| /* | 
 |  * Copyright © 2006-2014 Intel Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * Authors: David Woodhouse <dwmw2@infradead.org>, | 
 |  *          Ashok Raj <ashok.raj@intel.com>, | 
 |  *          Shaohua Li <shaohua.li@intel.com>, | 
 |  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, | 
 |  *          Fenghua Yu <fenghua.yu@intel.com> | 
 |  *          Joerg Roedel <jroedel@suse.de> | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt)     "DMAR: " fmt | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/bitmap.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/export.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/dmar.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/io.h> | 
 | #include <linux/iova.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/intel-iommu.h> | 
 | #include <linux/syscore_ops.h> | 
 | #include <linux/tboot.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/pci-ats.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/dma-contiguous.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <asm/irq_remapping.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/iommu.h> | 
 |  | 
 | #include "irq_remapping.h" | 
 |  | 
 | #define ROOT_SIZE		VTD_PAGE_SIZE | 
 | #define CONTEXT_SIZE		VTD_PAGE_SIZE | 
 |  | 
 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) | 
 | #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) | 
 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | 
 | #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) | 
 |  | 
 | #define IOAPIC_RANGE_START	(0xfee00000) | 
 | #define IOAPIC_RANGE_END	(0xfeefffff) | 
 | #define IOVA_START_ADDR		(0x1000) | 
 |  | 
 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 | 
 |  | 
 | #define MAX_AGAW_WIDTH 64 | 
 | #define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) | 
 |  | 
 | #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1) | 
 | #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1) | 
 |  | 
 | /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR | 
 |    to match. That way, we can use 'unsigned long' for PFNs with impunity. */ | 
 | #define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \ | 
 | 				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) | 
 | #define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) | 
 |  | 
 | /* IO virtual address start page frame number */ | 
 | #define IOVA_START_PFN		(1) | 
 |  | 
 | #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT) | 
 | #define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32)) | 
 | #define DMA_64BIT_PFN		IOVA_PFN(DMA_BIT_MASK(64)) | 
 |  | 
 | /* page table handling */ | 
 | #define LEVEL_STRIDE		(9) | 
 | #define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1) | 
 |  | 
 | /* | 
 |  * This bitmap is used to advertise the page sizes our hardware support | 
 |  * to the IOMMU core, which will then use this information to split | 
 |  * physically contiguous memory regions it is mapping into page sizes | 
 |  * that we support. | 
 |  * | 
 |  * Traditionally the IOMMU core just handed us the mappings directly, | 
 |  * after making sure the size is an order of a 4KiB page and that the | 
 |  * mapping has natural alignment. | 
 |  * | 
 |  * To retain this behavior, we currently advertise that we support | 
 |  * all page sizes that are an order of 4KiB. | 
 |  * | 
 |  * If at some point we'd like to utilize the IOMMU core's new behavior, | 
 |  * we could change this to advertise the real page sizes we support. | 
 |  */ | 
 | #define INTEL_IOMMU_PGSIZES	(~0xFFFUL) | 
 |  | 
 | static inline int agaw_to_level(int agaw) | 
 | { | 
 | 	return agaw + 2; | 
 | } | 
 |  | 
 | static inline int agaw_to_width(int agaw) | 
 | { | 
 | 	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); | 
 | } | 
 |  | 
 | static inline int width_to_agaw(int width) | 
 | { | 
 | 	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); | 
 | } | 
 |  | 
 | static inline unsigned int level_to_offset_bits(int level) | 
 | { | 
 | 	return (level - 1) * LEVEL_STRIDE; | 
 | } | 
 |  | 
 | static inline int pfn_level_offset(unsigned long pfn, int level) | 
 | { | 
 | 	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; | 
 | } | 
 |  | 
 | static inline unsigned long level_mask(int level) | 
 | { | 
 | 	return -1UL << level_to_offset_bits(level); | 
 | } | 
 |  | 
 | static inline unsigned long level_size(int level) | 
 | { | 
 | 	return 1UL << level_to_offset_bits(level); | 
 | } | 
 |  | 
 | static inline unsigned long align_to_level(unsigned long pfn, int level) | 
 | { | 
 | 	return (pfn + level_size(level) - 1) & level_mask(level); | 
 | } | 
 |  | 
 | static inline unsigned long lvl_to_nr_pages(unsigned int lvl) | 
 | { | 
 | 	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); | 
 | } | 
 |  | 
 | /* VT-d pages must always be _smaller_ than MM pages. Otherwise things | 
 |    are never going to work. */ | 
 | static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) | 
 | { | 
 | 	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); | 
 | } | 
 |  | 
 | static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) | 
 | { | 
 | 	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); | 
 | } | 
 | static inline unsigned long page_to_dma_pfn(struct page *pg) | 
 | { | 
 | 	return mm_to_dma_pfn(page_to_pfn(pg)); | 
 | } | 
 | static inline unsigned long virt_to_dma_pfn(void *p) | 
 | { | 
 | 	return page_to_dma_pfn(virt_to_page(p)); | 
 | } | 
 |  | 
 | /* global iommu list, set NULL for ignored DMAR units */ | 
 | static struct intel_iommu **g_iommus; | 
 |  | 
 | static void __init check_tylersburg_isoch(void); | 
 | static int rwbf_quirk; | 
 |  | 
 | /* | 
 |  * set to 1 to panic kernel if can't successfully enable VT-d | 
 |  * (used when kernel is launched w/ TXT) | 
 |  */ | 
 | static int force_on = 0; | 
 |  | 
 | /* | 
 |  * 0: Present | 
 |  * 1-11: Reserved | 
 |  * 12-63: Context Ptr (12 - (haw-1)) | 
 |  * 64-127: Reserved | 
 |  */ | 
 | struct root_entry { | 
 | 	u64	lo; | 
 | 	u64	hi; | 
 | }; | 
 | #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) | 
 |  | 
 | /* | 
 |  * Take a root_entry and return the Lower Context Table Pointer (LCTP) | 
 |  * if marked present. | 
 |  */ | 
 | static phys_addr_t root_entry_lctp(struct root_entry *re) | 
 | { | 
 | 	if (!(re->lo & 1)) | 
 | 		return 0; | 
 |  | 
 | 	return re->lo & VTD_PAGE_MASK; | 
 | } | 
 |  | 
 | /* | 
 |  * Take a root_entry and return the Upper Context Table Pointer (UCTP) | 
 |  * if marked present. | 
 |  */ | 
 | static phys_addr_t root_entry_uctp(struct root_entry *re) | 
 | { | 
 | 	if (!(re->hi & 1)) | 
 | 		return 0; | 
 |  | 
 | 	return re->hi & VTD_PAGE_MASK; | 
 | } | 
 | /* | 
 |  * low 64 bits: | 
 |  * 0: present | 
 |  * 1: fault processing disable | 
 |  * 2-3: translation type | 
 |  * 12-63: address space root | 
 |  * high 64 bits: | 
 |  * 0-2: address width | 
 |  * 3-6: aval | 
 |  * 8-23: domain id | 
 |  */ | 
 | struct context_entry { | 
 | 	u64 lo; | 
 | 	u64 hi; | 
 | }; | 
 |  | 
 | static inline void context_clear_pasid_enable(struct context_entry *context) | 
 | { | 
 | 	context->lo &= ~(1ULL << 11); | 
 | } | 
 |  | 
 | static inline bool context_pasid_enabled(struct context_entry *context) | 
 | { | 
 | 	return !!(context->lo & (1ULL << 11)); | 
 | } | 
 |  | 
 | static inline void context_set_copied(struct context_entry *context) | 
 | { | 
 | 	context->hi |= (1ull << 3); | 
 | } | 
 |  | 
 | static inline bool context_copied(struct context_entry *context) | 
 | { | 
 | 	return !!(context->hi & (1ULL << 3)); | 
 | } | 
 |  | 
 | static inline bool __context_present(struct context_entry *context) | 
 | { | 
 | 	return (context->lo & 1); | 
 | } | 
 |  | 
 | static inline bool context_present(struct context_entry *context) | 
 | { | 
 | 	return context_pasid_enabled(context) ? | 
 | 	     __context_present(context) : | 
 | 	     __context_present(context) && !context_copied(context); | 
 | } | 
 |  | 
 | static inline void context_set_present(struct context_entry *context) | 
 | { | 
 | 	context->lo |= 1; | 
 | } | 
 |  | 
 | static inline void context_set_fault_enable(struct context_entry *context) | 
 | { | 
 | 	context->lo &= (((u64)-1) << 2) | 1; | 
 | } | 
 |  | 
 | static inline void context_set_translation_type(struct context_entry *context, | 
 | 						unsigned long value) | 
 | { | 
 | 	context->lo &= (((u64)-1) << 4) | 3; | 
 | 	context->lo |= (value & 3) << 2; | 
 | } | 
 |  | 
 | static inline void context_set_address_root(struct context_entry *context, | 
 | 					    unsigned long value) | 
 | { | 
 | 	context->lo &= ~VTD_PAGE_MASK; | 
 | 	context->lo |= value & VTD_PAGE_MASK; | 
 | } | 
 |  | 
 | static inline void context_set_address_width(struct context_entry *context, | 
 | 					     unsigned long value) | 
 | { | 
 | 	context->hi |= value & 7; | 
 | } | 
 |  | 
 | static inline void context_set_domain_id(struct context_entry *context, | 
 | 					 unsigned long value) | 
 | { | 
 | 	context->hi |= (value & ((1 << 16) - 1)) << 8; | 
 | } | 
 |  | 
 | static inline int context_domain_id(struct context_entry *c) | 
 | { | 
 | 	return((c->hi >> 8) & 0xffff); | 
 | } | 
 |  | 
 | static inline void context_clear_entry(struct context_entry *context) | 
 | { | 
 | 	context->lo = 0; | 
 | 	context->hi = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * 0: readable | 
 |  * 1: writable | 
 |  * 2-6: reserved | 
 |  * 7: super page | 
 |  * 8-10: available | 
 |  * 11: snoop behavior | 
 |  * 12-63: Host physcial address | 
 |  */ | 
 | struct dma_pte { | 
 | 	u64 val; | 
 | }; | 
 |  | 
 | static inline void dma_clear_pte(struct dma_pte *pte) | 
 | { | 
 | 	pte->val = 0; | 
 | } | 
 |  | 
 | static inline u64 dma_pte_addr(struct dma_pte *pte) | 
 | { | 
 | #ifdef CONFIG_64BIT | 
 | 	return pte->val & VTD_PAGE_MASK; | 
 | #else | 
 | 	/* Must have a full atomic 64-bit read */ | 
 | 	return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK; | 
 | #endif | 
 | } | 
 |  | 
 | static inline bool dma_pte_present(struct dma_pte *pte) | 
 | { | 
 | 	return (pte->val & 3) != 0; | 
 | } | 
 |  | 
 | static inline bool dma_pte_superpage(struct dma_pte *pte) | 
 | { | 
 | 	return (pte->val & DMA_PTE_LARGE_PAGE); | 
 | } | 
 |  | 
 | static inline int first_pte_in_page(struct dma_pte *pte) | 
 | { | 
 | 	return !((unsigned long)pte & ~VTD_PAGE_MASK); | 
 | } | 
 |  | 
 | /* | 
 |  * This domain is a statically identity mapping domain. | 
 |  *	1. This domain creats a static 1:1 mapping to all usable memory. | 
 |  * 	2. It maps to each iommu if successful. | 
 |  *	3. Each iommu mapps to this domain if successful. | 
 |  */ | 
 | static struct dmar_domain *si_domain; | 
 | static int hw_pass_through = 1; | 
 |  | 
 | /* | 
 |  * Domain represents a virtual machine, more than one devices | 
 |  * across iommus may be owned in one domain, e.g. kvm guest. | 
 |  */ | 
 | #define DOMAIN_FLAG_VIRTUAL_MACHINE	(1 << 0) | 
 |  | 
 | /* si_domain contains mulitple devices */ | 
 | #define DOMAIN_FLAG_STATIC_IDENTITY	(1 << 1) | 
 |  | 
 | #define for_each_domain_iommu(idx, domain)			\ | 
 | 	for (idx = 0; idx < g_num_of_iommus; idx++)		\ | 
 | 		if (domain->iommu_refcnt[idx]) | 
 |  | 
 | struct dmar_domain { | 
 | 	int	nid;			/* node id */ | 
 |  | 
 | 	unsigned	iommu_refcnt[DMAR_UNITS_SUPPORTED]; | 
 | 					/* Refcount of devices per iommu */ | 
 |  | 
 |  | 
 | 	u16		iommu_did[DMAR_UNITS_SUPPORTED]; | 
 | 					/* Domain ids per IOMMU. Use u16 since | 
 | 					 * domain ids are 16 bit wide according | 
 | 					 * to VT-d spec, section 9.3 */ | 
 |  | 
 | 	bool has_iotlb_device; | 
 | 	struct list_head devices;	/* all devices' list */ | 
 | 	struct iova_domain iovad;	/* iova's that belong to this domain */ | 
 |  | 
 | 	struct dma_pte	*pgd;		/* virtual address */ | 
 | 	int		gaw;		/* max guest address width */ | 
 |  | 
 | 	/* adjusted guest address width, 0 is level 2 30-bit */ | 
 | 	int		agaw; | 
 |  | 
 | 	int		flags;		/* flags to find out type of domain */ | 
 |  | 
 | 	int		iommu_coherency;/* indicate coherency of iommu access */ | 
 | 	int		iommu_snooping; /* indicate snooping control feature*/ | 
 | 	int		iommu_count;	/* reference count of iommu */ | 
 | 	int		iommu_superpage;/* Level of superpages supported: | 
 | 					   0 == 4KiB (no superpages), 1 == 2MiB, | 
 | 					   2 == 1GiB, 3 == 512GiB, 4 == 1TiB */ | 
 | 	u64		max_addr;	/* maximum mapped address */ | 
 |  | 
 | 	struct iommu_domain domain;	/* generic domain data structure for | 
 | 					   iommu core */ | 
 | }; | 
 |  | 
 | /* PCI domain-device relationship */ | 
 | struct device_domain_info { | 
 | 	struct list_head link;	/* link to domain siblings */ | 
 | 	struct list_head global; /* link to global list */ | 
 | 	u8 bus;			/* PCI bus number */ | 
 | 	u8 devfn;		/* PCI devfn number */ | 
 | 	u8 pasid_supported:3; | 
 | 	u8 pasid_enabled:1; | 
 | 	u8 pri_supported:1; | 
 | 	u8 pri_enabled:1; | 
 | 	u8 ats_supported:1; | 
 | 	u8 ats_enabled:1; | 
 | 	u8 ats_qdep; | 
 | 	struct device *dev; /* it's NULL for PCIe-to-PCI bridge */ | 
 | 	struct intel_iommu *iommu; /* IOMMU used by this device */ | 
 | 	struct dmar_domain *domain; /* pointer to domain */ | 
 | }; | 
 |  | 
 | struct dmar_rmrr_unit { | 
 | 	struct list_head list;		/* list of rmrr units	*/ | 
 | 	struct acpi_dmar_header *hdr;	/* ACPI header		*/ | 
 | 	u64	base_address;		/* reserved base address*/ | 
 | 	u64	end_address;		/* reserved end address */ | 
 | 	struct dmar_dev_scope *devices;	/* target devices */ | 
 | 	int	devices_cnt;		/* target device count */ | 
 | 	struct iommu_resv_region *resv; /* reserved region handle */ | 
 | }; | 
 |  | 
 | struct dmar_atsr_unit { | 
 | 	struct list_head list;		/* list of ATSR units */ | 
 | 	struct acpi_dmar_header *hdr;	/* ACPI header */ | 
 | 	struct dmar_dev_scope *devices;	/* target devices */ | 
 | 	int devices_cnt;		/* target device count */ | 
 | 	u8 include_all:1;		/* include all ports */ | 
 | }; | 
 |  | 
 | static LIST_HEAD(dmar_atsr_units); | 
 | static LIST_HEAD(dmar_rmrr_units); | 
 |  | 
 | #define for_each_rmrr_units(rmrr) \ | 
 | 	list_for_each_entry(rmrr, &dmar_rmrr_units, list) | 
 |  | 
 | static void flush_unmaps_timeout(unsigned long data); | 
 |  | 
 | struct deferred_flush_entry { | 
 | 	unsigned long iova_pfn; | 
 | 	unsigned long nrpages; | 
 | 	struct dmar_domain *domain; | 
 | 	struct page *freelist; | 
 | }; | 
 |  | 
 | #define HIGH_WATER_MARK 250 | 
 | struct deferred_flush_table { | 
 | 	int next; | 
 | 	struct deferred_flush_entry entries[HIGH_WATER_MARK]; | 
 | }; | 
 |  | 
 | struct deferred_flush_data { | 
 | 	spinlock_t lock; | 
 | 	int timer_on; | 
 | 	struct timer_list timer; | 
 | 	long size; | 
 | 	struct deferred_flush_table *tables; | 
 | }; | 
 |  | 
 | DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush); | 
 |  | 
 | /* bitmap for indexing intel_iommus */ | 
 | static int g_num_of_iommus; | 
 |  | 
 | static void domain_exit(struct dmar_domain *domain); | 
 | static void domain_remove_dev_info(struct dmar_domain *domain); | 
 | static void dmar_remove_one_dev_info(struct dmar_domain *domain, | 
 | 				     struct device *dev); | 
 | static void __dmar_remove_one_dev_info(struct device_domain_info *info); | 
 | static void domain_context_clear(struct intel_iommu *iommu, | 
 | 				 struct device *dev); | 
 | static int domain_detach_iommu(struct dmar_domain *domain, | 
 | 			       struct intel_iommu *iommu); | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON | 
 | int dmar_disabled = 0; | 
 | #else | 
 | int dmar_disabled = 1; | 
 | #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/ | 
 |  | 
 | int intel_iommu_enabled = 0; | 
 | EXPORT_SYMBOL_GPL(intel_iommu_enabled); | 
 |  | 
 | static int dmar_map_gfx = 1; | 
 | static int dmar_forcedac; | 
 | static int intel_iommu_strict; | 
 | static int intel_iommu_superpage = 1; | 
 | static int intel_iommu_ecs = 1; | 
 | static int intel_iommu_pasid28; | 
 | static int iommu_identity_mapping; | 
 |  | 
 | #define IDENTMAP_ALL		1 | 
 | #define IDENTMAP_GFX		2 | 
 | #define IDENTMAP_AZALIA		4 | 
 |  | 
 | /* Broadwell and Skylake have broken ECS support — normal so-called "second | 
 |  * level" translation of DMA requests-without-PASID doesn't actually happen | 
 |  * unless you also set the NESTE bit in an extended context-entry. Which of | 
 |  * course means that SVM doesn't work because it's trying to do nested | 
 |  * translation of the physical addresses it finds in the process page tables, | 
 |  * through the IOVA->phys mapping found in the "second level" page tables. | 
 |  * | 
 |  * The VT-d specification was retroactively changed to change the definition | 
 |  * of the capability bits and pretend that Broadwell/Skylake never happened... | 
 |  * but unfortunately the wrong bit was changed. It's ECS which is broken, but | 
 |  * for some reason it was the PASID capability bit which was redefined (from | 
 |  * bit 28 on BDW/SKL to bit 40 in future). | 
 |  * | 
 |  * So our test for ECS needs to eschew those implementations which set the old | 
 |  * PASID capabiity bit 28, since those are the ones on which ECS is broken. | 
 |  * Unless we are working around the 'pasid28' limitations, that is, by putting | 
 |  * the device into passthrough mode for normal DMA and thus masking the bug. | 
 |  */ | 
 | #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \ | 
 | 			    (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap))) | 
 | /* PASID support is thus enabled if ECS is enabled and *either* of the old | 
 |  * or new capability bits are set. */ | 
 | #define pasid_enabled(iommu) (ecs_enabled(iommu) &&			\ | 
 | 			      (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap))) | 
 |  | 
 | int intel_iommu_gfx_mapped; | 
 | EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); | 
 |  | 
 | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) | 
 | static DEFINE_SPINLOCK(device_domain_lock); | 
 | static LIST_HEAD(device_domain_list); | 
 |  | 
 | static const struct iommu_ops intel_iommu_ops; | 
 |  | 
 | static bool translation_pre_enabled(struct intel_iommu *iommu) | 
 | { | 
 | 	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); | 
 | } | 
 |  | 
 | static void clear_translation_pre_enabled(struct intel_iommu *iommu) | 
 | { | 
 | 	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; | 
 | } | 
 |  | 
 | static void init_translation_status(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 gsts; | 
 |  | 
 | 	gsts = readl(iommu->reg + DMAR_GSTS_REG); | 
 | 	if (gsts & DMA_GSTS_TES) | 
 | 		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; | 
 | } | 
 |  | 
 | /* Convert generic 'struct iommu_domain to private struct dmar_domain */ | 
 | static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom) | 
 | { | 
 | 	return container_of(dom, struct dmar_domain, domain); | 
 | } | 
 |  | 
 | static int __init intel_iommu_setup(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return -EINVAL; | 
 | 	while (*str) { | 
 | 		if (!strncmp(str, "on", 2)) { | 
 | 			dmar_disabled = 0; | 
 | 			pr_info("IOMMU enabled\n"); | 
 | 		} else if (!strncmp(str, "off", 3)) { | 
 | 			dmar_disabled = 1; | 
 | 			pr_info("IOMMU disabled\n"); | 
 | 		} else if (!strncmp(str, "igfx_off", 8)) { | 
 | 			dmar_map_gfx = 0; | 
 | 			pr_info("Disable GFX device mapping\n"); | 
 | 		} else if (!strncmp(str, "forcedac", 8)) { | 
 | 			pr_info("Forcing DAC for PCI devices\n"); | 
 | 			dmar_forcedac = 1; | 
 | 		} else if (!strncmp(str, "strict", 6)) { | 
 | 			pr_info("Disable batched IOTLB flush\n"); | 
 | 			intel_iommu_strict = 1; | 
 | 		} else if (!strncmp(str, "sp_off", 6)) { | 
 | 			pr_info("Disable supported super page\n"); | 
 | 			intel_iommu_superpage = 0; | 
 | 		} else if (!strncmp(str, "ecs_off", 7)) { | 
 | 			printk(KERN_INFO | 
 | 				"Intel-IOMMU: disable extended context table support\n"); | 
 | 			intel_iommu_ecs = 0; | 
 | 		} else if (!strncmp(str, "pasid28", 7)) { | 
 | 			printk(KERN_INFO | 
 | 				"Intel-IOMMU: enable pre-production PASID support\n"); | 
 | 			intel_iommu_pasid28 = 1; | 
 | 			iommu_identity_mapping |= IDENTMAP_GFX; | 
 | 		} | 
 |  | 
 | 		str += strcspn(str, ","); | 
 | 		while (*str == ',') | 
 | 			str++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | __setup("intel_iommu=", intel_iommu_setup); | 
 |  | 
 | static struct kmem_cache *iommu_domain_cache; | 
 | static struct kmem_cache *iommu_devinfo_cache; | 
 |  | 
 | static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did) | 
 | { | 
 | 	struct dmar_domain **domains; | 
 | 	int idx = did >> 8; | 
 |  | 
 | 	domains = iommu->domains[idx]; | 
 | 	if (!domains) | 
 | 		return NULL; | 
 |  | 
 | 	return domains[did & 0xff]; | 
 | } | 
 |  | 
 | static void set_iommu_domain(struct intel_iommu *iommu, u16 did, | 
 | 			     struct dmar_domain *domain) | 
 | { | 
 | 	struct dmar_domain **domains; | 
 | 	int idx = did >> 8; | 
 |  | 
 | 	if (!iommu->domains[idx]) { | 
 | 		size_t size = 256 * sizeof(struct dmar_domain *); | 
 | 		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC); | 
 | 	} | 
 |  | 
 | 	domains = iommu->domains[idx]; | 
 | 	if (WARN_ON(!domains)) | 
 | 		return; | 
 | 	else | 
 | 		domains[did & 0xff] = domain; | 
 | } | 
 |  | 
 | static inline void *alloc_pgtable_page(int node) | 
 | { | 
 | 	struct page *page; | 
 | 	void *vaddr = NULL; | 
 |  | 
 | 	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); | 
 | 	if (page) | 
 | 		vaddr = page_address(page); | 
 | 	return vaddr; | 
 | } | 
 |  | 
 | static inline void free_pgtable_page(void *vaddr) | 
 | { | 
 | 	free_page((unsigned long)vaddr); | 
 | } | 
 |  | 
 | static inline void *alloc_domain_mem(void) | 
 | { | 
 | 	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); | 
 | } | 
 |  | 
 | static void free_domain_mem(void *vaddr) | 
 | { | 
 | 	kmem_cache_free(iommu_domain_cache, vaddr); | 
 | } | 
 |  | 
 | static inline void * alloc_devinfo_mem(void) | 
 | { | 
 | 	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); | 
 | } | 
 |  | 
 | static inline void free_devinfo_mem(void *vaddr) | 
 | { | 
 | 	kmem_cache_free(iommu_devinfo_cache, vaddr); | 
 | } | 
 |  | 
 | static inline int domain_type_is_vm(struct dmar_domain *domain) | 
 | { | 
 | 	return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE; | 
 | } | 
 |  | 
 | static inline int domain_type_is_si(struct dmar_domain *domain) | 
 | { | 
 | 	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY; | 
 | } | 
 |  | 
 | static inline int domain_type_is_vm_or_si(struct dmar_domain *domain) | 
 | { | 
 | 	return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE | | 
 | 				DOMAIN_FLAG_STATIC_IDENTITY); | 
 | } | 
 |  | 
 | static inline int domain_pfn_supported(struct dmar_domain *domain, | 
 | 				       unsigned long pfn) | 
 | { | 
 | 	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | 
 |  | 
 | 	return !(addr_width < BITS_PER_LONG && pfn >> addr_width); | 
 | } | 
 |  | 
 | static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) | 
 | { | 
 | 	unsigned long sagaw; | 
 | 	int agaw = -1; | 
 |  | 
 | 	sagaw = cap_sagaw(iommu->cap); | 
 | 	for (agaw = width_to_agaw(max_gaw); | 
 | 	     agaw >= 0; agaw--) { | 
 | 		if (test_bit(agaw, &sagaw)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return agaw; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate max SAGAW for each iommu. | 
 |  */ | 
 | int iommu_calculate_max_sagaw(struct intel_iommu *iommu) | 
 | { | 
 | 	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); | 
 | } | 
 |  | 
 | /* | 
 |  * calculate agaw for each iommu. | 
 |  * "SAGAW" may be different across iommus, use a default agaw, and | 
 |  * get a supported less agaw for iommus that don't support the default agaw. | 
 |  */ | 
 | int iommu_calculate_agaw(struct intel_iommu *iommu) | 
 | { | 
 | 	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
 | } | 
 |  | 
 | /* This functionin only returns single iommu in a domain */ | 
 | static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) | 
 | { | 
 | 	int iommu_id; | 
 |  | 
 | 	/* si_domain and vm domain should not get here. */ | 
 | 	BUG_ON(domain_type_is_vm_or_si(domain)); | 
 | 	for_each_domain_iommu(iommu_id, domain) | 
 | 		break; | 
 |  | 
 | 	if (iommu_id < 0 || iommu_id >= g_num_of_iommus) | 
 | 		return NULL; | 
 |  | 
 | 	return g_iommus[iommu_id]; | 
 | } | 
 |  | 
 | static void domain_update_iommu_coherency(struct dmar_domain *domain) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu; | 
 | 	bool found = false; | 
 | 	int i; | 
 |  | 
 | 	domain->iommu_coherency = 1; | 
 |  | 
 | 	for_each_domain_iommu(i, domain) { | 
 | 		found = true; | 
 | 		if (!ecap_coherent(g_iommus[i]->ecap)) { | 
 | 			domain->iommu_coherency = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (found) | 
 | 		return; | 
 |  | 
 | 	/* No hardware attached; use lowest common denominator */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		if (!ecap_coherent(iommu->ecap)) { | 
 | 			domain->iommu_coherency = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static int domain_update_iommu_snooping(struct intel_iommu *skip) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu; | 
 | 	int ret = 1; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		if (iommu != skip) { | 
 | 			if (!ecap_sc_support(iommu->ecap)) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int domain_update_iommu_superpage(struct intel_iommu *skip) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu; | 
 | 	int mask = 0xf; | 
 |  | 
 | 	if (!intel_iommu_superpage) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* set iommu_superpage to the smallest common denominator */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		if (iommu != skip) { | 
 | 			mask &= cap_super_page_val(iommu->cap); | 
 | 			if (!mask) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return fls(mask); | 
 | } | 
 |  | 
 | /* Some capabilities may be different across iommus */ | 
 | static void domain_update_iommu_cap(struct dmar_domain *domain) | 
 | { | 
 | 	domain_update_iommu_coherency(domain); | 
 | 	domain->iommu_snooping = domain_update_iommu_snooping(NULL); | 
 | 	domain->iommu_superpage = domain_update_iommu_superpage(NULL); | 
 | } | 
 |  | 
 | static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu, | 
 | 						       u8 bus, u8 devfn, int alloc) | 
 | { | 
 | 	struct root_entry *root = &iommu->root_entry[bus]; | 
 | 	struct context_entry *context; | 
 | 	u64 *entry; | 
 |  | 
 | 	entry = &root->lo; | 
 | 	if (ecs_enabled(iommu)) { | 
 | 		if (devfn >= 0x80) { | 
 | 			devfn -= 0x80; | 
 | 			entry = &root->hi; | 
 | 		} | 
 | 		devfn *= 2; | 
 | 	} | 
 | 	if (*entry & 1) | 
 | 		context = phys_to_virt(*entry & VTD_PAGE_MASK); | 
 | 	else { | 
 | 		unsigned long phy_addr; | 
 | 		if (!alloc) | 
 | 			return NULL; | 
 |  | 
 | 		context = alloc_pgtable_page(iommu->node); | 
 | 		if (!context) | 
 | 			return NULL; | 
 |  | 
 | 		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); | 
 | 		phy_addr = virt_to_phys((void *)context); | 
 | 		*entry = phy_addr | 1; | 
 | 		__iommu_flush_cache(iommu, entry, sizeof(*entry)); | 
 | 	} | 
 | 	return &context[devfn]; | 
 | } | 
 |  | 
 | static int iommu_dummy(struct device *dev) | 
 | { | 
 | 	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO; | 
 | } | 
 |  | 
 | static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd = NULL; | 
 | 	struct intel_iommu *iommu; | 
 | 	struct device *tmp; | 
 | 	struct pci_dev *ptmp, *pdev = NULL; | 
 | 	u16 segment = 0; | 
 | 	int i; | 
 |  | 
 | 	if (iommu_dummy(dev)) | 
 | 		return NULL; | 
 |  | 
 | 	if (dev_is_pci(dev)) { | 
 | 		struct pci_dev *pf_pdev; | 
 |  | 
 | 		pdev = to_pci_dev(dev); | 
 | 		/* VFs aren't listed in scope tables; we need to look up | 
 | 		 * the PF instead to find the IOMMU. */ | 
 | 		pf_pdev = pci_physfn(pdev); | 
 | 		dev = &pf_pdev->dev; | 
 | 		segment = pci_domain_nr(pdev->bus); | 
 | 	} else if (has_acpi_companion(dev)) | 
 | 		dev = &ACPI_COMPANION(dev)->dev; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		if (pdev && segment != drhd->segment) | 
 | 			continue; | 
 |  | 
 | 		for_each_active_dev_scope(drhd->devices, | 
 | 					  drhd->devices_cnt, i, tmp) { | 
 | 			if (tmp == dev) { | 
 | 				/* For a VF use its original BDF# not that of the PF | 
 | 				 * which we used for the IOMMU lookup. Strictly speaking | 
 | 				 * we could do this for all PCI devices; we only need to | 
 | 				 * get the BDF# from the scope table for ACPI matches. */ | 
 | 				if (pdev->is_virtfn) | 
 | 					goto got_pdev; | 
 |  | 
 | 				*bus = drhd->devices[i].bus; | 
 | 				*devfn = drhd->devices[i].devfn; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (!pdev || !dev_is_pci(tmp)) | 
 | 				continue; | 
 |  | 
 | 			ptmp = to_pci_dev(tmp); | 
 | 			if (ptmp->subordinate && | 
 | 			    ptmp->subordinate->number <= pdev->bus->number && | 
 | 			    ptmp->subordinate->busn_res.end >= pdev->bus->number) | 
 | 				goto got_pdev; | 
 | 		} | 
 |  | 
 | 		if (pdev && drhd->include_all) { | 
 | 		got_pdev: | 
 | 			*bus = pdev->bus->number; | 
 | 			*devfn = pdev->devfn; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	iommu = NULL; | 
 |  out: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return iommu; | 
 | } | 
 |  | 
 | static void domain_flush_cache(struct dmar_domain *domain, | 
 | 			       void *addr, int size) | 
 | { | 
 | 	if (!domain->iommu_coherency) | 
 | 		clflush_cache_range(addr, size); | 
 | } | 
 |  | 
 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) | 
 | { | 
 | 	struct context_entry *context; | 
 | 	int ret = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	context = iommu_context_addr(iommu, bus, devfn, 0); | 
 | 	if (context) | 
 | 		ret = context_present(context); | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) | 
 | { | 
 | 	struct context_entry *context; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	context = iommu_context_addr(iommu, bus, devfn, 0); | 
 | 	if (context) { | 
 | 		context_clear_entry(context); | 
 | 		__iommu_flush_cache(iommu, context, sizeof(*context)); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 | } | 
 |  | 
 | static void free_context_table(struct intel_iommu *iommu) | 
 | { | 
 | 	int i; | 
 | 	unsigned long flags; | 
 | 	struct context_entry *context; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	if (!iommu->root_entry) { | 
 | 		goto out; | 
 | 	} | 
 | 	for (i = 0; i < ROOT_ENTRY_NR; i++) { | 
 | 		context = iommu_context_addr(iommu, i, 0, 0); | 
 | 		if (context) | 
 | 			free_pgtable_page(context); | 
 |  | 
 | 		if (!ecs_enabled(iommu)) | 
 | 			continue; | 
 |  | 
 | 		context = iommu_context_addr(iommu, i, 0x80, 0); | 
 | 		if (context) | 
 | 			free_pgtable_page(context); | 
 |  | 
 | 	} | 
 | 	free_pgtable_page(iommu->root_entry); | 
 | 	iommu->root_entry = NULL; | 
 | out: | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 | } | 
 |  | 
 | static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, | 
 | 				      unsigned long pfn, int *target_level) | 
 | { | 
 | 	struct dma_pte *parent, *pte = NULL; | 
 | 	int level = agaw_to_level(domain->agaw); | 
 | 	int offset; | 
 |  | 
 | 	BUG_ON(!domain->pgd); | 
 |  | 
 | 	if (!domain_pfn_supported(domain, pfn)) | 
 | 		/* Address beyond IOMMU's addressing capabilities. */ | 
 | 		return NULL; | 
 |  | 
 | 	parent = domain->pgd; | 
 |  | 
 | 	while (1) { | 
 | 		void *tmp_page; | 
 |  | 
 | 		offset = pfn_level_offset(pfn, level); | 
 | 		pte = &parent[offset]; | 
 | 		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) | 
 | 			break; | 
 | 		if (level == *target_level) | 
 | 			break; | 
 |  | 
 | 		if (!dma_pte_present(pte)) { | 
 | 			uint64_t pteval; | 
 |  | 
 | 			tmp_page = alloc_pgtable_page(domain->nid); | 
 |  | 
 | 			if (!tmp_page) | 
 | 				return NULL; | 
 |  | 
 | 			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); | 
 | 			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; | 
 | 			if (cmpxchg64(&pte->val, 0ULL, pteval)) | 
 | 				/* Someone else set it while we were thinking; use theirs. */ | 
 | 				free_pgtable_page(tmp_page); | 
 | 			else | 
 | 				domain_flush_cache(domain, pte, sizeof(*pte)); | 
 | 		} | 
 | 		if (level == 1) | 
 | 			break; | 
 |  | 
 | 		parent = phys_to_virt(dma_pte_addr(pte)); | 
 | 		level--; | 
 | 	} | 
 |  | 
 | 	if (!*target_level) | 
 | 		*target_level = level; | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 |  | 
 | /* return address's pte at specific level */ | 
 | static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, | 
 | 					 unsigned long pfn, | 
 | 					 int level, int *large_page) | 
 | { | 
 | 	struct dma_pte *parent, *pte = NULL; | 
 | 	int total = agaw_to_level(domain->agaw); | 
 | 	int offset; | 
 |  | 
 | 	parent = domain->pgd; | 
 | 	while (level <= total) { | 
 | 		offset = pfn_level_offset(pfn, total); | 
 | 		pte = &parent[offset]; | 
 | 		if (level == total) | 
 | 			return pte; | 
 |  | 
 | 		if (!dma_pte_present(pte)) { | 
 | 			*large_page = total; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (dma_pte_superpage(pte)) { | 
 | 			*large_page = total; | 
 | 			return pte; | 
 | 		} | 
 |  | 
 | 		parent = phys_to_virt(dma_pte_addr(pte)); | 
 | 		total--; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* clear last level pte, a tlb flush should be followed */ | 
 | static void dma_pte_clear_range(struct dmar_domain *domain, | 
 | 				unsigned long start_pfn, | 
 | 				unsigned long last_pfn) | 
 | { | 
 | 	unsigned int large_page = 1; | 
 | 	struct dma_pte *first_pte, *pte; | 
 |  | 
 | 	BUG_ON(!domain_pfn_supported(domain, start_pfn)); | 
 | 	BUG_ON(!domain_pfn_supported(domain, last_pfn)); | 
 | 	BUG_ON(start_pfn > last_pfn); | 
 |  | 
 | 	/* we don't need lock here; nobody else touches the iova range */ | 
 | 	do { | 
 | 		large_page = 1; | 
 | 		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); | 
 | 		if (!pte) { | 
 | 			start_pfn = align_to_level(start_pfn + 1, large_page + 1); | 
 | 			continue; | 
 | 		} | 
 | 		do { | 
 | 			dma_clear_pte(pte); | 
 | 			start_pfn += lvl_to_nr_pages(large_page); | 
 | 			pte++; | 
 | 		} while (start_pfn <= last_pfn && !first_pte_in_page(pte)); | 
 |  | 
 | 		domain_flush_cache(domain, first_pte, | 
 | 				   (void *)pte - (void *)first_pte); | 
 |  | 
 | 	} while (start_pfn && start_pfn <= last_pfn); | 
 | } | 
 |  | 
 | static void dma_pte_free_level(struct dmar_domain *domain, int level, | 
 | 			       struct dma_pte *pte, unsigned long pfn, | 
 | 			       unsigned long start_pfn, unsigned long last_pfn) | 
 | { | 
 | 	pfn = max(start_pfn, pfn); | 
 | 	pte = &pte[pfn_level_offset(pfn, level)]; | 
 |  | 
 | 	do { | 
 | 		unsigned long level_pfn; | 
 | 		struct dma_pte *level_pte; | 
 |  | 
 | 		if (!dma_pte_present(pte) || dma_pte_superpage(pte)) | 
 | 			goto next; | 
 |  | 
 | 		level_pfn = pfn & level_mask(level); | 
 | 		level_pte = phys_to_virt(dma_pte_addr(pte)); | 
 |  | 
 | 		if (level > 2) | 
 | 			dma_pte_free_level(domain, level - 1, level_pte, | 
 | 					   level_pfn, start_pfn, last_pfn); | 
 |  | 
 | 		/* If range covers entire pagetable, free it */ | 
 | 		if (!(start_pfn > level_pfn || | 
 | 		      last_pfn < level_pfn + level_size(level) - 1)) { | 
 | 			dma_clear_pte(pte); | 
 | 			domain_flush_cache(domain, pte, sizeof(*pte)); | 
 | 			free_pgtable_page(level_pte); | 
 | 		} | 
 | next: | 
 | 		pfn += level_size(level); | 
 | 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn); | 
 | } | 
 |  | 
 | /* clear last level (leaf) ptes and free page table pages. */ | 
 | static void dma_pte_free_pagetable(struct dmar_domain *domain, | 
 | 				   unsigned long start_pfn, | 
 | 				   unsigned long last_pfn) | 
 | { | 
 | 	BUG_ON(!domain_pfn_supported(domain, start_pfn)); | 
 | 	BUG_ON(!domain_pfn_supported(domain, last_pfn)); | 
 | 	BUG_ON(start_pfn > last_pfn); | 
 |  | 
 | 	dma_pte_clear_range(domain, start_pfn, last_pfn); | 
 |  | 
 | 	/* We don't need lock here; nobody else touches the iova range */ | 
 | 	dma_pte_free_level(domain, agaw_to_level(domain->agaw), | 
 | 			   domain->pgd, 0, start_pfn, last_pfn); | 
 |  | 
 | 	/* free pgd */ | 
 | 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { | 
 | 		free_pgtable_page(domain->pgd); | 
 | 		domain->pgd = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* When a page at a given level is being unlinked from its parent, we don't | 
 |    need to *modify* it at all. All we need to do is make a list of all the | 
 |    pages which can be freed just as soon as we've flushed the IOTLB and we | 
 |    know the hardware page-walk will no longer touch them. | 
 |    The 'pte' argument is the *parent* PTE, pointing to the page that is to | 
 |    be freed. */ | 
 | static struct page *dma_pte_list_pagetables(struct dmar_domain *domain, | 
 | 					    int level, struct dma_pte *pte, | 
 | 					    struct page *freelist) | 
 | { | 
 | 	struct page *pg; | 
 |  | 
 | 	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); | 
 | 	pg->freelist = freelist; | 
 | 	freelist = pg; | 
 |  | 
 | 	if (level == 1) | 
 | 		return freelist; | 
 |  | 
 | 	pte = page_address(pg); | 
 | 	do { | 
 | 		if (dma_pte_present(pte) && !dma_pte_superpage(pte)) | 
 | 			freelist = dma_pte_list_pagetables(domain, level - 1, | 
 | 							   pte, freelist); | 
 | 		pte++; | 
 | 	} while (!first_pte_in_page(pte)); | 
 |  | 
 | 	return freelist; | 
 | } | 
 |  | 
 | static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level, | 
 | 					struct dma_pte *pte, unsigned long pfn, | 
 | 					unsigned long start_pfn, | 
 | 					unsigned long last_pfn, | 
 | 					struct page *freelist) | 
 | { | 
 | 	struct dma_pte *first_pte = NULL, *last_pte = NULL; | 
 |  | 
 | 	pfn = max(start_pfn, pfn); | 
 | 	pte = &pte[pfn_level_offset(pfn, level)]; | 
 |  | 
 | 	do { | 
 | 		unsigned long level_pfn; | 
 |  | 
 | 		if (!dma_pte_present(pte)) | 
 | 			goto next; | 
 |  | 
 | 		level_pfn = pfn & level_mask(level); | 
 |  | 
 | 		/* If range covers entire pagetable, free it */ | 
 | 		if (start_pfn <= level_pfn && | 
 | 		    last_pfn >= level_pfn + level_size(level) - 1) { | 
 | 			/* These suborbinate page tables are going away entirely. Don't | 
 | 			   bother to clear them; we're just going to *free* them. */ | 
 | 			if (level > 1 && !dma_pte_superpage(pte)) | 
 | 				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist); | 
 |  | 
 | 			dma_clear_pte(pte); | 
 | 			if (!first_pte) | 
 | 				first_pte = pte; | 
 | 			last_pte = pte; | 
 | 		} else if (level > 1) { | 
 | 			/* Recurse down into a level that isn't *entirely* obsolete */ | 
 | 			freelist = dma_pte_clear_level(domain, level - 1, | 
 | 						       phys_to_virt(dma_pte_addr(pte)), | 
 | 						       level_pfn, start_pfn, last_pfn, | 
 | 						       freelist); | 
 | 		} | 
 | next: | 
 | 		pfn += level_size(level); | 
 | 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn); | 
 |  | 
 | 	if (first_pte) | 
 | 		domain_flush_cache(domain, first_pte, | 
 | 				   (void *)++last_pte - (void *)first_pte); | 
 |  | 
 | 	return freelist; | 
 | } | 
 |  | 
 | /* We can't just free the pages because the IOMMU may still be walking | 
 |    the page tables, and may have cached the intermediate levels. The | 
 |    pages can only be freed after the IOTLB flush has been done. */ | 
 | static struct page *domain_unmap(struct dmar_domain *domain, | 
 | 				 unsigned long start_pfn, | 
 | 				 unsigned long last_pfn) | 
 | { | 
 | 	struct page *freelist = NULL; | 
 |  | 
 | 	BUG_ON(!domain_pfn_supported(domain, start_pfn)); | 
 | 	BUG_ON(!domain_pfn_supported(domain, last_pfn)); | 
 | 	BUG_ON(start_pfn > last_pfn); | 
 |  | 
 | 	/* we don't need lock here; nobody else touches the iova range */ | 
 | 	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw), | 
 | 				       domain->pgd, 0, start_pfn, last_pfn, NULL); | 
 |  | 
 | 	/* free pgd */ | 
 | 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { | 
 | 		struct page *pgd_page = virt_to_page(domain->pgd); | 
 | 		pgd_page->freelist = freelist; | 
 | 		freelist = pgd_page; | 
 |  | 
 | 		domain->pgd = NULL; | 
 | 	} | 
 |  | 
 | 	return freelist; | 
 | } | 
 |  | 
 | static void dma_free_pagelist(struct page *freelist) | 
 | { | 
 | 	struct page *pg; | 
 |  | 
 | 	while ((pg = freelist)) { | 
 | 		freelist = pg->freelist; | 
 | 		free_pgtable_page(page_address(pg)); | 
 | 	} | 
 | } | 
 |  | 
 | /* iommu handling */ | 
 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) | 
 | { | 
 | 	struct root_entry *root; | 
 | 	unsigned long flags; | 
 |  | 
 | 	root = (struct root_entry *)alloc_pgtable_page(iommu->node); | 
 | 	if (!root) { | 
 | 		pr_err("Allocating root entry for %s failed\n", | 
 | 			iommu->name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	__iommu_flush_cache(iommu, root, ROOT_SIZE); | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	iommu->root_entry = root; | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void iommu_set_root_entry(struct intel_iommu *iommu) | 
 | { | 
 | 	u64 addr; | 
 | 	u32 sts; | 
 | 	unsigned long flag; | 
 |  | 
 | 	addr = virt_to_phys(iommu->root_entry); | 
 | 	if (ecs_enabled(iommu)) | 
 | 		addr |= DMA_RTADDR_RTT; | 
 |  | 
 | 	raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); | 
 |  | 
 | 	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
 | 		      readl, (sts & DMA_GSTS_RTPS), sts); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | static void iommu_flush_write_buffer(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 val; | 
 | 	unsigned long flag; | 
 |  | 
 | 	if (!rwbf_quirk && !cap_rwbf(iommu->cap)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
 | 		      readl, (!(val & DMA_GSTS_WBFS)), val); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | /* return value determine if we need a write buffer flush */ | 
 | static void __iommu_flush_context(struct intel_iommu *iommu, | 
 | 				  u16 did, u16 source_id, u8 function_mask, | 
 | 				  u64 type) | 
 | { | 
 | 	u64 val = 0; | 
 | 	unsigned long flag; | 
 |  | 
 | 	switch (type) { | 
 | 	case DMA_CCMD_GLOBAL_INVL: | 
 | 		val = DMA_CCMD_GLOBAL_INVL; | 
 | 		break; | 
 | 	case DMA_CCMD_DOMAIN_INVL: | 
 | 		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); | 
 | 		break; | 
 | 	case DMA_CCMD_DEVICE_INVL: | 
 | 		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | 
 | 			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	val |= DMA_CCMD_ICC; | 
 |  | 
 | 	raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, | 
 | 		dmar_readq, (!(val & DMA_CCMD_ICC)), val); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | /* return value determine if we need a write buffer flush */ | 
 | static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, | 
 | 				u64 addr, unsigned int size_order, u64 type) | 
 | { | 
 | 	int tlb_offset = ecap_iotlb_offset(iommu->ecap); | 
 | 	u64 val = 0, val_iva = 0; | 
 | 	unsigned long flag; | 
 |  | 
 | 	switch (type) { | 
 | 	case DMA_TLB_GLOBAL_FLUSH: | 
 | 		/* global flush doesn't need set IVA_REG */ | 
 | 		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; | 
 | 		break; | 
 | 	case DMA_TLB_DSI_FLUSH: | 
 | 		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | 
 | 		break; | 
 | 	case DMA_TLB_PSI_FLUSH: | 
 | 		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | 
 | 		/* IH bit is passed in as part of address */ | 
 | 		val_iva = size_order | addr; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	/* Note: set drain read/write */ | 
 | #if 0 | 
 | 	/* | 
 | 	 * This is probably to be super secure.. Looks like we can | 
 | 	 * ignore it without any impact. | 
 | 	 */ | 
 | 	if (cap_read_drain(iommu->cap)) | 
 | 		val |= DMA_TLB_READ_DRAIN; | 
 | #endif | 
 | 	if (cap_write_drain(iommu->cap)) | 
 | 		val |= DMA_TLB_WRITE_DRAIN; | 
 |  | 
 | 	raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	/* Note: Only uses first TLB reg currently */ | 
 | 	if (val_iva) | 
 | 		dmar_writeq(iommu->reg + tlb_offset, val_iva); | 
 | 	dmar_writeq(iommu->reg + tlb_offset + 8, val); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, tlb_offset + 8, | 
 | 		dmar_readq, (!(val & DMA_TLB_IVT)), val); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 |  | 
 | 	/* check IOTLB invalidation granularity */ | 
 | 	if (DMA_TLB_IAIG(val) == 0) | 
 | 		pr_err("Flush IOTLB failed\n"); | 
 | 	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) | 
 | 		pr_debug("TLB flush request %Lx, actual %Lx\n", | 
 | 			(unsigned long long)DMA_TLB_IIRG(type), | 
 | 			(unsigned long long)DMA_TLB_IAIG(val)); | 
 | } | 
 |  | 
 | static struct device_domain_info * | 
 | iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu, | 
 | 			 u8 bus, u8 devfn) | 
 | { | 
 | 	struct device_domain_info *info; | 
 |  | 
 | 	assert_spin_locked(&device_domain_lock); | 
 |  | 
 | 	if (!iommu->qi) | 
 | 		return NULL; | 
 |  | 
 | 	list_for_each_entry(info, &domain->devices, link) | 
 | 		if (info->iommu == iommu && info->bus == bus && | 
 | 		    info->devfn == devfn) { | 
 | 			if (info->ats_supported && info->dev) | 
 | 				return info; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void domain_update_iotlb(struct dmar_domain *domain) | 
 | { | 
 | 	struct device_domain_info *info; | 
 | 	bool has_iotlb_device = false; | 
 |  | 
 | 	assert_spin_locked(&device_domain_lock); | 
 |  | 
 | 	list_for_each_entry(info, &domain->devices, link) { | 
 | 		struct pci_dev *pdev; | 
 |  | 
 | 		if (!info->dev || !dev_is_pci(info->dev)) | 
 | 			continue; | 
 |  | 
 | 		pdev = to_pci_dev(info->dev); | 
 | 		if (pdev->ats_enabled) { | 
 | 			has_iotlb_device = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	domain->has_iotlb_device = has_iotlb_device; | 
 | } | 
 |  | 
 | static void iommu_enable_dev_iotlb(struct device_domain_info *info) | 
 | { | 
 | 	struct pci_dev *pdev; | 
 |  | 
 | 	assert_spin_locked(&device_domain_lock); | 
 |  | 
 | 	if (!info || !dev_is_pci(info->dev)) | 
 | 		return; | 
 |  | 
 | 	pdev = to_pci_dev(info->dev); | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_SVM | 
 | 	/* The PCIe spec, in its wisdom, declares that the behaviour of | 
 | 	   the device if you enable PASID support after ATS support is | 
 | 	   undefined. So always enable PASID support on devices which | 
 | 	   have it, even if we can't yet know if we're ever going to | 
 | 	   use it. */ | 
 | 	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) | 
 | 		info->pasid_enabled = 1; | 
 |  | 
 | 	if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) | 
 | 		info->pri_enabled = 1; | 
 | #endif | 
 | 	if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { | 
 | 		info->ats_enabled = 1; | 
 | 		domain_update_iotlb(info->domain); | 
 | 		info->ats_qdep = pci_ats_queue_depth(pdev); | 
 | 	} | 
 | } | 
 |  | 
 | static void iommu_disable_dev_iotlb(struct device_domain_info *info) | 
 | { | 
 | 	struct pci_dev *pdev; | 
 |  | 
 | 	assert_spin_locked(&device_domain_lock); | 
 |  | 
 | 	if (!dev_is_pci(info->dev)) | 
 | 		return; | 
 |  | 
 | 	pdev = to_pci_dev(info->dev); | 
 |  | 
 | 	if (info->ats_enabled) { | 
 | 		pci_disable_ats(pdev); | 
 | 		info->ats_enabled = 0; | 
 | 		domain_update_iotlb(info->domain); | 
 | 	} | 
 | #ifdef CONFIG_INTEL_IOMMU_SVM | 
 | 	if (info->pri_enabled) { | 
 | 		pci_disable_pri(pdev); | 
 | 		info->pri_enabled = 0; | 
 | 	} | 
 | 	if (info->pasid_enabled) { | 
 | 		pci_disable_pasid(pdev); | 
 | 		info->pasid_enabled = 0; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void iommu_flush_dev_iotlb(struct dmar_domain *domain, | 
 | 				  u64 addr, unsigned mask) | 
 | { | 
 | 	u16 sid, qdep; | 
 | 	unsigned long flags; | 
 | 	struct device_domain_info *info; | 
 |  | 
 | 	if (!domain->has_iotlb_device) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	list_for_each_entry(info, &domain->devices, link) { | 
 | 		if (!info->ats_enabled) | 
 | 			continue; | 
 |  | 
 | 		sid = info->bus << 8 | info->devfn; | 
 | 		qdep = info->ats_qdep; | 
 | 		qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | } | 
 |  | 
 | static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, | 
 | 				  struct dmar_domain *domain, | 
 | 				  unsigned long pfn, unsigned int pages, | 
 | 				  int ih, int map) | 
 | { | 
 | 	unsigned int mask = ilog2(__roundup_pow_of_two(pages)); | 
 | 	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; | 
 | 	u16 did = domain->iommu_did[iommu->seq_id]; | 
 |  | 
 | 	BUG_ON(pages == 0); | 
 |  | 
 | 	if (ih) | 
 | 		ih = 1 << 6; | 
 | 	/* | 
 | 	 * Fallback to domain selective flush if no PSI support or the size is | 
 | 	 * too big. | 
 | 	 * PSI requires page size to be 2 ^ x, and the base address is naturally | 
 | 	 * aligned to the size | 
 | 	 */ | 
 | 	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) | 
 | 		iommu->flush.flush_iotlb(iommu, did, 0, 0, | 
 | 						DMA_TLB_DSI_FLUSH); | 
 | 	else | 
 | 		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, | 
 | 						DMA_TLB_PSI_FLUSH); | 
 |  | 
 | 	/* | 
 | 	 * In caching mode, changes of pages from non-present to present require | 
 | 	 * flush. However, device IOTLB doesn't need to be flushed in this case. | 
 | 	 */ | 
 | 	if (!cap_caching_mode(iommu->cap) || !map) | 
 | 		iommu_flush_dev_iotlb(get_iommu_domain(iommu, did), | 
 | 				      addr, mask); | 
 | } | 
 |  | 
 | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 pmen; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&iommu->register_lock, flags); | 
 | 	pmen = readl(iommu->reg + DMAR_PMEN_REG); | 
 | 	pmen &= ~DMA_PMEN_EPM; | 
 | 	writel(pmen, iommu->reg + DMAR_PMEN_REG); | 
 |  | 
 | 	/* wait for the protected region status bit to clear */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, | 
 | 		readl, !(pmen & DMA_PMEN_PRS), pmen); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags); | 
 | } | 
 |  | 
 | static void iommu_enable_translation(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 sts; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&iommu->register_lock, flags); | 
 | 	iommu->gcmd |= DMA_GCMD_TE; | 
 | 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
 | 		      readl, (sts & DMA_GSTS_TES), sts); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags); | 
 | } | 
 |  | 
 | static void iommu_disable_translation(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 sts; | 
 | 	unsigned long flag; | 
 |  | 
 | 	raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	iommu->gcmd &= ~DMA_GCMD_TE; | 
 | 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
 | 		      readl, (!(sts & DMA_GSTS_TES)), sts); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 |  | 
 | static int iommu_init_domains(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 ndomains, nlongs; | 
 | 	size_t size; | 
 |  | 
 | 	ndomains = cap_ndoms(iommu->cap); | 
 | 	pr_debug("%s: Number of Domains supported <%d>\n", | 
 | 		 iommu->name, ndomains); | 
 | 	nlongs = BITS_TO_LONGS(ndomains); | 
 |  | 
 | 	spin_lock_init(&iommu->lock); | 
 |  | 
 | 	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); | 
 | 	if (!iommu->domain_ids) { | 
 | 		pr_err("%s: Allocating domain id array failed\n", | 
 | 		       iommu->name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **); | 
 | 	iommu->domains = kzalloc(size, GFP_KERNEL); | 
 |  | 
 | 	if (iommu->domains) { | 
 | 		size = 256 * sizeof(struct dmar_domain *); | 
 | 		iommu->domains[0] = kzalloc(size, GFP_KERNEL); | 
 | 	} | 
 |  | 
 | 	if (!iommu->domains || !iommu->domains[0]) { | 
 | 		pr_err("%s: Allocating domain array failed\n", | 
 | 		       iommu->name); | 
 | 		kfree(iommu->domain_ids); | 
 | 		kfree(iommu->domains); | 
 | 		iommu->domain_ids = NULL; | 
 | 		iommu->domains    = NULL; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * If Caching mode is set, then invalid translations are tagged | 
 | 	 * with domain-id 0, hence we need to pre-allocate it. We also | 
 | 	 * use domain-id 0 as a marker for non-allocated domain-id, so | 
 | 	 * make sure it is not used for a real domain. | 
 | 	 */ | 
 | 	set_bit(0, iommu->domain_ids); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void disable_dmar_iommu(struct intel_iommu *iommu) | 
 | { | 
 | 	struct device_domain_info *info, *tmp; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!iommu->domains || !iommu->domain_ids) | 
 | 		return; | 
 |  | 
 | again: | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	list_for_each_entry_safe(info, tmp, &device_domain_list, global) { | 
 | 		struct dmar_domain *domain; | 
 |  | 
 | 		if (info->iommu != iommu) | 
 | 			continue; | 
 |  | 
 | 		if (!info->dev || !info->domain) | 
 | 			continue; | 
 |  | 
 | 		domain = info->domain; | 
 |  | 
 | 		__dmar_remove_one_dev_info(info); | 
 |  | 
 | 		if (!domain_type_is_vm_or_si(domain)) { | 
 | 			/* | 
 | 			 * The domain_exit() function  can't be called under | 
 | 			 * device_domain_lock, as it takes this lock itself. | 
 | 			 * So release the lock here and re-run the loop | 
 | 			 * afterwards. | 
 | 			 */ | 
 | 			spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | 			domain_exit(domain); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 |  | 
 | 	if (iommu->gcmd & DMA_GCMD_TE) | 
 | 		iommu_disable_translation(iommu); | 
 | } | 
 |  | 
 | static void free_dmar_iommu(struct intel_iommu *iommu) | 
 | { | 
 | 	if ((iommu->domains) && (iommu->domain_ids)) { | 
 | 		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8; | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < elems; i++) | 
 | 			kfree(iommu->domains[i]); | 
 | 		kfree(iommu->domains); | 
 | 		kfree(iommu->domain_ids); | 
 | 		iommu->domains = NULL; | 
 | 		iommu->domain_ids = NULL; | 
 | 	} | 
 |  | 
 | 	g_iommus[iommu->seq_id] = NULL; | 
 |  | 
 | 	/* free context mapping */ | 
 | 	free_context_table(iommu); | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_SVM | 
 | 	if (pasid_enabled(iommu)) { | 
 | 		if (ecap_prs(iommu->ecap)) | 
 | 			intel_svm_finish_prq(iommu); | 
 | 		intel_svm_free_pasid_tables(iommu); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static struct dmar_domain *alloc_domain(int flags) | 
 | { | 
 | 	struct dmar_domain *domain; | 
 |  | 
 | 	domain = alloc_domain_mem(); | 
 | 	if (!domain) | 
 | 		return NULL; | 
 |  | 
 | 	memset(domain, 0, sizeof(*domain)); | 
 | 	domain->nid = -1; | 
 | 	domain->flags = flags; | 
 | 	domain->has_iotlb_device = false; | 
 | 	INIT_LIST_HEAD(&domain->devices); | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | /* Must be called with iommu->lock */ | 
 | static int domain_attach_iommu(struct dmar_domain *domain, | 
 | 			       struct intel_iommu *iommu) | 
 | { | 
 | 	unsigned long ndomains; | 
 | 	int num; | 
 |  | 
 | 	assert_spin_locked(&device_domain_lock); | 
 | 	assert_spin_locked(&iommu->lock); | 
 |  | 
 | 	domain->iommu_refcnt[iommu->seq_id] += 1; | 
 | 	domain->iommu_count += 1; | 
 | 	if (domain->iommu_refcnt[iommu->seq_id] == 1) { | 
 | 		ndomains = cap_ndoms(iommu->cap); | 
 | 		num      = find_first_zero_bit(iommu->domain_ids, ndomains); | 
 |  | 
 | 		if (num >= ndomains) { | 
 | 			pr_err("%s: No free domain ids\n", iommu->name); | 
 | 			domain->iommu_refcnt[iommu->seq_id] -= 1; | 
 | 			domain->iommu_count -= 1; | 
 | 			return -ENOSPC; | 
 | 		} | 
 |  | 
 | 		set_bit(num, iommu->domain_ids); | 
 | 		set_iommu_domain(iommu, num, domain); | 
 |  | 
 | 		domain->iommu_did[iommu->seq_id] = num; | 
 | 		domain->nid			 = iommu->node; | 
 |  | 
 | 		domain_update_iommu_cap(domain); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int domain_detach_iommu(struct dmar_domain *domain, | 
 | 			       struct intel_iommu *iommu) | 
 | { | 
 | 	int num, count = INT_MAX; | 
 |  | 
 | 	assert_spin_locked(&device_domain_lock); | 
 | 	assert_spin_locked(&iommu->lock); | 
 |  | 
 | 	domain->iommu_refcnt[iommu->seq_id] -= 1; | 
 | 	count = --domain->iommu_count; | 
 | 	if (domain->iommu_refcnt[iommu->seq_id] == 0) { | 
 | 		num = domain->iommu_did[iommu->seq_id]; | 
 | 		clear_bit(num, iommu->domain_ids); | 
 | 		set_iommu_domain(iommu, num, NULL); | 
 |  | 
 | 		domain_update_iommu_cap(domain); | 
 | 		domain->iommu_did[iommu->seq_id] = 0; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static struct iova_domain reserved_iova_list; | 
 | static struct lock_class_key reserved_rbtree_key; | 
 |  | 
 | static int dmar_init_reserved_ranges(void) | 
 | { | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	struct iova *iova; | 
 | 	int i; | 
 |  | 
 | 	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN, | 
 | 			DMA_32BIT_PFN); | 
 |  | 
 | 	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, | 
 | 		&reserved_rbtree_key); | 
 |  | 
 | 	/* IOAPIC ranges shouldn't be accessed by DMA */ | 
 | 	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), | 
 | 		IOVA_PFN(IOAPIC_RANGE_END)); | 
 | 	if (!iova) { | 
 | 		pr_err("Reserve IOAPIC range failed\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Reserve all PCI MMIO to avoid peer-to-peer access */ | 
 | 	for_each_pci_dev(pdev) { | 
 | 		struct resource *r; | 
 |  | 
 | 		for (i = 0; i < PCI_NUM_RESOURCES; i++) { | 
 | 			r = &pdev->resource[i]; | 
 | 			if (!r->flags || !(r->flags & IORESOURCE_MEM)) | 
 | 				continue; | 
 | 			iova = reserve_iova(&reserved_iova_list, | 
 | 					    IOVA_PFN(r->start), | 
 | 					    IOVA_PFN(r->end)); | 
 | 			if (!iova) { | 
 | 				pr_err("Reserve iova failed\n"); | 
 | 				return -ENODEV; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void domain_reserve_special_ranges(struct dmar_domain *domain) | 
 | { | 
 | 	copy_reserved_iova(&reserved_iova_list, &domain->iovad); | 
 | } | 
 |  | 
 | static inline int guestwidth_to_adjustwidth(int gaw) | 
 | { | 
 | 	int agaw; | 
 | 	int r = (gaw - 12) % 9; | 
 |  | 
 | 	if (r == 0) | 
 | 		agaw = gaw; | 
 | 	else | 
 | 		agaw = gaw + 9 - r; | 
 | 	if (agaw > 64) | 
 | 		agaw = 64; | 
 | 	return agaw; | 
 | } | 
 |  | 
 | static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu, | 
 | 		       int guest_width) | 
 | { | 
 | 	int adjust_width, agaw; | 
 | 	unsigned long sagaw; | 
 |  | 
 | 	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN, | 
 | 			DMA_32BIT_PFN); | 
 | 	domain_reserve_special_ranges(domain); | 
 |  | 
 | 	/* calculate AGAW */ | 
 | 	if (guest_width > cap_mgaw(iommu->cap)) | 
 | 		guest_width = cap_mgaw(iommu->cap); | 
 | 	domain->gaw = guest_width; | 
 | 	adjust_width = guestwidth_to_adjustwidth(guest_width); | 
 | 	agaw = width_to_agaw(adjust_width); | 
 | 	sagaw = cap_sagaw(iommu->cap); | 
 | 	if (!test_bit(agaw, &sagaw)) { | 
 | 		/* hardware doesn't support it, choose a bigger one */ | 
 | 		pr_debug("Hardware doesn't support agaw %d\n", agaw); | 
 | 		agaw = find_next_bit(&sagaw, 5, agaw); | 
 | 		if (agaw >= 5) | 
 | 			return -ENODEV; | 
 | 	} | 
 | 	domain->agaw = agaw; | 
 |  | 
 | 	if (ecap_coherent(iommu->ecap)) | 
 | 		domain->iommu_coherency = 1; | 
 | 	else | 
 | 		domain->iommu_coherency = 0; | 
 |  | 
 | 	if (ecap_sc_support(iommu->ecap)) | 
 | 		domain->iommu_snooping = 1; | 
 | 	else | 
 | 		domain->iommu_snooping = 0; | 
 |  | 
 | 	if (intel_iommu_superpage) | 
 | 		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap)); | 
 | 	else | 
 | 		domain->iommu_superpage = 0; | 
 |  | 
 | 	domain->nid = iommu->node; | 
 |  | 
 | 	/* always allocate the top pgd */ | 
 | 	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); | 
 | 	if (!domain->pgd) | 
 | 		return -ENOMEM; | 
 | 	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void domain_exit(struct dmar_domain *domain) | 
 | { | 
 | 	struct page *freelist = NULL; | 
 |  | 
 | 	/* Domain 0 is reserved, so dont process it */ | 
 | 	if (!domain) | 
 | 		return; | 
 |  | 
 | 	/* Flush any lazy unmaps that may reference this domain */ | 
 | 	if (!intel_iommu_strict) { | 
 | 		int cpu; | 
 |  | 
 | 		for_each_possible_cpu(cpu) | 
 | 			flush_unmaps_timeout(cpu); | 
 | 	} | 
 |  | 
 | 	/* Remove associated devices and clear attached or cached domains */ | 
 | 	rcu_read_lock(); | 
 | 	domain_remove_dev_info(domain); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* destroy iovas */ | 
 | 	put_iova_domain(&domain->iovad); | 
 |  | 
 | 	freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | 
 |  | 
 | 	dma_free_pagelist(freelist); | 
 |  | 
 | 	free_domain_mem(domain); | 
 | } | 
 |  | 
 | static int domain_context_mapping_one(struct dmar_domain *domain, | 
 | 				      struct intel_iommu *iommu, | 
 | 				      u8 bus, u8 devfn) | 
 | { | 
 | 	u16 did = domain->iommu_did[iommu->seq_id]; | 
 | 	int translation = CONTEXT_TT_MULTI_LEVEL; | 
 | 	struct device_domain_info *info = NULL; | 
 | 	struct context_entry *context; | 
 | 	unsigned long flags; | 
 | 	struct dma_pte *pgd; | 
 | 	int ret, agaw; | 
 |  | 
 | 	WARN_ON(did == 0); | 
 |  | 
 | 	if (hw_pass_through && domain_type_is_si(domain)) | 
 | 		translation = CONTEXT_TT_PASS_THROUGH; | 
 |  | 
 | 	pr_debug("Set context mapping for %02x:%02x.%d\n", | 
 | 		bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); | 
 |  | 
 | 	BUG_ON(!domain->pgd); | 
 |  | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	spin_lock(&iommu->lock); | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	context = iommu_context_addr(iommu, bus, devfn, 1); | 
 | 	if (!context) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = 0; | 
 | 	if (context_present(context)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * For kdump cases, old valid entries may be cached due to the | 
 | 	 * in-flight DMA and copied pgtable, but there is no unmapping | 
 | 	 * behaviour for them, thus we need an explicit cache flush for | 
 | 	 * the newly-mapped device. For kdump, at this point, the device | 
 | 	 * is supposed to finish reset at its driver probe stage, so no | 
 | 	 * in-flight DMA will exist, and we don't need to worry anymore | 
 | 	 * hereafter. | 
 | 	 */ | 
 | 	if (context_copied(context)) { | 
 | 		u16 did_old = context_domain_id(context); | 
 |  | 
 | 		if (did_old >= 0 && did_old < cap_ndoms(iommu->cap)) | 
 | 			iommu->flush.flush_context(iommu, did_old, | 
 | 						   (((u16)bus) << 8) | devfn, | 
 | 						   DMA_CCMD_MASK_NOBIT, | 
 | 						   DMA_CCMD_DEVICE_INVL); | 
 | 	} | 
 |  | 
 | 	pgd = domain->pgd; | 
 |  | 
 | 	context_clear_entry(context); | 
 | 	context_set_domain_id(context, did); | 
 |  | 
 | 	/* | 
 | 	 * Skip top levels of page tables for iommu which has less agaw | 
 | 	 * than default.  Unnecessary for PT mode. | 
 | 	 */ | 
 | 	if (translation != CONTEXT_TT_PASS_THROUGH) { | 
 | 		for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) { | 
 | 			ret = -ENOMEM; | 
 | 			pgd = phys_to_virt(dma_pte_addr(pgd)); | 
 | 			if (!dma_pte_present(pgd)) | 
 | 				goto out_unlock; | 
 | 		} | 
 |  | 
 | 		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); | 
 | 		if (info && info->ats_supported) | 
 | 			translation = CONTEXT_TT_DEV_IOTLB; | 
 | 		else | 
 | 			translation = CONTEXT_TT_MULTI_LEVEL; | 
 |  | 
 | 		context_set_address_root(context, virt_to_phys(pgd)); | 
 | 		context_set_address_width(context, iommu->agaw); | 
 | 	} else { | 
 | 		/* | 
 | 		 * In pass through mode, AW must be programmed to | 
 | 		 * indicate the largest AGAW value supported by | 
 | 		 * hardware. And ASR is ignored by hardware. | 
 | 		 */ | 
 | 		context_set_address_width(context, iommu->msagaw); | 
 | 	} | 
 |  | 
 | 	context_set_translation_type(context, translation); | 
 | 	context_set_fault_enable(context); | 
 | 	context_set_present(context); | 
 | 	domain_flush_cache(domain, context, sizeof(*context)); | 
 |  | 
 | 	/* | 
 | 	 * It's a non-present to present mapping. If hardware doesn't cache | 
 | 	 * non-present entry we only need to flush the write-buffer. If the | 
 | 	 * _does_ cache non-present entries, then it does so in the special | 
 | 	 * domain #0, which we have to flush: | 
 | 	 */ | 
 | 	if (cap_caching_mode(iommu->cap)) { | 
 | 		iommu->flush.flush_context(iommu, 0, | 
 | 					   (((u16)bus) << 8) | devfn, | 
 | 					   DMA_CCMD_MASK_NOBIT, | 
 | 					   DMA_CCMD_DEVICE_INVL); | 
 | 		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); | 
 | 	} else { | 
 | 		iommu_flush_write_buffer(iommu); | 
 | 	} | 
 | 	iommu_enable_dev_iotlb(info); | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock(&iommu->lock); | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct domain_context_mapping_data { | 
 | 	struct dmar_domain *domain; | 
 | 	struct intel_iommu *iommu; | 
 | }; | 
 |  | 
 | static int domain_context_mapping_cb(struct pci_dev *pdev, | 
 | 				     u16 alias, void *opaque) | 
 | { | 
 | 	struct domain_context_mapping_data *data = opaque; | 
 |  | 
 | 	return domain_context_mapping_one(data->domain, data->iommu, | 
 | 					  PCI_BUS_NUM(alias), alias & 0xff); | 
 | } | 
 |  | 
 | static int | 
 | domain_context_mapping(struct dmar_domain *domain, struct device *dev) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	u8 bus, devfn; | 
 | 	struct domain_context_mapping_data data; | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if (!iommu) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!dev_is_pci(dev)) | 
 | 		return domain_context_mapping_one(domain, iommu, bus, devfn); | 
 |  | 
 | 	data.domain = domain; | 
 | 	data.iommu = iommu; | 
 |  | 
 | 	return pci_for_each_dma_alias(to_pci_dev(dev), | 
 | 				      &domain_context_mapping_cb, &data); | 
 | } | 
 |  | 
 | static int domain_context_mapped_cb(struct pci_dev *pdev, | 
 | 				    u16 alias, void *opaque) | 
 | { | 
 | 	struct intel_iommu *iommu = opaque; | 
 |  | 
 | 	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); | 
 | } | 
 |  | 
 | static int domain_context_mapped(struct device *dev) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	u8 bus, devfn; | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if (!iommu) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!dev_is_pci(dev)) | 
 | 		return device_context_mapped(iommu, bus, devfn); | 
 |  | 
 | 	return !pci_for_each_dma_alias(to_pci_dev(dev), | 
 | 				       domain_context_mapped_cb, iommu); | 
 | } | 
 |  | 
 | /* Returns a number of VTD pages, but aligned to MM page size */ | 
 | static inline unsigned long aligned_nrpages(unsigned long host_addr, | 
 | 					    size_t size) | 
 | { | 
 | 	host_addr &= ~PAGE_MASK; | 
 | 	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; | 
 | } | 
 |  | 
 | /* Return largest possible superpage level for a given mapping */ | 
 | static inline int hardware_largepage_caps(struct dmar_domain *domain, | 
 | 					  unsigned long iov_pfn, | 
 | 					  unsigned long phy_pfn, | 
 | 					  unsigned long pages) | 
 | { | 
 | 	int support, level = 1; | 
 | 	unsigned long pfnmerge; | 
 |  | 
 | 	support = domain->iommu_superpage; | 
 |  | 
 | 	/* To use a large page, the virtual *and* physical addresses | 
 | 	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either | 
 | 	   of them will mean we have to use smaller pages. So just | 
 | 	   merge them and check both at once. */ | 
 | 	pfnmerge = iov_pfn | phy_pfn; | 
 |  | 
 | 	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { | 
 | 		pages >>= VTD_STRIDE_SHIFT; | 
 | 		if (!pages) | 
 | 			break; | 
 | 		pfnmerge >>= VTD_STRIDE_SHIFT; | 
 | 		level++; | 
 | 		support--; | 
 | 	} | 
 | 	return level; | 
 | } | 
 |  | 
 | static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | 
 | 			    struct scatterlist *sg, unsigned long phys_pfn, | 
 | 			    unsigned long nr_pages, int prot) | 
 | { | 
 | 	struct dma_pte *first_pte = NULL, *pte = NULL; | 
 | 	phys_addr_t uninitialized_var(pteval); | 
 | 	unsigned long sg_res = 0; | 
 | 	unsigned int largepage_lvl = 0; | 
 | 	unsigned long lvl_pages = 0; | 
 |  | 
 | 	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); | 
 |  | 
 | 	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP; | 
 |  | 
 | 	if (!sg) { | 
 | 		sg_res = nr_pages; | 
 | 		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot; | 
 | 	} | 
 |  | 
 | 	while (nr_pages > 0) { | 
 | 		uint64_t tmp; | 
 |  | 
 | 		if (!sg_res) { | 
 | 			sg_res = aligned_nrpages(sg->offset, sg->length); | 
 | 			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset; | 
 | 			sg->dma_length = sg->length; | 
 | 			pteval = page_to_phys(sg_page(sg)) | prot; | 
 | 			phys_pfn = pteval >> VTD_PAGE_SHIFT; | 
 | 		} | 
 |  | 
 | 		if (!pte) { | 
 | 			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); | 
 |  | 
 | 			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); | 
 | 			if (!pte) | 
 | 				return -ENOMEM; | 
 | 			/* It is large page*/ | 
 | 			if (largepage_lvl > 1) { | 
 | 				unsigned long nr_superpages, end_pfn; | 
 |  | 
 | 				pteval |= DMA_PTE_LARGE_PAGE; | 
 | 				lvl_pages = lvl_to_nr_pages(largepage_lvl); | 
 |  | 
 | 				nr_superpages = sg_res / lvl_pages; | 
 | 				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1; | 
 |  | 
 | 				/* | 
 | 				 * Ensure that old small page tables are | 
 | 				 * removed to make room for superpage(s). | 
 | 				 */ | 
 | 				dma_pte_free_pagetable(domain, iov_pfn, end_pfn); | 
 | 			} else { | 
 | 				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; | 
 | 			} | 
 |  | 
 | 		} | 
 | 		/* We don't need lock here, nobody else | 
 | 		 * touches the iova range | 
 | 		 */ | 
 | 		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); | 
 | 		if (tmp) { | 
 | 			static int dumps = 5; | 
 | 			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", | 
 | 				iov_pfn, tmp, (unsigned long long)pteval); | 
 | 			if (dumps) { | 
 | 				dumps--; | 
 | 				debug_dma_dump_mappings(NULL); | 
 | 			} | 
 | 			WARN_ON(1); | 
 | 		} | 
 |  | 
 | 		lvl_pages = lvl_to_nr_pages(largepage_lvl); | 
 |  | 
 | 		BUG_ON(nr_pages < lvl_pages); | 
 | 		BUG_ON(sg_res < lvl_pages); | 
 |  | 
 | 		nr_pages -= lvl_pages; | 
 | 		iov_pfn += lvl_pages; | 
 | 		phys_pfn += lvl_pages; | 
 | 		pteval += lvl_pages * VTD_PAGE_SIZE; | 
 | 		sg_res -= lvl_pages; | 
 |  | 
 | 		/* If the next PTE would be the first in a new page, then we | 
 | 		   need to flush the cache on the entries we've just written. | 
 | 		   And then we'll need to recalculate 'pte', so clear it and | 
 | 		   let it get set again in the if (!pte) block above. | 
 |  | 
 | 		   If we're done (!nr_pages) we need to flush the cache too. | 
 |  | 
 | 		   Also if we've been setting superpages, we may need to | 
 | 		   recalculate 'pte' and switch back to smaller pages for the | 
 | 		   end of the mapping, if the trailing size is not enough to | 
 | 		   use another superpage (i.e. sg_res < lvl_pages). */ | 
 | 		pte++; | 
 | 		if (!nr_pages || first_pte_in_page(pte) || | 
 | 		    (largepage_lvl > 1 && sg_res < lvl_pages)) { | 
 | 			domain_flush_cache(domain, first_pte, | 
 | 					   (void *)pte - (void *)first_pte); | 
 | 			pte = NULL; | 
 | 		} | 
 |  | 
 | 		if (!sg_res && nr_pages) | 
 | 			sg = sg_next(sg); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | 
 | 				    struct scatterlist *sg, unsigned long nr_pages, | 
 | 				    int prot) | 
 | { | 
 | 	return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); | 
 | } | 
 |  | 
 | static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | 
 | 				     unsigned long phys_pfn, unsigned long nr_pages, | 
 | 				     int prot) | 
 | { | 
 | 	return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); | 
 | } | 
 |  | 
 | static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn) | 
 | { | 
 | 	if (!iommu) | 
 | 		return; | 
 |  | 
 | 	clear_context_table(iommu, bus, devfn); | 
 | 	iommu->flush.flush_context(iommu, 0, 0, 0, | 
 | 					   DMA_CCMD_GLOBAL_INVL); | 
 | 	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | 
 | } | 
 |  | 
 | static inline void unlink_domain_info(struct device_domain_info *info) | 
 | { | 
 | 	assert_spin_locked(&device_domain_lock); | 
 | 	list_del(&info->link); | 
 | 	list_del(&info->global); | 
 | 	if (info->dev) | 
 | 		info->dev->archdata.iommu = NULL; | 
 | } | 
 |  | 
 | static void domain_remove_dev_info(struct dmar_domain *domain) | 
 | { | 
 | 	struct device_domain_info *info, *tmp; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	list_for_each_entry_safe(info, tmp, &domain->devices, link) | 
 | 		__dmar_remove_one_dev_info(info); | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * find_domain | 
 |  * Note: we use struct device->archdata.iommu stores the info | 
 |  */ | 
 | static struct dmar_domain *find_domain(struct device *dev) | 
 | { | 
 | 	struct device_domain_info *info; | 
 |  | 
 | 	/* No lock here, assumes no domain exit in normal case */ | 
 | 	info = dev->archdata.iommu; | 
 | 	if (info) | 
 | 		return info->domain; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct device_domain_info * | 
 | dmar_search_domain_by_dev_info(int segment, int bus, int devfn) | 
 | { | 
 | 	struct device_domain_info *info; | 
 |  | 
 | 	list_for_each_entry(info, &device_domain_list, global) | 
 | 		if (info->iommu->segment == segment && info->bus == bus && | 
 | 		    info->devfn == devfn) | 
 | 			return info; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu, | 
 | 						    int bus, int devfn, | 
 | 						    struct device *dev, | 
 | 						    struct dmar_domain *domain) | 
 | { | 
 | 	struct dmar_domain *found = NULL; | 
 | 	struct device_domain_info *info; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	info = alloc_devinfo_mem(); | 
 | 	if (!info) | 
 | 		return NULL; | 
 |  | 
 | 	info->bus = bus; | 
 | 	info->devfn = devfn; | 
 | 	info->ats_supported = info->pasid_supported = info->pri_supported = 0; | 
 | 	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0; | 
 | 	info->ats_qdep = 0; | 
 | 	info->dev = dev; | 
 | 	info->domain = domain; | 
 | 	info->iommu = iommu; | 
 |  | 
 | 	if (dev && dev_is_pci(dev)) { | 
 | 		struct pci_dev *pdev = to_pci_dev(info->dev); | 
 |  | 
 | 		if (ecap_dev_iotlb_support(iommu->ecap) && | 
 | 		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) && | 
 | 		    dmar_find_matched_atsr_unit(pdev)) | 
 | 			info->ats_supported = 1; | 
 |  | 
 | 		if (ecs_enabled(iommu)) { | 
 | 			if (pasid_enabled(iommu)) { | 
 | 				int features = pci_pasid_features(pdev); | 
 | 				if (features >= 0) | 
 | 					info->pasid_supported = features | 1; | 
 | 			} | 
 |  | 
 | 			if (info->ats_supported && ecap_prs(iommu->ecap) && | 
 | 			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI)) | 
 | 				info->pri_supported = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	if (dev) | 
 | 		found = find_domain(dev); | 
 |  | 
 | 	if (!found) { | 
 | 		struct device_domain_info *info2; | 
 | 		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn); | 
 | 		if (info2) { | 
 | 			found      = info2->domain; | 
 | 			info2->dev = dev; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (found) { | 
 | 		spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | 		free_devinfo_mem(info); | 
 | 		/* Caller must free the original domain */ | 
 | 		return found; | 
 | 	} | 
 |  | 
 | 	spin_lock(&iommu->lock); | 
 | 	ret = domain_attach_iommu(domain, iommu); | 
 | 	spin_unlock(&iommu->lock); | 
 |  | 
 | 	if (ret) { | 
 | 		spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | 		free_devinfo_mem(info); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	list_add(&info->link, &domain->devices); | 
 | 	list_add(&info->global, &device_domain_list); | 
 | 	if (dev) | 
 | 		dev->archdata.iommu = info; | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 |  | 
 | 	if (dev && domain_context_mapping(domain, dev)) { | 
 | 		pr_err("Domain context map for %s failed\n", dev_name(dev)); | 
 | 		dmar_remove_one_dev_info(domain, dev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque) | 
 | { | 
 | 	*(u16 *)opaque = alias; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw) | 
 | { | 
 | 	struct device_domain_info *info = NULL; | 
 | 	struct dmar_domain *domain = NULL; | 
 | 	struct intel_iommu *iommu; | 
 | 	u16 req_id, dma_alias; | 
 | 	unsigned long flags; | 
 | 	u8 bus, devfn; | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if (!iommu) | 
 | 		return NULL; | 
 |  | 
 | 	req_id = ((u16)bus << 8) | devfn; | 
 |  | 
 | 	if (dev_is_pci(dev)) { | 
 | 		struct pci_dev *pdev = to_pci_dev(dev); | 
 |  | 
 | 		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias); | 
 |  | 
 | 		spin_lock_irqsave(&device_domain_lock, flags); | 
 | 		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus), | 
 | 						      PCI_BUS_NUM(dma_alias), | 
 | 						      dma_alias & 0xff); | 
 | 		if (info) { | 
 | 			iommu = info->iommu; | 
 | 			domain = info->domain; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&device_domain_lock, flags); | 
 |  | 
 | 		/* DMA alias already has a domain, use it */ | 
 | 		if (info) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* Allocate and initialize new domain for the device */ | 
 | 	domain = alloc_domain(0); | 
 | 	if (!domain) | 
 | 		return NULL; | 
 | 	if (domain_init(domain, iommu, gaw)) { | 
 | 		domain_exit(domain); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | out: | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | static struct dmar_domain *set_domain_for_dev(struct device *dev, | 
 | 					      struct dmar_domain *domain) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	struct dmar_domain *tmp; | 
 | 	u16 req_id, dma_alias; | 
 | 	u8 bus, devfn; | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if (!iommu) | 
 | 		return NULL; | 
 |  | 
 | 	req_id = ((u16)bus << 8) | devfn; | 
 |  | 
 | 	if (dev_is_pci(dev)) { | 
 | 		struct pci_dev *pdev = to_pci_dev(dev); | 
 |  | 
 | 		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias); | 
 |  | 
 | 		/* register PCI DMA alias device */ | 
 | 		if (req_id != dma_alias) { | 
 | 			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias), | 
 | 					dma_alias & 0xff, NULL, domain); | 
 |  | 
 | 			if (!tmp || tmp != domain) | 
 | 				return tmp; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain); | 
 | 	if (!tmp || tmp != domain) | 
 | 		return tmp; | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw) | 
 | { | 
 | 	struct dmar_domain *domain, *tmp; | 
 |  | 
 | 	domain = find_domain(dev); | 
 | 	if (domain) | 
 | 		goto out; | 
 |  | 
 | 	domain = find_or_alloc_domain(dev, gaw); | 
 | 	if (!domain) | 
 | 		goto out; | 
 |  | 
 | 	tmp = set_domain_for_dev(dev, domain); | 
 | 	if (!tmp || domain != tmp) { | 
 | 		domain_exit(domain); | 
 | 		domain = tmp; | 
 | 	} | 
 |  | 
 | out: | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | static int iommu_domain_identity_map(struct dmar_domain *domain, | 
 | 				     unsigned long long start, | 
 | 				     unsigned long long end) | 
 | { | 
 | 	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT; | 
 | 	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT; | 
 |  | 
 | 	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn), | 
 | 			  dma_to_mm_pfn(last_vpfn))) { | 
 | 		pr_err("Reserving iova failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pr_debug("Mapping reserved region %llx-%llx\n", start, end); | 
 | 	/* | 
 | 	 * RMRR range might have overlap with physical memory range, | 
 | 	 * clear it first | 
 | 	 */ | 
 | 	dma_pte_clear_range(domain, first_vpfn, last_vpfn); | 
 |  | 
 | 	return domain_pfn_mapping(domain, first_vpfn, first_vpfn, | 
 | 				  last_vpfn - first_vpfn + 1, | 
 | 				  DMA_PTE_READ|DMA_PTE_WRITE); | 
 | } | 
 |  | 
 | static int domain_prepare_identity_map(struct device *dev, | 
 | 				       struct dmar_domain *domain, | 
 | 				       unsigned long long start, | 
 | 				       unsigned long long end) | 
 | { | 
 | 	/* For _hardware_ passthrough, don't bother. But for software | 
 | 	   passthrough, we do it anyway -- it may indicate a memory | 
 | 	   range which is reserved in E820, so which didn't get set | 
 | 	   up to start with in si_domain */ | 
 | 	if (domain == si_domain && hw_pass_through) { | 
 | 		pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n", | 
 | 			dev_name(dev), start, end); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n", | 
 | 		dev_name(dev), start, end); | 
 |  | 
 | 	if (end < start) { | 
 | 		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n" | 
 | 			"BIOS vendor: %s; Ver: %s; Product Version: %s\n", | 
 | 			dmi_get_system_info(DMI_BIOS_VENDOR), | 
 | 			dmi_get_system_info(DMI_BIOS_VERSION), | 
 | 		     dmi_get_system_info(DMI_PRODUCT_VERSION)); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (end >> agaw_to_width(domain->agaw)) { | 
 | 		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n" | 
 | 		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | 
 | 		     agaw_to_width(domain->agaw), | 
 | 		     dmi_get_system_info(DMI_BIOS_VENDOR), | 
 | 		     dmi_get_system_info(DMI_BIOS_VERSION), | 
 | 		     dmi_get_system_info(DMI_PRODUCT_VERSION)); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return iommu_domain_identity_map(domain, start, end); | 
 | } | 
 |  | 
 | static int iommu_prepare_identity_map(struct device *dev, | 
 | 				      unsigned long long start, | 
 | 				      unsigned long long end) | 
 | { | 
 | 	struct dmar_domain *domain; | 
 | 	int ret; | 
 |  | 
 | 	domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
 | 	if (!domain) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = domain_prepare_identity_map(dev, domain, start, end); | 
 | 	if (ret) | 
 | 		domain_exit(domain); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, | 
 | 					 struct device *dev) | 
 | { | 
 | 	if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | 
 | 		return 0; | 
 | 	return iommu_prepare_identity_map(dev, rmrr->base_address, | 
 | 					  rmrr->end_address); | 
 | } | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA | 
 | static inline void iommu_prepare_isa(void) | 
 | { | 
 | 	struct pci_dev *pdev; | 
 | 	int ret; | 
 |  | 
 | 	pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); | 
 | 	if (!pdev) | 
 | 		return; | 
 |  | 
 | 	pr_info("Prepare 0-16MiB unity mapping for LPC\n"); | 
 | 	ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1); | 
 |  | 
 | 	if (ret) | 
 | 		pr_err("Failed to create 0-16MiB identity map - floppy might not work\n"); | 
 |  | 
 | 	pci_dev_put(pdev); | 
 | } | 
 | #else | 
 | static inline void iommu_prepare_isa(void) | 
 | { | 
 | 	return; | 
 | } | 
 | #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */ | 
 |  | 
 | static int md_domain_init(struct dmar_domain *domain, int guest_width); | 
 |  | 
 | static int __init si_domain_init(int hw) | 
 | { | 
 | 	int nid, ret = 0; | 
 |  | 
 | 	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY); | 
 | 	if (!si_domain) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { | 
 | 		domain_exit(si_domain); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	pr_debug("Identity mapping domain allocated\n"); | 
 |  | 
 | 	if (hw) | 
 | 		return 0; | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 | 		int i; | 
 |  | 
 | 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
 | 			ret = iommu_domain_identity_map(si_domain, | 
 | 					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int identity_mapping(struct device *dev) | 
 | { | 
 | 	struct device_domain_info *info; | 
 |  | 
 | 	if (likely(!iommu_identity_mapping)) | 
 | 		return 0; | 
 |  | 
 | 	info = dev->archdata.iommu; | 
 | 	if (info && info != DUMMY_DEVICE_DOMAIN_INFO) | 
 | 		return (info->domain == si_domain); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) | 
 | { | 
 | 	struct dmar_domain *ndomain; | 
 | 	struct intel_iommu *iommu; | 
 | 	u8 bus, devfn; | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if (!iommu) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain); | 
 | 	if (ndomain != domain) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool device_has_rmrr(struct device *dev) | 
 | { | 
 | 	struct dmar_rmrr_unit *rmrr; | 
 | 	struct device *tmp; | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_rmrr_units(rmrr) { | 
 | 		/* | 
 | 		 * Return TRUE if this RMRR contains the device that | 
 | 		 * is passed in. | 
 | 		 */ | 
 | 		for_each_active_dev_scope(rmrr->devices, | 
 | 					  rmrr->devices_cnt, i, tmp) | 
 | 			if (tmp == dev) { | 
 | 				rcu_read_unlock(); | 
 | 				return true; | 
 | 			} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * There are a couple cases where we need to restrict the functionality of | 
 |  * devices associated with RMRRs.  The first is when evaluating a device for | 
 |  * identity mapping because problems exist when devices are moved in and out | 
 |  * of domains and their respective RMRR information is lost.  This means that | 
 |  * a device with associated RMRRs will never be in a "passthrough" domain. | 
 |  * The second is use of the device through the IOMMU API.  This interface | 
 |  * expects to have full control of the IOVA space for the device.  We cannot | 
 |  * satisfy both the requirement that RMRR access is maintained and have an | 
 |  * unencumbered IOVA space.  We also have no ability to quiesce the device's | 
 |  * use of the RMRR space or even inform the IOMMU API user of the restriction. | 
 |  * We therefore prevent devices associated with an RMRR from participating in | 
 |  * the IOMMU API, which eliminates them from device assignment. | 
 |  * | 
 |  * In both cases we assume that PCI USB devices with RMRRs have them largely | 
 |  * for historical reasons and that the RMRR space is not actively used post | 
 |  * boot.  This exclusion may change if vendors begin to abuse it. | 
 |  * | 
 |  * The same exception is made for graphics devices, with the requirement that | 
 |  * any use of the RMRR regions will be torn down before assigning the device | 
 |  * to a guest. | 
 |  */ | 
 | static bool device_is_rmrr_locked(struct device *dev) | 
 | { | 
 | 	if (!device_has_rmrr(dev)) | 
 | 		return false; | 
 |  | 
 | 	if (dev_is_pci(dev)) { | 
 | 		struct pci_dev *pdev = to_pci_dev(dev); | 
 |  | 
 | 		if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int iommu_should_identity_map(struct device *dev, int startup) | 
 | { | 
 |  | 
 | 	if (dev_is_pci(dev)) { | 
 | 		struct pci_dev *pdev = to_pci_dev(dev); | 
 |  | 
 | 		if (device_is_rmrr_locked(dev)) | 
 | 			return 0; | 
 |  | 
 | 		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) | 
 | 			return 1; | 
 |  | 
 | 		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) | 
 | 			return 1; | 
 |  | 
 | 		if (!(iommu_identity_mapping & IDENTMAP_ALL)) | 
 | 			return 0; | 
 |  | 
 | 		/* | 
 | 		 * We want to start off with all devices in the 1:1 domain, and | 
 | 		 * take them out later if we find they can't access all of memory. | 
 | 		 * | 
 | 		 * However, we can't do this for PCI devices behind bridges, | 
 | 		 * because all PCI devices behind the same bridge will end up | 
 | 		 * with the same source-id on their transactions. | 
 | 		 * | 
 | 		 * Practically speaking, we can't change things around for these | 
 | 		 * devices at run-time, because we can't be sure there'll be no | 
 | 		 * DMA transactions in flight for any of their siblings. | 
 | 		 * | 
 | 		 * So PCI devices (unless they're on the root bus) as well as | 
 | 		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of | 
 | 		 * the 1:1 domain, just in _case_ one of their siblings turns out | 
 | 		 * not to be able to map all of memory. | 
 | 		 */ | 
 | 		if (!pci_is_pcie(pdev)) { | 
 | 			if (!pci_is_root_bus(pdev->bus)) | 
 | 				return 0; | 
 | 			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI) | 
 | 				return 0; | 
 | 		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE) | 
 | 			return 0; | 
 | 	} else { | 
 | 		if (device_has_rmrr(dev)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At boot time, we don't yet know if devices will be 64-bit capable. | 
 | 	 * Assume that they will — if they turn out not to be, then we can | 
 | 	 * take them out of the 1:1 domain later. | 
 | 	 */ | 
 | 	if (!startup) { | 
 | 		/* | 
 | 		 * If the device's dma_mask is less than the system's memory | 
 | 		 * size then this is not a candidate for identity mapping. | 
 | 		 */ | 
 | 		u64 dma_mask = *dev->dma_mask; | 
 |  | 
 | 		if (dev->coherent_dma_mask && | 
 | 		    dev->coherent_dma_mask < dma_mask) | 
 | 			dma_mask = dev->coherent_dma_mask; | 
 |  | 
 | 		return dma_mask >= dma_get_required_mask(dev); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!iommu_should_identity_map(dev, 1)) | 
 | 		return 0; | 
 |  | 
 | 	ret = domain_add_dev_info(si_domain, dev); | 
 | 	if (!ret) | 
 | 		pr_info("%s identity mapping for device %s\n", | 
 | 			hw ? "Hardware" : "Software", dev_name(dev)); | 
 | 	else if (ret == -ENODEV) | 
 | 		/* device not associated with an iommu */ | 
 | 		ret = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | static int __init iommu_prepare_static_identity_mapping(int hw) | 
 | { | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu; | 
 | 	struct device *dev; | 
 | 	int i; | 
 | 	int ret = 0; | 
 |  | 
 | 	for_each_pci_dev(pdev) { | 
 | 		ret = dev_prepare_static_identity_mapping(&pdev->dev, hw); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) | 
 | 		for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) { | 
 | 			struct acpi_device_physical_node *pn; | 
 | 			struct acpi_device *adev; | 
 |  | 
 | 			if (dev->bus != &acpi_bus_type) | 
 | 				continue; | 
 |  | 
 | 			adev= to_acpi_device(dev); | 
 | 			mutex_lock(&adev->physical_node_lock); | 
 | 			list_for_each_entry(pn, &adev->physical_node_list, node) { | 
 | 				ret = dev_prepare_static_identity_mapping(pn->dev, hw); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 | 			mutex_unlock(&adev->physical_node_lock); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void intel_iommu_init_qi(struct intel_iommu *iommu) | 
 | { | 
 | 	/* | 
 | 	 * Start from the sane iommu hardware state. | 
 | 	 * If the queued invalidation is already initialized by us | 
 | 	 * (for example, while enabling interrupt-remapping) then | 
 | 	 * we got the things already rolling from a sane state. | 
 | 	 */ | 
 | 	if (!iommu->qi) { | 
 | 		/* | 
 | 		 * Clear any previous faults. | 
 | 		 */ | 
 | 		dmar_fault(-1, iommu); | 
 | 		/* | 
 | 		 * Disable queued invalidation if supported and already enabled | 
 | 		 * before OS handover. | 
 | 		 */ | 
 | 		dmar_disable_qi(iommu); | 
 | 	} | 
 |  | 
 | 	if (dmar_enable_qi(iommu)) { | 
 | 		/* | 
 | 		 * Queued Invalidate not enabled, use Register Based Invalidate | 
 | 		 */ | 
 | 		iommu->flush.flush_context = __iommu_flush_context; | 
 | 		iommu->flush.flush_iotlb = __iommu_flush_iotlb; | 
 | 		pr_info("%s: Using Register based invalidation\n", | 
 | 			iommu->name); | 
 | 	} else { | 
 | 		iommu->flush.flush_context = qi_flush_context; | 
 | 		iommu->flush.flush_iotlb = qi_flush_iotlb; | 
 | 		pr_info("%s: Using Queued invalidation\n", iommu->name); | 
 | 	} | 
 | } | 
 |  | 
 | static int copy_context_table(struct intel_iommu *iommu, | 
 | 			      struct root_entry *old_re, | 
 | 			      struct context_entry **tbl, | 
 | 			      int bus, bool ext) | 
 | { | 
 | 	int tbl_idx, pos = 0, idx, devfn, ret = 0, did; | 
 | 	struct context_entry *new_ce = NULL, ce; | 
 | 	struct context_entry *old_ce = NULL; | 
 | 	struct root_entry re; | 
 | 	phys_addr_t old_ce_phys; | 
 |  | 
 | 	tbl_idx = ext ? bus * 2 : bus; | 
 | 	memcpy(&re, old_re, sizeof(re)); | 
 |  | 
 | 	for (devfn = 0; devfn < 256; devfn++) { | 
 | 		/* First calculate the correct index */ | 
 | 		idx = (ext ? devfn * 2 : devfn) % 256; | 
 |  | 
 | 		if (idx == 0) { | 
 | 			/* First save what we may have and clean up */ | 
 | 			if (new_ce) { | 
 | 				tbl[tbl_idx] = new_ce; | 
 | 				__iommu_flush_cache(iommu, new_ce, | 
 | 						    VTD_PAGE_SIZE); | 
 | 				pos = 1; | 
 | 			} | 
 |  | 
 | 			if (old_ce) | 
 | 				iounmap(old_ce); | 
 |  | 
 | 			ret = 0; | 
 | 			if (devfn < 0x80) | 
 | 				old_ce_phys = root_entry_lctp(&re); | 
 | 			else | 
 | 				old_ce_phys = root_entry_uctp(&re); | 
 |  | 
 | 			if (!old_ce_phys) { | 
 | 				if (ext && devfn == 0) { | 
 | 					/* No LCTP, try UCTP */ | 
 | 					devfn = 0x7f; | 
 | 					continue; | 
 | 				} else { | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			ret = -ENOMEM; | 
 | 			old_ce = memremap(old_ce_phys, PAGE_SIZE, | 
 | 					MEMREMAP_WB); | 
 | 			if (!old_ce) | 
 | 				goto out; | 
 |  | 
 | 			new_ce = alloc_pgtable_page(iommu->node); | 
 | 			if (!new_ce) | 
 | 				goto out_unmap; | 
 |  | 
 | 			ret = 0; | 
 | 		} | 
 |  | 
 | 		/* Now copy the context entry */ | 
 | 		memcpy(&ce, old_ce + idx, sizeof(ce)); | 
 |  | 
 | 		if (!__context_present(&ce)) | 
 | 			continue; | 
 |  | 
 | 		did = context_domain_id(&ce); | 
 | 		if (did >= 0 && did < cap_ndoms(iommu->cap)) | 
 | 			set_bit(did, iommu->domain_ids); | 
 |  | 
 | 		/* | 
 | 		 * We need a marker for copied context entries. This | 
 | 		 * marker needs to work for the old format as well as | 
 | 		 * for extended context entries. | 
 | 		 * | 
 | 		 * Bit 67 of the context entry is used. In the old | 
 | 		 * format this bit is available to software, in the | 
 | 		 * extended format it is the PGE bit, but PGE is ignored | 
 | 		 * by HW if PASIDs are disabled (and thus still | 
 | 		 * available). | 
 | 		 * | 
 | 		 * So disable PASIDs first and then mark the entry | 
 | 		 * copied. This means that we don't copy PASID | 
 | 		 * translations from the old kernel, but this is fine as | 
 | 		 * faults there are not fatal. | 
 | 		 */ | 
 | 		context_clear_pasid_enable(&ce); | 
 | 		context_set_copied(&ce); | 
 |  | 
 | 		new_ce[idx] = ce; | 
 | 	} | 
 |  | 
 | 	tbl[tbl_idx + pos] = new_ce; | 
 |  | 
 | 	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); | 
 |  | 
 | out_unmap: | 
 | 	memunmap(old_ce); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int copy_translation_tables(struct intel_iommu *iommu) | 
 | { | 
 | 	struct context_entry **ctxt_tbls; | 
 | 	struct root_entry *old_rt; | 
 | 	phys_addr_t old_rt_phys; | 
 | 	int ctxt_table_entries; | 
 | 	unsigned long flags; | 
 | 	u64 rtaddr_reg; | 
 | 	int bus, ret; | 
 | 	bool new_ext, ext; | 
 |  | 
 | 	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); | 
 | 	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT); | 
 | 	new_ext    = !!ecap_ecs(iommu->ecap); | 
 |  | 
 | 	/* | 
 | 	 * The RTT bit can only be changed when translation is disabled, | 
 | 	 * but disabling translation means to open a window for data | 
 | 	 * corruption. So bail out and don't copy anything if we would | 
 | 	 * have to change the bit. | 
 | 	 */ | 
 | 	if (new_ext != ext) | 
 | 		return -EINVAL; | 
 |  | 
 | 	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; | 
 | 	if (!old_rt_phys) | 
 | 		return -EINVAL; | 
 |  | 
 | 	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); | 
 | 	if (!old_rt) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* This is too big for the stack - allocate it from slab */ | 
 | 	ctxt_table_entries = ext ? 512 : 256; | 
 | 	ret = -ENOMEM; | 
 | 	ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL); | 
 | 	if (!ctxt_tbls) | 
 | 		goto out_unmap; | 
 |  | 
 | 	for (bus = 0; bus < 256; bus++) { | 
 | 		ret = copy_context_table(iommu, &old_rt[bus], | 
 | 					 ctxt_tbls, bus, ext); | 
 | 		if (ret) { | 
 | 			pr_err("%s: Failed to copy context table for bus %d\n", | 
 | 				iommu->name, bus); | 
 | 			continue; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 |  | 
 | 	/* Context tables are copied, now write them to the root_entry table */ | 
 | 	for (bus = 0; bus < 256; bus++) { | 
 | 		int idx = ext ? bus * 2 : bus; | 
 | 		u64 val; | 
 |  | 
 | 		if (ctxt_tbls[idx]) { | 
 | 			val = virt_to_phys(ctxt_tbls[idx]) | 1; | 
 | 			iommu->root_entry[bus].lo = val; | 
 | 		} | 
 |  | 
 | 		if (!ext || !ctxt_tbls[idx + 1]) | 
 | 			continue; | 
 |  | 
 | 		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; | 
 | 		iommu->root_entry[bus].hi = val; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 |  | 
 | 	kfree(ctxt_tbls); | 
 |  | 
 | 	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | out_unmap: | 
 | 	memunmap(old_rt); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __init init_dmars(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct dmar_rmrr_unit *rmrr; | 
 | 	bool copied_tables = false; | 
 | 	struct device *dev; | 
 | 	struct intel_iommu *iommu; | 
 | 	int i, ret, cpu; | 
 |  | 
 | 	/* | 
 | 	 * for each drhd | 
 | 	 *    allocate root | 
 | 	 *    initialize and program root entry to not present | 
 | 	 * endfor | 
 | 	 */ | 
 | 	for_each_drhd_unit(drhd) { | 
 | 		/* | 
 | 		 * lock not needed as this is only incremented in the single | 
 | 		 * threaded kernel __init code path all other access are read | 
 | 		 * only | 
 | 		 */ | 
 | 		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) { | 
 | 			g_num_of_iommus++; | 
 | 			continue; | 
 | 		} | 
 | 		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED); | 
 | 	} | 
 |  | 
 | 	/* Preallocate enough resources for IOMMU hot-addition */ | 
 | 	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) | 
 | 		g_num_of_iommus = DMAR_UNITS_SUPPORTED; | 
 |  | 
 | 	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), | 
 | 			GFP_KERNEL); | 
 | 	if (!g_iommus) { | 
 | 		pr_err("Allocating global iommu array failed\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush, | 
 | 							      cpu); | 
 |  | 
 | 		dfd->tables = kzalloc(g_num_of_iommus * | 
 | 				      sizeof(struct deferred_flush_table), | 
 | 				      GFP_KERNEL); | 
 | 		if (!dfd->tables) { | 
 | 			ret = -ENOMEM; | 
 | 			goto free_g_iommus; | 
 | 		} | 
 |  | 
 | 		spin_lock_init(&dfd->lock); | 
 | 		setup_timer(&dfd->timer, flush_unmaps_timeout, cpu); | 
 | 	} | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		g_iommus[iommu->seq_id] = iommu; | 
 |  | 
 | 		intel_iommu_init_qi(iommu); | 
 |  | 
 | 		ret = iommu_init_domains(iommu); | 
 | 		if (ret) | 
 | 			goto free_iommu; | 
 |  | 
 | 		init_translation_status(iommu); | 
 |  | 
 | 		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { | 
 | 			iommu_disable_translation(iommu); | 
 | 			clear_translation_pre_enabled(iommu); | 
 | 			pr_warn("Translation was enabled for %s but we are not in kdump mode\n", | 
 | 				iommu->name); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * TBD: | 
 | 		 * we could share the same root & context tables | 
 | 		 * among all IOMMU's. Need to Split it later. | 
 | 		 */ | 
 | 		ret = iommu_alloc_root_entry(iommu); | 
 | 		if (ret) | 
 | 			goto free_iommu; | 
 |  | 
 | 		if (translation_pre_enabled(iommu)) { | 
 | 			pr_info("Translation already enabled - trying to copy translation structures\n"); | 
 |  | 
 | 			ret = copy_translation_tables(iommu); | 
 | 			if (ret) { | 
 | 				/* | 
 | 				 * We found the IOMMU with translation | 
 | 				 * enabled - but failed to copy over the | 
 | 				 * old root-entry table. Try to proceed | 
 | 				 * by disabling translation now and | 
 | 				 * allocating a clean root-entry table. | 
 | 				 * This might cause DMAR faults, but | 
 | 				 * probably the dump will still succeed. | 
 | 				 */ | 
 | 				pr_err("Failed to copy translation tables from previous kernel for %s\n", | 
 | 				       iommu->name); | 
 | 				iommu_disable_translation(iommu); | 
 | 				clear_translation_pre_enabled(iommu); | 
 | 			} else { | 
 | 				pr_info("Copied translation tables from previous kernel for %s\n", | 
 | 					iommu->name); | 
 | 				copied_tables = true; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!ecap_pass_through(iommu->ecap)) | 
 | 			hw_pass_through = 0; | 
 | #ifdef CONFIG_INTEL_IOMMU_SVM | 
 | 		if (pasid_enabled(iommu)) | 
 | 			intel_svm_alloc_pasid_tables(iommu); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now that qi is enabled on all iommus, set the root entry and flush | 
 | 	 * caches. This is required on some Intel X58 chipsets, otherwise the | 
 | 	 * flush_context function will loop forever and the boot hangs. | 
 | 	 */ | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		iommu_flush_write_buffer(iommu); | 
 | 		iommu_set_root_entry(iommu); | 
 | 		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); | 
 | 		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | 
 | 	} | 
 |  | 
 | 	if (iommu_pass_through) | 
 | 		iommu_identity_mapping |= IDENTMAP_ALL; | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA | 
 | 	iommu_identity_mapping |= IDENTMAP_GFX; | 
 | #endif | 
 |  | 
 | 	check_tylersburg_isoch(); | 
 |  | 
 | 	if (iommu_identity_mapping) { | 
 | 		ret = si_domain_init(hw_pass_through); | 
 | 		if (ret) | 
 | 			goto free_iommu; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * If we copied translations from a previous kernel in the kdump | 
 | 	 * case, we can not assign the devices to domains now, as that | 
 | 	 * would eliminate the old mappings. So skip this part and defer | 
 | 	 * the assignment to device driver initialization time. | 
 | 	 */ | 
 | 	if (copied_tables) | 
 | 		goto domains_done; | 
 |  | 
 | 	/* | 
 | 	 * If pass through is not set or not enabled, setup context entries for | 
 | 	 * identity mappings for rmrr, gfx, and isa and may fall back to static | 
 | 	 * identity mapping if iommu_identity_mapping is set. | 
 | 	 */ | 
 | 	if (iommu_identity_mapping) { | 
 | 		ret = iommu_prepare_static_identity_mapping(hw_pass_through); | 
 | 		if (ret) { | 
 | 			pr_crit("Failed to setup IOMMU pass-through\n"); | 
 | 			goto free_iommu; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * For each rmrr | 
 | 	 *   for each dev attached to rmrr | 
 | 	 *   do | 
 | 	 *     locate drhd for dev, alloc domain for dev | 
 | 	 *     allocate free domain | 
 | 	 *     allocate page table entries for rmrr | 
 | 	 *     if context not allocated for bus | 
 | 	 *           allocate and init context | 
 | 	 *           set present in root table for this bus | 
 | 	 *     init context with domain, translation etc | 
 | 	 *    endfor | 
 | 	 * endfor | 
 | 	 */ | 
 | 	pr_info("Setting RMRR:\n"); | 
 | 	for_each_rmrr_units(rmrr) { | 
 | 		/* some BIOS lists non-exist devices in DMAR table. */ | 
 | 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, | 
 | 					  i, dev) { | 
 | 			ret = iommu_prepare_rmrr_dev(rmrr, dev); | 
 | 			if (ret) | 
 | 				pr_err("Mapping reserved region failed\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	iommu_prepare_isa(); | 
 |  | 
 | domains_done: | 
 |  | 
 | 	/* | 
 | 	 * for each drhd | 
 | 	 *   enable fault log | 
 | 	 *   global invalidate context cache | 
 | 	 *   global invalidate iotlb | 
 | 	 *   enable translation | 
 | 	 */ | 
 | 	for_each_iommu(iommu, drhd) { | 
 | 		if (drhd->ignored) { | 
 | 			/* | 
 | 			 * we always have to disable PMRs or DMA may fail on | 
 | 			 * this device | 
 | 			 */ | 
 | 			if (force_on) | 
 | 				iommu_disable_protect_mem_regions(iommu); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		iommu_flush_write_buffer(iommu); | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_SVM | 
 | 		if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) { | 
 | 			ret = intel_svm_enable_prq(iommu); | 
 | 			if (ret) | 
 | 				goto free_iommu; | 
 | 		} | 
 | #endif | 
 | 		ret = dmar_set_interrupt(iommu); | 
 | 		if (ret) | 
 | 			goto free_iommu; | 
 |  | 
 | 		if (!translation_pre_enabled(iommu)) | 
 | 			iommu_enable_translation(iommu); | 
 |  | 
 | 		iommu_disable_protect_mem_regions(iommu); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_iommu: | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		disable_dmar_iommu(iommu); | 
 | 		free_dmar_iommu(iommu); | 
 | 	} | 
 | free_g_iommus: | 
 | 	for_each_possible_cpu(cpu) | 
 | 		kfree(per_cpu_ptr(&deferred_flush, cpu)->tables); | 
 | 	kfree(g_iommus); | 
 | error: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* This takes a number of _MM_ pages, not VTD pages */ | 
 | static unsigned long intel_alloc_iova(struct device *dev, | 
 | 				     struct dmar_domain *domain, | 
 | 				     unsigned long nrpages, uint64_t dma_mask) | 
 | { | 
 | 	unsigned long iova_pfn = 0; | 
 |  | 
 | 	/* Restrict dma_mask to the width that the iommu can handle */ | 
 | 	dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask); | 
 | 	/* Ensure we reserve the whole size-aligned region */ | 
 | 	nrpages = __roundup_pow_of_two(nrpages); | 
 |  | 
 | 	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { | 
 | 		/* | 
 | 		 * First try to allocate an io virtual address in | 
 | 		 * DMA_BIT_MASK(32) and if that fails then try allocating | 
 | 		 * from higher range | 
 | 		 */ | 
 | 		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, | 
 | 					   IOVA_PFN(DMA_BIT_MASK(32))); | 
 | 		if (iova_pfn) | 
 | 			return iova_pfn; | 
 | 	} | 
 | 	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask)); | 
 | 	if (unlikely(!iova_pfn)) { | 
 | 		pr_err("Allocating %ld-page iova for %s failed", | 
 | 		       nrpages, dev_name(dev)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return iova_pfn; | 
 | } | 
 |  | 
 | static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev) | 
 | { | 
 | 	struct dmar_domain *domain, *tmp; | 
 | 	struct dmar_rmrr_unit *rmrr; | 
 | 	struct device *i_dev; | 
 | 	int i, ret; | 
 |  | 
 | 	domain = find_domain(dev); | 
 | 	if (domain) | 
 | 		goto out; | 
 |  | 
 | 	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
 | 	if (!domain) | 
 | 		goto out; | 
 |  | 
 | 	/* We have a new domain - setup possible RMRRs for the device */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_rmrr_units(rmrr) { | 
 | 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, | 
 | 					  i, i_dev) { | 
 | 			if (i_dev != dev) | 
 | 				continue; | 
 |  | 
 | 			ret = domain_prepare_identity_map(dev, domain, | 
 | 							  rmrr->base_address, | 
 | 							  rmrr->end_address); | 
 | 			if (ret) | 
 | 				dev_err(dev, "Mapping reserved region failed\n"); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	tmp = set_domain_for_dev(dev, domain); | 
 | 	if (!tmp || domain != tmp) { | 
 | 		domain_exit(domain); | 
 | 		domain = tmp; | 
 | 	} | 
 |  | 
 | out: | 
 |  | 
 | 	if (!domain) | 
 | 		pr_err("Allocating domain for %s failed\n", dev_name(dev)); | 
 |  | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev) | 
 | { | 
 | 	struct device_domain_info *info; | 
 |  | 
 | 	/* No lock here, assumes no domain exit in normal case */ | 
 | 	info = dev->archdata.iommu; | 
 | 	if (likely(info)) | 
 | 		return info->domain; | 
 |  | 
 | 	return __get_valid_domain_for_dev(dev); | 
 | } | 
 |  | 
 | /* Check if the dev needs to go through non-identity map and unmap process.*/ | 
 | static int iommu_no_mapping(struct device *dev) | 
 | { | 
 | 	int found; | 
 |  | 
 | 	if (iommu_dummy(dev)) | 
 | 		return 1; | 
 |  | 
 | 	if (!iommu_identity_mapping) | 
 | 		return 0; | 
 |  | 
 | 	found = identity_mapping(dev); | 
 | 	if (found) { | 
 | 		if (iommu_should_identity_map(dev, 0)) | 
 | 			return 1; | 
 | 		else { | 
 | 			/* | 
 | 			 * 32 bit DMA is removed from si_domain and fall back | 
 | 			 * to non-identity mapping. | 
 | 			 */ | 
 | 			dmar_remove_one_dev_info(si_domain, dev); | 
 | 			pr_info("32bit %s uses non-identity mapping\n", | 
 | 				dev_name(dev)); | 
 | 			return 0; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * In case of a detached 64 bit DMA device from vm, the device | 
 | 		 * is put into si_domain for identity mapping. | 
 | 		 */ | 
 | 		if (iommu_should_identity_map(dev, 0)) { | 
 | 			int ret; | 
 | 			ret = domain_add_dev_info(si_domain, dev); | 
 | 			if (!ret) { | 
 | 				pr_info("64bit %s uses identity mapping\n", | 
 | 					dev_name(dev)); | 
 | 				return 1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr, | 
 | 				     size_t size, int dir, u64 dma_mask) | 
 | { | 
 | 	struct dmar_domain *domain; | 
 | 	phys_addr_t start_paddr; | 
 | 	unsigned long iova_pfn; | 
 | 	int prot = 0; | 
 | 	int ret; | 
 | 	struct intel_iommu *iommu; | 
 | 	unsigned long paddr_pfn = paddr >> PAGE_SHIFT; | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 |  | 
 | 	if (iommu_no_mapping(dev)) | 
 | 		return paddr; | 
 |  | 
 | 	domain = get_valid_domain_for_dev(dev); | 
 | 	if (!domain) | 
 | 		return 0; | 
 |  | 
 | 	iommu = domain_get_iommu(domain); | 
 | 	size = aligned_nrpages(paddr, size); | 
 |  | 
 | 	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask); | 
 | 	if (!iova_pfn) | 
 | 		goto error; | 
 |  | 
 | 	/* | 
 | 	 * Check if DMAR supports zero-length reads on write only | 
 | 	 * mappings.. | 
 | 	 */ | 
 | 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | 
 | 			!cap_zlr(iommu->cap)) | 
 | 		prot |= DMA_PTE_READ; | 
 | 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | 
 | 		prot |= DMA_PTE_WRITE; | 
 | 	/* | 
 | 	 * paddr - (paddr + size) might be partial page, we should map the whole | 
 | 	 * page.  Note: if two part of one page are separately mapped, we | 
 | 	 * might have two guest_addr mapping to the same host paddr, but this | 
 | 	 * is not a big problem | 
 | 	 */ | 
 | 	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn), | 
 | 				 mm_to_dma_pfn(paddr_pfn), size, prot); | 
 | 	if (ret) | 
 | 		goto error; | 
 |  | 
 | 	/* it's a non-present to present mapping. Only flush if caching mode */ | 
 | 	if (cap_caching_mode(iommu->cap)) | 
 | 		iommu_flush_iotlb_psi(iommu, domain, | 
 | 				      mm_to_dma_pfn(iova_pfn), | 
 | 				      size, 0, 1); | 
 | 	else | 
 | 		iommu_flush_write_buffer(iommu); | 
 |  | 
 | 	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT; | 
 | 	start_paddr += paddr & ~PAGE_MASK; | 
 | 	return start_paddr; | 
 |  | 
 | error: | 
 | 	if (iova_pfn) | 
 | 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size)); | 
 | 	pr_err("Device %s request: %zx@%llx dir %d --- failed\n", | 
 | 		dev_name(dev), size, (unsigned long long)paddr, dir); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static dma_addr_t intel_map_page(struct device *dev, struct page *page, | 
 | 				 unsigned long offset, size_t size, | 
 | 				 enum dma_data_direction dir, | 
 | 				 unsigned long attrs) | 
 | { | 
 | 	return __intel_map_single(dev, page_to_phys(page) + offset, size, | 
 | 				  dir, *dev->dma_mask); | 
 | } | 
 |  | 
 | static void flush_unmaps(struct deferred_flush_data *flush_data) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	flush_data->timer_on = 0; | 
 |  | 
 | 	/* just flush them all */ | 
 | 	for (i = 0; i < g_num_of_iommus; i++) { | 
 | 		struct intel_iommu *iommu = g_iommus[i]; | 
 | 		struct deferred_flush_table *flush_table = | 
 | 				&flush_data->tables[i]; | 
 | 		if (!iommu) | 
 | 			continue; | 
 |  | 
 | 		if (!flush_table->next) | 
 | 			continue; | 
 |  | 
 | 		/* In caching mode, global flushes turn emulation expensive */ | 
 | 		if (!cap_caching_mode(iommu->cap)) | 
 | 			iommu->flush.flush_iotlb(iommu, 0, 0, 0, | 
 | 					 DMA_TLB_GLOBAL_FLUSH); | 
 | 		for (j = 0; j < flush_table->next; j++) { | 
 | 			unsigned long mask; | 
 | 			struct deferred_flush_entry *entry = | 
 | 						&flush_table->entries[j]; | 
 | 			unsigned long iova_pfn = entry->iova_pfn; | 
 | 			unsigned long nrpages = entry->nrpages; | 
 | 			struct dmar_domain *domain = entry->domain; | 
 | 			struct page *freelist = entry->freelist; | 
 |  | 
 | 			/* On real hardware multiple invalidations are expensive */ | 
 | 			if (cap_caching_mode(iommu->cap)) | 
 | 				iommu_flush_iotlb_psi(iommu, domain, | 
 | 					mm_to_dma_pfn(iova_pfn), | 
 | 					nrpages, !freelist, 0); | 
 | 			else { | 
 | 				mask = ilog2(nrpages); | 
 | 				iommu_flush_dev_iotlb(domain, | 
 | 						(uint64_t)iova_pfn << PAGE_SHIFT, mask); | 
 | 			} | 
 | 			free_iova_fast(&domain->iovad, iova_pfn, nrpages); | 
 | 			if (freelist) | 
 | 				dma_free_pagelist(freelist); | 
 | 		} | 
 | 		flush_table->next = 0; | 
 | 	} | 
 |  | 
 | 	flush_data->size = 0; | 
 | } | 
 |  | 
 | static void flush_unmaps_timeout(unsigned long cpuid) | 
 | { | 
 | 	struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&flush_data->lock, flags); | 
 | 	flush_unmaps(flush_data); | 
 | 	spin_unlock_irqrestore(&flush_data->lock, flags); | 
 | } | 
 |  | 
 | static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn, | 
 | 		      unsigned long nrpages, struct page *freelist) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int entry_id, iommu_id; | 
 | 	struct intel_iommu *iommu; | 
 | 	struct deferred_flush_entry *entry; | 
 | 	struct deferred_flush_data *flush_data; | 
 | 	unsigned int cpuid; | 
 |  | 
 | 	cpuid = get_cpu(); | 
 | 	flush_data = per_cpu_ptr(&deferred_flush, cpuid); | 
 |  | 
 | 	/* Flush all CPUs' entries to avoid deferring too much.  If | 
 | 	 * this becomes a bottleneck, can just flush us, and rely on | 
 | 	 * flush timer for the rest. | 
 | 	 */ | 
 | 	if (flush_data->size == HIGH_WATER_MARK) { | 
 | 		int cpu; | 
 |  | 
 | 		for_each_online_cpu(cpu) | 
 | 			flush_unmaps_timeout(cpu); | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&flush_data->lock, flags); | 
 |  | 
 | 	iommu = domain_get_iommu(dom); | 
 | 	iommu_id = iommu->seq_id; | 
 |  | 
 | 	entry_id = flush_data->tables[iommu_id].next; | 
 | 	++(flush_data->tables[iommu_id].next); | 
 |  | 
 | 	entry = &flush_data->tables[iommu_id].entries[entry_id]; | 
 | 	entry->domain = dom; | 
 | 	entry->iova_pfn = iova_pfn; | 
 | 	entry->nrpages = nrpages; | 
 | 	entry->freelist = freelist; | 
 |  | 
 | 	if (!flush_data->timer_on) { | 
 | 		mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10)); | 
 | 		flush_data->timer_on = 1; | 
 | 	} | 
 | 	flush_data->size++; | 
 | 	spin_unlock_irqrestore(&flush_data->lock, flags); | 
 |  | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size) | 
 | { | 
 | 	struct dmar_domain *domain; | 
 | 	unsigned long start_pfn, last_pfn; | 
 | 	unsigned long nrpages; | 
 | 	unsigned long iova_pfn; | 
 | 	struct intel_iommu *iommu; | 
 | 	struct page *freelist; | 
 |  | 
 | 	if (iommu_no_mapping(dev)) | 
 | 		return; | 
 |  | 
 | 	domain = find_domain(dev); | 
 | 	BUG_ON(!domain); | 
 |  | 
 | 	iommu = domain_get_iommu(domain); | 
 |  | 
 | 	iova_pfn = IOVA_PFN(dev_addr); | 
 |  | 
 | 	nrpages = aligned_nrpages(dev_addr, size); | 
 | 	start_pfn = mm_to_dma_pfn(iova_pfn); | 
 | 	last_pfn = start_pfn + nrpages - 1; | 
 |  | 
 | 	pr_debug("Device %s unmapping: pfn %lx-%lx\n", | 
 | 		 dev_name(dev), start_pfn, last_pfn); | 
 |  | 
 | 	freelist = domain_unmap(domain, start_pfn, last_pfn); | 
 |  | 
 | 	if (intel_iommu_strict) { | 
 | 		iommu_flush_iotlb_psi(iommu, domain, start_pfn, | 
 | 				      nrpages, !freelist, 0); | 
 | 		/* free iova */ | 
 | 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages)); | 
 | 		dma_free_pagelist(freelist); | 
 | 	} else { | 
 | 		add_unmap(domain, iova_pfn, nrpages, freelist); | 
 | 		/* | 
 | 		 * queue up the release of the unmap to save the 1/6th of the | 
 | 		 * cpu used up by the iotlb flush operation... | 
 | 		 */ | 
 | 	} | 
 | } | 
 |  | 
 | static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, | 
 | 			     size_t size, enum dma_data_direction dir, | 
 | 			     unsigned long attrs) | 
 | { | 
 | 	intel_unmap(dev, dev_addr, size); | 
 | } | 
 |  | 
 | static void *intel_alloc_coherent(struct device *dev, size_t size, | 
 | 				  dma_addr_t *dma_handle, gfp_t flags, | 
 | 				  unsigned long attrs) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	int order; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	order = get_order(size); | 
 |  | 
 | 	if (!iommu_no_mapping(dev)) | 
 | 		flags &= ~(GFP_DMA | GFP_DMA32); | 
 | 	else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) { | 
 | 		if (dev->coherent_dma_mask < DMA_BIT_MASK(32)) | 
 | 			flags |= GFP_DMA; | 
 | 		else | 
 | 			flags |= GFP_DMA32; | 
 | 	} | 
 |  | 
 | 	if (gfpflags_allow_blocking(flags)) { | 
 | 		unsigned int count = size >> PAGE_SHIFT; | 
 |  | 
 | 		page = dma_alloc_from_contiguous(dev, count, order, flags); | 
 | 		if (page && iommu_no_mapping(dev) && | 
 | 		    page_to_phys(page) + size > dev->coherent_dma_mask) { | 
 | 			dma_release_from_contiguous(dev, page, count); | 
 | 			page = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!page) | 
 | 		page = alloc_pages(flags, order); | 
 | 	if (!page) | 
 | 		return NULL; | 
 | 	memset(page_address(page), 0, size); | 
 |  | 
 | 	*dma_handle = __intel_map_single(dev, page_to_phys(page), size, | 
 | 					 DMA_BIDIRECTIONAL, | 
 | 					 dev->coherent_dma_mask); | 
 | 	if (*dma_handle) | 
 | 		return page_address(page); | 
 | 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) | 
 | 		__free_pages(page, order); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void intel_free_coherent(struct device *dev, size_t size, void *vaddr, | 
 | 				dma_addr_t dma_handle, unsigned long attrs) | 
 | { | 
 | 	int order; | 
 | 	struct page *page = virt_to_page(vaddr); | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	order = get_order(size); | 
 |  | 
 | 	intel_unmap(dev, dma_handle, size); | 
 | 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) | 
 | 		__free_pages(page, order); | 
 | } | 
 |  | 
 | static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist, | 
 | 			   int nelems, enum dma_data_direction dir, | 
 | 			   unsigned long attrs) | 
 | { | 
 | 	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK; | 
 | 	unsigned long nrpages = 0; | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sglist, sg, nelems, i) { | 
 | 		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg)); | 
 | 	} | 
 |  | 
 | 	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT); | 
 | } | 
 |  | 
 | static int intel_nontranslate_map_sg(struct device *hddev, | 
 | 	struct scatterlist *sglist, int nelems, int dir) | 
 | { | 
 | 	int i; | 
 | 	struct scatterlist *sg; | 
 |  | 
 | 	for_each_sg(sglist, sg, nelems, i) { | 
 | 		BUG_ON(!sg_page(sg)); | 
 | 		sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset; | 
 | 		sg->dma_length = sg->length; | 
 | 	} | 
 | 	return nelems; | 
 | } | 
 |  | 
 | static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, | 
 | 			enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	int i; | 
 | 	struct dmar_domain *domain; | 
 | 	size_t size = 0; | 
 | 	int prot = 0; | 
 | 	unsigned long iova_pfn; | 
 | 	int ret; | 
 | 	struct scatterlist *sg; | 
 | 	unsigned long start_vpfn; | 
 | 	struct intel_iommu *iommu; | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 | 	if (iommu_no_mapping(dev)) | 
 | 		return intel_nontranslate_map_sg(dev, sglist, nelems, dir); | 
 |  | 
 | 	domain = get_valid_domain_for_dev(dev); | 
 | 	if (!domain) | 
 | 		return 0; | 
 |  | 
 | 	iommu = domain_get_iommu(domain); | 
 |  | 
 | 	for_each_sg(sglist, sg, nelems, i) | 
 | 		size += aligned_nrpages(sg->offset, sg->length); | 
 |  | 
 | 	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), | 
 | 				*dev->dma_mask); | 
 | 	if (!iova_pfn) { | 
 | 		sglist->dma_length = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if DMAR supports zero-length reads on write only | 
 | 	 * mappings.. | 
 | 	 */ | 
 | 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | 
 | 			!cap_zlr(iommu->cap)) | 
 | 		prot |= DMA_PTE_READ; | 
 | 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | 
 | 		prot |= DMA_PTE_WRITE; | 
 |  | 
 | 	start_vpfn = mm_to_dma_pfn(iova_pfn); | 
 |  | 
 | 	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); | 
 | 	if (unlikely(ret)) { | 
 | 		dma_pte_free_pagetable(domain, start_vpfn, | 
 | 				       start_vpfn + size - 1); | 
 | 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* it's a non-present to present mapping. Only flush if caching mode */ | 
 | 	if (cap_caching_mode(iommu->cap)) | 
 | 		iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1); | 
 | 	else | 
 | 		iommu_flush_write_buffer(iommu); | 
 |  | 
 | 	return nelems; | 
 | } | 
 |  | 
 | static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
 | { | 
 | 	return !dma_addr; | 
 | } | 
 |  | 
 | struct dma_map_ops intel_dma_ops = { | 
 | 	.alloc = intel_alloc_coherent, | 
 | 	.free = intel_free_coherent, | 
 | 	.map_sg = intel_map_sg, | 
 | 	.unmap_sg = intel_unmap_sg, | 
 | 	.map_page = intel_map_page, | 
 | 	.unmap_page = intel_unmap_page, | 
 | 	.mapping_error = intel_mapping_error, | 
 | }; | 
 |  | 
 | static inline int iommu_domain_cache_init(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	iommu_domain_cache = kmem_cache_create("iommu_domain", | 
 | 					 sizeof(struct dmar_domain), | 
 | 					 0, | 
 | 					 SLAB_HWCACHE_ALIGN, | 
 |  | 
 | 					 NULL); | 
 | 	if (!iommu_domain_cache) { | 
 | 		pr_err("Couldn't create iommu_domain cache\n"); | 
 | 		ret = -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int iommu_devinfo_cache_init(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", | 
 | 					 sizeof(struct device_domain_info), | 
 | 					 0, | 
 | 					 SLAB_HWCACHE_ALIGN, | 
 | 					 NULL); | 
 | 	if (!iommu_devinfo_cache) { | 
 | 		pr_err("Couldn't create devinfo cache\n"); | 
 | 		ret = -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __init iommu_init_mempool(void) | 
 | { | 
 | 	int ret; | 
 | 	ret = iova_cache_get(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = iommu_domain_cache_init(); | 
 | 	if (ret) | 
 | 		goto domain_error; | 
 |  | 
 | 	ret = iommu_devinfo_cache_init(); | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	kmem_cache_destroy(iommu_domain_cache); | 
 | domain_error: | 
 | 	iova_cache_put(); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void __init iommu_exit_mempool(void) | 
 | { | 
 | 	kmem_cache_destroy(iommu_devinfo_cache); | 
 | 	kmem_cache_destroy(iommu_domain_cache); | 
 | 	iova_cache_put(); | 
 | } | 
 |  | 
 | static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	u32 vtbar; | 
 | 	int rc; | 
 |  | 
 | 	/* We know that this device on this chipset has its own IOMMU. | 
 | 	 * If we find it under a different IOMMU, then the BIOS is lying | 
 | 	 * to us. Hope that the IOMMU for this device is actually | 
 | 	 * disabled, and it needs no translation... | 
 | 	 */ | 
 | 	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); | 
 | 	if (rc) { | 
 | 		/* "can't" happen */ | 
 | 		dev_info(&pdev->dev, "failed to run vt-d quirk\n"); | 
 | 		return; | 
 | 	} | 
 | 	vtbar &= 0xffff0000; | 
 |  | 
 | 	/* we know that the this iommu should be at offset 0xa000 from vtbar */ | 
 | 	drhd = dmar_find_matched_drhd_unit(pdev); | 
 | 	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000, | 
 | 			    TAINT_FIRMWARE_WORKAROUND, | 
 | 			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n")) | 
 | 		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | 
 | } | 
 | DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu); | 
 |  | 
 | static void __init init_no_remapping_devices(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct device *dev; | 
 | 	int i; | 
 |  | 
 | 	for_each_drhd_unit(drhd) { | 
 | 		if (!drhd->include_all) { | 
 | 			for_each_active_dev_scope(drhd->devices, | 
 | 						  drhd->devices_cnt, i, dev) | 
 | 				break; | 
 | 			/* ignore DMAR unit if no devices exist */ | 
 | 			if (i == drhd->devices_cnt) | 
 | 				drhd->ignored = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_active_drhd_unit(drhd) { | 
 | 		if (drhd->include_all) | 
 | 			continue; | 
 |  | 
 | 		for_each_active_dev_scope(drhd->devices, | 
 | 					  drhd->devices_cnt, i, dev) | 
 | 			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) | 
 | 				break; | 
 | 		if (i < drhd->devices_cnt) | 
 | 			continue; | 
 |  | 
 | 		/* This IOMMU has *only* gfx devices. Either bypass it or | 
 | 		   set the gfx_mapped flag, as appropriate */ | 
 | 		if (dmar_map_gfx) { | 
 | 			intel_iommu_gfx_mapped = 1; | 
 | 		} else { | 
 | 			drhd->ignored = 1; | 
 | 			for_each_active_dev_scope(drhd->devices, | 
 | 						  drhd->devices_cnt, i, dev) | 
 | 				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SUSPEND | 
 | static int init_iommu_hw(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu = NULL; | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) | 
 | 		if (iommu->qi) | 
 | 			dmar_reenable_qi(iommu); | 
 |  | 
 | 	for_each_iommu(iommu, drhd) { | 
 | 		if (drhd->ignored) { | 
 | 			/* | 
 | 			 * we always have to disable PMRs or DMA may fail on | 
 | 			 * this device | 
 | 			 */ | 
 | 			if (force_on) | 
 | 				iommu_disable_protect_mem_regions(iommu); | 
 | 			continue; | 
 | 		} | 
 | 	 | 
 | 		iommu_flush_write_buffer(iommu); | 
 |  | 
 | 		iommu_set_root_entry(iommu); | 
 |  | 
 | 		iommu->flush.flush_context(iommu, 0, 0, 0, | 
 | 					   DMA_CCMD_GLOBAL_INVL); | 
 | 		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | 
 | 		iommu_enable_translation(iommu); | 
 | 		iommu_disable_protect_mem_regions(iommu); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void iommu_flush_all(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu; | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		iommu->flush.flush_context(iommu, 0, 0, 0, | 
 | 					   DMA_CCMD_GLOBAL_INVL); | 
 | 		iommu->flush.flush_iotlb(iommu, 0, 0, 0, | 
 | 					 DMA_TLB_GLOBAL_FLUSH); | 
 | 	} | 
 | } | 
 |  | 
 | static int iommu_suspend(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu = NULL; | 
 | 	unsigned long flag; | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS, | 
 | 						 GFP_ATOMIC); | 
 | 		if (!iommu->iommu_state) | 
 | 			goto nomem; | 
 | 	} | 
 |  | 
 | 	iommu_flush_all(); | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 | 		iommu_disable_translation(iommu); | 
 |  | 
 | 		raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
 |  | 
 | 		iommu->iommu_state[SR_DMAR_FECTL_REG] = | 
 | 			readl(iommu->reg + DMAR_FECTL_REG); | 
 | 		iommu->iommu_state[SR_DMAR_FEDATA_REG] = | 
 | 			readl(iommu->reg + DMAR_FEDATA_REG); | 
 | 		iommu->iommu_state[SR_DMAR_FEADDR_REG] = | 
 | 			readl(iommu->reg + DMAR_FEADDR_REG); | 
 | 		iommu->iommu_state[SR_DMAR_FEUADDR_REG] = | 
 | 			readl(iommu->reg + DMAR_FEUADDR_REG); | 
 |  | 
 | 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	for_each_active_iommu(iommu, drhd) | 
 | 		kfree(iommu->iommu_state); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void iommu_resume(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu = NULL; | 
 | 	unsigned long flag; | 
 |  | 
 | 	if (init_iommu_hw()) { | 
 | 		if (force_on) | 
 | 			panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); | 
 | 		else | 
 | 			WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) { | 
 |  | 
 | 		raw_spin_lock_irqsave(&iommu->register_lock, flag); | 
 |  | 
 | 		writel(iommu->iommu_state[SR_DMAR_FECTL_REG], | 
 | 			iommu->reg + DMAR_FECTL_REG); | 
 | 		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], | 
 | 			iommu->reg + DMAR_FEDATA_REG); | 
 | 		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], | 
 | 			iommu->reg + DMAR_FEADDR_REG); | 
 | 		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], | 
 | 			iommu->reg + DMAR_FEUADDR_REG); | 
 |  | 
 | 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | 	} | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) | 
 | 		kfree(iommu->iommu_state); | 
 | } | 
 |  | 
 | static struct syscore_ops iommu_syscore_ops = { | 
 | 	.resume		= iommu_resume, | 
 | 	.suspend	= iommu_suspend, | 
 | }; | 
 |  | 
 | static void __init init_iommu_pm_ops(void) | 
 | { | 
 | 	register_syscore_ops(&iommu_syscore_ops); | 
 | } | 
 |  | 
 | #else | 
 | static inline void init_iommu_pm_ops(void) {} | 
 | #endif	/* CONFIG_PM */ | 
 |  | 
 |  | 
 | int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) | 
 | { | 
 | 	struct acpi_dmar_reserved_memory *rmrr; | 
 | 	int prot = DMA_PTE_READ|DMA_PTE_WRITE; | 
 | 	struct dmar_rmrr_unit *rmrru; | 
 | 	size_t length; | 
 |  | 
 | 	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); | 
 | 	if (!rmrru) | 
 | 		goto out; | 
 |  | 
 | 	rmrru->hdr = header; | 
 | 	rmrr = (struct acpi_dmar_reserved_memory *)header; | 
 | 	rmrru->base_address = rmrr->base_address; | 
 | 	rmrru->end_address = rmrr->end_address; | 
 |  | 
 | 	length = rmrr->end_address - rmrr->base_address + 1; | 
 | 	rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot, | 
 | 					      IOMMU_RESV_DIRECT); | 
 | 	if (!rmrru->resv) | 
 | 		goto free_rmrru; | 
 |  | 
 | 	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), | 
 | 				((void *)rmrr) + rmrr->header.length, | 
 | 				&rmrru->devices_cnt); | 
 | 	if (rmrru->devices_cnt && rmrru->devices == NULL) | 
 | 		goto free_all; | 
 |  | 
 | 	list_add(&rmrru->list, &dmar_rmrr_units); | 
 |  | 
 | 	return 0; | 
 | free_all: | 
 | 	kfree(rmrru->resv); | 
 | free_rmrru: | 
 | 	kfree(rmrru); | 
 | out: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) | 
 | { | 
 | 	struct dmar_atsr_unit *atsru; | 
 | 	struct acpi_dmar_atsr *tmp; | 
 |  | 
 | 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { | 
 | 		tmp = (struct acpi_dmar_atsr *)atsru->hdr; | 
 | 		if (atsr->segment != tmp->segment) | 
 | 			continue; | 
 | 		if (atsr->header.length != tmp->header.length) | 
 | 			continue; | 
 | 		if (memcmp(atsr, tmp, atsr->header.length) == 0) | 
 | 			return atsru; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) | 
 | { | 
 | 	struct acpi_dmar_atsr *atsr; | 
 | 	struct dmar_atsr_unit *atsru; | 
 |  | 
 | 	if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled) | 
 | 		return 0; | 
 |  | 
 | 	atsr = container_of(hdr, struct acpi_dmar_atsr, header); | 
 | 	atsru = dmar_find_atsr(atsr); | 
 | 	if (atsru) | 
 | 		return 0; | 
 |  | 
 | 	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); | 
 | 	if (!atsru) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * If memory is allocated from slab by ACPI _DSM method, we need to | 
 | 	 * copy the memory content because the memory buffer will be freed | 
 | 	 * on return. | 
 | 	 */ | 
 | 	atsru->hdr = (void *)(atsru + 1); | 
 | 	memcpy(atsru->hdr, hdr, hdr->length); | 
 | 	atsru->include_all = atsr->flags & 0x1; | 
 | 	if (!atsru->include_all) { | 
 | 		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), | 
 | 				(void *)atsr + atsr->header.length, | 
 | 				&atsru->devices_cnt); | 
 | 		if (atsru->devices_cnt && atsru->devices == NULL) { | 
 | 			kfree(atsru); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_add_rcu(&atsru->list, &dmar_atsr_units); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) | 
 | { | 
 | 	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); | 
 | 	kfree(atsru); | 
 | } | 
 |  | 
 | int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) | 
 | { | 
 | 	struct acpi_dmar_atsr *atsr; | 
 | 	struct dmar_atsr_unit *atsru; | 
 |  | 
 | 	atsr = container_of(hdr, struct acpi_dmar_atsr, header); | 
 | 	atsru = dmar_find_atsr(atsr); | 
 | 	if (atsru) { | 
 | 		list_del_rcu(&atsru->list); | 
 | 		synchronize_rcu(); | 
 | 		intel_iommu_free_atsr(atsru); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) | 
 | { | 
 | 	int i; | 
 | 	struct device *dev; | 
 | 	struct acpi_dmar_atsr *atsr; | 
 | 	struct dmar_atsr_unit *atsru; | 
 |  | 
 | 	atsr = container_of(hdr, struct acpi_dmar_atsr, header); | 
 | 	atsru = dmar_find_atsr(atsr); | 
 | 	if (!atsru) | 
 | 		return 0; | 
 |  | 
 | 	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { | 
 | 		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, | 
 | 					  i, dev) | 
 | 			return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int intel_iommu_add(struct dmar_drhd_unit *dmaru) | 
 | { | 
 | 	int sp, ret = 0; | 
 | 	struct intel_iommu *iommu = dmaru->iommu; | 
 |  | 
 | 	if (g_iommus[iommu->seq_id]) | 
 | 		return 0; | 
 |  | 
 | 	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { | 
 | 		pr_warn("%s: Doesn't support hardware pass through.\n", | 
 | 			iommu->name); | 
 | 		return -ENXIO; | 
 | 	} | 
 | 	if (!ecap_sc_support(iommu->ecap) && | 
 | 	    domain_update_iommu_snooping(iommu)) { | 
 | 		pr_warn("%s: Doesn't support snooping.\n", | 
 | 			iommu->name); | 
 | 		return -ENXIO; | 
 | 	} | 
 | 	sp = domain_update_iommu_superpage(iommu) - 1; | 
 | 	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { | 
 | 		pr_warn("%s: Doesn't support large page.\n", | 
 | 			iommu->name); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Disable translation if already enabled prior to OS handover. | 
 | 	 */ | 
 | 	if (iommu->gcmd & DMA_GCMD_TE) | 
 | 		iommu_disable_translation(iommu); | 
 |  | 
 | 	g_iommus[iommu->seq_id] = iommu; | 
 | 	ret = iommu_init_domains(iommu); | 
 | 	if (ret == 0) | 
 | 		ret = iommu_alloc_root_entry(iommu); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_SVM | 
 | 	if (pasid_enabled(iommu)) | 
 | 		intel_svm_alloc_pasid_tables(iommu); | 
 | #endif | 
 |  | 
 | 	if (dmaru->ignored) { | 
 | 		/* | 
 | 		 * we always have to disable PMRs or DMA may fail on this device | 
 | 		 */ | 
 | 		if (force_on) | 
 | 			iommu_disable_protect_mem_regions(iommu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	intel_iommu_init_qi(iommu); | 
 | 	iommu_flush_write_buffer(iommu); | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_SVM | 
 | 	if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) { | 
 | 		ret = intel_svm_enable_prq(iommu); | 
 | 		if (ret) | 
 | 			goto disable_iommu; | 
 | 	} | 
 | #endif | 
 | 	ret = dmar_set_interrupt(iommu); | 
 | 	if (ret) | 
 | 		goto disable_iommu; | 
 |  | 
 | 	iommu_set_root_entry(iommu); | 
 | 	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); | 
 | 	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | 
 | 	iommu_enable_translation(iommu); | 
 |  | 
 | 	iommu_disable_protect_mem_regions(iommu); | 
 | 	return 0; | 
 |  | 
 | disable_iommu: | 
 | 	disable_dmar_iommu(iommu); | 
 | out: | 
 | 	free_dmar_iommu(iommu); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct intel_iommu *iommu = dmaru->iommu; | 
 |  | 
 | 	if (!intel_iommu_enabled) | 
 | 		return 0; | 
 | 	if (iommu == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (insert) { | 
 | 		ret = intel_iommu_add(dmaru); | 
 | 	} else { | 
 | 		disable_dmar_iommu(iommu); | 
 | 		free_dmar_iommu(iommu); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void intel_iommu_free_dmars(void) | 
 | { | 
 | 	struct dmar_rmrr_unit *rmrru, *rmrr_n; | 
 | 	struct dmar_atsr_unit *atsru, *atsr_n; | 
 |  | 
 | 	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { | 
 | 		list_del(&rmrru->list); | 
 | 		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); | 
 | 		kfree(rmrru->resv); | 
 | 		kfree(rmrru); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { | 
 | 		list_del(&atsru->list); | 
 | 		intel_iommu_free_atsr(atsru); | 
 | 	} | 
 | } | 
 |  | 
 | int dmar_find_matched_atsr_unit(struct pci_dev *dev) | 
 | { | 
 | 	int i, ret = 1; | 
 | 	struct pci_bus *bus; | 
 | 	struct pci_dev *bridge = NULL; | 
 | 	struct device *tmp; | 
 | 	struct acpi_dmar_atsr *atsr; | 
 | 	struct dmar_atsr_unit *atsru; | 
 |  | 
 | 	dev = pci_physfn(dev); | 
 | 	for (bus = dev->bus; bus; bus = bus->parent) { | 
 | 		bridge = bus->self; | 
 | 		/* If it's an integrated device, allow ATS */ | 
 | 		if (!bridge) | 
 | 			return 1; | 
 | 		/* Connected via non-PCIe: no ATS */ | 
 | 		if (!pci_is_pcie(bridge) || | 
 | 		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) | 
 | 			return 0; | 
 | 		/* If we found the root port, look it up in the ATSR */ | 
 | 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { | 
 | 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); | 
 | 		if (atsr->segment != pci_domain_nr(dev->bus)) | 
 | 			continue; | 
 |  | 
 | 		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) | 
 | 			if (tmp == &bridge->dev) | 
 | 				goto out; | 
 |  | 
 | 		if (atsru->include_all) | 
 | 			goto out; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct dmar_rmrr_unit *rmrru; | 
 | 	struct dmar_atsr_unit *atsru; | 
 | 	struct acpi_dmar_atsr *atsr; | 
 | 	struct acpi_dmar_reserved_memory *rmrr; | 
 |  | 
 | 	if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING) | 
 | 		return 0; | 
 |  | 
 | 	list_for_each_entry(rmrru, &dmar_rmrr_units, list) { | 
 | 		rmrr = container_of(rmrru->hdr, | 
 | 				    struct acpi_dmar_reserved_memory, header); | 
 | 		if (info->event == BUS_NOTIFY_ADD_DEVICE) { | 
 | 			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), | 
 | 				((void *)rmrr) + rmrr->header.length, | 
 | 				rmrr->segment, rmrru->devices, | 
 | 				rmrru->devices_cnt); | 
 | 			if(ret < 0) | 
 | 				return ret; | 
 | 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { | 
 | 			dmar_remove_dev_scope(info, rmrr->segment, | 
 | 				rmrru->devices, rmrru->devices_cnt); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(atsru, &dmar_atsr_units, list) { | 
 | 		if (atsru->include_all) | 
 | 			continue; | 
 |  | 
 | 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); | 
 | 		if (info->event == BUS_NOTIFY_ADD_DEVICE) { | 
 | 			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), | 
 | 					(void *)atsr + atsr->header.length, | 
 | 					atsr->segment, atsru->devices, | 
 | 					atsru->devices_cnt); | 
 | 			if (ret > 0) | 
 | 				break; | 
 | 			else if(ret < 0) | 
 | 				return ret; | 
 | 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { | 
 | 			if (dmar_remove_dev_scope(info, atsr->segment, | 
 | 					atsru->devices, atsru->devices_cnt)) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Here we only respond to action of unbound device from driver. | 
 |  * | 
 |  * Added device is not attached to its DMAR domain here yet. That will happen | 
 |  * when mapping the device to iova. | 
 |  */ | 
 | static int device_notifier(struct notifier_block *nb, | 
 | 				  unsigned long action, void *data) | 
 | { | 
 | 	struct device *dev = data; | 
 | 	struct dmar_domain *domain; | 
 |  | 
 | 	if (iommu_dummy(dev)) | 
 | 		return 0; | 
 |  | 
 | 	if (action != BUS_NOTIFY_REMOVED_DEVICE) | 
 | 		return 0; | 
 |  | 
 | 	domain = find_domain(dev); | 
 | 	if (!domain) | 
 | 		return 0; | 
 |  | 
 | 	dmar_remove_one_dev_info(domain, dev); | 
 | 	if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices)) | 
 | 		domain_exit(domain); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct notifier_block device_nb = { | 
 | 	.notifier_call = device_notifier, | 
 | }; | 
 |  | 
 | static int intel_iommu_memory_notifier(struct notifier_block *nb, | 
 | 				       unsigned long val, void *v) | 
 | { | 
 | 	struct memory_notify *mhp = v; | 
 | 	unsigned long long start, end; | 
 | 	unsigned long start_vpfn, last_vpfn; | 
 |  | 
 | 	switch (val) { | 
 | 	case MEM_GOING_ONLINE: | 
 | 		start = mhp->start_pfn << PAGE_SHIFT; | 
 | 		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1; | 
 | 		if (iommu_domain_identity_map(si_domain, start, end)) { | 
 | 			pr_warn("Failed to build identity map for [%llx-%llx]\n", | 
 | 				start, end); | 
 | 			return NOTIFY_BAD; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case MEM_OFFLINE: | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 		start_vpfn = mm_to_dma_pfn(mhp->start_pfn); | 
 | 		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1); | 
 | 		while (start_vpfn <= last_vpfn) { | 
 | 			struct iova *iova; | 
 | 			struct dmar_drhd_unit *drhd; | 
 | 			struct intel_iommu *iommu; | 
 | 			struct page *freelist; | 
 |  | 
 | 			iova = find_iova(&si_domain->iovad, start_vpfn); | 
 | 			if (iova == NULL) { | 
 | 				pr_debug("Failed get IOVA for PFN %lx\n", | 
 | 					 start_vpfn); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			iova = split_and_remove_iova(&si_domain->iovad, iova, | 
 | 						     start_vpfn, last_vpfn); | 
 | 			if (iova == NULL) { | 
 | 				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n", | 
 | 					start_vpfn, last_vpfn); | 
 | 				return NOTIFY_BAD; | 
 | 			} | 
 |  | 
 | 			freelist = domain_unmap(si_domain, iova->pfn_lo, | 
 | 					       iova->pfn_hi); | 
 |  | 
 | 			rcu_read_lock(); | 
 | 			for_each_active_iommu(iommu, drhd) | 
 | 				iommu_flush_iotlb_psi(iommu, si_domain, | 
 | 					iova->pfn_lo, iova_size(iova), | 
 | 					!freelist, 0); | 
 | 			rcu_read_unlock(); | 
 | 			dma_free_pagelist(freelist); | 
 |  | 
 | 			start_vpfn = iova->pfn_hi + 1; | 
 | 			free_iova_mem(iova); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block intel_iommu_memory_nb = { | 
 | 	.notifier_call = intel_iommu_memory_notifier, | 
 | 	.priority = 0 | 
 | }; | 
 |  | 
 | static void free_all_cpu_cached_iovas(unsigned int cpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < g_num_of_iommus; i++) { | 
 | 		struct intel_iommu *iommu = g_iommus[i]; | 
 | 		struct dmar_domain *domain; | 
 | 		int did; | 
 |  | 
 | 		if (!iommu) | 
 | 			continue; | 
 |  | 
 | 		for (did = 0; did < cap_ndoms(iommu->cap); did++) { | 
 | 			domain = get_iommu_domain(iommu, (u16)did); | 
 |  | 
 | 			if (!domain) | 
 | 				continue; | 
 | 			free_cpu_cached_iovas(cpu, &domain->iovad); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int intel_iommu_cpu_dead(unsigned int cpu) | 
 | { | 
 | 	free_all_cpu_cached_iovas(cpu); | 
 | 	flush_unmaps_timeout(cpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t intel_iommu_show_version(struct device *dev, | 
 | 					struct device_attribute *attr, | 
 | 					char *buf) | 
 | { | 
 | 	struct intel_iommu *iommu = dev_get_drvdata(dev); | 
 | 	u32 ver = readl(iommu->reg + DMAR_VER_REG); | 
 | 	return sprintf(buf, "%d:%d\n", | 
 | 		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); | 
 | } | 
 | static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL); | 
 |  | 
 | static ssize_t intel_iommu_show_address(struct device *dev, | 
 | 					struct device_attribute *attr, | 
 | 					char *buf) | 
 | { | 
 | 	struct intel_iommu *iommu = dev_get_drvdata(dev); | 
 | 	return sprintf(buf, "%llx\n", iommu->reg_phys); | 
 | } | 
 | static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL); | 
 |  | 
 | static ssize_t intel_iommu_show_cap(struct device *dev, | 
 | 				    struct device_attribute *attr, | 
 | 				    char *buf) | 
 | { | 
 | 	struct intel_iommu *iommu = dev_get_drvdata(dev); | 
 | 	return sprintf(buf, "%llx\n", iommu->cap); | 
 | } | 
 | static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL); | 
 |  | 
 | static ssize_t intel_iommu_show_ecap(struct device *dev, | 
 | 				    struct device_attribute *attr, | 
 | 				    char *buf) | 
 | { | 
 | 	struct intel_iommu *iommu = dev_get_drvdata(dev); | 
 | 	return sprintf(buf, "%llx\n", iommu->ecap); | 
 | } | 
 | static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL); | 
 |  | 
 | static ssize_t intel_iommu_show_ndoms(struct device *dev, | 
 | 				      struct device_attribute *attr, | 
 | 				      char *buf) | 
 | { | 
 | 	struct intel_iommu *iommu = dev_get_drvdata(dev); | 
 | 	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); | 
 | } | 
 | static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL); | 
 |  | 
 | static ssize_t intel_iommu_show_ndoms_used(struct device *dev, | 
 | 					   struct device_attribute *attr, | 
 | 					   char *buf) | 
 | { | 
 | 	struct intel_iommu *iommu = dev_get_drvdata(dev); | 
 | 	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, | 
 | 						  cap_ndoms(iommu->cap))); | 
 | } | 
 | static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL); | 
 |  | 
 | static struct attribute *intel_iommu_attrs[] = { | 
 | 	&dev_attr_version.attr, | 
 | 	&dev_attr_address.attr, | 
 | 	&dev_attr_cap.attr, | 
 | 	&dev_attr_ecap.attr, | 
 | 	&dev_attr_domains_supported.attr, | 
 | 	&dev_attr_domains_used.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group intel_iommu_group = { | 
 | 	.name = "intel-iommu", | 
 | 	.attrs = intel_iommu_attrs, | 
 | }; | 
 |  | 
 | const struct attribute_group *intel_iommu_groups[] = { | 
 | 	&intel_iommu_group, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | int __init intel_iommu_init(void) | 
 | { | 
 | 	int ret = -ENODEV; | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct intel_iommu *iommu; | 
 |  | 
 | 	/* VT-d is required for a TXT/tboot launch, so enforce that */ | 
 | 	force_on = tboot_force_iommu(); | 
 |  | 
 | 	if (iommu_init_mempool()) { | 
 | 		if (force_on) | 
 | 			panic("tboot: Failed to initialize iommu memory\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	down_write(&dmar_global_lock); | 
 | 	if (dmar_table_init()) { | 
 | 		if (force_on) | 
 | 			panic("tboot: Failed to initialize DMAR table\n"); | 
 | 		goto out_free_dmar; | 
 | 	} | 
 |  | 
 | 	if (dmar_dev_scope_init() < 0) { | 
 | 		if (force_on) | 
 | 			panic("tboot: Failed to initialize DMAR device scope\n"); | 
 | 		goto out_free_dmar; | 
 | 	} | 
 |  | 
 | 	if (no_iommu || dmar_disabled) | 
 | 		goto out_free_dmar; | 
 |  | 
 | 	if (list_empty(&dmar_rmrr_units)) | 
 | 		pr_info("No RMRR found\n"); | 
 |  | 
 | 	if (list_empty(&dmar_atsr_units)) | 
 | 		pr_info("No ATSR found\n"); | 
 |  | 
 | 	if (dmar_init_reserved_ranges()) { | 
 | 		if (force_on) | 
 | 			panic("tboot: Failed to reserve iommu ranges\n"); | 
 | 		goto out_free_reserved_range; | 
 | 	} | 
 |  | 
 | 	init_no_remapping_devices(); | 
 |  | 
 | 	ret = init_dmars(); | 
 | 	if (ret) { | 
 | 		if (force_on) | 
 | 			panic("tboot: Failed to initialize DMARs\n"); | 
 | 		pr_err("Initialization failed\n"); | 
 | 		goto out_free_reserved_range; | 
 | 	} | 
 | 	up_write(&dmar_global_lock); | 
 | 	pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); | 
 |  | 
 | #ifdef CONFIG_SWIOTLB | 
 | 	swiotlb = 0; | 
 | #endif | 
 | 	dma_ops = &intel_dma_ops; | 
 |  | 
 | 	init_iommu_pm_ops(); | 
 |  | 
 | 	for_each_active_iommu(iommu, drhd) | 
 | 		iommu->iommu_dev = iommu_device_create(NULL, iommu, | 
 | 						       intel_iommu_groups, | 
 | 						       "%s", iommu->name); | 
 |  | 
 | 	bus_set_iommu(&pci_bus_type, &intel_iommu_ops); | 
 | 	bus_register_notifier(&pci_bus_type, &device_nb); | 
 | 	if (si_domain && !hw_pass_through) | 
 | 		register_memory_notifier(&intel_iommu_memory_nb); | 
 | 	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL, | 
 | 			  intel_iommu_cpu_dead); | 
 | 	intel_iommu_enabled = 1; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_reserved_range: | 
 | 	put_iova_domain(&reserved_iova_list); | 
 | out_free_dmar: | 
 | 	intel_iommu_free_dmars(); | 
 | 	up_write(&dmar_global_lock); | 
 | 	iommu_exit_mempool(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) | 
 | { | 
 | 	struct intel_iommu *iommu = opaque; | 
 |  | 
 | 	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * NB - intel-iommu lacks any sort of reference counting for the users of | 
 |  * dependent devices.  If multiple endpoints have intersecting dependent | 
 |  * devices, unbinding the driver from any one of them will possibly leave | 
 |  * the others unable to operate. | 
 |  */ | 
 | static void domain_context_clear(struct intel_iommu *iommu, struct device *dev) | 
 | { | 
 | 	if (!iommu || !dev || !dev_is_pci(dev)) | 
 | 		return; | 
 |  | 
 | 	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu); | 
 | } | 
 |  | 
 | static void __dmar_remove_one_dev_info(struct device_domain_info *info) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	assert_spin_locked(&device_domain_lock); | 
 |  | 
 | 	if (WARN_ON(!info)) | 
 | 		return; | 
 |  | 
 | 	iommu = info->iommu; | 
 |  | 
 | 	if (info->dev) { | 
 | 		iommu_disable_dev_iotlb(info); | 
 | 		domain_context_clear(iommu, info->dev); | 
 | 	} | 
 |  | 
 | 	unlink_domain_info(info); | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	domain_detach_iommu(info->domain, iommu); | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 |  | 
 | 	free_devinfo_mem(info); | 
 | } | 
 |  | 
 | static void dmar_remove_one_dev_info(struct dmar_domain *domain, | 
 | 				     struct device *dev) | 
 | { | 
 | 	struct device_domain_info *info; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	info = dev->archdata.iommu; | 
 | 	__dmar_remove_one_dev_info(info); | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | } | 
 |  | 
 | static int md_domain_init(struct dmar_domain *domain, int guest_width) | 
 | { | 
 | 	int adjust_width; | 
 |  | 
 | 	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN, | 
 | 			DMA_32BIT_PFN); | 
 | 	domain_reserve_special_ranges(domain); | 
 |  | 
 | 	/* calculate AGAW */ | 
 | 	domain->gaw = guest_width; | 
 | 	adjust_width = guestwidth_to_adjustwidth(guest_width); | 
 | 	domain->agaw = width_to_agaw(adjust_width); | 
 |  | 
 | 	domain->iommu_coherency = 0; | 
 | 	domain->iommu_snooping = 0; | 
 | 	domain->iommu_superpage = 0; | 
 | 	domain->max_addr = 0; | 
 |  | 
 | 	/* always allocate the top pgd */ | 
 | 	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); | 
 | 	if (!domain->pgd) | 
 | 		return -ENOMEM; | 
 | 	domain_flush_cache(domain, domain->pgd, PAGE_SIZE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) | 
 | { | 
 | 	struct dmar_domain *dmar_domain; | 
 | 	struct iommu_domain *domain; | 
 |  | 
 | 	if (type != IOMMU_DOMAIN_UNMANAGED) | 
 | 		return NULL; | 
 |  | 
 | 	dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE); | 
 | 	if (!dmar_domain) { | 
 | 		pr_err("Can't allocate dmar_domain\n"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { | 
 | 		pr_err("Domain initialization failed\n"); | 
 | 		domain_exit(dmar_domain); | 
 | 		return NULL; | 
 | 	} | 
 | 	domain_update_iommu_cap(dmar_domain); | 
 |  | 
 | 	domain = &dmar_domain->domain; | 
 | 	domain->geometry.aperture_start = 0; | 
 | 	domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw); | 
 | 	domain->geometry.force_aperture = true; | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | static void intel_iommu_domain_free(struct iommu_domain *domain) | 
 | { | 
 | 	domain_exit(to_dmar_domain(domain)); | 
 | } | 
 |  | 
 | static int intel_iommu_attach_device(struct iommu_domain *domain, | 
 | 				     struct device *dev) | 
 | { | 
 | 	struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
 | 	struct intel_iommu *iommu; | 
 | 	int addr_width; | 
 | 	u8 bus, devfn; | 
 |  | 
 | 	if (device_is_rmrr_locked(dev)) { | 
 | 		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n"); | 
 | 		return -EPERM; | 
 | 	} | 
 |  | 
 | 	/* normally dev is not mapped */ | 
 | 	if (unlikely(domain_context_mapped(dev))) { | 
 | 		struct dmar_domain *old_domain; | 
 |  | 
 | 		old_domain = find_domain(dev); | 
 | 		if (old_domain) { | 
 | 			rcu_read_lock(); | 
 | 			dmar_remove_one_dev_info(old_domain, dev); | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			if (!domain_type_is_vm_or_si(old_domain) && | 
 | 			     list_empty(&old_domain->devices)) | 
 | 				domain_exit(old_domain); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if (!iommu) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* check if this iommu agaw is sufficient for max mapped address */ | 
 | 	addr_width = agaw_to_width(iommu->agaw); | 
 | 	if (addr_width > cap_mgaw(iommu->cap)) | 
 | 		addr_width = cap_mgaw(iommu->cap); | 
 |  | 
 | 	if (dmar_domain->max_addr > (1LL << addr_width)) { | 
 | 		pr_err("%s: iommu width (%d) is not " | 
 | 		       "sufficient for the mapped address (%llx)\n", | 
 | 		       __func__, addr_width, dmar_domain->max_addr); | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	dmar_domain->gaw = addr_width; | 
 |  | 
 | 	/* | 
 | 	 * Knock out extra levels of page tables if necessary | 
 | 	 */ | 
 | 	while (iommu->agaw < dmar_domain->agaw) { | 
 | 		struct dma_pte *pte; | 
 |  | 
 | 		pte = dmar_domain->pgd; | 
 | 		if (dma_pte_present(pte)) { | 
 | 			dmar_domain->pgd = (struct dma_pte *) | 
 | 				phys_to_virt(dma_pte_addr(pte)); | 
 | 			free_pgtable_page(pte); | 
 | 		} | 
 | 		dmar_domain->agaw--; | 
 | 	} | 
 |  | 
 | 	return domain_add_dev_info(dmar_domain, dev); | 
 | } | 
 |  | 
 | static void intel_iommu_detach_device(struct iommu_domain *domain, | 
 | 				      struct device *dev) | 
 | { | 
 | 	dmar_remove_one_dev_info(to_dmar_domain(domain), dev); | 
 | } | 
 |  | 
 | static int intel_iommu_map(struct iommu_domain *domain, | 
 | 			   unsigned long iova, phys_addr_t hpa, | 
 | 			   size_t size, int iommu_prot) | 
 | { | 
 | 	struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
 | 	u64 max_addr; | 
 | 	int prot = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (iommu_prot & IOMMU_READ) | 
 | 		prot |= DMA_PTE_READ; | 
 | 	if (iommu_prot & IOMMU_WRITE) | 
 | 		prot |= DMA_PTE_WRITE; | 
 | 	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) | 
 | 		prot |= DMA_PTE_SNP; | 
 |  | 
 | 	max_addr = iova + size; | 
 | 	if (dmar_domain->max_addr < max_addr) { | 
 | 		u64 end; | 
 |  | 
 | 		/* check if minimum agaw is sufficient for mapped address */ | 
 | 		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; | 
 | 		if (end < max_addr) { | 
 | 			pr_err("%s: iommu width (%d) is not " | 
 | 			       "sufficient for the mapped address (%llx)\n", | 
 | 			       __func__, dmar_domain->gaw, max_addr); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		dmar_domain->max_addr = max_addr; | 
 | 	} | 
 | 	/* Round up size to next multiple of PAGE_SIZE, if it and | 
 | 	   the low bits of hpa would take us onto the next page */ | 
 | 	size = aligned_nrpages(hpa, size); | 
 | 	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, | 
 | 				 hpa >> VTD_PAGE_SHIFT, size, prot); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static size_t intel_iommu_unmap(struct iommu_domain *domain, | 
 | 				unsigned long iova, size_t size) | 
 | { | 
 | 	struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
 | 	struct page *freelist = NULL; | 
 | 	struct intel_iommu *iommu; | 
 | 	unsigned long start_pfn, last_pfn; | 
 | 	unsigned int npages; | 
 | 	int iommu_id, level = 0; | 
 |  | 
 | 	/* Cope with horrid API which requires us to unmap more than the | 
 | 	   size argument if it happens to be a large-page mapping. */ | 
 | 	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); | 
 |  | 
 | 	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) | 
 | 		size = VTD_PAGE_SIZE << level_to_offset_bits(level); | 
 |  | 
 | 	start_pfn = iova >> VTD_PAGE_SHIFT; | 
 | 	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; | 
 |  | 
 | 	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn); | 
 |  | 
 | 	npages = last_pfn - start_pfn + 1; | 
 |  | 
 | 	for_each_domain_iommu(iommu_id, dmar_domain) { | 
 | 		iommu = g_iommus[iommu_id]; | 
 |  | 
 | 		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain, | 
 | 				      start_pfn, npages, !freelist, 0); | 
 | 	} | 
 |  | 
 | 	dma_free_pagelist(freelist); | 
 |  | 
 | 	if (dmar_domain->max_addr == iova + size) | 
 | 		dmar_domain->max_addr = iova; | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, | 
 | 					    dma_addr_t iova) | 
 | { | 
 | 	struct dmar_domain *dmar_domain = to_dmar_domain(domain); | 
 | 	struct dma_pte *pte; | 
 | 	int level = 0; | 
 | 	u64 phys = 0; | 
 |  | 
 | 	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); | 
 | 	if (pte) | 
 | 		phys = dma_pte_addr(pte); | 
 |  | 
 | 	return phys; | 
 | } | 
 |  | 
 | static bool intel_iommu_capable(enum iommu_cap cap) | 
 | { | 
 | 	if (cap == IOMMU_CAP_CACHE_COHERENCY) | 
 | 		return domain_update_iommu_snooping(NULL) == 1; | 
 | 	if (cap == IOMMU_CAP_INTR_REMAP) | 
 | 		return irq_remapping_enabled == 1; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int intel_iommu_add_device(struct device *dev) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	struct iommu_group *group; | 
 | 	u8 bus, devfn; | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if (!iommu) | 
 | 		return -ENODEV; | 
 |  | 
 | 	iommu_device_link(iommu->iommu_dev, dev); | 
 |  | 
 | 	group = iommu_group_get_for_dev(dev); | 
 |  | 
 | 	if (IS_ERR(group)) | 
 | 		return PTR_ERR(group); | 
 |  | 
 | 	iommu_group_put(group); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void intel_iommu_remove_device(struct device *dev) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	u8 bus, devfn; | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if (!iommu) | 
 | 		return; | 
 |  | 
 | 	iommu_group_remove_device(dev); | 
 |  | 
 | 	iommu_device_unlink(iommu->iommu_dev, dev); | 
 | } | 
 |  | 
 | static void intel_iommu_get_resv_regions(struct device *device, | 
 | 					 struct list_head *head) | 
 | { | 
 | 	struct iommu_resv_region *reg; | 
 | 	struct dmar_rmrr_unit *rmrr; | 
 | 	struct device *i_dev; | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_rmrr_units(rmrr) { | 
 | 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, | 
 | 					  i, i_dev) { | 
 | 			if (i_dev != device) | 
 | 				continue; | 
 |  | 
 | 			list_add_tail(&rmrr->resv->list, head); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, | 
 | 				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, | 
 | 				      0, IOMMU_RESV_RESERVED); | 
 | 	if (!reg) | 
 | 		return; | 
 | 	list_add_tail(®->list, head); | 
 | } | 
 |  | 
 | static void intel_iommu_put_resv_regions(struct device *dev, | 
 | 					 struct list_head *head) | 
 | { | 
 | 	struct iommu_resv_region *entry, *next; | 
 |  | 
 | 	list_for_each_entry_safe(entry, next, head, list) { | 
 | 		if (entry->type == IOMMU_RESV_RESERVED) | 
 | 			kfree(entry); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU_SVM | 
 | #define MAX_NR_PASID_BITS (20) | 
 | static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu) | 
 | { | 
 | 	/* | 
 | 	 * Convert ecap_pss to extend context entry pts encoding, also | 
 | 	 * respect the soft pasid_max value set by the iommu. | 
 | 	 * - number of PASID bits = ecap_pss + 1 | 
 | 	 * - number of PASID table entries = 2^(pts + 5) | 
 | 	 * Therefore, pts = ecap_pss - 4 | 
 | 	 * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15 | 
 | 	 */ | 
 | 	if (ecap_pss(iommu->ecap) < 5) | 
 | 		return 0; | 
 |  | 
 | 	/* pasid_max is encoded as actual number of entries not the bits */ | 
 | 	return find_first_bit((unsigned long *)&iommu->pasid_max, | 
 | 			MAX_NR_PASID_BITS) - 5; | 
 | } | 
 |  | 
 | int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev) | 
 | { | 
 | 	struct device_domain_info *info; | 
 | 	struct context_entry *context; | 
 | 	struct dmar_domain *domain; | 
 | 	unsigned long flags; | 
 | 	u64 ctx_lo; | 
 | 	int ret; | 
 |  | 
 | 	domain = get_valid_domain_for_dev(sdev->dev); | 
 | 	if (!domain) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	spin_lock(&iommu->lock); | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	info = sdev->dev->archdata.iommu; | 
 | 	if (!info || !info->pasid_supported) | 
 | 		goto out; | 
 |  | 
 | 	context = iommu_context_addr(iommu, info->bus, info->devfn, 0); | 
 | 	if (WARN_ON(!context)) | 
 | 		goto out; | 
 |  | 
 | 	ctx_lo = context[0].lo; | 
 |  | 
 | 	sdev->did = domain->iommu_did[iommu->seq_id]; | 
 | 	sdev->sid = PCI_DEVID(info->bus, info->devfn); | 
 |  | 
 | 	if (!(ctx_lo & CONTEXT_PASIDE)) { | 
 | 		context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table); | 
 | 		context[1].lo = (u64)virt_to_phys(iommu->pasid_table) | | 
 | 			intel_iommu_get_pts(iommu); | 
 |  | 
 | 		wmb(); | 
 | 		/* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both | 
 | 		 * extended to permit requests-with-PASID if the PASIDE bit | 
 | 		 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH, | 
 | 		 * however, the PASIDE bit is ignored and requests-with-PASID | 
 | 		 * are unconditionally blocked. Which makes less sense. | 
 | 		 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new | 
 | 		 * "guest mode" translation types depending on whether ATS | 
 | 		 * is available or not. Annoyingly, we can't use the new | 
 | 		 * modes *unless* PASIDE is set. */ | 
 | 		if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) { | 
 | 			ctx_lo &= ~CONTEXT_TT_MASK; | 
 | 			if (info->ats_supported) | 
 | 				ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2; | 
 | 			else | 
 | 				ctx_lo |= CONTEXT_TT_PT_PASID << 2; | 
 | 		} | 
 | 		ctx_lo |= CONTEXT_PASIDE; | 
 | 		if (iommu->pasid_state_table) | 
 | 			ctx_lo |= CONTEXT_DINVE; | 
 | 		if (info->pri_supported) | 
 | 			ctx_lo |= CONTEXT_PRS; | 
 | 		context[0].lo = ctx_lo; | 
 | 		wmb(); | 
 | 		iommu->flush.flush_context(iommu, sdev->did, sdev->sid, | 
 | 					   DMA_CCMD_MASK_NOBIT, | 
 | 					   DMA_CCMD_DEVICE_INVL); | 
 | 	} | 
 |  | 
 | 	/* Enable PASID support in the device, if it wasn't already */ | 
 | 	if (!info->pasid_enabled) | 
 | 		iommu_enable_dev_iotlb(info); | 
 |  | 
 | 	if (info->ats_enabled) { | 
 | 		sdev->dev_iotlb = 1; | 
 | 		sdev->qdep = info->ats_qdep; | 
 | 		if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS) | 
 | 			sdev->qdep = 0; | 
 | 	} | 
 | 	ret = 0; | 
 |  | 
 |  out: | 
 | 	spin_unlock(&iommu->lock); | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct intel_iommu *intel_svm_device_to_iommu(struct device *dev) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	u8 bus, devfn; | 
 |  | 
 | 	if (iommu_dummy(dev)) { | 
 | 		dev_warn(dev, | 
 | 			 "No IOMMU translation for device; cannot enable SVM\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	iommu = device_to_iommu(dev, &bus, &devfn); | 
 | 	if ((!iommu)) { | 
 | 		dev_err(dev, "No IOMMU for device; cannot enable SVM\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (!iommu->pasid_table) { | 
 | 		dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return iommu; | 
 | } | 
 | #endif /* CONFIG_INTEL_IOMMU_SVM */ | 
 |  | 
 | static const struct iommu_ops intel_iommu_ops = { | 
 | 	.capable		= intel_iommu_capable, | 
 | 	.domain_alloc		= intel_iommu_domain_alloc, | 
 | 	.domain_free		= intel_iommu_domain_free, | 
 | 	.attach_dev		= intel_iommu_attach_device, | 
 | 	.detach_dev		= intel_iommu_detach_device, | 
 | 	.map			= intel_iommu_map, | 
 | 	.unmap			= intel_iommu_unmap, | 
 | 	.map_sg			= default_iommu_map_sg, | 
 | 	.iova_to_phys		= intel_iommu_iova_to_phys, | 
 | 	.add_device		= intel_iommu_add_device, | 
 | 	.remove_device		= intel_iommu_remove_device, | 
 | 	.get_resv_regions	= intel_iommu_get_resv_regions, | 
 | 	.put_resv_regions	= intel_iommu_put_resv_regions, | 
 | 	.device_group		= pci_device_group, | 
 | 	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES, | 
 | }; | 
 |  | 
 | static void quirk_iommu_g4x_gfx(struct pci_dev *dev) | 
 | { | 
 | 	/* G4x/GM45 integrated gfx dmar support is totally busted. */ | 
 | 	pr_info("Disabling IOMMU for graphics on this chipset\n"); | 
 | 	dmar_map_gfx = 0; | 
 | } | 
 |  | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx); | 
 |  | 
 | static void quirk_iommu_rwbf(struct pci_dev *dev) | 
 | { | 
 | 	/* | 
 | 	 * Mobile 4 Series Chipset neglects to set RWBF capability, | 
 | 	 * but needs it. Same seems to hold for the desktop versions. | 
 | 	 */ | 
 | 	pr_info("Forcing write-buffer flush capability\n"); | 
 | 	rwbf_quirk = 1; | 
 | } | 
 |  | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); | 
 |  | 
 | #define GGC 0x52 | 
 | #define GGC_MEMORY_SIZE_MASK	(0xf << 8) | 
 | #define GGC_MEMORY_SIZE_NONE	(0x0 << 8) | 
 | #define GGC_MEMORY_SIZE_1M	(0x1 << 8) | 
 | #define GGC_MEMORY_SIZE_2M	(0x3 << 8) | 
 | #define GGC_MEMORY_VT_ENABLED	(0x8 << 8) | 
 | #define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8) | 
 | #define GGC_MEMORY_SIZE_3M_VT	(0xa << 8) | 
 | #define GGC_MEMORY_SIZE_4M_VT	(0xb << 8) | 
 |  | 
 | static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) | 
 | { | 
 | 	unsigned short ggc; | 
 |  | 
 | 	if (pci_read_config_word(dev, GGC, &ggc)) | 
 | 		return; | 
 |  | 
 | 	if (!(ggc & GGC_MEMORY_VT_ENABLED)) { | 
 | 		pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); | 
 | 		dmar_map_gfx = 0; | 
 | 	} else if (dmar_map_gfx) { | 
 | 		/* we have to ensure the gfx device is idle before we flush */ | 
 | 		pr_info("Disabling batched IOTLB flush on Ironlake\n"); | 
 | 		intel_iommu_strict = 1; | 
 |        } | 
 | } | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); | 
 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); | 
 |  | 
 | /* On Tylersburg chipsets, some BIOSes have been known to enable the | 
 |    ISOCH DMAR unit for the Azalia sound device, but not give it any | 
 |    TLB entries, which causes it to deadlock. Check for that.  We do | 
 |    this in a function called from init_dmars(), instead of in a PCI | 
 |    quirk, because we don't want to print the obnoxious "BIOS broken" | 
 |    message if VT-d is actually disabled. | 
 | */ | 
 | static void __init check_tylersburg_isoch(void) | 
 | { | 
 | 	struct pci_dev *pdev; | 
 | 	uint32_t vtisochctrl; | 
 |  | 
 | 	/* If there's no Azalia in the system anyway, forget it. */ | 
 | 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); | 
 | 	if (!pdev) | 
 | 		return; | 
 | 	pci_dev_put(pdev); | 
 |  | 
 | 	/* System Management Registers. Might be hidden, in which case | 
 | 	   we can't do the sanity check. But that's OK, because the | 
 | 	   known-broken BIOSes _don't_ actually hide it, so far. */ | 
 | 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); | 
 | 	if (!pdev) | 
 | 		return; | 
 |  | 
 | 	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { | 
 | 		pci_dev_put(pdev); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pci_dev_put(pdev); | 
 |  | 
 | 	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ | 
 | 	if (vtisochctrl & 1) | 
 | 		return; | 
 |  | 
 | 	/* Drop all bits other than the number of TLB entries */ | 
 | 	vtisochctrl &= 0x1c; | 
 |  | 
 | 	/* If we have the recommended number of TLB entries (16), fine. */ | 
 | 	if (vtisochctrl == 0x10) | 
 | 		return; | 
 |  | 
 | 	/* Zero TLB entries? You get to ride the short bus to school. */ | 
 | 	if (!vtisochctrl) { | 
 | 		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" | 
 | 		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | 
 | 		     dmi_get_system_info(DMI_BIOS_VENDOR), | 
 | 		     dmi_get_system_info(DMI_BIOS_VERSION), | 
 | 		     dmi_get_system_info(DMI_PRODUCT_VERSION)); | 
 | 		iommu_identity_mapping |= IDENTMAP_AZALIA; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", | 
 | 	       vtisochctrl); | 
 | } |