone the commit root in order to avoid races | 
|  | * with transaction commits that create a snapshot of one of | 
|  | * the roots used by a send operation. | 
|  | */ | 
|  | if (p->need_commit_sem) { | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | b = btrfs_clone_extent_buffer(root->commit_root); | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | if (!b) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | } else { | 
|  | b = root->commit_root; | 
|  | extent_buffer_get(b); | 
|  | } | 
|  | level = btrfs_header_level(b); | 
|  | /* | 
|  | * Ensure that all callers have set skip_locking when | 
|  | * p->search_commit_root = 1. | 
|  | */ | 
|  | ASSERT(p->skip_locking == 1); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (p->skip_locking) { | 
|  | b = btrfs_root_node(root); | 
|  | level = btrfs_header_level(b); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the level is set to maximum, we can skip trying to get the read | 
|  | * lock. | 
|  | */ | 
|  | if (write_lock_level < BTRFS_MAX_LEVEL) { | 
|  | /* | 
|  | * We don't know the level of the root node until we actually | 
|  | * have it read locked | 
|  | */ | 
|  | b = btrfs_read_lock_root_node(root); | 
|  | level = btrfs_header_level(b); | 
|  | if (level > write_lock_level) | 
|  | goto out; | 
|  |  | 
|  | /* Whoops, must trade for write lock */ | 
|  | btrfs_tree_read_unlock(b); | 
|  | free_extent_buffer(b); | 
|  | } | 
|  |  | 
|  | b = btrfs_lock_root_node(root); | 
|  | root_lock = BTRFS_WRITE_LOCK; | 
|  |  | 
|  | /* The level might have changed, check again */ | 
|  | level = btrfs_header_level(b); | 
|  |  | 
|  | out: | 
|  | p->nodes[level] = b; | 
|  | if (!p->skip_locking) | 
|  | p->locks[level] = root_lock; | 
|  | /* | 
|  | * Callers are responsible for dropping b's references. | 
|  | */ | 
|  | return b; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * btrfs_search_slot - look for a key in a tree and perform necessary | 
|  | * modifications to preserve tree invariants. | 
|  | * | 
|  | * @trans:	Handle of transaction, used when modifying the tree | 
|  | * @p:		Holds all btree nodes along the search path | 
|  | * @root:	The root node of the tree | 
|  | * @key:	The key we are looking for | 
|  | * @ins_len:	Indicates purpose of search, for inserts it is 1, for | 
|  | *		deletions it's -1. 0 for plain searches | 
|  | * @cow:	boolean should CoW operations be performed. Must always be 1 | 
|  | *		when modifying the tree. | 
|  | * | 
|  | * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. | 
|  | * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) | 
|  | * | 
|  | * If @key is found, 0 is returned and you can find the item in the leaf level | 
|  | * of the path (level 0) | 
|  | * | 
|  | * If @key isn't found, 1 is returned and the leaf level of the path (level 0) | 
|  | * points to the slot where it should be inserted | 
|  | * | 
|  | * If an error is encountered while searching the tree a negative error number | 
|  | * is returned | 
|  | */ | 
|  | int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | const struct btrfs_key *key, struct btrfs_path *p, | 
|  | int ins_len, int cow) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *b; | 
|  | int slot; | 
|  | int ret; | 
|  | int err; | 
|  | int level; | 
|  | int lowest_unlock = 1; | 
|  | /* everything at write_lock_level or lower must be write locked */ | 
|  | int write_lock_level = 0; | 
|  | u8 lowest_level = 0; | 
|  | int min_write_lock_level; | 
|  | int prev_cmp; | 
|  |  | 
|  | lowest_level = p->lowest_level; | 
|  | WARN_ON(lowest_level && ins_len > 0); | 
|  | WARN_ON(p->nodes[0] != NULL); | 
|  | BUG_ON(!cow && ins_len); | 
|  |  | 
|  | if (ins_len < 0) { | 
|  | lowest_unlock = 2; | 
|  |  | 
|  | /* when we are removing items, we might have to go up to level | 
|  | * two as we update tree pointers  Make sure we keep write | 
|  | * for those levels as well | 
|  | */ | 
|  | write_lock_level = 2; | 
|  | } else if (ins_len > 0) { | 
|  | /* | 
|  | * for inserting items, make sure we have a write lock on | 
|  | * level 1 so we can update keys | 
|  | */ | 
|  | write_lock_level = 1; | 
|  | } | 
|  |  | 
|  | if (!cow) | 
|  | write_lock_level = -1; | 
|  |  | 
|  | if (cow && (p->keep_locks || p->lowest_level)) | 
|  | write_lock_level = BTRFS_MAX_LEVEL; | 
|  |  | 
|  | min_write_lock_level = write_lock_level; | 
|  |  | 
|  | again: | 
|  | prev_cmp = -1; | 
|  | b = btrfs_search_slot_get_root(root, p, write_lock_level); | 
|  | if (IS_ERR(b)) { | 
|  | ret = PTR_ERR(b); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | while (b) { | 
|  | level = btrfs_header_level(b); | 
|  |  | 
|  | /* | 
|  | * setup the path here so we can release it under lock | 
|  | * contention with the cow code | 
|  | */ | 
|  | if (cow) { | 
|  | bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); | 
|  |  | 
|  | /* | 
|  | * if we don't really need to cow this block | 
|  | * then we don't want to set the path blocking, | 
|  | * so we test it here | 
|  | */ | 
|  | if (!should_cow_block(trans, root, b)) { | 
|  | trans->dirty = true; | 
|  | goto cow_done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * must have write locks on this node and the | 
|  | * parent | 
|  | */ | 
|  | if (level > write_lock_level || | 
|  | (level + 1 > write_lock_level && | 
|  | level + 1 < BTRFS_MAX_LEVEL && | 
|  | p->nodes[level + 1])) { | 
|  | write_lock_level = level + 1; | 
|  | btrfs_release_path(p); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_set_path_blocking(p); | 
|  | if (last_level) | 
|  | err = btrfs_cow_block(trans, root, b, NULL, 0, | 
|  | &b); | 
|  | else | 
|  | err = btrfs_cow_block(trans, root, b, | 
|  | p->nodes[level + 1], | 
|  | p->slots[level + 1], &b); | 
|  | if (err) { | 
|  | ret = err; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | cow_done: | 
|  | p->nodes[level] = b; | 
|  | /* | 
|  | * Leave path with blocking locks to avoid massive | 
|  | * lock context switch, this is made on purpose. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * we have a lock on b and as long as we aren't changing | 
|  | * the tree, there is no way to for the items in b to change. | 
|  | * It is safe to drop the lock on our parent before we | 
|  | * go through the expensive btree search on b. | 
|  | * | 
|  | * If we're inserting or deleting (ins_len != 0), then we might | 
|  | * be changing slot zero, which may require changing the parent. | 
|  | * So, we can't drop the lock until after we know which slot | 
|  | * we're operating on. | 
|  | */ | 
|  | if (!ins_len && !p->keep_locks) { | 
|  | int u = level + 1; | 
|  |  | 
|  | if (u < BTRFS_MAX_LEVEL && p->locks[u]) { | 
|  | btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); | 
|  | p->locks[u] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = key_search(b, key, level, &prev_cmp, &slot); | 
|  | if (ret < 0) | 
|  | goto done; | 
|  |  | 
|  | if (level != 0) { | 
|  | int dec = 0; | 
|  | if (ret && slot > 0) { | 
|  | dec = 1; | 
|  | slot -= 1; | 
|  | } | 
|  | p->slots[level] = slot; | 
|  | err = setup_nodes_for_search(trans, root, p, b, level, | 
|  | ins_len, &write_lock_level); | 
|  | if (err == -EAGAIN) | 
|  | goto again; | 
|  | if (err) { | 
|  | ret = err; | 
|  | goto done; | 
|  | } | 
|  | b = p->nodes[level]; | 
|  | slot = p->slots[level]; | 
|  |  | 
|  | /* | 
|  | * slot 0 is special, if we change the key | 
|  | * we have to update the parent pointer | 
|  | * which means we must have a write lock | 
|  | * on the parent | 
|  | */ | 
|  | if (slot == 0 && ins_len && | 
|  | write_lock_level < level + 1) { | 
|  | write_lock_level = level + 1; | 
|  | btrfs_release_path(p); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | unlock_up(p, level, lowest_unlock, | 
|  | min_write_lock_level, &write_lock_level); | 
|  |  | 
|  | if (level == lowest_level) { | 
|  | if (dec) | 
|  | p->slots[level]++; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | err = read_block_for_search(root, p, &b, level, | 
|  | slot, key); | 
|  | if (err == -EAGAIN) | 
|  | goto again; | 
|  | if (err) { | 
|  | ret = err; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (!p->skip_locking) { | 
|  | level = btrfs_header_level(b); | 
|  | if (level <= write_lock_level) { | 
|  | err = btrfs_try_tree_write_lock(b); | 
|  | if (!err) { | 
|  | btrfs_set_path_blocking(p); | 
|  | btrfs_tree_lock(b); | 
|  | } | 
|  | p->locks[level] = BTRFS_WRITE_LOCK; | 
|  | } else { | 
|  | err = btrfs_tree_read_lock_atomic(b); | 
|  | if (!err) { | 
|  | btrfs_set_path_blocking(p); | 
|  | btrfs_tree_read_lock(b); | 
|  | } | 
|  | p->locks[level] = BTRFS_READ_LOCK; | 
|  | } | 
|  | p->nodes[level] = b; | 
|  | } | 
|  | } else { | 
|  | p->slots[level] = slot; | 
|  | if (ins_len > 0 && | 
|  | btrfs_leaf_free_space(fs_info, b) < ins_len) { | 
|  | if (write_lock_level < 1) { | 
|  | write_lock_level = 1; | 
|  | btrfs_release_path(p); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_set_path_blocking(p); | 
|  | err = split_leaf(trans, root, key, | 
|  | p, ins_len, ret == 0); | 
|  |  | 
|  | BUG_ON(err > 0); | 
|  | if (err) { | 
|  | ret = err; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | if (!p->search_for_split) | 
|  | unlock_up(p, level, lowest_unlock, | 
|  | min_write_lock_level, NULL); | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | ret = 1; | 
|  | done: | 
|  | /* | 
|  | * we don't really know what they plan on doing with the path | 
|  | * from here on, so for now just mark it as blocking | 
|  | */ | 
|  | if (!p->leave_spinning) | 
|  | btrfs_set_path_blocking(p); | 
|  | if (ret < 0 && !p->skip_release_on_error) | 
|  | btrfs_release_path(p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like btrfs_search_slot, this looks for a key in the given tree. It uses the | 
|  | * current state of the tree together with the operations recorded in the tree | 
|  | * modification log to search for the key in a previous version of this tree, as | 
|  | * denoted by the time_seq parameter. | 
|  | * | 
|  | * Naturally, there is no support for insert, delete or cow operations. | 
|  | * | 
|  | * The resulting path and return value will be set up as if we called | 
|  | * btrfs_search_slot at that point in time with ins_len and cow both set to 0. | 
|  | */ | 
|  | int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, | 
|  | struct btrfs_path *p, u64 time_seq) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *b; | 
|  | int slot; | 
|  | int ret; | 
|  | int err; | 
|  | int level; | 
|  | int lowest_unlock = 1; | 
|  | u8 lowest_level = 0; | 
|  | int prev_cmp = -1; | 
|  |  | 
|  | lowest_level = p->lowest_level; | 
|  | WARN_ON(p->nodes[0] != NULL); | 
|  |  | 
|  | if (p->search_commit_root) { | 
|  | BUG_ON(time_seq); | 
|  | return btrfs_search_slot(NULL, root, key, p, 0, 0); | 
|  | } | 
|  |  | 
|  | again: | 
|  | b = get_old_root(root, time_seq); | 
|  | if (!b) { | 
|  | ret = -EIO; | 
|  | goto done; | 
|  | } | 
|  | level = btrfs_header_level(b); | 
|  | p->locks[level] = BTRFS_READ_LOCK; | 
|  |  | 
|  | while (b) { | 
|  | level = btrfs_header_level(b); | 
|  | p->nodes[level] = b; | 
|  |  | 
|  | /* | 
|  | * we have a lock on b and as long as we aren't changing | 
|  | * the tree, there is no way to for the items in b to change. | 
|  | * It is safe to drop the lock on our parent before we | 
|  | * go through the expensive btree search on b. | 
|  | */ | 
|  | btrfs_unlock_up_safe(p, level + 1); | 
|  |  | 
|  | /* | 
|  | * Since we can unwind ebs we want to do a real search every | 
|  | * time. | 
|  | */ | 
|  | prev_cmp = -1; | 
|  | ret = key_search(b, key, level, &prev_cmp, &slot); | 
|  |  | 
|  | if (level != 0) { | 
|  | int dec = 0; | 
|  | if (ret && slot > 0) { | 
|  | dec = 1; | 
|  | slot -= 1; | 
|  | } | 
|  | p->slots[level] = slot; | 
|  | unlock_up(p, level, lowest_unlock, 0, NULL); | 
|  |  | 
|  | if (level == lowest_level) { | 
|  | if (dec) | 
|  | p->slots[level]++; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | err = read_block_for_search(root, p, &b, level, | 
|  | slot, key); | 
|  | if (err == -EAGAIN) | 
|  | goto again; | 
|  | if (err) { | 
|  | ret = err; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | level = btrfs_header_level(b); | 
|  | err = btrfs_tree_read_lock_atomic(b); | 
|  | if (!err) { | 
|  | btrfs_set_path_blocking(p); | 
|  | btrfs_tree_read_lock(b); | 
|  | } | 
|  | b = tree_mod_log_rewind(fs_info, p, b, time_seq); | 
|  | if (!b) { | 
|  | ret = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | p->locks[level] = BTRFS_READ_LOCK; | 
|  | p->nodes[level] = b; | 
|  | } else { | 
|  | p->slots[level] = slot; | 
|  | unlock_up(p, level, lowest_unlock, 0, NULL); | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | ret = 1; | 
|  | done: | 
|  | if (!p->leave_spinning) | 
|  | btrfs_set_path_blocking(p); | 
|  | if (ret < 0) | 
|  | btrfs_release_path(p); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to use instead of search slot if no exact match is needed but | 
|  | * instead the next or previous item should be returned. | 
|  | * When find_higher is true, the next higher item is returned, the next lower | 
|  | * otherwise. | 
|  | * When return_any and find_higher are both true, and no higher item is found, | 
|  | * return the next lower instead. | 
|  | * When return_any is true and find_higher is false, and no lower item is found, | 
|  | * return the next higher instead. | 
|  | * It returns 0 if any item is found, 1 if none is found (tree empty), and | 
|  | * < 0 on error | 
|  | */ | 
|  | int btrfs_search_slot_for_read(struct btrfs_root *root, | 
|  | const struct btrfs_key *key, | 
|  | struct btrfs_path *p, int find_higher, | 
|  | int return_any) | 
|  | { | 
|  | int ret; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | again: | 
|  | ret = btrfs_search_slot(NULL, root, key, p, 0, 0); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | /* | 
|  | * a return value of 1 means the path is at the position where the | 
|  | * item should be inserted. Normally this is the next bigger item, | 
|  | * but in case the previous item is the last in a leaf, path points | 
|  | * to the first free slot in the previous leaf, i.e. at an invalid | 
|  | * item. | 
|  | */ | 
|  | leaf = p->nodes[0]; | 
|  |  | 
|  | if (find_higher) { | 
|  | if (p->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, p); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | if (!return_any) | 
|  | return 1; | 
|  | /* | 
|  | * no higher item found, return the next | 
|  | * lower instead | 
|  | */ | 
|  | return_any = 0; | 
|  | find_higher = 0; | 
|  | btrfs_release_path(p); | 
|  | goto again; | 
|  | } | 
|  | } else { | 
|  | if (p->slots[0] == 0) { | 
|  | ret = btrfs_prev_leaf(root, p); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (!ret) { | 
|  | leaf = p->nodes[0]; | 
|  | if (p->slots[0] == btrfs_header_nritems(leaf)) | 
|  | p->slots[0]--; | 
|  | return 0; | 
|  | } | 
|  | if (!return_any) | 
|  | return 1; | 
|  | /* | 
|  | * no lower item found, return the next | 
|  | * higher instead | 
|  | */ | 
|  | return_any = 0; | 
|  | find_higher = 1; | 
|  | btrfs_release_path(p); | 
|  | goto again; | 
|  | } else { | 
|  | --p->slots[0]; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * adjust the pointers going up the tree, starting at level | 
|  | * making sure the right key of each node is points to 'key'. | 
|  | * This is used after shifting pointers to the left, so it stops | 
|  | * fixing up pointers when a given leaf/node is not in slot 0 of the | 
|  | * higher levels | 
|  | * | 
|  | */ | 
|  | static void fixup_low_keys(struct btrfs_path *path, | 
|  | struct btrfs_disk_key *key, int level) | 
|  | { | 
|  | int i; | 
|  | struct extent_buffer *t; | 
|  | int ret; | 
|  |  | 
|  | for (i = level; i < BTRFS_MAX_LEVEL; i++) { | 
|  | int tslot = path->slots[i]; | 
|  |  | 
|  | if (!path->nodes[i]) | 
|  | break; | 
|  | t = path->nodes[i]; | 
|  | ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, | 
|  | GFP_ATOMIC); | 
|  | BUG_ON(ret < 0); | 
|  | btrfs_set_node_key(t, key, tslot); | 
|  | btrfs_mark_buffer_dirty(path->nodes[i]); | 
|  | if (tslot != 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update item key. | 
|  | * | 
|  | * This function isn't completely safe. It's the caller's responsibility | 
|  | * that the new key won't break the order | 
|  | */ | 
|  | void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_key *new_key) | 
|  | { | 
|  | struct btrfs_disk_key disk_key; | 
|  | struct extent_buffer *eb; | 
|  | int slot; | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot > 0) { | 
|  | btrfs_item_key(eb, &disk_key, slot - 1); | 
|  | BUG_ON(comp_keys(&disk_key, new_key) >= 0); | 
|  | } | 
|  | if (slot < btrfs_header_nritems(eb) - 1) { | 
|  | btrfs_item_key(eb, &disk_key, slot + 1); | 
|  | BUG_ON(comp_keys(&disk_key, new_key) <= 0); | 
|  | } | 
|  |  | 
|  | btrfs_cpu_key_to_disk(&disk_key, new_key); | 
|  | btrfs_set_item_key(eb, &disk_key, slot); | 
|  | btrfs_mark_buffer_dirty(eb); | 
|  | if (slot == 0) | 
|  | fixup_low_keys(path, &disk_key, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * try to push data from one node into the next node left in the | 
|  | * tree. | 
|  | * | 
|  | * returns 0 if some ptrs were pushed left, < 0 if there was some horrible | 
|  | * error, and > 0 if there was no room in the left hand block. | 
|  | */ | 
|  | static int push_node_left(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *dst, | 
|  | struct extent_buffer *src, int empty) | 
|  | { | 
|  | int push_items = 0; | 
|  | int src_nritems; | 
|  | int dst_nritems; | 
|  | int ret = 0; | 
|  |  | 
|  | src_nritems = btrfs_header_nritems(src); | 
|  | dst_nritems = btrfs_header_nritems(dst); | 
|  | push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; | 
|  | WARN_ON(btrfs_header_generation(src) != trans->transid); | 
|  | WARN_ON(btrfs_header_generation(dst) != trans->transid); | 
|  |  | 
|  | if (!empty && src_nritems <= 8) | 
|  | return 1; | 
|  |  | 
|  | if (push_items <= 0) | 
|  | return 1; | 
|  |  | 
|  | if (empty) { | 
|  | push_items = min(src_nritems, push_items); | 
|  | if (push_items < src_nritems) { | 
|  | /* leave at least 8 pointers in the node if | 
|  | * we aren't going to empty it | 
|  | */ | 
|  | if (src_nritems - push_items < 8) { | 
|  | if (push_items <= 8) | 
|  | return 1; | 
|  | push_items -= 8; | 
|  | } | 
|  | } | 
|  | } else | 
|  | push_items = min(src_nritems - 8, push_items); | 
|  |  | 
|  | ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, | 
|  | push_items); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  | copy_extent_buffer(dst, src, | 
|  | btrfs_node_key_ptr_offset(dst_nritems), | 
|  | btrfs_node_key_ptr_offset(0), | 
|  | push_items * sizeof(struct btrfs_key_ptr)); | 
|  |  | 
|  | if (push_items < src_nritems) { | 
|  | /* | 
|  | * Don't call tree_mod_log_insert_move here, key removal was | 
|  | * already fully logged by tree_mod_log_eb_copy above. | 
|  | */ | 
|  | memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), | 
|  | btrfs_node_key_ptr_offset(push_items), | 
|  | (src_nritems - push_items) * | 
|  | sizeof(struct btrfs_key_ptr)); | 
|  | } | 
|  | btrfs_set_header_nritems(src, src_nritems - push_items); | 
|  | btrfs_set_header_nritems(dst, dst_nritems + push_items); | 
|  | btrfs_mark_buffer_dirty(src); | 
|  | btrfs_mark_buffer_dirty(dst); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * try to push data from one node into the next node right in the | 
|  | * tree. | 
|  | * | 
|  | * returns 0 if some ptrs were pushed, < 0 if there was some horrible | 
|  | * error, and > 0 if there was no room in the right hand block. | 
|  | * | 
|  | * this will  only push up to 1/2 the contents of the left node over | 
|  | */ | 
|  | static int balance_node_right(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *dst, | 
|  | struct extent_buffer *src) | 
|  | { | 
|  | int push_items = 0; | 
|  | int max_push; | 
|  | int src_nritems; | 
|  | int dst_nritems; | 
|  | int ret = 0; | 
|  |  | 
|  | WARN_ON(btrfs_header_generation(src) != trans->transid); | 
|  | WARN_ON(btrfs_header_generation(dst) != trans->transid); | 
|  |  | 
|  | src_nritems = btrfs_header_nritems(src); | 
|  | dst_nritems = btrfs_header_nritems(dst); | 
|  | push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; | 
|  | if (push_items <= 0) | 
|  | return 1; | 
|  |  | 
|  | if (src_nritems < 4) | 
|  | return 1; | 
|  |  | 
|  | max_push = src_nritems / 2 + 1; | 
|  | /* don't try to empty the node */ | 
|  | if (max_push >= src_nritems) | 
|  | return 1; | 
|  |  | 
|  | if (max_push < push_items) | 
|  | push_items = max_push; | 
|  |  | 
|  | ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); | 
|  | BUG_ON(ret < 0); | 
|  | memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), | 
|  | btrfs_node_key_ptr_offset(0), | 
|  | (dst_nritems) * | 
|  | sizeof(struct btrfs_key_ptr)); | 
|  |  | 
|  | ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, | 
|  | src_nritems - push_items, push_items); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  | copy_extent_buffer(dst, src, | 
|  | btrfs_node_key_ptr_offset(0), | 
|  | btrfs_node_key_ptr_offset(src_nritems - push_items), | 
|  | push_items * sizeof(struct btrfs_key_ptr)); | 
|  |  | 
|  | btrfs_set_header_nritems(src, src_nritems - push_items); | 
|  | btrfs_set_header_nritems(dst, dst_nritems + push_items); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(src); | 
|  | btrfs_mark_buffer_dirty(dst); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to insert a new root level in the tree. | 
|  | * A new node is allocated, and a single item is inserted to | 
|  | * point to the existing root | 
|  | * | 
|  | * returns zero on success or < 0 on failure. | 
|  | */ | 
|  | static noinline int insert_new_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 lower_gen; | 
|  | struct extent_buffer *lower; | 
|  | struct extent_buffer *c; | 
|  | struct extent_buffer *old; | 
|  | struct btrfs_disk_key lower_key; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(path->nodes[level]); | 
|  | BUG_ON(path->nodes[level-1] != root->node); | 
|  |  | 
|  | lower = path->nodes[level-1]; | 
|  | if (level == 1) | 
|  | btrfs_item_key(lower, &lower_key, 0); | 
|  | else | 
|  | btrfs_node_key(lower, &lower_key, 0); | 
|  |  | 
|  | c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, | 
|  | &lower_key, level, root->node->start, 0); | 
|  | if (IS_ERR(c)) | 
|  | return PTR_ERR(c); | 
|  |  | 
|  | root_add_used(root, fs_info->nodesize); | 
|  |  | 
|  | btrfs_set_header_nritems(c, 1); | 
|  | btrfs_set_node_key(c, &lower_key, 0); | 
|  | btrfs_set_node_blockptr(c, 0, lower->start); | 
|  | lower_gen = btrfs_header_generation(lower); | 
|  | WARN_ON(lower_gen != trans->transid); | 
|  |  | 
|  | btrfs_set_node_ptr_generation(c, 0, lower_gen); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(c); | 
|  |  | 
|  | old = root->node; | 
|  | ret = tree_mod_log_insert_root(root->node, c, 0); | 
|  | BUG_ON(ret < 0); | 
|  | rcu_assign_pointer(root->node, c); | 
|  |  | 
|  | /* the super has an extra ref to root->node */ | 
|  | free_extent_buffer(old); | 
|  |  | 
|  | add_root_to_dirty_list(root); | 
|  | extent_buffer_get(c); | 
|  | path->nodes[level] = c; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  | path->slots[level] = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * worker function to insert a single pointer in a node. | 
|  | * the node should have enough room for the pointer already | 
|  | * | 
|  | * slot and level indicate where you want the key to go, and | 
|  | * blocknr is the block the key points to. | 
|  | */ | 
|  | static void insert_ptr(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, struct btrfs_path *path, | 
|  | struct btrfs_disk_key *key, u64 bytenr, | 
|  | int slot, int level) | 
|  | { | 
|  | struct extent_buffer *lower; | 
|  | int nritems; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!path->nodes[level]); | 
|  | btrfs_assert_tree_locked(path->nodes[level]); | 
|  | lower = path->nodes[level]; | 
|  | nritems = btrfs_header_nritems(lower); | 
|  | BUG_ON(slot > nritems); | 
|  | BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); | 
|  | if (slot != nritems) { | 
|  | if (level) { | 
|  | ret = tree_mod_log_insert_move(lower, slot + 1, slot, | 
|  | nritems - slot); | 
|  | BUG_ON(ret < 0); | 
|  | } | 
|  | memmove_extent_buffer(lower, | 
|  | btrfs_node_key_ptr_offset(slot + 1), | 
|  | btrfs_node_key_ptr_offset(slot), | 
|  | (nritems - slot) * sizeof(struct btrfs_key_ptr)); | 
|  | } | 
|  | if (level) { | 
|  | ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, | 
|  | GFP_NOFS); | 
|  | BUG_ON(ret < 0); | 
|  | } | 
|  | btrfs_set_node_key(lower, key, slot); | 
|  | btrfs_set_node_blockptr(lower, slot, bytenr); | 
|  | WARN_ON(trans->transid == 0); | 
|  | btrfs_set_node_ptr_generation(lower, slot, trans->transid); | 
|  | btrfs_set_header_nritems(lower, nritems + 1); | 
|  | btrfs_mark_buffer_dirty(lower); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * split the node at the specified level in path in two. | 
|  | * The path is corrected to point to the appropriate node after the split | 
|  | * | 
|  | * Before splitting this tries to make some room in the node by pushing | 
|  | * left and right, if either one works, it returns right away. | 
|  | * | 
|  | * returns 0 on success and < 0 on failure | 
|  | */ | 
|  | static noinline int split_node(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *c; | 
|  | struct extent_buffer *split; | 
|  | struct btrfs_disk_key disk_key; | 
|  | int mid; | 
|  | int ret; | 
|  | u32 c_nritems; | 
|  |  | 
|  | c = path->nodes[level]; | 
|  | WARN_ON(btrfs_header_generation(c) != trans->transid); | 
|  | if (c == root->node) { | 
|  | /* | 
|  | * trying to split the root, lets make a new one | 
|  | * | 
|  | * tree mod log: We don't log_removal old root in | 
|  | * insert_new_root, because that root buffer will be kept as a | 
|  | * normal node. We are going to log removal of half of the | 
|  | * elements below with tree_mod_log_eb_copy. We're holding a | 
|  | * tree lock on the buffer, which is why we cannot race with | 
|  | * other tree_mod_log users. | 
|  | */ | 
|  | ret = insert_new_root(trans, root, path, level + 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | ret = push_nodes_for_insert(trans, root, path, level); | 
|  | c = path->nodes[level]; | 
|  | if (!ret && btrfs_header_nritems(c) < | 
|  | BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) | 
|  | return 0; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | c_nritems = btrfs_header_nritems(c); | 
|  | mid = (c_nritems + 1) / 2; | 
|  | btrfs_node_key(c, &disk_key, mid); | 
|  |  | 
|  | split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, | 
|  | &disk_key, level, c->start, 0); | 
|  | if (IS_ERR(split)) | 
|  | return PTR_ERR(split); | 
|  |  | 
|  | root_add_used(root, fs_info->nodesize); | 
|  | ASSERT(btrfs_header_level(c) == level); | 
|  |  | 
|  | ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  | copy_extent_buffer(split, c, | 
|  | btrfs_node_key_ptr_offset(0), | 
|  | btrfs_node_key_ptr_offset(mid), | 
|  | (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); | 
|  | btrfs_set_header_nritems(split, c_nritems - mid); | 
|  | btrfs_set_header_nritems(c, mid); | 
|  | ret = 0; | 
|  |  | 
|  | btrfs_mark_buffer_dirty(c); | 
|  | btrfs_mark_buffer_dirty(split); | 
|  |  | 
|  | insert_ptr(trans, fs_info, path, &disk_key, split->start, | 
|  | path->slots[level + 1] + 1, level + 1); | 
|  |  | 
|  | if (path->slots[level] >= mid) { | 
|  | path->slots[level] -= mid; | 
|  | btrfs_tree_unlock(c); | 
|  | free_extent_buffer(c); | 
|  | path->nodes[level] = split; | 
|  | path->slots[level + 1] += 1; | 
|  | } else { | 
|  | btrfs_tree_unlock(split); | 
|  | free_extent_buffer(split); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * how many bytes are required to store the items in a leaf.  start | 
|  | * and nr indicate which items in the leaf to check.  This totals up the | 
|  | * space used both by the item structs and the item data | 
|  | */ | 
|  | static int leaf_space_used(struct extent_buffer *l, int start, int nr) | 
|  | { | 
|  | struct btrfs_item *start_item; | 
|  | struct btrfs_item *end_item; | 
|  | struct btrfs_map_token token; | 
|  | int data_len; | 
|  | int nritems = btrfs_header_nritems(l); | 
|  | int end = min(nritems, start + nr) - 1; | 
|  |  | 
|  | if (!nr) | 
|  | return 0; | 
|  | btrfs_init_map_token(&token); | 
|  | start_item = btrfs_item_nr(start); | 
|  | end_item = btrfs_item_nr(end); | 
|  | data_len = btrfs_token_item_offset(l, start_item, &token) + | 
|  | btrfs_token_item_size(l, start_item, &token); | 
|  | data_len = data_len - btrfs_token_item_offset(l, end_item, &token); | 
|  | data_len += sizeof(struct btrfs_item) * nr; | 
|  | WARN_ON(data_len < 0); | 
|  | return data_len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The space between the end of the leaf items and | 
|  | * the start of the leaf data.  IOW, how much room | 
|  | * the leaf has left for both items and data | 
|  | */ | 
|  | noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *leaf) | 
|  | { | 
|  | int nritems = btrfs_header_nritems(leaf); | 
|  | int ret; | 
|  |  | 
|  | ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); | 
|  | if (ret < 0) { | 
|  | btrfs_crit(fs_info, | 
|  | "leaf free space ret %d, leaf data size %lu, used %d nritems %d", | 
|  | ret, | 
|  | (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), | 
|  | leaf_space_used(leaf, 0, nritems), nritems); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * min slot controls the lowest index we're willing to push to the | 
|  | * right.  We'll push up to and including min_slot, but no lower | 
|  | */ | 
|  | static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | int data_size, int empty, | 
|  | struct extent_buffer *right, | 
|  | int free_space, u32 left_nritems, | 
|  | u32 min_slot) | 
|  | { | 
|  | struct extent_buffer *left = path->nodes[0]; | 
|  | struct extent_buffer *upper = path->nodes[1]; | 
|  | struct btrfs_map_token token; | 
|  | struct btrfs_disk_key disk_key; | 
|  | int slot; | 
|  | u32 i; | 
|  | int push_space = 0; | 
|  | int push_items = 0; | 
|  | struct btrfs_item *item; | 
|  | u32 nr; | 
|  | u32 right_nritems; | 
|  | u32 data_end; | 
|  | u32 this_item_size; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | if (empty) | 
|  | nr = 0; | 
|  | else | 
|  | nr = max_t(u32, 1, min_slot); | 
|  |  | 
|  | if (path->slots[0] >= left_nritems) | 
|  | push_space += data_size; | 
|  |  | 
|  | slot = path->slots[1]; | 
|  | i = left_nritems - 1; | 
|  | while (i >= nr) { | 
|  | item = btrfs_item_nr(i); | 
|  |  | 
|  | if (!empty && push_items > 0) { | 
|  | if (path->slots[0] > i) | 
|  | break; | 
|  | if (path->slots[0] == i) { | 
|  | int space = btrfs_leaf_free_space(fs_info, left); | 
|  | if (space + push_space * 2 > free_space) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (path->slots[0] == i) | 
|  | push_space += data_size; | 
|  |  | 
|  | this_item_size = btrfs_item_size(left, item); | 
|  | if (this_item_size + sizeof(*item) + push_space > free_space) | 
|  | break; | 
|  |  | 
|  | push_items++; | 
|  | push_space += this_item_size + sizeof(*item); | 
|  | if (i == 0) | 
|  | break; | 
|  | i--; | 
|  | } | 
|  |  | 
|  | if (push_items == 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | WARN_ON(!empty && push_items == left_nritems); | 
|  |  | 
|  | /* push left to right */ | 
|  | right_nritems = btrfs_header_nritems(right); | 
|  |  | 
|  | push_space = btrfs_item_end_nr(left, left_nritems - push_items); | 
|  | push_space -= leaf_data_end(fs_info, left); | 
|  |  | 
|  | /* make room in the right data area */ | 
|  | data_end = leaf_data_end(fs_info, right); | 
|  | memmove_extent_buffer(right, | 
|  | BTRFS_LEAF_DATA_OFFSET + data_end - push_space, | 
|  | BTRFS_LEAF_DATA_OFFSET + data_end, | 
|  | BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); | 
|  |  | 
|  | /* copy from the left data area */ | 
|  | copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + | 
|  | BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, | 
|  | BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), | 
|  | push_space); | 
|  |  | 
|  | memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), | 
|  | btrfs_item_nr_offset(0), | 
|  | right_nritems * sizeof(struct btrfs_item)); | 
|  |  | 
|  | /* copy the items from left to right */ | 
|  | copy_extent_buffer(right, left, btrfs_item_nr_offset(0), | 
|  | btrfs_item_nr_offset(left_nritems - push_items), | 
|  | push_items * sizeof(struct btrfs_item)); | 
|  |  | 
|  | /* update the item pointers */ | 
|  | right_nritems += push_items; | 
|  | btrfs_set_header_nritems(right, right_nritems); | 
|  | push_space = BTRFS_LEAF_DATA_SIZE(fs_info); | 
|  | for (i = 0; i < right_nritems; i++) { | 
|  | item = btrfs_item_nr(i); | 
|  | push_space -= btrfs_token_item_size(right, item, &token); | 
|  | btrfs_set_token_item_offset(right, item, push_space, &token); | 
|  | } | 
|  |  | 
|  | left_nritems -= push_items; | 
|  | btrfs_set_header_nritems(left, left_nritems); | 
|  |  | 
|  | if (left_nritems) | 
|  | btrfs_mark_buffer_dirty(left); | 
|  | else | 
|  | clean_tree_block(fs_info, left); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(right); | 
|  |  | 
|  | btrfs_item_key(right, &disk_key, 0); | 
|  | btrfs_set_node_key(upper, &disk_key, slot + 1); | 
|  | btrfs_mark_buffer_dirty(upper); | 
|  |  | 
|  | /* then fixup the leaf pointer in the path */ | 
|  | if (path->slots[0] >= left_nritems) { | 
|  | path->slots[0] -= left_nritems; | 
|  | if (btrfs_header_nritems(path->nodes[0]) == 0) | 
|  | clean_tree_block(fs_info, path->nodes[0]); | 
|  | btrfs_tree_unlock(path->nodes[0]); | 
|  | free_extent_buffer(path->nodes[0]); | 
|  | path->nodes[0] = right; | 
|  | path->slots[1] += 1; | 
|  | } else { | 
|  | btrfs_tree_unlock(right); | 
|  | free_extent_buffer(right); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | btrfs_tree_unlock(right); | 
|  | free_extent_buffer(right); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * push some data in the path leaf to the right, trying to free up at | 
|  | * least data_size bytes.  returns zero if the push worked, nonzero otherwise | 
|  | * | 
|  | * returns 1 if the push failed because the other node didn't have enough | 
|  | * room, 0 if everything worked out and < 0 if there were major errors. | 
|  | * | 
|  | * this will push starting from min_slot to the end of the leaf.  It won't | 
|  | * push any slot lower than min_slot | 
|  | */ | 
|  | static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root | 
|  | *root, struct btrfs_path *path, | 
|  | int min_data_size, int data_size, | 
|  | int empty, u32 min_slot) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *left = path->nodes[0]; | 
|  | struct extent_buffer *right; | 
|  | struct extent_buffer *upper; | 
|  | int slot; | 
|  | int free_space; | 
|  | u32 left_nritems; | 
|  | int ret; | 
|  |  | 
|  | if (!path->nodes[1]) | 
|  | return 1; | 
|  |  | 
|  | slot = path->slots[1]; | 
|  | upper = path->nodes[1]; | 
|  | if (slot >= btrfs_header_nritems(upper) - 1) | 
|  | return 1; | 
|  |  | 
|  | btrfs_assert_tree_locked(path->nodes[1]); | 
|  |  | 
|  | right = read_node_slot(fs_info, upper, slot + 1); | 
|  | /* | 
|  | * slot + 1 is not valid or we fail to read the right node, | 
|  | * no big deal, just return. | 
|  | */ | 
|  | if (IS_ERR(right)) | 
|  | return 1; | 
|  |  | 
|  | btrfs_tree_lock(right); | 
|  | btrfs_set_lock_blocking(right); | 
|  |  | 
|  | free_space = btrfs_leaf_free_space(fs_info, right); | 
|  | if (free_space < data_size) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* cow and double check */ | 
|  | ret = btrfs_cow_block(trans, root, right, upper, | 
|  | slot + 1, &right); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | free_space = btrfs_leaf_free_space(fs_info, right); | 
|  | if (free_space < data_size) | 
|  | goto out_unlock; | 
|  |  | 
|  | left_nritems = btrfs_header_nritems(left); | 
|  | if (left_nritems == 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (path->slots[0] == left_nritems && !empty) { | 
|  | /* Key greater than all keys in the leaf, right neighbor has | 
|  | * enough room for it and we're not emptying our leaf to delete | 
|  | * it, therefore use right neighbor to insert the new item and | 
|  | * no need to touch/dirty our left leaf. */ | 
|  | btrfs_tree_unlock(left); | 
|  | free_extent_buffer(left); | 
|  | path->nodes[0] = right; | 
|  | path->slots[0] = 0; | 
|  | path->slots[1]++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return __push_leaf_right(fs_info, path, min_data_size, empty, | 
|  | right, free_space, left_nritems, min_slot); | 
|  | out_unlock: | 
|  | btrfs_tree_unlock(right); | 
|  | free_extent_buffer(right); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * push some data in the path leaf to the left, trying to free up at | 
|  | * least data_size bytes.  returns zero if the push worked, nonzero otherwise | 
|  | * | 
|  | * max_slot can put a limit on how far into the leaf we'll push items.  The | 
|  | * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the | 
|  | * items | 
|  | */ | 
|  | static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, int data_size, | 
|  | int empty, struct extent_buffer *left, | 
|  | int free_space, u32 right_nritems, | 
|  | u32 max_slot) | 
|  | { | 
|  | struct btrfs_disk_key disk_key; | 
|  | struct extent_buffer *right = path->nodes[0]; | 
|  | int i; | 
|  | int push_space = 0; | 
|  | int push_items = 0; | 
|  | struct btrfs_item *item; | 
|  | u32 old_left_nritems; | 
|  | u32 nr; | 
|  | int ret = 0; | 
|  | u32 this_item_size; | 
|  | u32 old_left_item_size; | 
|  | struct btrfs_map_token token; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | if (empty) | 
|  | nr = min(right_nritems, max_slot); | 
|  | else | 
|  | nr = min(right_nritems - 1, max_slot); | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | item = btrfs_item_nr(i); | 
|  |  | 
|  | if (!empty && push_items > 0) { | 
|  | if (path->slots[0] < i) | 
|  | break; | 
|  | if (path->slots[0] == i) { | 
|  | int space = btrfs_leaf_free_space(fs_info, right); | 
|  | if (space + push_space * 2 > free_space) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (path->slots[0] == i) | 
|  | push_space += data_size; | 
|  |  | 
|  | this_item_size = btrfs_item_size(right, item); | 
|  | if (this_item_size + sizeof(*item) + push_space > free_space) | 
|  | break; | 
|  |  | 
|  | push_items++; | 
|  | push_space += this_item_size + sizeof(*item); | 
|  | } | 
|  |  | 
|  | if (push_items == 0) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | WARN_ON(!empty && push_items == btrfs_header_nritems(right)); | 
|  |  | 
|  | /* push data from right to left */ | 
|  | copy_extent_buffer(left, right, | 
|  | btrfs_item_nr_offset(btrfs_header_nritems(left)), | 
|  | btrfs_item_nr_offset(0), | 
|  | push_items * sizeof(struct btrfs_item)); | 
|  |  | 
|  | push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - | 
|  | btrfs_item_offset_nr(right, push_items - 1); | 
|  |  | 
|  | copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + | 
|  | leaf_data_end(fs_info, left) - push_space, | 
|  | BTRFS_LEAF_DATA_OFFSET + | 
|  | btrfs_item_offset_nr(right, push_items - 1), | 
|  | push_space); | 
|  | old_left_nritems = btrfs_header_nritems(left); | 
|  | BUG_ON(old_left_nritems <= 0); | 
|  |  | 
|  | old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); | 
|  | for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { | 
|  | u32 ioff; | 
|  |  | 
|  | item = btrfs_item_nr(i); | 
|  |  | 
|  | ioff = btrfs_token_item_offset(left, item, &token); | 
|  | btrfs_set_token_item_offset(left, item, | 
|  | ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), | 
|  | &token); | 
|  | } | 
|  | btrfs_set_header_nritems(left, old_left_nritems + push_items); | 
|  |  | 
|  | /* fixup right node */ | 
|  | if (push_items > right_nritems) | 
|  | WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, | 
|  | right_nritems); | 
|  |  | 
|  | if (push_items < right_nritems) { | 
|  | push_space = btrfs_item_offset_nr(right, push_items - 1) - | 
|  | leaf_data_end(fs_info, right); | 
|  | memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + | 
|  | BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, | 
|  | BTRFS_LEAF_DATA_OFFSET + | 
|  | leaf_data_end(fs_info, right), push_space); | 
|  |  | 
|  | memmove_extent_buffer(right, btrfs_item_nr_offset(0), | 
|  | btrfs_item_nr_offset(push_items), | 
|  | (btrfs_header_nritems(right) - push_items) * | 
|  | sizeof(struct btrfs_item)); | 
|  | } | 
|  | right_nritems -= push_items; | 
|  | btrfs_set_header_nritems(right, right_nritems); | 
|  | push_space = BTRFS_LEAF_DATA_SIZE(fs_info); | 
|  | for (i = 0; i < right_nritems; i++) { | 
|  | item = btrfs_item_nr(i); | 
|  |  | 
|  | push_space = push_space - btrfs_token_item_size(right, | 
|  | item, &token); | 
|  | btrfs_set_token_item_offset(right, item, push_space, &token); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(left); | 
|  | if (right_nritems) | 
|  | btrfs_mark_buffer_dirty(right); | 
|  | else | 
|  | clean_tree_block(fs_info, right); | 
|  |  | 
|  | btrfs_item_key(right, &disk_key, 0); | 
|  | fixup_low_keys(path, &disk_key, 1); | 
|  |  | 
|  | /* then fixup the leaf pointer in the path */ | 
|  | if (path->slots[0] < push_items) { | 
|  | path->slots[0] += old_left_nritems; | 
|  | btrfs_tree_unlock(path->nodes[0]); | 
|  | free_extent_buffer(path->nodes[0]); | 
|  | path->nodes[0] = left; | 
|  | path->slots[1] -= 1; | 
|  | } else { | 
|  | btrfs_tree_unlock(left); | 
|  | free_extent_buffer(left); | 
|  | path->slots[0] -= push_items; | 
|  | } | 
|  | BUG_ON(path->slots[0] < 0); | 
|  | return ret; | 
|  | out: | 
|  | btrfs_tree_unlock(left); | 
|  | free_extent_buffer(left); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * push some data in the path leaf to the left, trying to free up at | 
|  | * least data_size bytes.  returns zero if the push worked, nonzero otherwise | 
|  | * | 
|  | * max_slot can put a limit on how far into the leaf we'll push items.  The | 
|  | * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the | 
|  | * items | 
|  | */ | 
|  | static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root | 
|  | *root, struct btrfs_path *path, int min_data_size, | 
|  | int data_size, int empty, u32 max_slot) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *right = path->nodes[0]; | 
|  | struct extent_buffer *left; | 
|  | int slot; | 
|  | int free_space; | 
|  | u32 right_nritems; | 
|  | int ret = 0; | 
|  |  | 
|  | slot = path->slots[1]; | 
|  | if (slot == 0) | 
|  | return 1; | 
|  | if (!path->nodes[1]) | 
|  | return 1; | 
|  |  | 
|  | right_nritems = btrfs_header_nritems(right); | 
|  | if (right_nritems == 0) | 
|  | return 1; | 
|  |  | 
|  | btrfs_assert_tree_locked(path->nodes[1]); | 
|  |  | 
|  | left = read_node_slot(fs_info, path->nodes[1], slot - 1); | 
|  | /* | 
|  | * slot - 1 is not valid or we fail to read the left node, | 
|  | * no big deal, just return. | 
|  | */ | 
|  | if (IS_ERR(left)) | 
|  | return 1; | 
|  |  | 
|  | btrfs_tree_lock(left); | 
|  | btrfs_set_lock_blocking(left); | 
|  |  | 
|  | free_space = btrfs_leaf_free_space(fs_info, left); | 
|  | if (free_space < data_size) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* cow and double check */ | 
|  | ret = btrfs_cow_block(trans, root, left, | 
|  | path->nodes[1], slot - 1, &left); | 
|  | if (ret) { | 
|  | /* we hit -ENOSPC, but it isn't fatal here */ | 
|  | if (ret == -ENOSPC) | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | free_space = btrfs_leaf_free_space(fs_info, left); | 
|  | if (free_space < data_size) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return __push_leaf_left(fs_info, path, min_data_size, | 
|  | empty, left, free_space, right_nritems, | 
|  | max_slot); | 
|  | out: | 
|  | btrfs_tree_unlock(left); | 
|  | free_extent_buffer(left); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * split the path's leaf in two, making sure there is at least data_size | 
|  | * available for the resulting leaf level of the path. | 
|  | */ | 
|  | static noinline void copy_for_split(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *l, | 
|  | struct extent_buffer *right, | 
|  | int slot, int mid, int nritems) | 
|  | { | 
|  | int data_copy_size; | 
|  | int rt_data_off; | 
|  | int i; | 
|  | struct btrfs_disk_key disk_key; | 
|  | struct btrfs_map_token token; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | nritems = nritems - mid; | 
|  | btrfs_set_header_nritems(right, nritems); | 
|  | data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); | 
|  |  | 
|  | copy_extent_buffer(right, l, btrfs_item_nr_offset(0), | 
|  | btrfs_item_nr_offset(mid), | 
|  | nritems * sizeof(struct btrfs_item)); | 
|  |  | 
|  | copy_extent_buffer(right, l, | 
|  | BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - | 
|  | data_copy_size, BTRFS_LEAF_DATA_OFFSET + | 
|  | leaf_data_end(fs_info, l), data_copy_size); | 
|  |  | 
|  | rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); | 
|  |  | 
|  | for (i = 0; i < nritems; i++) { | 
|  | struct btrfs_item *item = btrfs_item_nr(i); | 
|  | u32 ioff; | 
|  |  | 
|  | ioff = btrfs_token_item_offset(right, item, &token); | 
|  | btrfs_set_token_item_offset(right, item, | 
|  | ioff + rt_data_off, &token); | 
|  | } | 
|  |  | 
|  | btrfs_set_header_nritems(l, mid); | 
|  | btrfs_item_key(right, &disk_key, 0); | 
|  | insert_ptr(trans, fs_info, path, &disk_key, right->start, | 
|  | path->slots[1] + 1, 1); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(right); | 
|  | btrfs_mark_buffer_dirty(l); | 
|  | BUG_ON(path->slots[0] != slot); | 
|  |  | 
|  | if (mid <= slot) { | 
|  | btrfs_tree_unlock(path->nodes[0]); | 
|  | free_extent_buffer(path->nodes[0]); | 
|  | path->nodes[0] = right; | 
|  | path->slots[0] -= mid; | 
|  | path->slots[1] += 1; | 
|  | } else { | 
|  | btrfs_tree_unlock(right); | 
|  | free_extent_buffer(right); | 
|  | } | 
|  |  | 
|  | BUG_ON(path->slots[0] < 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double splits happen when we need to insert a big item in the middle | 
|  | * of a leaf.  A double split can leave us with 3 mostly empty leaves: | 
|  | * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] | 
|  | *          A                 B                 C | 
|  | * | 
|  | * We avoid this by trying to push the items on either side of our target | 
|  | * into the adjacent leaves.  If all goes well we can avoid the double split | 
|  | * completely. | 
|  | */ | 
|  | static noinline int push_for_double_split(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | int data_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  | int progress = 0; | 
|  | int slot; | 
|  | u32 nritems; | 
|  | int space_needed = data_size; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | if (slot < btrfs_header_nritems(path->nodes[0])) | 
|  | space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); | 
|  |  | 
|  | /* | 
|  | * try to push all the items after our slot into the | 
|  | * right leaf | 
|  | */ | 
|  | ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0) | 
|  | progress++; | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | /* | 
|  | * our goal is to get our slot at the start or end of a leaf.  If | 
|  | * we've done so we're done | 
|  | */ | 
|  | if (path->slots[0] == 0 || path->slots[0] == nritems) | 
|  | return 0; | 
|  |  | 
|  | if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) | 
|  | return 0; | 
|  |  | 
|  | /* try to push all the items before our slot into the next leaf */ | 
|  | slot = path->slots[0]; | 
|  | space_needed = data_size; | 
|  | if (slot > 0) | 
|  | space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); | 
|  | ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0) | 
|  | progress++; | 
|  |  | 
|  | if (progress) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * split the path's leaf in two, making sure there is at least data_size | 
|  | * available for the resulting leaf level of the path. | 
|  | * | 
|  | * returns 0 if all went well and < 0 on failure. | 
|  | */ | 
|  | static noinline int split_leaf(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | const struct btrfs_key *ins_key, | 
|  | struct btrfs_path *path, int data_size, | 
|  | int extend) | 
|  | { | 
|  | struct btrfs_disk_key disk_key; | 
|  | struct extent_buffer *l; | 
|  | u32 nritems; | 
|  | int mid; | 
|  | int slot; | 
|  | struct extent_buffer *right; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret = 0; | 
|  | int wret; | 
|  | int split; | 
|  | int num_doubles = 0; | 
|  | int tried_avoid_double = 0; | 
|  |  | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (extend && data_size + btrfs_item_size_nr(l, slot) + | 
|  | sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | /* first try to make some room by pushing left and right */ | 
|  | if (data_size && path->nodes[1]) { | 
|  | int space_needed = data_size; | 
|  |  | 
|  | if (slot < btrfs_header_nritems(l)) | 
|  | space_needed -= btrfs_leaf_free_space(fs_info, l); | 
|  |  | 
|  | wret = push_leaf_right(trans, root, path, space_needed, | 
|  | space_needed, 0, 0); | 
|  | if (wret < 0) | 
|  | return wret; | 
|  | if (wret) { | 
|  | space_needed = data_size; | 
|  | if (slot > 0) | 
|  | space_needed -= btrfs_leaf_free_space(fs_info, | 
|  | l); | 
|  | wret = push_leaf_left(trans, root, path, space_needed, | 
|  | space_needed, 0, (u32)-1); | 
|  | if (wret < 0) | 
|  | return wret; | 
|  | } | 
|  | l = path->nodes[0]; | 
|  |  | 
|  | /* did the pushes work? */ | 
|  | if (btrfs_leaf_free_space(fs_info, l) >= data_size) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!path->nodes[1]) { | 
|  | ret = insert_new_root(trans, root, path, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | again: | 
|  | split = 1; | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | nritems = btrfs_header_nritems(l); | 
|  | mid = (nritems + 1) / 2; | 
|  |  | 
|  | if (mid <= slot) { | 
|  | if (nritems == 1 || | 
|  | leaf_space_used(l, mid, nritems - mid) + data_size > | 
|  | BTRFS_LEAF_DATA_SIZE(fs_info)) { | 
|  | if (slot >= nritems) { | 
|  | split = 0; | 
|  | } else { | 
|  | mid = slot; | 
|  | if (mid != nritems && | 
|  | leaf_space_used(l, mid, nritems - mid) + | 
|  | data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { | 
|  | if (data_size && !tried_avoid_double) | 
|  | goto push_for_double; | 
|  | split = 2; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (leaf_space_used(l, 0, mid) + data_size > | 
|  | BTRFS_LEAF_DATA_SIZE(fs_info)) { | 
|  | if (!extend && data_size && slot == 0) { | 
|  | split = 0; | 
|  | } else if ((extend || !data_size) && slot == 0) { | 
|  | mid = 1; | 
|  | } else { | 
|  | mid = slot; | 
|  | if (mid != nritems && | 
|  | leaf_space_used(l, mid, nritems - mid) + | 
|  | data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { | 
|  | if (data_size && !tried_avoid_double) | 
|  | goto push_for_double; | 
|  | split = 2; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (split == 0) | 
|  | btrfs_cpu_key_to_disk(&disk_key, ins_key); | 
|  | else | 
|  | btrfs_item_key(l, &disk_key, mid); | 
|  |  | 
|  | right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, | 
|  | &disk_key, 0, l->start, 0); | 
|  | if (IS_ERR(right)) | 
|  | return PTR_ERR(right); | 
|  |  | 
|  | root_add_used(root, fs_info->nodesize); | 
|  |  | 
|  | if (split == 0) { | 
|  | if (mid <= slot) { | 
|  | btrfs_set_header_nritems(right, 0); | 
|  | insert_ptr(trans, fs_info, path, &disk_key, | 
|  | right->start, path->slots[1] + 1, 1); | 
|  | btrfs_tree_unlock(path->nodes[0]); | 
|  | free_extent_buffer(path->nodes[0]); | 
|  | path->nodes[0] = right; | 
|  | path->slots[0] = 0; | 
|  | path->slots[1] += 1; | 
|  | } else { | 
|  | btrfs_set_header_nritems(right, 0); | 
|  | insert_ptr(trans, fs_info, path, &disk_key, | 
|  | right->start, path->slots[1], 1); | 
|  | btrfs_tree_unlock(path->nodes[0]); | 
|  | free_extent_buffer(path->nodes[0]); | 
|  | path->nodes[0] = right; | 
|  | path->slots[0] = 0; | 
|  | if (path->slots[1] == 0) | 
|  | fixup_low_keys(path, &disk_key, 1); | 
|  | } | 
|  | /* | 
|  | * We create a new leaf 'right' for the required ins_len and | 
|  | * we'll do btrfs_mark_buffer_dirty() on this leaf after copying | 
|  | * the content of ins_len to 'right'. | 
|  | */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); | 
|  |  | 
|  | if (split == 2) { | 
|  | BUG_ON(num_doubles != 0); | 
|  | num_doubles++; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | push_for_double: | 
|  | push_for_double_split(trans, root, path, data_size); | 
|  | tried_avoid_double = 1; | 
|  | if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) | 
|  | return 0; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int ins_len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | u64 extent_len = 0; | 
|  | u32 item_size; | 
|  | int ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && | 
|  | key.type != BTRFS_EXTENT_CSUM_KEY); | 
|  |  | 
|  | if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) | 
|  | return 0; | 
|  |  | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | if (key.type == BTRFS_EXTENT_DATA_KEY) { | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | extent_len = btrfs_file_extent_num_bytes(leaf, fi); | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | path->keep_locks = 1; | 
|  | path->search_for_split = 1; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | path->search_for_split = 0; | 
|  | if (ret > 0) | 
|  | ret = -EAGAIN; | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | leaf = path->nodes[0]; | 
|  | /* if our item isn't there, return now */ | 
|  | if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) | 
|  | goto err; | 
|  |  | 
|  | /* the leaf has  changed, it now has room.  return now */ | 
|  | if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) | 
|  | goto err; | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_DATA_KEY) { | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | btrfs_set_path_blocking(path); | 
|  | ret = split_leaf(trans, root, &key, path, ins_len, 1); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | path->keep_locks = 0; | 
|  | btrfs_unlock_up_safe(path, 1); | 
|  | return 0; | 
|  | err: | 
|  | path->keep_locks = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int split_item(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_key *new_key, | 
|  | unsigned long split_offset) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_item *item; | 
|  | struct btrfs_item *new_item; | 
|  | int slot; | 
|  | char *buf; | 
|  | u32 nritems; | 
|  | u32 item_size; | 
|  | u32 orig_offset; | 
|  | struct btrfs_disk_key disk_key; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); | 
|  |  | 
|  | btrfs_set_path_blocking(path); | 
|  |  | 
|  | item = btrfs_item_nr(path->slots[0]); | 
|  | orig_offset = btrfs_item_offset(leaf, item); | 
|  | item_size = btrfs_item_size(leaf, item); | 
|  |  | 
|  | buf = kmalloc(item_size, GFP_NOFS); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, | 
|  | path->slots[0]), item_size); | 
|  |  | 
|  | slot = path->slots[0] + 1; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | if (slot != nritems) { | 
|  | /* shift the items */ | 
|  | memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), | 
|  | btrfs_item_nr_offset(slot), | 
|  | (nritems - slot) * sizeof(struct btrfs_item)); | 
|  | } | 
|  |  | 
|  | btrfs_cpu_key_to_disk(&disk_key, new_key); | 
|  | btrfs_set_item_key(leaf, &disk_key, slot); | 
|  |  | 
|  | new_item = btrfs_item_nr(slot); | 
|  |  | 
|  | btrfs_set_item_offset(leaf, new_item, orig_offset); | 
|  | btrfs_set_item_size(leaf, new_item, item_size - split_offset); | 
|  |  | 
|  | btrfs_set_item_offset(leaf, item, | 
|  | orig_offset + item_size - split_offset); | 
|  | btrfs_set_item_size(leaf, item, split_offset); | 
|  |  | 
|  | btrfs_set_header_nritems(leaf, nritems + 1); | 
|  |  | 
|  | /* write the data for the start of the original item */ | 
|  | write_extent_buffer(leaf, buf, | 
|  | btrfs_item_ptr_offset(leaf, path->slots[0]), | 
|  | split_offset); | 
|  |  | 
|  | /* write the data for the new item */ | 
|  | write_extent_buffer(leaf, buf + split_offset, | 
|  | btrfs_item_ptr_offset(leaf, slot), | 
|  | item_size - split_offset); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); | 
|  | kfree(buf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function splits a single item into two items, | 
|  | * giving 'new_key' to the new item and splitting the | 
|  | * old one at split_offset (from the start of the item). | 
|  | * | 
|  | * The path may be released by this operation.  After | 
|  | * the split, the path is pointing to the old item.  The | 
|  | * new item is going to be in the same node as the old one. | 
|  | * | 
|  | * Note, the item being split must be smaller enough to live alone on | 
|  | * a tree block with room for one extra struct btrfs_item | 
|  | * | 
|  | * This allows us to split the item in place, keeping a lock on the | 
|  | * leaf the entire time. | 
|  | */ | 
|  | int btrfs_split_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_key *new_key, | 
|  | unsigned long split_offset) | 
|  | { | 
|  | int ret; | 
|  | ret = setup_leaf_for_split(trans, root, path, | 
|  | sizeof(struct btrfs_item)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = split_item(root->fs_info, path, new_key, split_offset); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function duplicate a item, giving 'new_key' to the new item. | 
|  | * It guarantees both items live in the same tree leaf and the new item | 
|  | * is contiguous with the original item. | 
|  | * | 
|  | * This allows us to split file extent in place, keeping a lock on the | 
|  | * leaf the entire time. | 
|  | */ | 
|  | int btrfs_duplicate_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_key *new_key) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | int ret; | 
|  | u32 item_size; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | ret = setup_leaf_for_split(trans, root, path, | 
|  | item_size + sizeof(struct btrfs_item)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | path->slots[0]++; | 
|  | setup_items_for_insert(root, path, new_key, &item_size, | 
|  | item_size, item_size + | 
|  | sizeof(struct btrfs_item), 1); | 
|  | leaf = path->nodes[0]; | 
|  | memcpy_extent_buffer(leaf, | 
|  | btrfs_item_ptr_offset(leaf, path->slots[0]), | 
|  | btrfs_item_ptr_offset(leaf, path->slots[0] - 1), | 
|  | item_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make the item pointed to by the path smaller.  new_size indicates | 
|  | * how small to make it, and from_end tells us if we just chop bytes | 
|  | * off the end of the item or if we shift the item to chop bytes off | 
|  | * the front. | 
|  | */ | 
|  | void btrfs_truncate_item(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, u32 new_size, int from_end) | 
|  | { | 
|  | int slot; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_item *item; | 
|  | u32 nritems; | 
|  | unsigned int data_end; | 
|  | unsigned int old_data_start; | 
|  | unsigned int old_size; | 
|  | unsigned int size_diff; | 
|  | int i; | 
|  | struct btrfs_map_token token; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | old_size = btrfs_item_size_nr(leaf, slot); | 
|  | if (old_size == new_size) | 
|  | return; | 
|  |  | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | data_end = leaf_data_end(fs_info, leaf); | 
|  |  | 
|  | old_data_start = btrfs_item_offset_nr(leaf, slot); | 
|  |  | 
|  | size_diff = old_size - new_size; | 
|  |  | 
|  | BUG_ON(slot < 0); | 
|  | BUG_ON(slot >= nritems); | 
|  |  | 
|  | /* | 
|  | * item0..itemN ... dataN.offset..dataN.size .. data0.size | 
|  | */ | 
|  | /* first correct the data pointers */ | 
|  | for (i = slot; i < nritems; i++) { | 
|  | u32 ioff; | 
|  | item = btrfs_item_nr(i); | 
|  |  | 
|  | ioff = btrfs_token_item_offset(leaf, item, &token); | 
|  | btrfs_set_token_item_offset(leaf, item, | 
|  | ioff + size_diff, &token); | 
|  | } | 
|  |  | 
|  | /* shift the data */ | 
|  | if (from_end) { | 
|  | memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end, old_data_start + new_size - data_end); | 
|  | } else { | 
|  | struct btrfs_disk_key disk_key; | 
|  | u64 offset; | 
|  |  | 
|  | btrfs_item_key(leaf, &disk_key, slot); | 
|  |  | 
|  | if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { | 
|  | unsigned long ptr; | 
|  | struct btrfs_file_extent_item *fi; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_file_extent_item); | 
|  | fi = (struct btrfs_file_extent_item *)( | 
|  | (unsigned long)fi - size_diff); | 
|  |  | 
|  | if (btrfs_file_extent_type(leaf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) { | 
|  | ptr = btrfs_item_ptr_offset(leaf, slot); | 
|  | memmove_extent_buffer(leaf, ptr, | 
|  | (unsigned long)fi, | 
|  | BTRFS_FILE_EXTENT_INLINE_DATA_START); | 
|  | } | 
|  | } | 
|  |  | 
|  | memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end, old_data_start - data_end); | 
|  |  | 
|  | offset = btrfs_disk_key_offset(&disk_key); | 
|  | btrfs_set_disk_key_offset(&disk_key, offset + size_diff); | 
|  | btrfs_set_item_key(leaf, &disk_key, slot); | 
|  | if (slot == 0) | 
|  | fixup_low_keys(path, &disk_key, 1); | 
|  | } | 
|  |  | 
|  | item = btrfs_item_nr(slot); | 
|  | btrfs_set_item_size(leaf, item, new_size); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | if (btrfs_leaf_free_space(fs_info, leaf) < 0) { | 
|  | btrfs_print_leaf(leaf); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make the item pointed to by the path bigger, data_size is the added size. | 
|  | */ | 
|  | void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, | 
|  | u32 data_size) | 
|  | { | 
|  | int slot; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_item *item; | 
|  | u32 nritems; | 
|  | unsigned int data_end; | 
|  | unsigned int old_data; | 
|  | unsigned int old_size; | 
|  | int i; | 
|  | struct btrfs_map_token token; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | data_end = leaf_data_end(fs_info, leaf); | 
|  |  | 
|  | if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { | 
|  | btrfs_print_leaf(leaf); | 
|  | BUG(); | 
|  | } | 
|  | slot = path->slots[0]; | 
|  | old_data = btrfs_item_end_nr(leaf, slot); | 
|  |  | 
|  | BUG_ON(slot < 0); | 
|  | if (slot >= nritems) { | 
|  | btrfs_print_leaf(leaf); | 
|  | btrfs_crit(fs_info, "slot %d too large, nritems %d", | 
|  | slot, nritems); | 
|  | BUG_ON(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * item0..itemN ... dataN.offset..dataN.size .. data0.size | 
|  | */ | 
|  | /* first correct the data pointers */ | 
|  | for (i = slot; i < nritems; i++) { | 
|  | u32 ioff; | 
|  | item = btrfs_item_nr(i); | 
|  |  | 
|  | ioff = btrfs_token_item_offset(leaf, item, &token); | 
|  | btrfs_set_token_item_offset(leaf, item, | 
|  | ioff - data_size, &token); | 
|  | } | 
|  |  | 
|  | /* shift the data */ | 
|  | memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end - data_size, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end, old_data - data_end); | 
|  |  | 
|  | data_end = old_data; | 
|  | old_size = btrfs_item_size_nr(leaf, slot); | 
|  | item = btrfs_item_nr(slot); | 
|  | btrfs_set_item_size(leaf, item, old_size + data_size); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | if (btrfs_leaf_free_space(fs_info, leaf) < 0) { | 
|  | btrfs_print_leaf(leaf); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is a helper for btrfs_insert_empty_items, the main goal here is | 
|  | * to save stack depth by doing the bulk of the work in a function | 
|  | * that doesn't call btrfs_search_slot | 
|  | */ | 
|  | void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, | 
|  | const struct btrfs_key *cpu_key, u32 *data_size, | 
|  | u32 total_data, u32 total_size, int nr) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_item *item; | 
|  | int i; | 
|  | u32 nritems; | 
|  | unsigned int data_end; | 
|  | struct btrfs_disk_key disk_key; | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  | struct btrfs_map_token token; | 
|  |  | 
|  | if (path->slots[0] == 0) { | 
|  | btrfs_cpu_key_to_disk(&disk_key, cpu_key); | 
|  | fixup_low_keys(path, &disk_key, 1); | 
|  | } | 
|  | btrfs_unlock_up_safe(path, 1); | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | data_end = leaf_data_end(fs_info, leaf); | 
|  |  | 
|  | if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { | 
|  | btrfs_print_leaf(leaf); | 
|  | btrfs_crit(fs_info, "not enough freespace need %u have %d", | 
|  | total_size, btrfs_leaf_free_space(fs_info, leaf)); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (slot != nritems) { | 
|  | unsigned int old_data = btrfs_item_end_nr(leaf, slot); | 
|  |  | 
|  | if (old_data < data_end) { | 
|  | btrfs_print_leaf(leaf); | 
|  | btrfs_crit(fs_info, "slot %d old_data %d data_end %d", | 
|  | slot, old_data, data_end); | 
|  | BUG_ON(1); | 
|  | } | 
|  | /* | 
|  | * item0..itemN ... dataN.offset..dataN.size .. data0.size | 
|  | */ | 
|  | /* first correct the data pointers */ | 
|  | for (i = slot; i < nritems; i++) { | 
|  | u32 ioff; | 
|  |  | 
|  | item = btrfs_item_nr(i); | 
|  | ioff = btrfs_token_item_offset(leaf, item, &token); | 
|  | btrfs_set_token_item_offset(leaf, item, | 
|  | ioff - total_data, &token); | 
|  | } | 
|  | /* shift the items */ | 
|  | memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), | 
|  | btrfs_item_nr_offset(slot), | 
|  | (nritems - slot) * sizeof(struct btrfs_item)); | 
|  |  | 
|  | /* shift the data */ | 
|  | memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end - total_data, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end, old_data - data_end); | 
|  | data_end = old_data; | 
|  | } | 
|  |  | 
|  | /* setup the item for the new data */ | 
|  | for (i = 0; i < nr; i++) { | 
|  | btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); | 
|  | btrfs_set_item_key(leaf, &disk_key, slot + i); | 
|  | item = btrfs_item_nr(slot + i); | 
|  | btrfs_set_token_item_offset(leaf, item, | 
|  | data_end - data_size[i], &token); | 
|  | data_end -= data_size[i]; | 
|  | btrfs_set_token_item_size(leaf, item, data_size[i], &token); | 
|  | } | 
|  |  | 
|  | btrfs_set_header_nritems(leaf, nritems + nr); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | if (btrfs_leaf_free_space(fs_info, leaf) < 0) { | 
|  | btrfs_print_leaf(leaf); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a key and some data, insert items into the tree. | 
|  | * This does all the path init required, making room in the tree if needed. | 
|  | */ | 
|  | int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_key *cpu_key, u32 *data_size, | 
|  | int nr) | 
|  | { | 
|  | int ret = 0; | 
|  | int slot; | 
|  | int i; | 
|  | u32 total_size = 0; | 
|  | u32 total_data = 0; | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | total_data += data_size[i]; | 
|  |  | 
|  | total_size = total_data + (nr * sizeof(struct btrfs_item)); | 
|  | ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); | 
|  | if (ret == 0) | 
|  | return -EEXIST; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | slot = path->slots[0]; | 
|  | BUG_ON(slot < 0); | 
|  |  | 
|  | setup_items_for_insert(root, path, cpu_key, data_size, | 
|  | total_data, total_size, nr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a key and some data, insert an item into the tree. | 
|  | * This does all the path init required, making room in the tree if needed. | 
|  | */ | 
|  | int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | const struct btrfs_key *cpu_key, void *data, | 
|  | u32 data_size) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | unsigned long ptr; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); | 
|  | if (!ret) { | 
|  | leaf = path->nodes[0]; | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | write_extent_buffer(leaf, data, ptr, data_size); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * delete the pointer from a given node. | 
|  | * | 
|  | * the tree should have been previously balanced so the deletion does not | 
|  | * empty a node. | 
|  | */ | 
|  | static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, | 
|  | int level, int slot) | 
|  | { | 
|  | struct extent_buffer *parent = path->nodes[level]; | 
|  | u32 nritems; | 
|  | int ret; | 
|  |  | 
|  | nritems = btrfs_header_nritems(parent); | 
|  | if (slot != nritems - 1) { | 
|  | if (level) { | 
|  | ret = tree_mod_log_insert_move(parent, slot, slot + 1, | 
|  | nritems - slot - 1); | 
|  | BUG_ON(ret < 0); | 
|  | } | 
|  | memmove_extent_buffer(parent, | 
|  | btrfs_node_key_ptr_offset(slot), | 
|  | btrfs_node_key_ptr_offset(slot + 1), | 
|  | sizeof(struct btrfs_key_ptr) * | 
|  | (nritems - slot - 1)); | 
|  | } else if (level) { | 
|  | ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, | 
|  | GFP_NOFS); | 
|  | BUG_ON(ret < 0); | 
|  | } | 
|  |  | 
|  | nritems--; | 
|  | btrfs_set_header_nritems(parent, nritems); | 
|  | if (nritems == 0 && parent == root->node) { | 
|  | BUG_ON(btrfs_header_level(root->node) != 1); | 
|  | /* just turn the root into a leaf and break */ | 
|  | btrfs_set_header_level(root->node, 0); | 
|  | } else if (slot == 0) { | 
|  | struct btrfs_disk_key disk_key; | 
|  |  | 
|  | btrfs_node_key(parent, &disk_key, 0); | 
|  | fixup_low_keys(path, &disk_key, level + 1); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(parent); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper function to delete the leaf pointed to by path->slots[1] and | 
|  | * path->nodes[1]. | 
|  | * | 
|  | * This deletes the pointer in path->nodes[1] and frees the leaf | 
|  | * block extent.  zero is returned if it all worked out, < 0 otherwise. | 
|  | * | 
|  | * The path must have already been setup for deleting the leaf, including | 
|  | * all the proper balancing.  path->nodes[1] must be locked. | 
|  | */ | 
|  | static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *leaf) | 
|  | { | 
|  | WARN_ON(btrfs_header_generation(leaf) != trans->transid); | 
|  | del_ptr(root, path, 1, path->slots[1]); | 
|  |  | 
|  | /* | 
|  | * btrfs_free_extent is expensive, we want to make sure we | 
|  | * aren't holding any locks when we call it | 
|  | */ | 
|  | btrfs_unlock_up_safe(path, 0); | 
|  |  | 
|  | root_sub_used(root, leaf->len); | 
|  |  | 
|  | extent_buffer_get(leaf); | 
|  | btrfs_free_tree_block(trans, root, leaf, 0, 1); | 
|  | free_extent_buffer_stale(leaf); | 
|  | } | 
|  | /* | 
|  | * delete the item at the leaf level in path.  If that empties | 
|  | * the leaf, remove it from the tree | 
|  | */ | 
|  | int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct btrfs_path *path, int slot, int nr) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_item *item; | 
|  | u32 last_off; | 
|  | u32 dsize = 0; | 
|  | int ret = 0; | 
|  | int wret; | 
|  | int i; | 
|  | u32 nritems; | 
|  | struct btrfs_map_token token; | 
|  |  | 
|  | btrfs_init_map_token(&token); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | dsize += btrfs_item_size_nr(leaf, slot + i); | 
|  |  | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  |  | 
|  | if (slot + nr != nritems) { | 
|  | int data_end = leaf_data_end(fs_info, leaf); | 
|  |  | 
|  | memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + | 
|  | data_end + dsize, | 
|  | BTRFS_LEAF_DATA_OFFSET + data_end, | 
|  | last_off - data_end); | 
|  |  | 
|  | for (i = slot + nr; i < nritems; i++) { | 
|  | u32 ioff; | 
|  |  | 
|  | item = btrfs_item_nr(i); | 
|  | ioff = btrfs_token_item_offset(leaf, item, &token); | 
|  | btrfs_set_token_item_offset(leaf, item, | 
|  | ioff + dsize, &token); | 
|  | } | 
|  |  | 
|  | memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), | 
|  | btrfs_item_nr_offset(slot + nr), | 
|  | sizeof(struct btrfs_item) * | 
|  | (nritems - slot - nr)); | 
|  | } | 
|  | btrfs_set_header_nritems(leaf, nritems - nr); | 
|  | nritems -= nr; | 
|  |  | 
|  | /* delete the leaf if we've emptied it */ | 
|  | if (nritems == 0) { | 
|  | if (leaf == root->node) { | 
|  | btrfs_set_header_level(leaf, 0); | 
|  | } else { | 
|  | btrfs_set_path_blocking(path); | 
|  | clean_tree_block(fs_info, leaf); | 
|  | btrfs_del_leaf(trans, root, path, leaf); | 
|  | } | 
|  | } else { | 
|  | int used = leaf_space_used(leaf, 0, nritems); | 
|  | if (slot == 0) { | 
|  | struct btrfs_disk_key disk_key; | 
|  |  | 
|  | btrfs_item_key(leaf, &disk_key, 0); | 
|  | fixup_low_keys(path, &disk_key, 1); | 
|  | } | 
|  |  | 
|  | /* delete the leaf if it is mostly empty */ | 
|  | if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { | 
|  | /* push_leaf_left fixes the path. | 
|  | * make sure the path still points to our leaf | 
|  | * for possible call to del_ptr below | 
|  | */ | 
|  | slot = path->slots[1]; | 
|  | extent_buffer_get(leaf); | 
|  |  | 
|  | btrfs_set_path_blocking(path); | 
|  | wret = push_leaf_left(trans, root, path, 1, 1, | 
|  | 1, (u32)-1); | 
|  | if (wret < 0 && wret != -ENOSPC) | 
|  | ret = wret; | 
|  |  | 
|  | if (path->nodes[0] == leaf && | 
|  | btrfs_header_nritems(leaf)) { | 
|  | wret = push_leaf_right(trans, root, path, 1, | 
|  | 1, 1, 0); | 
|  | if (wret < 0 && wret != -ENOSPC) | 
|  | ret = wret; | 
|  | } | 
|  |  | 
|  | if (btrfs_header_nritems(leaf) == 0) { | 
|  | path->slots[1] = slot; | 
|  | btrfs_del_leaf(trans, root, path, leaf); | 
|  | free_extent_buffer(leaf); | 
|  | ret = 0; | 
|  | } else { | 
|  | /* if we're still in the path, make sure | 
|  | * we're dirty.  Otherwise, one of the | 
|  | * push_leaf functions must have already | 
|  | * dirtied this buffer | 
|  | */ | 
|  | if (path->nodes[0] == leaf) | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | free_extent_buffer(leaf); | 
|  | } | 
|  | } else { | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search the tree again to find a leaf with lesser keys | 
|  | * returns 0 if it found something or 1 if there are no lesser leaves. | 
|  | * returns < 0 on io errors. | 
|  | * | 
|  | * This may release the path, and so you may lose any locks held at the | 
|  | * time you call it. | 
|  | */ | 
|  | int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_disk_key found_key; | 
|  | int ret; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, 0); | 
|  |  | 
|  | if (key.offset > 0) { | 
|  | key.offset--; | 
|  | } else if (key.type > 0) { | 
|  | key.type--; | 
|  | key.offset = (u64)-1; | 
|  | } else if (key.objectid > 0) { | 
|  | key.objectid--; | 
|  | key.type = (u8)-1; | 
|  | key.offset = (u64)-1; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | btrfs_item_key(path->nodes[0], &found_key, 0); | 
|  | ret = comp_keys(&found_key, &key); | 
|  | /* | 
|  | * We might have had an item with the previous key in the tree right | 
|  | * before we released our path. And after we released our path, that | 
|  | * item might have been pushed to the first slot (0) of the leaf we | 
|  | * were holding due to a tree balance. Alternatively, an item with the | 
|  | * previous key can exist as the only element of a leaf (big fat item). | 
|  | * Therefore account for these 2 cases, so that our callers (like | 
|  | * btrfs_previous_item) don't miss an existing item with a key matching | 
|  | * the previous key we computed above. | 
|  | */ | 
|  | if (ret <= 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A helper function to walk down the tree starting at min_key, and looking | 
|  | * for nodes or leaves that are have a minimum transaction id. | 
|  | * This is used by the btree defrag code, and tree logging | 
|  | * | 
|  | * This does not cow, but it does stuff the starting key it finds back | 
|  | * into min_key, so you can call btrfs_search_slot with cow=1 on the | 
|  | * key and get a writable path. | 
|  | * | 
|  | * This honors path->lowest_level to prevent descent past a given level | 
|  | * of the tree. | 
|  | * | 
|  | * min_trans indicates the oldest transaction that you are interested | 
|  | * in walking through.  Any nodes or leaves older than min_trans are | 
|  | * skipped over (without reading them). | 
|  | * | 
|  | * returns zero if something useful was found, < 0 on error and 1 if there | 
|  | * was nothing in the tree that matched the search criteria. | 
|  | */ | 
|  | int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, | 
|  | struct btrfs_path *path, | 
|  | u64 min_trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *cur; | 
|  | struct btrfs_key found_key; | 
|  | int slot; | 
|  | int sret; | 
|  | u32 nritems; | 
|  | int level; | 
|  | int ret = 1; | 
|  | int keep_locks = path->keep_locks; | 
|  |  | 
|  | path->keep_locks = 1; | 
|  | again: | 
|  | cur = btrfs_read_lock_root_node(root); | 
|  | level = btrfs_header_level(cur); | 
|  | WARN_ON(path->nodes[level]); | 
|  | path->nodes[level] = cur; | 
|  | path->locks[level] = BTRFS_READ_LOCK; | 
|  |  | 
|  | if (btrfs_header_generation(cur) < min_trans) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | while (1) { | 
|  | nritems = btrfs_header_nritems(cur); | 
|  | level = btrfs_header_level(cur); | 
|  | sret = btrfs_bin_search(cur, min_key, level, &slot); | 
|  |  | 
|  | /* at the lowest level, we're done, setup the path and exit */ | 
|  | if (level == path->lowest_level) { | 
|  | if (slot >= nritems) | 
|  | goto find_next_key; | 
|  | ret = 0; | 
|  | path->slots[level] = slot; | 
|  | btrfs_item_key_to_cpu(cur, &found_key, slot); | 
|  | goto out; | 
|  | } | 
|  | if (sret && slot > 0) | 
|  | slot--; | 
|  | /* | 
|  | * check this node pointer against the min_trans parameters. | 
|  | * If it is too old, old, skip to the next one. | 
|  | */ | 
|  | while (slot < nritems) { | 
|  | u64 gen; | 
|  |  | 
|  | gen = btrfs_node_ptr_generation(cur, slot); | 
|  | if (gen < min_trans) { | 
|  | slot++; | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | find_next_key: | 
|  | /* | 
|  | * we didn't find a candidate key in this node, walk forward | 
|  | * and find another one | 
|  | */ | 
|  | if (slot >= nritems) { | 
|  | path->slots[level] = slot; | 
|  | btrfs_set_path_blocking(path); | 
|  | sret = btrfs_find_next_key(root, path, min_key, level, | 
|  | min_trans); | 
|  | if (sret == 0) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } else { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | /* save our key for returning back */ | 
|  | btrfs_node_key_to_cpu(cur, &found_key, slot); | 
|  | path->slots[level] = slot; | 
|  | if (level == path->lowest_level) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | btrfs_set_path_blocking(path); | 
|  | cur = read_node_slot(fs_info, cur, slot); | 
|  | if (IS_ERR(cur)) { | 
|  | ret = PTR_ERR(cur); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_tree_read_lock(cur); | 
|  |  | 
|  | path->locks[level - 1] = BTRFS_READ_LOCK; | 
|  | path->nodes[level - 1] = cur; | 
|  | unlock_up(path, level, 1, 0, NULL); | 
|  | } | 
|  | out: | 
|  | path->keep_locks = keep_locks; | 
|  | if (ret == 0) { | 
|  | btrfs_unlock_up_safe(path, path->lowest_level + 1); | 
|  | btrfs_set_path_blocking(path); | 
|  | memcpy(min_key, &found_key, sizeof(found_key)); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int tree_move_down(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | int *level) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | BUG_ON(*level == 0); | 
|  | eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); | 
|  | if (IS_ERR(eb)) | 
|  | return PTR_ERR(eb); | 
|  |  | 
|  | path->nodes[*level - 1] = eb; | 
|  | path->slots[*level - 1] = 0; | 
|  | (*level)--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tree_move_next_or_upnext(struct btrfs_path *path, | 
|  | int *level, int root_level) | 
|  | { | 
|  | int ret = 0; | 
|  | int nritems; | 
|  | nritems = btrfs_header_nritems(path->nodes[*level]); | 
|  |  | 
|  | path->slots[*level]++; | 
|  |  | 
|  | while (path->slots[*level] >= nritems) { | 
|  | if (*level == root_level) | 
|  | return -1; | 
|  |  | 
|  | /* move upnext */ | 
|  | path->slots[*level] = 0; | 
|  | free_extent_buffer(path->nodes[*level]); | 
|  | path->nodes[*level] = NULL; | 
|  | (*level)++; | 
|  | path->slots[*level]++; | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[*level]); | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1 if it had to move up and next. 0 is returned if it moved only next | 
|  | * or down. | 
|  | */ | 
|  | static int tree_advance(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | int *level, int root_level, | 
|  | int allow_down, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (*level == 0 || !allow_down) { | 
|  | ret = tree_move_next_or_upnext(path, level, root_level); | 
|  | } else { | 
|  | ret = tree_move_down(fs_info, path, level); | 
|  | } | 
|  | if (ret >= 0) { | 
|  | if (*level == 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[*level], key, | 
|  | path->slots[*level]); | 
|  | else | 
|  | btrfs_node_key_to_cpu(path->nodes[*level], key, | 
|  | path->slots[*level]); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int tree_compare_item(struct btrfs_path *left_path, | 
|  | struct btrfs_path *right_path, | 
|  | char *tmp_buf) | 
|  | { | 
|  | int cmp; | 
|  | int len1, len2; | 
|  | unsigned long off1, off2; | 
|  |  | 
|  | len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); | 
|  | len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); | 
|  | if (len1 != len2) | 
|  | return 1; | 
|  |  | 
|  | off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); | 
|  | off2 = btrfs_item_ptr_offset(right_path->nodes[0], | 
|  | right_path->slots[0]); | 
|  |  | 
|  | read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); | 
|  |  | 
|  | cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); | 
|  | if (cmp) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define ADVANCE 1 | 
|  | #define ADVANCE_ONLY_NEXT -1 | 
|  |  | 
|  | /* | 
|  | * This function compares two trees and calls the provided callback for | 
|  | * every changed/new/deleted item it finds. | 
|  | * If shared tree blocks are encountered, whole subtrees are skipped, making | 
|  | * the compare pretty fast on snapshotted subvolumes. | 
|  | * | 
|  | * This currently works on commit roots only. As commit roots are read only, | 
|  | * we don't do any locking. The commit roots are protected with transactions. | 
|  | * Transactions are ended and rejoined when a commit is tried in between. | 
|  | * | 
|  | * This function checks for modifications done to the trees while comparing. | 
|  | * If it detects a change, it aborts immediately. | 
|  | */ | 
|  | int btrfs_compare_trees(struct btrfs_root *left_root, | 
|  | struct btrfs_root *right_root, | 
|  | btrfs_changed_cb_t changed_cb, void *ctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = left_root->fs_info; | 
|  | int ret; | 
|  | int cmp; | 
|  | struct btrfs_path *left_path = NULL; | 
|  | struct btrfs_path *right_path = NULL; | 
|  | struct btrfs_key left_key; | 
|  | struct btrfs_key right_key; | 
|  | char *tmp_buf = NULL; | 
|  | int left_root_level; | 
|  | int right_root_level; | 
|  | int left_level; | 
|  | int right_level; | 
|  | int left_end_reached; | 
|  | int right_end_reached; | 
|  | int advance_left; | 
|  | int advance_right; | 
|  | u64 left_blockptr; | 
|  | u64 right_blockptr; | 
|  | u64 left_gen; | 
|  | u64 right_gen; | 
|  |  | 
|  | left_path = btrfs_alloc_path(); | 
|  | if (!left_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | right_path = btrfs_alloc_path(); | 
|  | if (!right_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); | 
|  | if (!tmp_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | left_path->search_commit_root = 1; | 
|  | left_path->skip_locking = 1; | 
|  | right_path->search_commit_root = 1; | 
|  | right_path->skip_locking = 1; | 
|  |  | 
|  | /* | 
|  | * Strategy: Go to the first items of both trees. Then do | 
|  | * | 
|  | * If both trees are at level 0 | 
|  | *   Compare keys of current items | 
|  | *     If left < right treat left item as new, advance left tree | 
|  | *       and repeat | 
|  | *     If left > right treat right item as deleted, advance right tree | 
|  | *       and repeat | 
|  | *     If left == right do deep compare of items, treat as changed if | 
|  | *       needed, advance both trees and repeat | 
|  | * If both trees are at the same level but not at level 0 | 
|  | *   Compare keys of current nodes/leafs | 
|  | *     If left < right advance left tree and repeat | 
|  | *     If left > right advance right tree and repeat | 
|  | *     If left == right compare blockptrs of the next nodes/leafs | 
|  | *       If they match advance both trees but stay at the same level | 
|  | *         and repeat | 
|  | *       If they don't match advance both trees while allowing to go | 
|  | *         deeper and repeat | 
|  | * If tree levels are different | 
|  | *   Advance the tree that needs it and repeat | 
|  | * | 
|  | * Advancing a tree means: | 
|  | *   If we are at level 0, try to go to the next slot. If that's not | 
|  | *   possible, go one level up and repeat. Stop when we found a level | 
|  | *   where we could go to the next slot. We may at this point be on a | 
|  | *   node or a leaf. | 
|  | * | 
|  | *   If we are not at level 0 and not on shared tree blocks, go one | 
|  | *   level deeper. | 
|  | * | 
|  | *   If we are not at level 0 and on shared tree blocks, go one slot to | 
|  | *   the right if possible or go up and right. | 
|  | */ | 
|  |  | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | left_level = btrfs_header_level(left_root->commit_root); | 
|  | left_root_level = left_level; | 
|  | left_path->nodes[left_level] = | 
|  | btrfs_clone_extent_buffer(left_root->commit_root); | 
|  | if (!left_path->nodes[left_level]) { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | right_level = btrfs_header_level(right_root->commit_root); | 
|  | right_root_level = right_level; | 
|  | right_path->nodes[right_level] = | 
|  | btrfs_clone_extent_buffer(right_root->commit_root); | 
|  | if (!right_path->nodes[right_level]) { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | up_read(&fs_info->commit_root_sem); | 
|  |  | 
|  | if (left_level == 0) | 
|  | btrfs_item_key_to_cpu(left_path->nodes[left_level], | 
|  | &left_key, left_path->slots[left_level]); | 
|  | else | 
|  | btrfs_node_key_to_cpu(left_path->nodes[left_level], | 
|  | &left_key, left_path->slots[left_level]); | 
|  | if (right_level == 0) | 
|  | btrfs_item_key_to_cpu(right_path->nodes[right_level], | 
|  | &right_key, right_path->slots[right_level]); | 
|  | else | 
|  | btrfs_node_key_to_cpu(right_path->nodes[right_level], | 
|  | &right_key, right_path->slots[right_level]); | 
|  |  | 
|  | left_end_reached = right_end_reached = 0; | 
|  | advance_left = advance_right = 0; | 
|  |  | 
|  | while (1) { | 
|  | if (advance_left && !left_end_reached) { | 
|  | ret = tree_advance(fs_info, left_path, &left_level, | 
|  | left_root_level, | 
|  | advance_left != ADVANCE_ONLY_NEXT, | 
|  | &left_key); | 
|  | if (ret == -1) | 
|  | left_end_reached = ADVANCE; | 
|  | else if (ret < 0) | 
|  | goto out; | 
|  | advance_left = 0; | 
|  | } | 
|  | if (advance_right && !right_end_reached) { | 
|  | ret = tree_advance(fs_info, right_path, &right_level, | 
|  | right_root_level, | 
|  | advance_right != ADVANCE_ONLY_NEXT, | 
|  | &right_key); | 
|  | if (ret == -1) | 
|  | right_end_reached = ADVANCE; | 
|  | else if (ret < 0) | 
|  | goto out; | 
|  | advance_right = 0; | 
|  | } | 
|  |  | 
|  | if (left_end_reached && right_end_reached) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } else if (left_end_reached) { | 
|  | if (right_level == 0) { | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &right_key, | 
|  | BTRFS_COMPARE_TREE_DELETED, | 
|  | ctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | advance_right = ADVANCE; | 
|  | continue; | 
|  | } else if (right_end_reached) { | 
|  | if (left_level == 0) { | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &left_key, | 
|  | BTRFS_COMPARE_TREE_NEW, | 
|  | ctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | advance_left = ADVANCE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (left_level == 0 && right_level == 0) { | 
|  | cmp = btrfs_comp_cpu_keys(&left_key, &right_key); | 
|  | if (cmp < 0) { | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &left_key, | 
|  | BTRFS_COMPARE_TREE_NEW, | 
|  | ctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | advance_left = ADVANCE; | 
|  | } else if (cmp > 0) { | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &right_key, | 
|  | BTRFS_COMPARE_TREE_DELETED, | 
|  | ctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | advance_right = ADVANCE; | 
|  | } else { | 
|  | enum btrfs_compare_tree_result result; | 
|  |  | 
|  | WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); | 
|  | ret = tree_compare_item(left_path, right_path, | 
|  | tmp_buf); | 
|  | if (ret) | 
|  | result = BTRFS_COMPARE_TREE_CHANGED; | 
|  | else | 
|  | result = BTRFS_COMPARE_TREE_SAME; | 
|  | ret = changed_cb(left_path, right_path, | 
|  | &left_key, result, ctx); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | advance_left = ADVANCE; | 
|  | advance_right = ADVANCE; | 
|  | } | 
|  | } else if (left_level == right_level) { | 
|  | cmp = btrfs_comp_cpu_keys(&left_key, &right_key); | 
|  | if (cmp < 0) { | 
|  | advance_left = ADVANCE; | 
|  | } else if (cmp > 0) { | 
|  | advance_right = ADVANCE; | 
|  | } else { | 
|  | left_blockptr = btrfs_node_blockptr( | 
|  | left_path->nodes[left_level], | 
|  | left_path->slots[left_level]); | 
|  | right_blockptr = btrfs_node_blockptr( | 
|  | right_path->nodes[right_level], | 
|  | right_path->slots[right_level]); | 
|  | left_gen = btrfs_node_ptr_generation( | 
|  | left_path->nodes[left_level], | 
|  | left_path->slots[left_level]); | 
|  | right_gen = btrfs_node_ptr_generation( | 
|  | right_path->nodes[right_level], | 
|  | right_path->slots[right_level]); | 
|  | if (left_blockptr == right_blockptr && | 
|  | left_gen == right_gen) { | 
|  | /* | 
|  | * As we're on a shared block, don't | 
|  | * allow to go deeper. | 
|  | */ | 
|  | advance_left = ADVANCE_ONLY_NEXT; | 
|  | advance_right = ADVANCE_ONLY_NEXT; | 
|  | } else { | 
|  | advance_left = ADVANCE; | 
|  | advance_right = ADVANCE; | 
|  | } | 
|  | } | 
|  | } else if (left_level < right_level) { | 
|  | advance_right = ADVANCE; | 
|  | } else { | 
|  | advance_left = ADVANCE; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(left_path); | 
|  | btrfs_free_path(right_path); | 
|  | kvfree(tmp_buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is similar to btrfs_next_leaf, but does not try to preserve | 
|  | * and fixup the path.  It looks for and returns the next key in the | 
|  | * tree based on the current path and the min_trans parameters. | 
|  | * | 
|  | * 0 is returned if another key is found, < 0 if there are any errors | 
|  | * and 1 is returned if there are no higher keys in the tree | 
|  | * | 
|  | * path->keep_locks should be set to 1 on the search made before | 
|  | * calling this function. | 
|  | */ | 
|  | int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, | 
|  | struct btrfs_key *key, int level, u64 min_trans) | 
|  | { | 
|  | int slot; | 
|  | struct extent_buffer *c; | 
|  |  | 
|  | WARN_ON(!path->keep_locks); | 
|  | while (level < BTRFS_MAX_LEVEL) { | 
|  | if (!path->nodes[level]) | 
|  | return 1; | 
|  |  | 
|  | slot = path->slots[level] + 1; | 
|  | c = path->nodes[level]; | 
|  | next: | 
|  | if (slot >= btrfs_header_nritems(c)) { | 
|  | int ret; | 
|  | int orig_lowest; | 
|  | struct btrfs_key cur_key; | 
|  | if (level + 1 >= BTRFS_MAX_LEVEL || | 
|  | !path->nodes[level + 1]) | 
|  | return 1; | 
|  |  | 
|  | if (path->locks[level + 1]) { | 
|  | level++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | slot = btrfs_header_nritems(c) - 1; | 
|  | if (level == 0) | 
|  | btrfs_item_key_to_cpu(c, &cur_key, slot); | 
|  | else | 
|  | btrfs_node_key_to_cpu(c, &cur_key, slot); | 
|  |  | 
|  | orig_lowest = path->lowest_level; | 
|  | btrfs_release_path(path); | 
|  | path->lowest_level = level; | 
|  | ret = btrfs_search_slot(NULL, root, &cur_key, path, | 
|  | 0, 0); | 
|  | path->lowest_level = orig_lowest; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | c = path->nodes[level]; | 
|  | slot = path->slots[level]; | 
|  | if (ret == 0) | 
|  | slot++; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (level == 0) | 
|  | btrfs_item_key_to_cpu(c, key, slot); | 
|  | else { | 
|  | u64 gen = btrfs_node_ptr_generation(c, slot); | 
|  |  | 
|  | if (gen < min_trans) { | 
|  | slot++; | 
|  | goto next; | 
|  | } | 
|  | btrfs_node_key_to_cpu(c, key, slot); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search the tree again to find a leaf with greater keys | 
|  | * returns 0 if it found something or 1 if there are no greater leaves. | 
|  | * returns < 0 on io errors. | 
|  | */ | 
|  | int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) | 
|  | { | 
|  | return btrfs_next_old_leaf(root, path, 0); | 
|  | } | 
|  |  | 
|  | int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, | 
|  | u64 time_seq) | 
|  | { | 
|  | int slot; | 
|  | int level; | 
|  | struct extent_buffer *c; | 
|  | struct extent_buffer *next; | 
|  | struct btrfs_key key; | 
|  | u32 nritems; | 
|  | int ret; | 
|  | int old_spinning = path->leave_spinning; | 
|  | int next_rw_lock = 0; | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | if (nritems == 0) | 
|  | return 1; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); | 
|  | again: | 
|  | level = 1; | 
|  | next = NULL; | 
|  | next_rw_lock = 0; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | path->keep_locks = 1; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | if (time_seq) | 
|  | ret = btrfs_search_old_slot(root, &key, path, time_seq); | 
|  | else | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | path->keep_locks = 0; | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | /* | 
|  | * by releasing the path above we dropped all our locks.  A balance | 
|  | * could have added more items next to the key that used to be | 
|  | * at the very end of the block.  So, check again here and | 
|  | * advance the path if there are now more items available. | 
|  | */ | 
|  | if (nritems > 0 && path->slots[0] < nritems - 1) { | 
|  | if (ret == 0) | 
|  | path->slots[0]++; | 
|  | ret = 0; | 
|  | goto done; | 
|  | } | 
|  | /* | 
|  | * So the above check misses one case: | 
|  | * - after releasing the path above, someone has removed the item that | 
|  | *   used to be at the very end of the block, and balance between leafs | 
|  | *   gets another one with bigger key.offset to replace it. | 
|  | * | 
|  | * This one should be returned as well, or we can get leaf corruption | 
|  | * later(esp. in __btrfs_drop_extents()). | 
|  | * | 
|  | * And a bit more explanation about this check, | 
|  | * with ret > 0, the key isn't found, the path points to the slot | 
|  | * where it should be inserted, so the path->slots[0] item must be the | 
|  | * bigger one. | 
|  | */ | 
|  | if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { | 
|  | ret = 0; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | while (level < BTRFS_MAX_LEVEL) { | 
|  | if (!path->nodes[level]) { | 
|  | ret = 1; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | slot = path->slots[level] + 1; | 
|  | c = path->nodes[level]; | 
|  | if (slot >= btrfs_header_nritems(c)) { | 
|  | level++; | 
|  | if (level == BTRFS_MAX_LEVEL) { | 
|  | ret = 1; | 
|  | goto done; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (next) { | 
|  | btrfs_tree_unlock_rw(next, next_rw_lock); | 
|  | free_extent_buffer(next); | 
|  | } | 
|  |  | 
|  | next = c; | 
|  | next_rw_lock = path->locks[level]; | 
|  | ret = read_block_for_search(root, path, &next, level, | 
|  | slot, &key); | 
|  | if (ret == -EAGAIN) | 
|  | goto again; | 
|  |  | 
|  | if (ret < 0) { | 
|  | btrfs_release_path(path); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (!path->skip_locking) { | 
|  | ret = btrfs_try_tree_read_lock(next); | 
|  | if (!ret && time_seq) { | 
|  | /* | 
|  | * If we don't get the lock, we may be racing | 
|  | * with push_leaf_left, holding that lock while | 
|  | * itself waiting for the leaf we've currently | 
|  | * locked. To solve this situation, we give up | 
|  | * on our lock and cycle. | 
|  | */ | 
|  | free_extent_buffer(next); | 
|  | btrfs_release_path(path); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | if (!ret) { | 
|  | btrfs_set_path_blocking(path); | 
|  | btrfs_tree_read_lock(next); | 
|  | } | 
|  | next_rw_lock = BTRFS_READ_LOCK; | 
|  | } | 
|  | break; | 
|  | } | 
|  | path->slots[level] = slot; | 
|  | while (1) { | 
|  | level--; | 
|  | c = path->nodes[level]; | 
|  | if (path->locks[level]) | 
|  | btrfs_tree_unlock_rw(c, path->locks[level]); | 
|  |  | 
|  | free_extent_buffer(c); | 
|  | path->nodes[level] = next; | 
|  | path->slots[level] = 0; | 
|  | if (!path->skip_locking) | 
|  | path->locks[level] = next_rw_lock; | 
|  | if (!level) | 
|  | break; | 
|  |  | 
|  | ret = read_block_for_search(root, path, &next, level, | 
|  | 0, &key); | 
|  | if (ret == -EAGAIN) | 
|  | goto again; | 
|  |  | 
|  | if (ret < 0) { | 
|  | btrfs_release_path(path); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (!path->skip_locking) { | 
|  | ret = btrfs_try_tree_read_lock(next); | 
|  | if (!ret) { | 
|  | btrfs_set_path_blocking(path); | 
|  | btrfs_tree_read_lock(next); | 
|  | } | 
|  | next_rw_lock = BTRFS_READ_LOCK; | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | done: | 
|  | unlock_up(path, 0, 1, 0, NULL); | 
|  | path->leave_spinning = old_spinning; | 
|  | if (!old_spinning) | 
|  | btrfs_set_path_blocking(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps | 
|  | * searching until it gets past min_objectid or finds an item of 'type' | 
|  | * | 
|  | * returns 0 if something is found, 1 if nothing was found and < 0 on error | 
|  | */ | 
|  | int btrfs_previous_item(struct btrfs_root *root, | 
|  | struct btrfs_path *path, u64 min_objectid, | 
|  | int type) | 
|  | { | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | u32 nritems; | 
|  | int ret; | 
|  |  | 
|  | while (1) { | 
|  | if (path->slots[0] == 0) { | 
|  | btrfs_set_path_blocking(path); | 
|  | ret = btrfs_prev_leaf(root, path); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | } else { | 
|  | path->slots[0]--; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | if (nritems == 0) | 
|  | return 1; | 
|  | if (path->slots[0] == nritems) | 
|  | path->slots[0]--; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.objectid < min_objectid) | 
|  | break; | 
|  | if (found_key.type == type) | 
|  | return 0; | 
|  | if (found_key.objectid == min_objectid && | 
|  | found_key.type < type) | 
|  | break; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search in extent tree to find a previous Metadata/Data extent item with | 
|  | * min objecitd. | 
|  | * | 
|  | * returns 0 if something is found, 1 if nothing was found and < 0 on error | 
|  | */ | 
|  | int btrfs_previous_extent_item(struct btrfs_root *root, | 
|  | struct btrfs_path *path, u64 min_objectid) | 
|  | { | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | u32 nritems; | 
|  | int ret; | 
|  |  | 
|  | while (1) { | 
|  | if (path->slots[0] == 0) { | 
|  | btrfs_set_path_blocking(path); | 
|  | ret = btrfs_prev_leaf(root, path); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | } else { | 
|  | path->slots[0]--; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | if (nritems == 0) | 
|  | return 1; | 
|  | if (path->slots[0] == nritems) | 
|  | path->slots[0]--; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.objectid < min_objectid) | 
|  | break; | 
|  | if (found_key.type == BTRFS_EXTENT_ITEM_KEY || | 
|  | found_key.type == BTRFS_METADATA_ITEM_KEY) | 
|  | return 0; | 
|  | if (found_key.objectid == min_objectid && | 
|  | found_key.type < BTRFS_EXTENT_ITEM_KEY) | 
|  | break; | 
|  | } | 
|  | return 1; | 
|  | } |