blob: 5110e3dbef02b02afccf061ac01aa1e183718de7 [file] [log] [blame]
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/kvm/coproc.c:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Authors: Rusty Russell <rusty@rustcorp.com.au>
* Christoffer Dall <c.dall@virtualopensystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bsearch.h>
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/perf_event.h>
#include <asm/sysreg.h>
#include <trace/events/kvm.h>
#include "sys_regs.h"
#include "trace.h"
/*
* All of this file is extremly similar to the ARM coproc.c, but the
* types are different. My gut feeling is that it should be pretty
* easy to merge, but that would be an ABI breakage -- again. VFP
* would also need to be abstracted.
*
* For AArch32, we only take care of what is being trapped. Anything
* that has to do with init and userspace access has to go via the
* 64bit interface.
*/
static bool read_from_write_only(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *r)
{
WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
static bool write_to_read_only(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *r)
{
WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
static u64 tcr_el2_ips_to_tcr_el1_ps(u64 tcr_el2)
{
return ((tcr_el2 & TCR_EL2_PS_MASK) >> TCR_EL2_PS_SHIFT)
<< TCR_IPS_SHIFT;
}
u64 translate_tcr(u64 tcr)
{
return TCR_EPD1 | /* disable TTBR1_EL1 */
((tcr & TCR_EL2_TBI) ? TCR_TBI0 : 0) |
tcr_el2_ips_to_tcr_el1_ps(tcr) |
(tcr & TCR_EL2_TG0_MASK) |
(tcr & TCR_EL2_ORGN0_MASK) |
(tcr & TCR_EL2_IRGN0_MASK) |
(tcr & TCR_EL2_T0SZ_MASK);
}
u64 translate_cptr(u64 cptr_el2)
{
u64 cpacr_el1 = 0;
if (!(cptr_el2 & CPTR_EL2_TFP))
cpacr_el1 |= CPACR_EL1_FPEN;
if (cptr_el2 & CPTR_EL2_TTA)
cpacr_el1 |= CPACR_EL1_TTA;
if (!(cptr_el2 & CPTR_EL2_TZ))
cpacr_el1 |= CPACR_EL1_ZEN;
return cpacr_el1;
}
u64 translate_sctlr(u64 sctlr)
{
/* Bit 20 is RES1 in SCTLR_EL1, but RES0 in SCTLR_EL2 */
return sctlr | BIT(20);
}
u64 translate_ttbr0(u64 ttbr0)
{
/* Force ASID to 0 (ASID 0 or RES0) */
return ttbr0 & ~GENMASK_ULL(63, 48);
}
u64 translate_cnthctl(u64 cnthctl)
{
return ((cnthctl & 0x3) << 10) | (cnthctl & 0xfc);
}
u64 translate_spsr(struct kvm_vcpu *vcpu, u64 spsr)
{
u64 reg = read_sysreg_el1(spsr);
/*
* SPSR.M == 0 isn't really possible, so if the CPU's copy of
* SPSR_EL1 has this "tag", we know that the CPU hasn't touched
* it, so the currently stored EL2 copy is the proper value.
*/
if ((reg & 0xf) == 0)
return spsr;
/*
* Otherwise there was a "local" exception on the CPU, which from
* the guest's point of view was being taken from EL2 to EL2, although
* it actually happened to be from EL1 to EL1.
* So we need to fix the .M field in SPSR, to make it look like EL2,
* which is what the guest would expect.
*/
return (reg & ~0x0c) | CurrentEL_EL2;
}
#define EL2_SYSREG(el2, el1, translate) \
[el2 - FIRST_EL2_SYSREG] = { el2, el1, translate }
#define PURE_EL2_SYSREG(el2) \
[el2 - FIRST_EL2_SYSREG] = { el2,__INVALID_SYSREG__, NULL }
/*
* Associate vEL2 registers to their EL1 counterparts on the CPU.
* The translate function can be NULL, when the register layout is identical.
*/
struct el2_sysreg_map {
int sysreg; /* EL2 register index into the array above */
int mapping; /* associated EL1 register */
u64 (*translate)(u64 value);
} nested_sysreg_map[NR_SYS_REGS - FIRST_EL2_SYSREG] = {
PURE_EL2_SYSREG( VPIDR_EL2 ),
PURE_EL2_SYSREG( VMPIDR_EL2 ),
PURE_EL2_SYSREG( ACTLR_EL2 ),
PURE_EL2_SYSREG( HCR_EL2 ),
PURE_EL2_SYSREG( MDCR_EL2 ),
PURE_EL2_SYSREG( HSTR_EL2 ),
PURE_EL2_SYSREG( HACR_EL2 ),
PURE_EL2_SYSREG( VTTBR_EL2 ),
PURE_EL2_SYSREG( VTCR_EL2 ),
PURE_EL2_SYSREG( RVBAR_EL2 ),
PURE_EL2_SYSREG( RMR_EL2 ),
PURE_EL2_SYSREG( TPIDR_EL2 ),
PURE_EL2_SYSREG( CNTVOFF_EL2 ),
PURE_EL2_SYSREG( CNTHCTL_EL2 ),
PURE_EL2_SYSREG( HPFAR_EL2 ),
EL2_SYSREG( SCTLR_EL2, SCTLR_EL1, translate_sctlr ),
EL2_SYSREG( CPTR_EL2, CPACR_EL1, translate_cptr ),
EL2_SYSREG( TTBR0_EL2, TTBR0_EL1, translate_ttbr0 ),
EL2_SYSREG( TTBR1_EL2, TTBR1_EL1, NULL ),
EL2_SYSREG( TCR_EL2, TCR_EL1, translate_tcr ),
EL2_SYSREG( VBAR_EL2, VBAR_EL1, NULL ),
EL2_SYSREG( AFSR0_EL2, AFSR0_EL1, NULL ),
EL2_SYSREG( AFSR1_EL2, AFSR1_EL1, NULL ),
EL2_SYSREG( ESR_EL2, ESR_EL1, NULL ),
EL2_SYSREG( FAR_EL2, FAR_EL1, NULL ),
EL2_SYSREG( MAIR_EL2, MAIR_EL1, NULL ),
EL2_SYSREG( AMAIR_EL2, AMAIR_EL1, NULL ),
};
static
const struct el2_sysreg_map *find_el2_sysreg(const struct el2_sysreg_map *map,
int reg)
{
const struct el2_sysreg_map *entry;
if (!sysreg_is_el2(reg))
return NULL;
entry = &nested_sysreg_map[reg - FIRST_EL2_SYSREG];
if (entry->sysreg == __INVALID_SYSREG__)
return NULL;
return entry;
}
u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
{
if (!vcpu->arch.sysregs_loaded_on_cpu)
goto immediate_read;
if (unlikely(sysreg_is_el2(reg))) {
const struct el2_sysreg_map *el2_reg;
if (!vcpu_mode_el2(vcpu))
goto immediate_read;
el2_reg = find_el2_sysreg(nested_sysreg_map, reg);
if (el2_reg) {
/*
* If this register does not have an EL1 counterpart,
* then read the stored EL2 version.
*/
if (el2_reg->mapping == __INVALID_SYSREG__)
goto immediate_read;
/* Get the current version of the EL1 counterpart. */
reg = el2_reg->mapping;
}
} else {
/* EL1 register can't be on the CPU if the guest is in vEL2. */
if (unlikely(vcpu_mode_el2(vcpu)))
goto immediate_read;
}
/*
* System registers listed in the switch are not saved on every
* exit from the guest but are only saved on vcpu_put.
*
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
* should never be listed below, because the guest cannot modify its
* own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
* thread when emulating cross-VCPU communication.
*/
switch (reg) {
case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
case SCTLR_EL1: return read_sysreg_s(sctlr_EL12);
case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
case CPACR_EL1: return read_sysreg_s(cpacr_EL12);
case TTBR0_EL1: return read_sysreg_s(ttbr0_EL12);
case TTBR1_EL1: return read_sysreg_s(ttbr1_EL12);
case TCR_EL1: return read_sysreg_s(tcr_EL12);
case ESR_EL1: return read_sysreg_s(esr_EL12);
case AFSR0_EL1: return read_sysreg_s(afsr0_EL12);
case AFSR1_EL1: return read_sysreg_s(afsr1_EL12);
case FAR_EL1: return read_sysreg_s(far_EL12);
case MAIR_EL1: return read_sysreg_s(mair_EL12);
case VBAR_EL1: return read_sysreg_s(vbar_EL12);
case CONTEXTIDR_EL1: return read_sysreg_s(contextidr_EL12);
case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
case AMAIR_EL1: return read_sysreg_s(amair_EL12);
case CNTKCTL_EL1: return read_sysreg_s(cntkctl_EL12);
case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
case SP_EL2: return read_sysreg(sp_el1);
case ELR_EL2: return read_sysreg_el1(elr);
}
immediate_read:
return __vcpu_sys_reg(vcpu, reg);
}
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
if (!vcpu->arch.sysregs_loaded_on_cpu)
goto immediate_write;
if (unlikely(sysreg_is_el2(reg))) {
const struct el2_sysreg_map *el2_reg;
if (!vcpu_mode_el2(vcpu))
goto immediate_write;
/* Store the EL2 version in the sysregs array. */
__vcpu_sys_reg(vcpu, reg) = val;
el2_reg = find_el2_sysreg(nested_sysreg_map, reg);
if (el2_reg) {
/* Does this register have an EL1 counterpart? */
if (el2_reg->mapping == __INVALID_SYSREG__)
return;
if (!vcpu_el2_e2h_is_set(&vcpu->arch.ctxt) &&
el2_reg->translate)
val = el2_reg->translate(val);
/* Redirect this to the EL1 version of the register. */
reg = el2_reg->mapping;
}
} else {
/* EL1 register can't be on the CPU if the guest is in vEL2. */
if (unlikely(vcpu_mode_el2(vcpu)))
goto immediate_write;
}
/*
* System registers listed in the switch are not restored on every
* entry to the guest but are only restored on vcpu_load.
*
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
* should never be listed below, because the the MPIDR should only be
* set once, before running the VCPU, and never changed later.
*/
switch (reg) {
case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
case SCTLR_EL1: write_sysreg_s(val, sctlr_EL12); return;
case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
case CPACR_EL1: write_sysreg_s(val, cpacr_EL12); return;
case TTBR0_EL1: write_sysreg_s(val, ttbr0_EL12); return;
case TTBR1_EL1: write_sysreg_s(val, ttbr1_EL12); return;
case TCR_EL1: write_sysreg_s(val, tcr_EL12); return;
case ESR_EL1: write_sysreg_s(val, esr_EL12); return;
case AFSR0_EL1: write_sysreg_s(val, afsr0_EL12); return;
case AFSR1_EL1: write_sysreg_s(val, afsr1_EL12); return;
case FAR_EL1: write_sysreg_s(val, far_EL12); return;
case MAIR_EL1: write_sysreg_s(val, mair_EL12); return;
case VBAR_EL1: write_sysreg_s(val, vbar_EL12); return;
case CONTEXTIDR_EL1: write_sysreg_s(val, contextidr_EL12); return;
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
case AMAIR_EL1: write_sysreg_s(val, amair_EL12); return;
case CNTKCTL_EL1: write_sysreg_s(val, cntkctl_EL12); return;
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
case SP_EL2: write_sysreg(val, sp_el1); return;
case ELR_EL2: write_sysreg_el1(val, elr); return;
}
immediate_write:
__vcpu_sys_reg(vcpu, reg) = val;
}
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12
/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
u32 ccsidr;
/* Make sure noone else changes CSSELR during this! */
local_irq_disable();
write_sysreg(csselr, csselr_el1);
isb();
ccsidr = read_sysreg(ccsidr_el1);
local_irq_enable();
return ccsidr;
}
static bool el12_reg(struct sys_reg_params *p)
{
/* All *_EL12 registers have Op1=5. */
return (p->Op1 == 5);
}
static bool access_rw(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (el12_reg(p) && forward_nv_traps(vcpu))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
if (p->is_write)
vcpu_write_sys_reg(vcpu, p->regval, r->reg);
else
p->regval = vcpu_read_sys_reg(vcpu, r->reg);
return true;
}
/*
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
*/
static bool access_dcsw(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!p->is_write)
return read_from_write_only(vcpu, p, r);
/*
* Only track S/W ops if we don't have FWB. It still indicates
* that the guest is a bit broken (S/W operations should only
* be done by firmware, knowing that there is only a single
* CPU left in the system, and certainly not from non-secure
* software).
*/
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
kvm_set_way_flush(vcpu);
return true;
}
/* This function is to support the recursive nested virtualization */
static bool forward_vm_traps(struct kvm_vcpu *vcpu, struct sys_reg_params *p)
{
u64 hcr_el2 = __vcpu_sys_reg(vcpu, HCR_EL2);
/* If a trap comes from the virtual EL2, the host hypervisor handles. */
if (vcpu_mode_el2(vcpu))
return false;
/*
* If the virtual HCR_EL2.TVM or TRVM bit is set, we need to foward
* this trap to the virtual EL2.
*/
if ((hcr_el2 & HCR_TVM) && p->is_write)
return true;
else if ((hcr_el2 & HCR_TRVM) && !p->is_write)
return true;
return false;
}
/*
* Generic accessor for VM registers. Only called as long as HCR_TVM
* is set. If the guest enables the MMU, we stop trapping the VM
* sys_regs and leave it in complete control of the caches.
*/
static bool access_vm_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
bool was_enabled = vcpu_has_cache_enabled(vcpu);
u64 val;
int reg = r->reg;
if (el12_reg(p) && forward_nv_traps(vcpu))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
if (!el12_reg(p) && forward_vm_traps(vcpu, p))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
BUG_ON(!vcpu_mode_el2(vcpu) && !p->is_write);
if (!p->is_write) {
p->regval = vcpu_read_sys_reg(vcpu, reg);
return true;
}
/* See the 32bit mapping in kvm_host.h */
if (p->is_aarch32)
reg = r->reg / 2;
if (!p->is_aarch32 || !p->is_32bit) {
val = p->regval;
} else {
val = vcpu_read_sys_reg(vcpu, reg);
if (r->reg % 2)
val = (p->regval << 32) | (u64)lower_32_bits(val);
else
val = ((u64)upper_32_bits(val) << 32) |
lower_32_bits(p->regval);
}
vcpu_write_sys_reg(vcpu, val, reg);
kvm_toggle_cache(vcpu, was_enabled);
return true;
}
/*
* Trap handler for the GICv3 SGI generation system register.
* Forward the request to the VGIC emulation.
* The cp15_64 code makes sure this automatically works
* for both AArch64 and AArch32 accesses.
*/
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
bool g1;
if (!p->is_write)
return read_from_write_only(vcpu, p, r);
/*
* In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
* Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
* depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
* equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
* group.
*/
if (p->is_aarch32) {
switch (p->Op1) {
default: /* Keep GCC quiet */
case 0: /* ICC_SGI1R */
g1 = true;
break;
case 1: /* ICC_ASGI1R */
case 2: /* ICC_SGI0R */
g1 = false;
break;
}
} else {
switch (p->Op2) {
default: /* Keep GCC quiet */
case 5: /* ICC_SGI1R_EL1 */
g1 = true;
break;
case 6: /* ICC_ASGI1R_EL1 */
case 7: /* ICC_SGI0R_EL1 */
g1 = false;
break;
}
}
vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
return true;
}
static bool access_gic_sre(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
return true;
}
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
else
return read_zero(vcpu, p);
}
static bool trap_undef(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
kvm_inject_undefined(vcpu);
return false;
}
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
p->regval = (1 << 3);
return true;
}
}
static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
p->regval = read_sysreg(dbgauthstatus_el1);
return true;
}
}
/*
* We want to avoid world-switching all the DBG registers all the
* time:
*
* - If we've touched any debug register, it is likely that we're
* going to touch more of them. It then makes sense to disable the
* traps and start doing the save/restore dance
* - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
* then mandatory to save/restore the registers, as the guest
* depends on them.
*
* For this, we use a DIRTY bit, indicating the guest has modified the
* debug registers, used as follow:
*
* On guest entry:
* - If the dirty bit is set (because we're coming back from trapping),
* disable the traps, save host registers, restore guest registers.
* - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
* set the dirty bit, disable the traps, save host registers,
* restore guest registers.
* - Otherwise, enable the traps
*
* On guest exit:
* - If the dirty bit is set, save guest registers, restore host
* registers and clear the dirty bit. This ensure that the host can
* now use the debug registers.
*/
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
access_rw(vcpu, p, r);
if (p->is_write)
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
return true;
}
/*
* reg_to_dbg/dbg_to_reg
*
* A 32 bit write to a debug register leave top bits alone
* A 32 bit read from a debug register only returns the bottom bits
*
* All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
* hyp.S code switches between host and guest values in future.
*/
static void reg_to_dbg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
u64 *dbg_reg)
{
u64 val = p->regval;
if (p->is_32bit) {
val &= 0xffffffffUL;
val |= ((*dbg_reg >> 32) << 32);
}
*dbg_reg = val;
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
}
static void dbg_to_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
u64 *dbg_reg)
{
p->regval = *dbg_reg;
if (p->is_32bit)
p->regval &= 0xffffffffUL;
}
static bool trap_bvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_bvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}
static bool trap_bcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_bcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}
static bool trap_wvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write,
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
return true;
}
static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_wvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}
static bool trap_wcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_wcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 amair = read_sysreg(amair_el1);
vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
}
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 mpidr;
/*
* Map the vcpu_id into the first three affinity level fields of
* the MPIDR. We limit the number of VCPUs in level 0 due to a
* limitation to 16 CPUs in that level in the ICC_SGIxR registers
* of the GICv3 to be able to address each CPU directly when
* sending IPIs.
*/
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
}
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 pmcr, val;
pmcr = read_sysreg(pmcr_el0);
/*
* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
* except PMCR.E resetting to zero.
*/
val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
| (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
}
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
{
u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
if (!enabled)
kvm_inject_undefined(vcpu);
return !enabled;
}
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
}
static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
}
static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
}
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (p->is_write) {
/* Only update writeable bits of PMCR */
val = __vcpu_sys_reg(vcpu, PMCR_EL0);
val &= ~ARMV8_PMU_PMCR_MASK;
val |= p->regval & ARMV8_PMU_PMCR_MASK;
__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
kvm_pmu_handle_pmcr(vcpu, val);
} else {
/* PMCR.P & PMCR.C are RAZ */
val = __vcpu_sys_reg(vcpu, PMCR_EL0)
& ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
p->regval = val;
}
return true;
}
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
if (p->is_write)
__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
else
/* return PMSELR.SEL field */
p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
& ARMV8_PMU_COUNTER_MASK;
return true;
}
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 pmceid;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
BUG_ON(p->is_write);
if (pmu_access_el0_disabled(vcpu))
return false;
if (!(p->Op2 & 1))
pmceid = read_sysreg(pmceid0_el0);
else
pmceid = read_sysreg(pmceid1_el0);
p->regval = pmceid;
return true;
}
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
u64 pmcr, val;
pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
kvm_inject_undefined(vcpu);
return false;
}
return true;
}
static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 idx;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (r->CRn == 9 && r->CRm == 13) {
if (r->Op2 == 2) {
/* PMXEVCNTR_EL0 */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
& ARMV8_PMU_COUNTER_MASK;
} else if (r->Op2 == 0) {
/* PMCCNTR_EL0 */
if (pmu_access_cycle_counter_el0_disabled(vcpu))
return false;
idx = ARMV8_PMU_CYCLE_IDX;
} else {
return false;
}
} else if (r->CRn == 0 && r->CRm == 9) {
/* PMCCNTR */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = ARMV8_PMU_CYCLE_IDX;
} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
/* PMEVCNTRn_EL0 */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
} else {
return false;
}
if (!pmu_counter_idx_valid(vcpu, idx))
return false;
if (p->is_write) {
if (pmu_access_el0_disabled(vcpu))
return false;
kvm_pmu_set_counter_value(vcpu, idx, p->regval);
} else {
p->regval = kvm_pmu_get_counter_value(vcpu, idx);
}
return true;
}
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 idx, reg;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
/* PMXEVTYPER_EL0 */
idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
reg = PMEVTYPER0_EL0 + idx;
} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
if (idx == ARMV8_PMU_CYCLE_IDX)
reg = PMCCFILTR_EL0;
else
/* PMEVTYPERn_EL0 */
reg = PMEVTYPER0_EL0 + idx;
} else {
BUG();
}
if (!pmu_counter_idx_valid(vcpu, idx))
return false;
if (p->is_write) {
kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
} else {
p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
}
return true;
}
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val, mask;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
mask = kvm_pmu_valid_counter_mask(vcpu);
if (p->is_write) {
val = p->regval & mask;
if (r->Op2 & 0x1) {
/* accessing PMCNTENSET_EL0 */
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
kvm_pmu_enable_counter(vcpu, val);
} else {
/* accessing PMCNTENCLR_EL0 */
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
kvm_pmu_disable_counter(vcpu, val);
}
} else {
p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
}
return true;
}
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (!vcpu_mode_priv(vcpu)) {
kvm_inject_undefined(vcpu);
return false;
}
if (p->is_write) {
u64 val = p->regval & mask;
if (r->Op2 & 0x1)
/* accessing PMINTENSET_EL1 */
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
else
/* accessing PMINTENCLR_EL1 */
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
} else {
p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
}
return true;
}
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (p->is_write) {
if (r->CRm & 0x2)
/* accessing PMOVSSET_EL0 */
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
else
/* accessing PMOVSCLR_EL0 */
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
} else {
p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
}
return true;
}
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (!p->is_write)
return read_from_write_only(vcpu, p, r);
if (pmu_write_swinc_el0_disabled(vcpu))
return false;
mask = kvm_pmu_valid_counter_mask(vcpu);
kvm_pmu_software_increment(vcpu, p->regval & mask);
return true;
}
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (p->is_write) {
if (!vcpu_mode_priv(vcpu)) {
kvm_inject_undefined(vcpu);
return false;
}
__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
p->regval & ARMV8_PMU_USERENR_MASK;
} else {
p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
& ARMV8_PMU_USERENR_MASK;
}
return true;
}
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
{ SYS_DESC(SYS_DBGBVRn_EL1(n)), \
trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
{ SYS_DESC(SYS_DBGBCRn_EL1(n)), \
trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
{ SYS_DESC(SYS_DBGWVRn_EL1(n)), \
trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
{ SYS_DESC(SYS_DBGWCRn_EL1(n)), \
trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n) \
{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n) \
{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
#define reg_to_match_value(x) \
({ \
unsigned long val; \
val = (x)->Op0 << 14; \
val |= (x)->Op1 << 11; \
val |= (x)->CRn << 7; \
val |= (x)->CRm << 3; \
val |= (x)->Op2; \
val; \
})
static bool access_arch_timer(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 reg = reg_to_match_value(p);
if (p->is_write)
kvm_arm_timer_set_reg(vcpu, reg, p->regval);
else
p->regval = kvm_arm_timer_get_reg(vcpu, reg);
return true;
}
/* Read a sanitised cpufeature ID register by sys_reg_desc */
static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
{
u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
(u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
if (id == SYS_ID_AA64PFR0_EL1) {
if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
kvm_debug("SVE unsupported for guests, suppressing\n");
val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
} else if (id == SYS_ID_AA64MMFR1_EL1) {
if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
kvm_debug("LORegions unsupported for guests, suppressing\n");
val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
}
return val;
}
/* cpufeature ID register access trap handlers */
static bool __access_id_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r,
bool raz)
{
if (p->is_write)
return write_to_read_only(vcpu, p, r);
p->regval = read_id_reg(r, raz);
return true;
}
static bool access_id_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
return __access_id_reg(vcpu, p, r, false);
}
static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
return __access_id_reg(vcpu, p, r, true);
}
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
/*
* cpufeature ID register user accessors
*
* For now, these registers are immutable for userspace, so no values
* are stored, and for set_id_reg() we don't allow the effective value
* to be changed.
*/
static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
bool raz)
{
const u64 id = sys_reg_to_index(rd);
const u64 val = read_id_reg(rd, raz);
return reg_to_user(uaddr, &val, id);
}
static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
bool raz)
{
const u64 id = sys_reg_to_index(rd);
int err;
u64 val;
err = reg_from_user(&val, uaddr, id);
if (err)
return err;
/* This is what we mean by invariant: you can't change it. */
if (val != read_id_reg(rd, raz))
return -EINVAL;
return 0;
}
static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
return __get_id_reg(rd, uaddr, false);
}
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
return __set_id_reg(rd, uaddr, false);
}
static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
return __get_id_reg(rd, uaddr, true);
}
static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
return __set_id_reg(rd, uaddr, true);
}
/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) { \
SYS_DESC(SYS_##name), \
.access = access_id_reg, \
.get_user = get_id_reg, \
.set_user = set_id_reg, \
}
/*
* sys_reg_desc initialiser for architecturally unallocated cpufeature ID
* register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
* (1 <= crm < 8, 0 <= Op2 < 8).
*/
#define ID_UNALLOCATED(crm, op2) { \
Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
.access = access_raz_id_reg, \
.get_user = get_raz_id_reg, \
.set_user = set_raz_id_reg, \
}
/*
* sys_reg_desc initialiser for known ID registers that we hide from guests.
* For now, these are exposed just like unallocated ID regs: they appear
* RAZ for the guest.
*/
#define ID_HIDDEN(name) { \
SYS_DESC(SYS_##name), \
.access = access_raz_id_reg, \
.get_user = get_raz_id_reg, \
.set_user = set_raz_id_reg, \
}
static bool access_sp_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
/* SP_EL1 is NOT maintained in sys_regs array */
if (p->is_write)
vcpu->arch.ctxt.gp_regs.sp_el1 = p->regval;
else
p->regval = vcpu->arch.ctxt.gp_regs.sp_el1;
return true;
}
static bool forward_traps(struct kvm_vcpu *vcpu, u64 control_bit)
{
bool control_bit_set;
control_bit_set = __vcpu_sys_reg(vcpu, HCR_EL2) & control_bit;
if (!vcpu_mode_el2(vcpu) && control_bit_set) {
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
return true;
}
return false;
}
static bool forward_at_traps(struct kvm_vcpu *vcpu)
{
return forward_traps(vcpu, HCR_AT);
}
static bool forward_ttlb_traps(struct kvm_vcpu *vcpu)
{
return forward_traps(vcpu, HCR_TTLB);
}
/* This function is to support the recursive nested virtualization */
bool forward_nv_traps(struct kvm_vcpu *vcpu)
{
if (!vcpu_mode_el2(vcpu) && (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV))
return true;
return false;
}
/* This function is to support the recursive nested virtualization */
static bool forward_nv1_traps(struct kvm_vcpu *vcpu, struct sys_reg_params *p)
{
if (!vcpu_mode_el2(vcpu) && (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV1))
return true;
return false;
}
static bool access_elr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (el12_reg(p) && forward_nv_traps(vcpu))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
if (!el12_reg(p) && forward_nv1_traps(vcpu, p))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
if (p->is_write)
vcpu->arch.ctxt.gp_regs.elr_el1 = p->regval;
else
p->regval = vcpu->arch.ctxt.gp_regs.elr_el1;
return true;
}
static bool access_spsr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (el12_reg(p) && forward_nv_traps(vcpu))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
if (!el12_reg(p) && forward_nv1_traps(vcpu, p))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
if (p->is_write)
vcpu->arch.ctxt.gp_regs.spsr[KVM_SPSR_EL1] = p->regval;
else
p->regval = vcpu->arch.ctxt.gp_regs.spsr[KVM_SPSR_EL1];
return true;
}
static bool access_spsr_el2(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (el12_reg(p) && forward_nv_traps(vcpu))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
if (!el12_reg(p) && forward_nv1_traps(vcpu, p))
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_hsr(vcpu));
if (p->is_write)
vcpu_write_spsr_el2(vcpu, p->regval);
else
p->regval = vcpu_read_spsr_el2(vcpu);
return true;
}
static bool access_id_aa64mmfr0_el1(struct kvm_vcpu *v,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val;
u64 vtcr_tg0 = VTCR_EL2_TGRAN_FLAGS & VTCR_EL2_TG0_MASK;
if (!nested_virt_in_use(v))
return access_id_reg(v, p, r);
if (p->is_write)
return write_to_read_only(v, p, r);
val = p->regval;
/*
* Don't expose granules smaller than the host's granule to the guest.
* We can theoretically support a guest hypervisor having
* smaller-than-host granularities but it is not worth it since it
* makes the implementation complicated and it would waste memory.
*/
switch (vtcr_tg0) {
case VTCR_EL2_TG0_64K:
/* 16KB granule not supported */
val &= ~(0xf << ID_AA64MMFR0_TGRAN16_SHIFT);
val |= (ID_AA64MMFR0_TGRAN16_NI << ID_AA64MMFR0_TGRAN16_SHIFT);
/* fall through */
case VTCR_EL2_TG0_16K:
/* 4KB granule not supported */
val &= ~(0xf << ID_AA64MMFR0_TGRAN4_SHIFT);
val |= (ID_AA64MMFR0_TGRAN4_NI << ID_AA64MMFR0_TGRAN4_SHIFT);
break;
default:
break;
}
/* Expose only 40 bits physical address range to the guest hypervisor */
val &= ~(0xf << ID_AA64MMFR0_PARANGE_SHIFT);
val |= (0x2 << ID_AA64MMFR0_PARANGE_SHIFT); /* 40 bits */
p->regval = val;
return true;
}
static bool access_vttbr_el2(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
struct kvm_s2_mmu *mmu;
struct kvm_s2_vmid *vmid;
if (!p->is_write) {
p->regval = vcpu_read_sys_reg(vcpu, r->reg);
return true;
}
vcpu_write_sys_reg(vcpu, p->regval, r->reg);
mmu = vcpu_get_active_s2_mmu(vcpu);
vmid = vcpu_get_active_vmid(vcpu);
vcpu->arch.vttbr_el2 = kvm_get_vttbr(vmid, mmu);
vcpu->arch.hw_mmu = mmu;
return true;
}
/*
* Architected system registers.
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
*
* Debug handling: We do trap most, if not all debug related system
* registers. The implementation is good enough to ensure that a guest
* can use these with minimal performance degradation. The drawback is
* that we don't implement any of the external debug, none of the
* OSlock protocol. This should be revisited if we ever encounter a
* more demanding guest...
*/
static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_DC_ISW), access_dcsw },
{ SYS_DESC(SYS_DC_CSW), access_dcsw },
{ SYS_DESC(SYS_DC_CISW), access_dcsw },
DBG_BCR_BVR_WCR_WVR_EL1(0),
DBG_BCR_BVR_WCR_WVR_EL1(1),
{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
DBG_BCR_BVR_WCR_WVR_EL1(2),
DBG_BCR_BVR_WCR_WVR_EL1(3),
DBG_BCR_BVR_WCR_WVR_EL1(4),
DBG_BCR_BVR_WCR_WVR_EL1(5),
DBG_BCR_BVR_WCR_WVR_EL1(6),
DBG_BCR_BVR_WCR_WVR_EL1(7),
DBG_BCR_BVR_WCR_WVR_EL1(8),
DBG_BCR_BVR_WCR_WVR_EL1(9),
DBG_BCR_BVR_WCR_WVR_EL1(10),
DBG_BCR_BVR_WCR_WVR_EL1(11),
DBG_BCR_BVR_WCR_WVR_EL1(12),
DBG_BCR_BVR_WCR_WVR_EL1(13),
DBG_BCR_BVR_WCR_WVR_EL1(14),
DBG_BCR_BVR_WCR_WVR_EL1(15),
{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
// DBGDTR[TR]X_EL0 share the same encoding
{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
/*
* ID regs: all ID_SANITISED() entries here must have corresponding
* entries in arm64_ftr_regs[].
*/
/* AArch64 mappings of the AArch32 ID registers */
/* CRm=1 */
ID_SANITISED(ID_PFR0_EL1),
ID_SANITISED(ID_PFR1_EL1),
ID_SANITISED(ID_DFR0_EL1),
ID_HIDDEN(ID_AFR0_EL1),
{ SYS_DESC(SYS_ID_MMFR0_EL1), access_id_aa64mmfr0_el1, NULL, 0, 0,
get_id_reg, set_id_reg },
ID_SANITISED(ID_MMFR1_EL1),
ID_SANITISED(ID_MMFR2_EL1),
ID_SANITISED(ID_MMFR3_EL1),
/* CRm=2 */
ID_SANITISED(ID_ISAR0_EL1),
ID_SANITISED(ID_ISAR1_EL1),
ID_SANITISED(ID_ISAR2_EL1),
ID_SANITISED(ID_ISAR3_EL1),
ID_SANITISED(ID_ISAR4_EL1),
ID_SANITISED(ID_ISAR5_EL1),
ID_SANITISED(ID_MMFR4_EL1),
ID_UNALLOCATED(2,7),
/* CRm=3 */
ID_SANITISED(MVFR0_EL1),
ID_SANITISED(MVFR1_EL1),
ID_SANITISED(MVFR2_EL1),
ID_UNALLOCATED(3,3),
ID_UNALLOCATED(3,4),
ID_UNALLOCATED(3,5),
ID_UNALLOCATED(3,6),
ID_UNALLOCATED(3,7),
/* AArch64 ID registers */
/* CRm=4 */
ID_SANITISED(ID_AA64PFR0_EL1),
ID_SANITISED(ID_AA64PFR1_EL1),
ID_UNALLOCATED(4,2),
ID_UNALLOCATED(4,3),
ID_UNALLOCATED(4,4),
ID_UNALLOCATED(4,5),
ID_UNALLOCATED(4,6),
ID_UNALLOCATED(4,7),
/* CRm=5 */
ID_SANITISED(ID_AA64DFR0_EL1),
ID_SANITISED(ID_AA64DFR1_EL1),
ID_UNALLOCATED(5,2),
ID_UNALLOCATED(5,3),
ID_HIDDEN(ID_AA64AFR0_EL1),
ID_HIDDEN(ID_AA64AFR1_EL1),
ID_UNALLOCATED(5,6),
ID_UNALLOCATED(5,7),
/* CRm=6 */
ID_SANITISED(ID_AA64ISAR0_EL1),
ID_SANITISED(ID_AA64ISAR1_EL1),
ID_UNALLOCATED(6,2),
ID_UNALLOCATED(6,3),
ID_UNALLOCATED(6,4),
ID_UNALLOCATED(6,5),
ID_UNALLOCATED(6,6),
ID_UNALLOCATED(6,7),
/* CRm=7 */
ID_SANITISED(ID_AA64MMFR0_EL1),
ID_SANITISED(ID_AA64MMFR1_EL1),
ID_SANITISED(ID_AA64MMFR2_EL1),
ID_UNALLOCATED(7,3),
ID_UNALLOCATED(7,4),
ID_UNALLOCATED(7,5),
ID_UNALLOCATED(7,6),
ID_UNALLOCATED(7,7),
{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
{ SYS_DESC(SYS_CPACR_EL1), access_rw, reset_val, CPACR_EL1, 0 },
{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
{ SYS_DESC(SYS_SPSR_EL1), access_spsr, reset_unknown, SPSR_EL1},
{ SYS_DESC(SYS_ELR_EL1), access_elr, reset_unknown, ELR_EL1},
{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
{ SYS_DESC(SYS_LORSA_EL1), trap_undef },
{ SYS_DESC(SYS_LOREA_EL1), trap_undef },
{ SYS_DESC(SYS_LORN_EL1), trap_undef },
{ SYS_DESC(SYS_LORC_EL1), trap_undef },
{ SYS_DESC(SYS_LORID_EL1), trap_undef },
{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
/*
* PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
/* PMEVCNTRn_EL0 */
PMU_PMEVCNTR_EL0(0),
PMU_PMEVCNTR_EL0(1),
PMU_PMEVCNTR_EL0(2),
PMU_PMEVCNTR_EL0(3),
PMU_PMEVCNTR_EL0(4),
PMU_PMEVCNTR_EL0(5),
PMU_PMEVCNTR_EL0(6),
PMU_PMEVCNTR_EL0(7),
PMU_PMEVCNTR_EL0(8),
PMU_PMEVCNTR_EL0(9),
PMU_PMEVCNTR_EL0(10),
PMU_PMEVCNTR_EL0(11),
PMU_PMEVCNTR_EL0(12),
PMU_PMEVCNTR_EL0(13),
PMU_PMEVCNTR_EL0(14),
PMU_PMEVCNTR_EL0(15),
PMU_PMEVCNTR_EL0(16),
PMU_PMEVCNTR_EL0(17),
PMU_PMEVCNTR_EL0(18),
PMU_PMEVCNTR_EL0(19),
PMU_PMEVCNTR_EL0(20),
PMU_PMEVCNTR_EL0(21),
PMU_PMEVCNTR_EL0(22),
PMU_PMEVCNTR_EL0(23),
PMU_PMEVCNTR_EL0(24),
PMU_PMEVCNTR_EL0(25),
PMU_PMEVCNTR_EL0(26),
PMU_PMEVCNTR_EL0(27),
PMU_PMEVCNTR_EL0(28),
PMU_PMEVCNTR_EL0(29),
PMU_PMEVCNTR_EL0(30),
/* PMEVTYPERn_EL0 */
PMU_PMEVTYPER_EL0(0),
PMU_PMEVTYPER_EL0(1),
PMU_PMEVTYPER_EL0(2),
PMU_PMEVTYPER_EL0(3),
PMU_PMEVTYPER_EL0(4),
PMU_PMEVTYPER_EL0(5),
PMU_PMEVTYPER_EL0(6),
PMU_PMEVTYPER_EL0(7),
PMU_PMEVTYPER_EL0(8),
PMU_PMEVTYPER_EL0(9),
PMU_PMEVTYPER_EL0(10),
PMU_PMEVTYPER_EL0(11),
PMU_PMEVTYPER_EL0(12),
PMU_PMEVTYPER_EL0(13),
PMU_PMEVTYPER_EL0(14),
PMU_PMEVTYPER_EL0(15),
PMU_PMEVTYPER_EL0(16),
PMU_PMEVTYPER_EL0(17),
PMU_PMEVTYPER_EL0(18),
PMU_PMEVTYPER_EL0(19),
PMU_PMEVTYPER_EL0(20),
PMU_PMEVTYPER_EL0(21),
PMU_PMEVTYPER_EL0(22),
PMU_PMEVTYPER_EL0(23),
PMU_PMEVTYPER_EL0(24),
PMU_PMEVTYPER_EL0(25),
PMU_PMEVTYPER_EL0(26),
PMU_PMEVTYPER_EL0(27),
PMU_PMEVTYPER_EL0(28),
PMU_PMEVTYPER_EL0(29),
PMU_PMEVTYPER_EL0(30),
/*
* PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
{ SYS_DESC(SYS_VPIDR_EL2), access_rw, reset_val, VPIDR_EL2, 0 },
{ SYS_DESC(SYS_VMPIDR_EL2), access_rw, reset_val, VMPIDR_EL2, 0 },
{ SYS_DESC(SYS_SCTLR_EL2), access_rw, reset_val, SCTLR_EL2, 0 },
{ SYS_DESC(SYS_ACTLR_EL2), access_rw, reset_val, ACTLR_EL2, 0 },
{ SYS_DESC(SYS_HCR_EL2), access_rw, reset_val, HCR_EL2, 0 },
{ SYS_DESC(SYS_MDCR_EL2), access_rw, reset_val, MDCR_EL2, 0 },
{ SYS_DESC(SYS_CPTR_EL2), access_rw, reset_val, CPTR_EL2, 0 },
{ SYS_DESC(SYS_HSTR_EL2), access_rw, reset_val, HSTR_EL2, 0 },
{ SYS_DESC(SYS_HACR_EL2), access_rw, reset_val, HACR_EL2, 0 },
{ SYS_DESC(SYS_TTBR0_EL2), access_rw, reset_val, TTBR0_EL2, 0 },
{ SYS_DESC(SYS_TTBR1_EL2), access_rw, reset_val, TTBR1_EL2, 0 },
{ SYS_DESC(SYS_TCR_EL2), access_rw, reset_val, TCR_EL2, 0 },
{ SYS_DESC(SYS_VTTBR_EL2), access_vttbr_el2, reset_val, VTTBR_EL2, 0 },
{ SYS_DESC(SYS_VTCR_EL2), access_rw, reset_val, VTCR_EL2, 0 },
{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
{ SYS_DESC(SYS_SPSR_EL2), access_spsr_el2, reset_val, SPSR_EL2, 0 },
{ SYS_DESC(SYS_ELR_EL2), access_rw, reset_val, ELR_EL2, 0 },
{ SYS_DESC(SYS_SP_EL1), access_sp_el1, reset_unknown, SP_EL1 },
{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
{ SYS_DESC(SYS_AFSR0_EL2), access_rw, reset_val, AFSR0_EL2, 0 },
{ SYS_DESC(SYS_AFSR1_EL2), access_rw, reset_val, AFSR1_EL2, 0 },
{ SYS_DESC(SYS_ESR_EL2), access_rw, reset_val, ESR_EL2, 0 },
{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
{ SYS_DESC(SYS_FAR_EL2), access_rw, reset_val, FAR_EL2, 0 },
{ SYS_DESC(SYS_HPFAR_EL2), access_rw, reset_val, HPFAR_EL2, 0 },
{ SYS_DESC(SYS_MAIR_EL2), access_rw, reset_val, MAIR_EL2, 0 },
{ SYS_DESC(SYS_AMAIR_EL2), access_rw, reset_val, AMAIR_EL2, 0 },
{ SYS_DESC(SYS_VBAR_EL2), access_rw, reset_val, VBAR_EL2, 0 },
{ SYS_DESC(SYS_RVBAR_EL2), access_rw, reset_val, RVBAR_EL2, 0 },
{ SYS_DESC(SYS_RMR_EL2), access_rw, reset_val, RMR_EL2, 0 },
{ SYS_DESC(SYS_ICC_SRE_EL2), trap_raz_wi },
{ SYS_DESC(SYS_CONTEXTIDR_EL2), access_rw, reset_val, CONTEXTIDR_EL2, 0 },
{ SYS_DESC(SYS_TPIDR_EL2), access_rw, reset_val, TPIDR_EL2, 0 },
{ SYS_DESC(SYS_CNTVOFF_EL2), access_rw, reset_val, CNTVOFF_EL2, 0 },
{ SYS_DESC(SYS_CNTHCTL_EL2), access_rw, reset_val, CNTHCTL_EL2, 0 },
{ SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
{ SYS_DESC(SYS_CNTHP_CTL_EL2), access_arch_timer },
{ SYS_DESC(SYS_CNTHP_CVAL_EL2), access_arch_timer },
{ SYS_DESC(SYS_CNTHV_TVAL_EL2), access_arch_timer },
{ SYS_DESC(SYS_CNTHV_CTL_EL2), access_arch_timer },
{ SYS_DESC(SYS_CNTHV_CVAL_EL2), access_arch_timer },
{ SYS_DESC(sctlr_EL12), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
{ SYS_DESC(cpacr_EL12), access_rw, reset_val, CPACR_EL1, 0 },
{ SYS_DESC(ttbr0_EL12), access_vm_reg, reset_unknown, TTBR0_EL1 },
{ SYS_DESC(ttbr1_EL12), access_vm_reg, reset_unknown, TTBR1_EL1 },
{ SYS_DESC(tcr_EL12), access_vm_reg, reset_val, TCR_EL1, 0 },
{ SYS_DESC(spsr_EL12), access_spsr},
{ SYS_DESC(elr_EL12), access_elr},
{ SYS_DESC(afsr0_EL12), access_vm_reg, reset_unknown, AFSR0_EL1 },
{ SYS_DESC(afsr1_EL12), access_vm_reg, reset_unknown, AFSR1_EL1 },
{ SYS_DESC(esr_EL12), access_vm_reg, reset_unknown, ESR_EL1 },
{ SYS_DESC(far_EL12), access_vm_reg, reset_unknown, FAR_EL1 },
{ SYS_DESC(mair_EL12), access_vm_reg, reset_unknown, MAIR_EL1 },
{ SYS_DESC(amair_EL12), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
{ SYS_DESC(vbar_EL12), access_rw, reset_val, VBAR_EL1, 0 },
{ SYS_DESC(contextidr_EL12), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
{ SYS_DESC(cntkctl_EL12), access_rw, reset_val, CNTKCTL_EL1, 0 },
{ SYS_DESC(cntp_tval_EL02), access_arch_timer },
{ SYS_DESC(cntp_ctl_EL02), access_arch_timer },
{ SYS_DESC(cntp_cval_EL02), access_arch_timer },
{ SYS_DESC(cntv_tval_EL02), access_arch_timer },
{ SYS_DESC(cntv_ctl_EL02), access_arch_timer },
{ SYS_DESC(cntv_cval_EL02), access_arch_timer },
{ SYS_DESC(SYS_SP_EL2), NULL, reset_unknown, SP_EL2 },
};
static bool handle_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
// struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
bool el2_format;
int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
/* See '2. EL0/EL1 AT instructions: S1E[01]x, S12E1x' table. */
/* TODO: Do a vcpu_put()/vcpu_load() here?
* Was:
if (vcpu_el2_e2h_is_set(&vcpu->arch.ctxt) && vcpu_el2_tge_is_set(vcpu))
ctxt->hw_sys_regs = ctxt->shadow_sys_regs;
else
ctxt->hw_sys_regs = ctxt->sys_regs;
*/
el2_format = vcpu_el2_format_used(vcpu);
kvm_call_hyp(__kvm_at_insn, vcpu, p->regval, el2_format, sys_encoding);
return true;
}
static bool handle_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
// struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
bool el2_format;
int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
/* See the '1. EL2 AT instructions: S1E2x' table */
/* TODO: Do a vcpu_put()/vcpu_load() here?
* Was:
ctxt->hw_sys_regs = ctxt->shadow_sys_regs;
*/
el2_format = !vcpu_el2_e2h_is_set(&vcpu->arch.ctxt);
kvm_call_hyp(__kvm_at_insn, vcpu, p->regval, el2_format, sys_encoding);
return true;
}
static u64 setup_par_aborted(u32 esr)
{
u64 par = 0;
/* S [9]: fault in the stage 2 translation */
par |= (1 << 9);
/* FST [6:1]: Fault status code */
par |= (esr << 1);
/* F [0]: translation is aborted */
par |= 1;
return par;
}
static u64 setup_par_completed(struct kvm_vcpu *vcpu, struct kvm_s2_trans *out)
{
u64 par, vtcr_sh0;
/* F [0]: Translation is completed successfully */
par = 0;
/* ATTR [63:56] */
par |= out->upper_attr;
/* PA [47:12] */
par |= out->output & GENMASK_ULL(11, 0);
/* RES1 [11] */
par |= (1UL << 11);
/* SH [8:7]: Shareability attribute */
vtcr_sh0 = __vcpu_sys_reg(vcpu, VTCR_EL2) & VTCR_EL2_SH0_MASK;
par |= (vtcr_sh0 >> VTCR_EL2_SH0_SHIFT) << 7;
return par;
}
static bool handle_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r, bool write)
{
u64 par, va;
u32 esr;
phys_addr_t ipa;
struct kvm_s2_trans out;
int ret;
/* Do the stage-1 translation */
handle_s1e01(vcpu, p, r);
par = vcpu_read_sys_reg(vcpu, PAR_EL1);
if (par & 1) {
/* The stage-1 translation aborted */
return true;
}
/* Do the stage-2 translation */
va = p->regval;
ipa = (par & GENMASK_ULL(47, 12)) | (va & GENMASK_ULL(11, 0));
out.esr = 0;
ret = kvm_walk_nested_s2(vcpu, ipa, &out);
if (ret < 0)
return false;
/* Check if the stage-2 PTW is aborted */
if (out.esr) {
esr = out.esr;
goto s2_trans_abort;
}
/* Check the access permission */
if ((!write && !out.readable) || (write && !out.writable)) {
esr = ESR_ELx_FSC_PERM;
esr |= out.level & 0x3;
goto s2_trans_abort;
}
vcpu_write_sys_reg(vcpu, setup_par_completed(vcpu, &out), PAR_EL1);
return true;
s2_trans_abort:
vcpu_write_sys_reg(vcpu, setup_par_aborted(esr), PAR_EL1);
return true;
}
static bool handle_s12r(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
return handle_s12(vcpu, p, r, false);
}
static bool handle_s12w(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
return handle_s12(vcpu, p, r, true);
}
static bool handle_alle2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
struct kvm_s2_mmu *mmu = &vcpu->kvm->arch.mmu;
u64 vttbr = kvm_get_vttbr(&mmu->el2_vmid, mmu);
/*
* To emulate invalidating all EL2 regime stage 1 TLB entries,
* invalidate EL1&0 regime stage 1 TLB entries with the virtual EL2's
* VMID.
*/
kvm_call_hyp(__kvm_tlb_flush_local_vmid, vttbr);
return true;
}
static bool handle_alle2is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
struct kvm_s2_mmu *mmu = &vcpu->kvm->arch.mmu;
u64 vttbr = kvm_get_vttbr(&mmu->el2_vmid, mmu);
/*
* To emulate invalidating all EL2 regime stage 1 TLB entries for all
* PEs, executing TLBI VMALLE1IS is enough. But reuse the existing
* interface for the simplicity; invalidating stage 2 entries doesn't
* affect the correctness.
*/
kvm_call_hyp(__kvm_tlb_flush_vmid, vttbr);
return true;
}
static bool handle_vae2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
struct kvm_s2_mmu *mmu = &vcpu->kvm->arch.mmu;
u64 vttbr = kvm_get_vttbr(&mmu->el2_vmid, mmu);
int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
/*
* Based on the same principle as TLBI ALLE2 instruction emulation, we
* emulate TLBI VAE2* instructions by executing corresponding TLBI VAE1*
* instructions with the virtual EL2's VMID assigned by the host
* hypervisor.
*/
kvm_call_hyp(__kvm_tlb_vae2, vttbr, p->regval, sys_encoding);
return true;
}
static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
struct kvm_s2_mmu *mmu = &vcpu->kvm->arch.mmu;
u64 vttbr = kvm_get_vttbr(&mmu->vmid, mmu);
if (vcpu->kvm->arch.mmu.vmid.vmid_gen) {
/*
* Invalidate the stage 1 and 2 TLB entries for the host OS
* in a VM only if there is one.
*/
kvm_call_hyp(__kvm_tlb_flush_vmid, vttbr);
}
spin_lock(&vcpu->kvm->mmu_lock);
/*
* Clear all mappings in the shadow page tables and invalidate the stage
* 1 and 2 TLB entries via kvm_tlb_flush_vmid_ipa().
*/
kvm_nested_s2_clear(vcpu->kvm);
spin_unlock(&vcpu->kvm->mmu_lock);
return true;
}
static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 vttbr;
struct kvm_s2_mmu *mmu;
bool ret;
spin_lock(&vcpu->kvm->mmu_lock);
/*
* Clear mappings in the shadow page tables and invalidate the stage
* 1 and 2 TLB entries via kvm_tlb_flush_vmid_ipa() for the current
* VMID.
*/
ret = kvm_nested_s2_clear_curr_vmid(vcpu, 0, KVM_PHYS_SIZE);
spin_unlock(&vcpu->kvm->mmu_lock);
if (!ret) {
/*
* Invalidate TLB entries explicitly for the case that the
* current VMID is for the host OS in the VM; we don't manage
* shadow stage 2 page tables for it.
*/
mmu = &vcpu->kvm->arch.mmu;
vttbr = kvm_get_vttbr(&mmu->vmid, mmu);
kvm_call_hyp(__kvm_tlb_flush_vmid, vttbr);
}
return true;
}
static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 vttbr;
struct kvm_s2_mmu *mmu;
bool ret;
spin_lock(&vcpu->kvm->mmu_lock);
/*
* Clear a mapping in the shadow page tables and invalidate the stage
* 2 TLB entries via kvm_tlb_flush_vmid_ipa() for the current
* VMID and the given ipa.
*/
ret = kvm_nested_s2_clear_curr_vmid(vcpu, p->regval, PAGE_SIZE);
spin_unlock(&vcpu->kvm->mmu_lock);
if (!ret) {
/*
* Invalidate TLB entries explicitly for the case that the
* current VMID is for the host OS in the VM; we don't manage
* shadow stage 2 page tables for it.
*/
mmu = &vcpu->kvm->arch.mmu;
vttbr = kvm_get_vttbr(&mmu->vmid, mmu);
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, vttbr, p->regval);
}
return true;
}
static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 virtual_vttbr = __vcpu_sys_reg(vcpu, VTTBR_EL2);
u64 vttbr;
struct kvm_nested_s2_mmu *nested_mmu;
struct kvm_s2_mmu *mmu = &vcpu->kvm->arch.mmu;
int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
nested_mmu = lookup_nested_mmu(vcpu, virtual_vttbr);
if (!nested_mmu) {
/*
* If we can't find a shadow VMID, it is either the virtual
* VMID is for the host OS or the nested VM having the virtual
* VMID is never executed. (Note that we create a showdow VMID
* when entering a VM.) For the former, we can flush TLB
* entries belonging to the host OS in a VM. For the latter, we
* don't have to do anything. Since we can't differentiate
* between those cases, just do what we can do for the former.
*/
mmu = &vcpu->kvm->arch.mmu;
} else {
mmu = &nested_mmu->mmu;
}
vttbr = kvm_get_vttbr(&mmu->vmid, mmu);
kvm_call_hyp(__kvm_tlb_el1_instr, vttbr, p->regval, sys_encoding);
return true;
}
/*
* AT instruction emulation
*
* We emulate AT instructions executed in the virtual EL2.
* Basic strategy for the stage-1 translation emulation is to load proper
* context, which depends on the trapped instruction and the virtual HCR_EL2,
* to the EL1 virtual memory control registers and execute S1E[01] instructions
* in EL2. See below for more detail.
*
* For the stage-2 translation, which is necessary for S12E[01] emulation,
* we walk the guest hypervisor's stage-2 page table in software.
*
* The stage-1 translation emulations can be divided into two groups depending
* on the translation regime.
*
* 1. EL2 AT instructions: S1E2x
* +-----------------------------------------------------------------------+
* | | Setting for the emulation |
* | Virtual HCR_EL2.E2H on trap |-----------------------------------------+
* | | Phys EL1 regs | Phys NV, NV1 | Phys TGE |
* |-----------------------------------------------------------------------|
* | 0 | vEL2 | (1, 1) | 0 |
* | 1 | vEL2 | (0, 0) | 0 |
* +-----------------------------------------------------------------------+
*
* We emulate the EL2 AT instructions by loading virtual EL2 context
* to the EL1 virtual memory control registers and executing corresponding
* EL1 AT instructions.
*
* We set physical NV and NV1 bits to use EL2 page table format for non-VHE
* guest hypervisor (i.e. HCR_EL2.E2H == 0). As a VHE guest hypervisor uses the
* EL1 page table format, we don't set those bits.
*
* We should clear physical TGE bit not to use the EL2 translation regime when
* the host uses the VHE feature.
*
*
* 2. EL0/EL1 AT instructions: S1E[01]x, S12E1x
* +----------------------------------------------------------------------+
* | Virtual HCR_EL2 on trap | Setting for the emulation |
* |----------------------------------------------------------------------+
* | (vE2H, vTGE) | (vNV, vNV1) | Phys EL1 regs | Phys NV, NV1 | Phys TGE |
* |----------------------------------------------------------------------|
* | (0, 0)* | (0, 0) | vEL1 | (0, 0) | 0 |
* | (0, 0) | (1, 1) | vEL1 | (1, 1) | 0 |
* | (1, 1) | (0, 0) | vEL2 | (0, 0) | 0 |
* | (1, 1) | (1, 1) | vEL2 | (1, 1) | 0 |
* +----------------------------------------------------------------------+
*
* *For (0, 0) in the 'Virtual HCR_EL2 on trap' column, it actually means
* (1, 1). Keep them (0, 0) just for the readability.
*
* We set physical EL1 virtual memory control registers depending on
* (vE2H, vTGE) pair. When the pair is (0, 0) where AT instructions are
* supposed to use EL0/EL1 translation regime, we load the EL1 registers with
* the virtual EL1 registers (i.e. EL1 registers from the guest hypervisor's
* point of view). When the pair is (1, 1), however, AT instructions are defined
* to apply EL2 translation regime. To emulate this behavior, we load the EL1
* registers with the virtual EL2 context. (i.e the shadow registers)
*
* We respect the virtual NV and NV1 bit for the emulation. When those bits are
* set, it means that a guest hypervisor would like to use EL2 page table format
* for the EL1 translation regime. We emulate this by setting the physical
* NV and NV1 bits.
*/
#define SYS_INSN_TO_DESC(insn, access_fn, forward_fn) \
{ SYS_DESC((insn)), (access_fn), NULL, 0, 0, NULL, NULL, (forward_fn) }
static struct sys_reg_desc sys_insn_descs[] = {
SYS_INSN_TO_DESC(AT_S1E1R, handle_s1e01, forward_at_traps),
SYS_INSN_TO_DESC(AT_S1E1W, handle_s1e01, forward_at_traps),
SYS_INSN_TO_DESC(AT_S1E0R, handle_s1e01, forward_at_traps),
SYS_INSN_TO_DESC(AT_S1E0W, handle_s1e01, forward_at_traps),
SYS_INSN_TO_DESC(AT_S1E1RP, handle_s1e01, forward_at_traps),
SYS_INSN_TO_DESC(AT_S1E1WP, handle_s1e01, forward_at_traps),
SYS_INSN_TO_DESC(TLBI_VMALLE1IS, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VAE1IS, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_ASIDE1IS, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VAAE1IS, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VALE1IS, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VAALE1IS, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VMALLE1, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VAE1, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_ASIDE1, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VAAE1, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VALE1, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(TLBI_VAALE1, handle_tlbi_el1, forward_ttlb_traps),
SYS_INSN_TO_DESC(AT_S1E2R, handle_s1e2, forward_nv_traps),
SYS_INSN_TO_DESC(AT_S1E2W, handle_s1e2, forward_nv_traps),
SYS_INSN_TO_DESC(AT_S12E1R, handle_s12r, forward_nv_traps),
SYS_INSN_TO_DESC(AT_S12E1W, handle_s12w, forward_nv_traps),
SYS_INSN_TO_DESC(AT_S12E0R, handle_s12r, forward_nv_traps),
SYS_INSN_TO_DESC(AT_S12E0W, handle_s12w, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_IPAS2E1IS, handle_ipas2e1is, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_IPAS2LE1IS, handle_ipas2e1is, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_ALLE2IS, handle_alle2is, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_VAE2IS, handle_vae2, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_ALLE1IS, handle_alle1is, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_VALE2IS, handle_vae2, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_VMALLS12E1IS, handle_vmalls12e1is, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_IPAS2E1, handle_ipas2e1is, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_IPAS2LE1, handle_ipas2e1is, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_ALLE2, handle_alle2, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_VAE2, handle_vae2, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_ALLE1, handle_alle1is, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_VALE2, handle_vae2, forward_nv_traps),
SYS_INSN_TO_DESC(TLBI_VMALLS12E1, handle_vmalls12e1is, forward_nv_traps),
};
#define reg_to_match_value(x) \
({ \
unsigned long val; \
val = (x)->Op0 << 14; \
val |= (x)->Op1 << 11; \
val |= (x)->CRn << 7; \
val |= (x)->CRm << 3; \
val |= (x)->Op2; \
val; \
})
static int match_sys_reg(const void *key, const void *elt)
{
const unsigned long pval = (unsigned long)key;
const struct sys_reg_desc *r = elt;
return pval - reg_to_match_value(r);
}
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
const struct sys_reg_desc table[],
unsigned int num)
{
unsigned long pval = reg_to_match_value(params);
return bsearch((void *)pval, table, num, sizeof(table[0]),
match_sys_reg);
}
static void perform_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *r)
{
/*
* Not having an accessor means that we have configured a trap
* that we don't know how to handle. This certainly qualifies
* as a gross bug that should be fixed right away.
*/
BUG_ON(!r->access);
/*
* Forward this trap to the virtual EL2 if the guest hypervisor has
* configured to trap the current instruction.
*/
if (nested_virt_in_use(vcpu) && r->forward_trap
&& unlikely(r->forward_trap(vcpu)))
return;
/* Skip instruction if instructed so */
if (likely(r->access(vcpu, params, r)))
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
}
static int emulate_sys_instr(struct kvm_vcpu *vcpu, struct sys_reg_params *p)
{
const struct sys_reg_desc *r;
/* Search from the system instruction table. */
r = find_reg(p, sys_insn_descs, ARRAY_SIZE(sys_insn_descs));
if (likely(r)) {
perform_access(vcpu, p, r);
} else {
kvm_err("Unsupported guest sys instruction at: %lx\n",
*vcpu_pc(vcpu));
print_sys_reg_instr(p);
kvm_inject_undefined(vcpu);
}
return 1;
}
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
(((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
(((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
| (6 << 16) | (el3 << 14) | (el3 << 12));
return true;
}
}
static bool trap_debug32(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
vcpu_cp14(vcpu, r->reg) = p->regval;
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = vcpu_cp14(vcpu, r->reg);
}
return true;
}
/* AArch32 debug register mappings
*
* AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
* AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
*
* All control registers and watchpoint value registers are mapped to
* the lower 32 bits of their AArch64 equivalents. We share the trap
* handlers with the above AArch64 code which checks what mode the
* system is in.
*/
static bool trap_xvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (p->is_write) {
u64 val = *dbg_reg;
val &= 0xffffffffUL;
val |= p->regval << 32;
*dbg_reg = val;
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = *dbg_reg >> 32;
}
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
#define DBG_BCR_BVR_WCR_WVR(n) \
/* DBGBVRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
/* DBGBCRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
/* DBGWVRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
/* DBGWCRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
#define DBGBXVR(n) \
{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
/*
* Trapped cp14 registers. We generally ignore most of the external
* debug, on the principle that they don't really make sense to a
* guest. Revisit this one day, would this principle change.
*/
static const struct sys_reg_desc cp14_regs[] = {
/* DBGIDR */
{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
/* DBGDTRRXext */
{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(0),
/* DBGDSCRint */
{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(1),
/* DBGDCCINT */
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
/* DBGDSCRext */
{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
DBG_BCR_BVR_WCR_WVR(2),
/* DBGDTR[RT]Xint */
{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
/* DBGDTR[RT]Xext */
{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(3),
DBG_BCR_BVR_WCR_WVR(4),
DBG_BCR_BVR_WCR_WVR(5),
/* DBGWFAR */
{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
/* DBGOSECCR */
{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(6),
/* DBGVCR */
{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
DBG_BCR_BVR_WCR_WVR(7),
DBG_BCR_BVR_WCR_WVR(8),
DBG_BCR_BVR_WCR_WVR(9),
DBG_BCR_BVR_WCR_WVR(10),
DBG_BCR_BVR_WCR_WVR(11),
DBG_BCR_BVR_WCR_WVR(12),
DBG_BCR_BVR_WCR_WVR(13),
DBG_BCR_BVR_WCR_WVR(14),
DBG_BCR_BVR_WCR_WVR(15),
/* DBGDRAR (32bit) */
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
DBGBXVR(0),
/* DBGOSLAR */
{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
DBGBXVR(1),
/* DBGOSLSR */
{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
DBGBXVR(2),
DBGBXVR(3),
/* DBGOSDLR */
{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
DBGBXVR(4),
/* DBGPRCR */
{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
DBGBXVR(5),
DBGBXVR(6),
DBGBXVR(7),
DBGBXVR(8),
DBGBXVR(9),
DBGBXVR(10),
DBGBXVR(11),
DBGBXVR(12),
DBGBXVR(13),
DBGBXVR(14),
DBGBXVR(15),
/* DBGDSAR (32bit) */
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
/* DBGDEVID2 */
{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
/* DBGDEVID1 */
{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
/* DBGDEVID */
{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
/* DBGCLAIMSET */
{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
/* DBGCLAIMCLR */
{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
/* DBGAUTHSTATUS */
{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
};
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
/* DBGDRAR (64bit) */
{ Op1( 0), CRm( 1), .access = trap_raz_wi },
/* DBGDSAR (64bit) */
{ Op1( 0), CRm( 2), .access = trap_raz_wi },
};
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n) \
/* PMEVCNTRn */ \
{ Op1(0), CRn(0b1110), \
CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evcntr }
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n) \
/* PMEVTYPERn */ \
{ Op1(0), CRn(0b1110), \
CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evtyper }
/*
* Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
* depending on the way they are accessed (as a 32bit or a 64bit
* register).
*/
static const struct sys_reg_desc cp15_regs[] = {
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
/*
* DC{C,I,CI}SW operations:
*/
{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
/* PMU */
{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
/* ICC_SRE */
{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
/* CNTP_TVAL */
{ Op1( 0), CRn(14), CRm( 2), Op2( 0), access_arch_timer },
/* CNTP_CTL */
{ Op1( 0), CRn(14), CRm( 2), Op2( 1), access_arch_timer },
/* PMEVCNTRn */
PMU_PMEVCNTR(0),
PMU_PMEVCNTR(1),
PMU_PMEVCNTR(2),
PMU_PMEVCNTR(3),
PMU_PMEVCNTR(4),
PMU_PMEVCNTR(5),
PMU_PMEVCNTR(6),
PMU_PMEVCNTR(7),
PMU_PMEVCNTR(8),
PMU_PMEVCNTR(9),
PMU_PMEVCNTR(10),
PMU_PMEVCNTR(11),
PMU_PMEVCNTR(12),
PMU_PMEVCNTR(13),
PMU_PMEVCNTR(14),
PMU_PMEVCNTR(15),
PMU_PMEVCNTR(16),
PMU_PMEVCNTR(17),
PMU_PMEVCNTR(18),
PMU_PMEVCNTR(19),
PMU_PMEVCNTR(20),
PMU_PMEVCNTR(21),
PMU_PMEVCNTR(22),
PMU_PMEVCNTR(23),
PMU_PMEVCNTR(24),
PMU_PMEVCNTR(25),
PMU_PMEVCNTR(26),
PMU_PMEVCNTR(27),
PMU_PMEVCNTR(28),
PMU_PMEVCNTR(29),
PMU_PMEVCNTR(30),
/* PMEVTYPERn */
PMU_PMEVTYPER(0),
PMU_PMEVTYPER(1),
PMU_PMEVTYPER(2),
PMU_PMEVTYPER(3),
PMU_PMEVTYPER(4),
PMU_PMEVTYPER(5),
PMU_PMEVTYPER(6),
PMU_PMEVTYPER(7),
PMU_PMEVTYPER(8),
PMU_PMEVTYPER(9),
PMU_PMEVTYPER(10),
PMU_PMEVTYPER(11),
PMU_PMEVTYPER(12),
PMU_PMEVTYPER(13),
PMU_PMEVTYPER(14),
PMU_PMEVTYPER(15),
PMU_PMEVTYPER(16),
PMU_PMEVTYPER(17),
PMU_PMEVTYPER(18),
PMU_PMEVTYPER(19),
PMU_PMEVTYPER(20),
PMU_PMEVTYPER(21),
PMU_PMEVTYPER(22),
PMU_PMEVTYPER(23),
PMU_PMEVTYPER(24),
PMU_PMEVTYPER(25),
PMU_PMEVTYPER(26),
PMU_PMEVTYPER(27),
PMU_PMEVTYPER(28),
PMU_PMEVTYPER(29),
PMU_PMEVTYPER(30),
/* PMCCFILTR */
{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
};
static const struct sys_reg_desc cp15_64_regs[] = {
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
{ Op1( 2), CRn( 0), CRm(14), Op2( 0), access_arch_timer },
};
/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
void kvm_register_target_sys_reg_table(unsigned int target,
struct kvm_sys_reg_target_table *table)
{
target_tables[target] = table;
}
/* Get specific register table for this target. */
static const struct sys_reg_desc *get_target_table(unsigned target,
bool mode_is_64,
size_t *num)
{
struct kvm_sys_reg_target_table *table;
table = target_tables[target];
if (mode_is_64) {
*num = table->table64.num;
return table->table64.table;
} else {
*num = table->table32.num;
return table->table32.table;
}
}
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
kvm_inject_undefined(vcpu);
return 1;
}
/*
* emulate_cp -- tries to match a sys_reg access in a handling table, and
* call the corresponding trap handler.
*
* @params: pointer to the descriptor of the access
* @table: array of trap descriptors
* @num: size of the trap descriptor array
*
* Return 0 if the access has been handled, and -1 if not.
*/
static int emulate_cp(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *table,
size_t num)
{
const struct sys_reg_desc *r;
if (!table)
return -1; /* Not handled */
r = find_reg(params, table, num);
if (r) {
perform_access(vcpu, params, r);
return 0;
}
/* Not handled */
return -1;
}
static void unhandled_cp_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
int cp = -1;
switch(hsr_ec) {
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
cp = 15;
break;
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_64:
cp = 14;
break;
default:
WARN_ON(1);
}
kvm_err("Unsupported guest CP%d access at: %08lx\n",
cp, *vcpu_pc(vcpu));
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
}
/**
* kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global,
const struct sys_reg_desc *target_specific,
size_t nr_specific)
{
struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
int Rt2 = (hsr >> 10) & 0x1f;
params.is_aarch32 = true;
params.is_32bit = false;
params.CRm = (hsr >> 1) & 0xf;
params.is_write = ((hsr & 1) == 0);
params.Op0 = 0;
params.Op1 = (hsr >> 16) & 0xf;
params.Op2 = 0;
params.CRn = 0;
/*
* Make a 64-bit value out of Rt and Rt2. As we use the same trap
* backends between AArch32 and AArch64, we get away with it.
*/
if (params.is_write) {
params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
}
/*
* Try to emulate the coprocessor access using the target
* specific table first, and using the global table afterwards.
* If either of the tables contains a handler, handle the
* potential register operation in the case of a read and return
* with success.
*/
if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
!emulate_cp(vcpu, &params, global, nr_global)) {
/* Split up the value between registers for the read side */
if (!params.is_write) {
vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
}
return 1;
}
unhandled_cp_access(vcpu, &params);
return 1;
}
/**
* kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global,
const struct sys_reg_desc *target_specific,
size_t nr_specific)
{
struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
params.is_aarch32 = true;
params.is_32bit = true;
params.CRm = (hsr >> 1) & 0xf;
params.regval = vcpu_get_reg(vcpu, Rt);
params.is_write = ((hsr & 1) == 0);
params.CRn = (hsr >> 10) & 0xf;
params.Op0 = 0;
params.Op1 = (hsr >> 14) & 0x7;
params.Op2 = (hsr >> 17) & 0x7;
if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
!emulate_cp(vcpu, &params, global, nr_global)) {
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
return 1;
}
unhandled_cp_access(vcpu, &params);
return 1;
}
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
const struct sys_reg_desc *target_specific;
size_t num;
target_specific = get_target_table(vcpu->arch.target, false, &num);
return kvm_handle_cp_64(vcpu,
cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
target_specific, num);
}
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
const struct sys_reg_desc *target_specific;
size_t num;
target_specific = get_target_table(vcpu->arch.target, false, &num);
return kvm_handle_cp_32(vcpu,
cp15_regs, ARRAY_SIZE(cp15_regs),
target_specific, num);
}
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
return kvm_handle_cp_64(vcpu,
cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
NULL, 0);
}
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
return kvm_handle_cp_32(vcpu,
cp14_regs, ARRAY_SIZE(cp14_regs),
NULL, 0);
}
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
size_t num;
const struct sys_reg_desc *table, *r;
table = get_target_table(vcpu->arch.target, true, &num);
/* Search target-specific then generic table. */
r = find_reg(params, table, num);
if (!r)
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
if (likely(r)) {
perform_access(vcpu, params, r);
} else {
kvm_err("Unsupported guest sys_reg access at: %lx\n",
*vcpu_pc(vcpu));
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
}
return 1;
}
static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *table, size_t num)
{
unsigned long i;
for (i = 0; i < num; i++)
if (table[i].reset)
table[i].reset(vcpu, &table[i]);
}
/**
* kvm_handle_sys-- handles a system instruction or mrs/msr instruction trap
on a guest execution
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
int kvm_handle_sys(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
struct sys_reg_params params;
unsigned long esr = kvm_vcpu_get_hsr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
int ret;
trace_kvm_handle_sys(esr);
params.is_aarch32 = false;
params.is_32bit = false;
params.Op0 = (esr >> 20) & 3;
params.Op1 = (esr >> 14) & 0x7;
params.CRn = (esr >> 10) & 0xf;
params.CRm = (esr >> 1) & 0xf;
params.Op2 = (esr >> 17) & 0x7;
params.regval = vcpu_get_reg(vcpu, Rt);
params.is_write = !(esr & 1);
if (params.Op0 == 1) {
/* System instructions */
ret = emulate_sys_instr(vcpu, &params);
} else {
/* MRS/MSR instructions */
ret = emulate_sys_reg(vcpu, &params);
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
}
return ret;
}
/******************************************************************************
* Userspace API
*****************************************************************************/
static bool index_to_params(u64 id, struct sys_reg_params *params)
{
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U64:
/* Any unused index bits means it's not valid. */
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
| KVM_REG_ARM_COPROC_MASK
| KVM_REG_ARM64_SYSREG_OP0_MASK
| KVM_REG_ARM64_SYSREG_OP1_MASK
| KVM_REG_ARM64_SYSREG_CRN_MASK
| KVM_REG_ARM64_SYSREG_CRM_MASK
| KVM_REG_ARM64_SYSREG_OP2_MASK))
return false;
params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
>> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
>> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
>> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
>> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
>> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
return true;
default:
return false;
}
}
const struct sys_reg_desc *find_reg_by_id(u64 id,
struct sys_reg_params *params,
const struct sys_reg_desc table[],
unsigned int num)
{
if (!index_to_params(id, params))
return NULL;
return find_reg(params, table, num);
}
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
u64 id)
{
size_t num;
const struct sys_reg_desc *table, *r;
struct sys_reg_params params;
/* We only do sys_reg for now. */
if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
return NULL;
table = get_target_table(vcpu->arch.target, true, &num);
r = find_reg_by_id(id, &params, table, num);
if (!r)
r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
/* Not saved in the sys_reg array and not otherwise accessible? */
if (r && !(r->reg || r->get_user))
r = NULL;
return r;
}
/*
* These are the invariant sys_reg registers: we let the guest see the
* host versions of these, so they're part of the guest state.
*
* A future CPU may provide a mechanism to present different values to
* the guest, or a future kvm may trap them.
*/
#define FUNCTION_INVARIANT(reg) \
static void get_##reg(struct kvm_vcpu *v, \
const struct sys_reg_desc *r) \
{ \
((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
}
FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(ctr_el0)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)
/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
};
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
{
if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
{
if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
struct sys_reg_params params;
const struct sys_reg_desc *r;
r = find_reg_by_id(id, &params, invariant_sys_regs,
ARRAY_SIZE(invariant_sys_regs));
if (!r)
return -ENOENT;
return reg_to_user(uaddr, &r->val, id);
}
static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
struct sys_reg_params params;
const struct sys_reg_desc *r;
int err;
u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
r = find_reg_by_id(id, &params, invariant_sys_regs,
ARRAY_SIZE(invariant_sys_regs));
if (!r)
return -ENOENT;
err = reg_from_user(&val, uaddr, id);
if (err)
return err;
/* This is what we mean by invariant: you can't change it. */
if (r->val != val)
return -EINVAL;
return 0;
}
static bool is_valid_cache(u32 val)
{
u32 level, ctype;
if (val >= CSSELR_MAX)
return false;
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
level = (val >> 1);
ctype = (cache_levels >> (level * 3)) & 7;
switch (ctype) {
case 0: /* No cache */
return false;
case 1: /* Instruction cache only */
return (val & 1);
case 2: /* Data cache only */
case 4: /* Unified cache */
return !(val & 1);
case 3: /* Separate instruction and data caches */
return true;
default: /* Reserved: we can't know instruction or data. */
return false;
}
}
static int demux_c15_get(u64 id, void __user *uaddr)
{
u32 val;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
return put_user(get_ccsidr(val), uval);
default:
return -ENOENT;
}
}
static int demux_c15_set(u64 id, void __user *uaddr)
{
u32 val, newval;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
if (get_user(newval, uval))
return -EFAULT;
/* This is also invariant: you can't change it. */
if (newval != get_ccsidr(val))
return -EINVAL;
return 0;
default:
return -ENOENT;
}
}
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct sys_reg_desc *r;
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_get(reg->id, uaddr);
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
return -ENOENT;
r = index_to_sys_reg_desc(vcpu, reg->id);
if (!r)
return get_invariant_sys_reg(reg->id, uaddr);
if (r->get_user)
return (r->get_user)(vcpu, r, reg, uaddr);
return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
}
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct sys_reg_desc *r;
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_set(reg->id, uaddr);
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
return -ENOENT;
r = index_to_sys_reg_desc(vcpu, reg->id);
if (!r)
return set_invariant_sys_reg(reg->id, uaddr);
if (r->set_user)
return (r->set_user)(vcpu, r, reg, uaddr);
return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
}
static unsigned int num_demux_regs(void)
{
unsigned int i, count = 0;
for (i = 0; i < CSSELR_MAX; i++)
if (is_valid_cache(i))
count++;
return count;
}
static int write_demux_regids(u64 __user *uindices)
{
u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
unsigned int i;
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
for (i = 0; i < CSSELR_MAX; i++) {
if (!is_valid_cache(i))
continue;
if (put_user(val | i, uindices))
return -EFAULT;
uindices++;
}
return 0;
}
static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
KVM_REG_ARM64_SYSREG |
(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}
static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
if (!*uind)
return true;
if (put_user(sys_reg_to_index(reg), *uind))
return false;
(*uind)++;
return true;
}
static int walk_one_sys_reg(const struct sys_reg_desc *rd,
u64 __user **uind,
unsigned int *total)
{
/*
* Ignore registers we trap but don't save,
* and for which no custom user accessor is provided.
*/
if (!(rd->reg || rd->get_user))
return 0;
if (!copy_reg_to_user(rd, uind))
return -EFAULT;
(*total)++;
return 0;
}
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
const struct sys_reg_desc *i1, *i2, *end1, *end2;
unsigned int total = 0;
size_t num;
int err;
/* We check for duplicates here, to allow arch-specific overrides. */
i1 = get_target_table(vcpu->arch.target, true, &num);
end1 = i1 + num;
i2 = sys_reg_descs;
end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
BUG_ON(i1 == end1 || i2 == end2);
/* Walk carefully, as both tables may refer to the same register. */
while (i1 || i2) {
int cmp = cmp_sys_reg(i1, i2);
/* target-specific overrides generic entry. */
if (cmp <= 0)
err = walk_one_sys_reg(i1, &uind, &total);
else
err = walk_one_sys_reg(i2, &uind, &total);
if (err)
return err;
if (cmp <= 0 && ++i1 == end1)
i1 = NULL;
if (cmp >= 0 && ++i2 == end2)
i2 = NULL;
}
return total;
}
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
return ARRAY_SIZE(invariant_sys_regs)
+ num_demux_regs()
+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
unsigned int i;
int err;
/* Then give them all the invariant registers' indices. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
return -EFAULT;
uindices++;
}
err = walk_sys_regs(vcpu, uindices);
if (err < 0)
return err;
uindices += err;
return write_demux_regids(uindices);
}
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
unsigned int i;
for (i = 1; i < n; i++) {
if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
return 1;
}
}
return 0;
}
void kvm_sys_reg_table_init(void)
{
unsigned int i;
struct sys_reg_desc clidr;
/* Make sure tables are unique and in order. */
BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
BUG_ON(check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs)));
/* We abuse the reset function to overwrite the table itself. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
/*
* CLIDR format is awkward, so clean it up. See ARM B4.1.20:
*
* If software reads the Cache Type fields from Ctype1
* upwards, once it has seen a value of 0b000, no caches
* exist at further-out levels of the hierarchy. So, for
* example, if Ctype3 is the first Cache Type field with a
* value of 0b000, the values of Ctype4 to Ctype7 must be
* ignored.
*/
get_clidr_el1(NULL, &clidr); /* Ugly... */
cache_levels = clidr.val;
for (i = 0; i < 7; i++)
if (((cache_levels >> (i*3)) & 7) == 0)
break;
/* Clear all higher bits. */
cache_levels &= (1 << (i*3))-1;
}
/**
* kvm_reset_sys_regs - sets system registers to reset value
* @vcpu: The VCPU pointer
*
* This function finds the right table above and sets the registers on the
* virtual CPU struct to their architecturally defined reset values.
*/
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
size_t num;
const struct sys_reg_desc *table;
/* Catch someone adding a register without putting in reset entry. */
memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
/* Generic chip reset first (so target could override). */
reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
table = get_target_table(vcpu->arch.target, true, &num);
reset_sys_reg_descs(vcpu, table, num);
for (num = 1; num < NR_SYS_REGS; num++)
if (__vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
panic("Didn't reset __vcpu_sys_reg(%zi)", num);
}