| // SPDX-License-Identifier: GPL-2.0 | 
 | // Copyright (c) 2017-2018 MediaTek Inc. | 
 |  | 
 | /* | 
 |  * Driver for MediaTek High-Speed DMA Controller | 
 |  * | 
 |  * Author: Sean Wang <sean.wang@mediatek.com> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/err.h> | 
 | #include <linux/iopoll.h> | 
 | #include <linux/list.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/of_dma.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/refcount.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include "../virt-dma.h" | 
 |  | 
 | #define MTK_HSDMA_USEC_POLL		20 | 
 | #define MTK_HSDMA_TIMEOUT_POLL		200000 | 
 | #define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | 
 |  | 
 | /* The default number of virtual channel */ | 
 | #define MTK_HSDMA_NR_VCHANS		3 | 
 |  | 
 | /* Only one physical channel supported */ | 
 | #define MTK_HSDMA_NR_MAX_PCHANS		1 | 
 |  | 
 | /* Macro for physical descriptor (PD) manipulation */ | 
 | /* The number of PD which must be 2 of power */ | 
 | #define MTK_DMA_SIZE			64 | 
 | #define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1)) | 
 | #define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1)) | 
 | #define MTK_HSDMA_MAX_LEN		0x3f80 | 
 | #define MTK_HSDMA_ALIGN_SIZE		4 | 
 | #define MTK_HSDMA_PLEN_MASK		0x3fff | 
 | #define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16) | 
 | #define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK) | 
 |  | 
 | /* Registers for underlying ring manipulation */ | 
 | #define MTK_HSDMA_TX_BASE		0x0 | 
 | #define MTK_HSDMA_TX_CNT		0x4 | 
 | #define MTK_HSDMA_TX_CPU		0x8 | 
 | #define MTK_HSDMA_TX_DMA		0xc | 
 | #define MTK_HSDMA_RX_BASE		0x100 | 
 | #define MTK_HSDMA_RX_CNT		0x104 | 
 | #define MTK_HSDMA_RX_CPU		0x108 | 
 | #define MTK_HSDMA_RX_DMA		0x10c | 
 |  | 
 | /* Registers for global setup */ | 
 | #define MTK_HSDMA_GLO			0x204 | 
 | #define MTK_HSDMA_GLO_MULTI_DMA		BIT(10) | 
 | #define MTK_HSDMA_TX_WB_DDONE		BIT(6) | 
 | #define MTK_HSDMA_BURST_64BYTES		(0x2 << 4) | 
 | #define MTK_HSDMA_GLO_RX_BUSY		BIT(3) | 
 | #define MTK_HSDMA_GLO_RX_DMA		BIT(2) | 
 | #define MTK_HSDMA_GLO_TX_BUSY		BIT(1) | 
 | #define MTK_HSDMA_GLO_TX_DMA		BIT(0) | 
 | #define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\ | 
 | 					 MTK_HSDMA_GLO_RX_DMA) | 
 | #define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \ | 
 | 					 MTK_HSDMA_GLO_TX_BUSY) | 
 | #define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \ | 
 | 					 MTK_HSDMA_GLO_RX_DMA | \ | 
 | 					 MTK_HSDMA_TX_WB_DDONE | \ | 
 | 					 MTK_HSDMA_BURST_64BYTES | \ | 
 | 					 MTK_HSDMA_GLO_MULTI_DMA) | 
 |  | 
 | /* Registers for reset */ | 
 | #define MTK_HSDMA_RESET			0x208 | 
 | #define MTK_HSDMA_RST_TX		BIT(0) | 
 | #define MTK_HSDMA_RST_RX		BIT(16) | 
 |  | 
 | /* Registers for interrupt control */ | 
 | #define MTK_HSDMA_DLYINT		0x20c | 
 | #define MTK_HSDMA_RXDLY_INT_EN		BIT(15) | 
 |  | 
 | /* Interrupt fires when the pending number's more than the specified */ | 
 | #define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8) | 
 |  | 
 | /* Interrupt fires when the pending time's more than the specified in 20 us */ | 
 | #define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f) | 
 | #define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \ | 
 | 					 MTK_HSDMA_RXMAX_PINT(20) | \ | 
 | 					 MTK_HSDMA_RXMAX_PTIME(20)) | 
 | #define MTK_HSDMA_INT_STATUS		0x220 | 
 | #define MTK_HSDMA_INT_ENABLE		0x228 | 
 | #define MTK_HSDMA_INT_RXDONE		BIT(16) | 
 |  | 
 | enum mtk_hsdma_vdesc_flag { | 
 | 	MTK_HSDMA_VDESC_FINISHED	= 0x01, | 
 | }; | 
 |  | 
 | #define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED) | 
 |  | 
 | /** | 
 |  * struct mtk_hsdma_pdesc - This is the struct holding info describing physical | 
 |  *			    descriptor (PD) and its placement must be kept at | 
 |  *			    4-bytes alignment in little endian order. | 
 |  * @desc1:		    | The control pad used to indicate hardware how to | 
 |  * @desc2:		    | deal with the descriptor such as source and | 
 |  * @desc3:		    | destination address and data length. The maximum | 
 |  * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes | 
 |  */ | 
 | struct mtk_hsdma_pdesc { | 
 | 	__le32 desc1; | 
 | 	__le32 desc2; | 
 | 	__le32 desc3; | 
 | 	__le32 desc4; | 
 | } __packed __aligned(4); | 
 |  | 
 | /** | 
 |  * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual | 
 |  *			    descriptor (VD) | 
 |  * @vd:			    An instance for struct virt_dma_desc | 
 |  * @len:		    The total data size device wants to move | 
 |  * @residue:		    The remaining data size device will move | 
 |  * @dest:		    The destination address device wants to move to | 
 |  * @src:		    The source address device wants to move from | 
 |  */ | 
 | struct mtk_hsdma_vdesc { | 
 | 	struct virt_dma_desc vd; | 
 | 	size_t len; | 
 | 	size_t residue; | 
 | 	dma_addr_t dest; | 
 | 	dma_addr_t src; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_hsdma_cb - This is the struct holding extra info required for RX | 
 |  *			 ring to know what relevant VD the the PD is being | 
 |  *			 mapped to. | 
 |  * @vd:			 Pointer to the relevant VD. | 
 |  * @flag:		 Flag indicating what action should be taken when VD | 
 |  *			 is completed. | 
 |  */ | 
 | struct mtk_hsdma_cb { | 
 | 	struct virt_dma_desc *vd; | 
 | 	enum mtk_hsdma_vdesc_flag flag; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_hsdma_ring - This struct holds info describing underlying ring | 
 |  *			   space | 
 |  * @txd:		   The descriptor TX ring which describes DMA source | 
 |  *			   information | 
 |  * @rxd:		   The descriptor RX ring which describes DMA | 
 |  *			   destination information | 
 |  * @cb:			   The extra information pointed at by RX ring | 
 |  * @tphys:		   The physical addr of TX ring | 
 |  * @rphys:		   The physical addr of RX ring | 
 |  * @cur_tptr:		   Pointer to the next free descriptor used by the host | 
 |  * @cur_rptr:		   Pointer to the last done descriptor by the device | 
 |  */ | 
 | struct mtk_hsdma_ring { | 
 | 	struct mtk_hsdma_pdesc *txd; | 
 | 	struct mtk_hsdma_pdesc *rxd; | 
 | 	struct mtk_hsdma_cb *cb; | 
 | 	dma_addr_t tphys; | 
 | 	dma_addr_t rphys; | 
 | 	u16 cur_tptr; | 
 | 	u16 cur_rptr; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_hsdma_pchan - This is the struct holding info describing physical | 
 |  *			   channel (PC) | 
 |  * @ring:		   An instance for the underlying ring | 
 |  * @sz_ring:		   Total size allocated for the ring | 
 |  * @nr_free:		   Total number of free rooms in the ring. It would | 
 |  *			   be accessed and updated frequently between IRQ | 
 |  *			   context and user context to reflect whether ring | 
 |  *			   can accept requests from VD. | 
 |  */ | 
 | struct mtk_hsdma_pchan { | 
 | 	struct mtk_hsdma_ring ring; | 
 | 	size_t sz_ring; | 
 | 	atomic_t nr_free; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_hsdma_vchan - This is the struct holding info describing virtual | 
 |  *			   channel (VC) | 
 |  * @vc:			   An instance for struct virt_dma_chan | 
 |  * @issue_completion:	   The wait for all issued descriptors completited | 
 |  * @issue_synchronize:	   Bool indicating channel synchronization starts | 
 |  * @desc_hw_processing:	   List those descriptors the hardware is processing, | 
 |  *			   which is protected by vc.lock | 
 |  */ | 
 | struct mtk_hsdma_vchan { | 
 | 	struct virt_dma_chan vc; | 
 | 	struct completion issue_completion; | 
 | 	bool issue_synchronize; | 
 | 	struct list_head desc_hw_processing; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_hsdma_soc - This is the struct holding differences among SoCs | 
 |  * @ddone:		  Bit mask for DDONE | 
 |  * @ls0:		  Bit mask for LS0 | 
 |  */ | 
 | struct mtk_hsdma_soc { | 
 | 	__le32 ddone; | 
 | 	__le32 ls0; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_hsdma_device - This is the struct holding info describing HSDMA | 
 |  *			     device | 
 |  * @ddev:		     An instance for struct dma_device | 
 |  * @base:		     The mapped register I/O base | 
 |  * @clk:		     The clock that device internal is using | 
 |  * @irq:		     The IRQ that device are using | 
 |  * @dma_requests:	     The number of VCs the device supports to | 
 |  * @vc:			     The pointer to all available VCs | 
 |  * @pc:			     The pointer to the underlying PC | 
 |  * @pc_refcnt:		     Track how many VCs are using the PC | 
 |  * @lock:		     Lock protect agaisting multiple VCs access PC | 
 |  * @soc:		     The pointer to area holding differences among | 
 |  *			     vaious platform | 
 |  */ | 
 | struct mtk_hsdma_device { | 
 | 	struct dma_device ddev; | 
 | 	void __iomem *base; | 
 | 	struct clk *clk; | 
 | 	u32 irq; | 
 |  | 
 | 	u32 dma_requests; | 
 | 	struct mtk_hsdma_vchan *vc; | 
 | 	struct mtk_hsdma_pchan *pc; | 
 | 	refcount_t pc_refcnt; | 
 |  | 
 | 	/* Lock used to protect against multiple VCs access PC */ | 
 | 	spinlock_t lock; | 
 |  | 
 | 	const struct mtk_hsdma_soc *soc; | 
 | }; | 
 |  | 
 | static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan) | 
 | { | 
 | 	return container_of(chan->device, struct mtk_hsdma_device, ddev); | 
 | } | 
 |  | 
 | static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan) | 
 | { | 
 | 	return container_of(chan, struct mtk_hsdma_vchan, vc.chan); | 
 | } | 
 |  | 
 | static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd) | 
 | { | 
 | 	return container_of(vd, struct mtk_hsdma_vdesc, vd); | 
 | } | 
 |  | 
 | static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma) | 
 | { | 
 | 	return hsdma->ddev.dev; | 
 | } | 
 |  | 
 | static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg) | 
 | { | 
 | 	return readl(hsdma->base + reg); | 
 | } | 
 |  | 
 | static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) | 
 | { | 
 | 	writel(val, hsdma->base + reg); | 
 | } | 
 |  | 
 | static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg, | 
 | 			u32 mask, u32 set) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = mtk_dma_read(hsdma, reg); | 
 | 	val &= ~mask; | 
 | 	val |= set; | 
 | 	mtk_dma_write(hsdma, reg, val); | 
 | } | 
 |  | 
 | static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) | 
 | { | 
 | 	mtk_dma_rmw(hsdma, reg, 0, val); | 
 | } | 
 |  | 
 | static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) | 
 | { | 
 | 	mtk_dma_rmw(hsdma, reg, val, 0); | 
 | } | 
 |  | 
 | static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd) | 
 | { | 
 | 	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd)); | 
 | } | 
 |  | 
 | static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma) | 
 | { | 
 | 	u32 status = 0; | 
 |  | 
 | 	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status, | 
 | 				  !(status & MTK_HSDMA_GLO_BUSY), | 
 | 				  MTK_HSDMA_USEC_POLL, | 
 | 				  MTK_HSDMA_TIMEOUT_POLL); | 
 | } | 
 |  | 
 | static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma, | 
 | 				 struct mtk_hsdma_pchan *pc) | 
 | { | 
 | 	struct mtk_hsdma_ring *ring = &pc->ring; | 
 | 	int err; | 
 |  | 
 | 	memset(pc, 0, sizeof(*pc)); | 
 |  | 
 | 	/* | 
 | 	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring | 
 | 	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring. | 
 | 	 */ | 
 | 	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd); | 
 | 	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring, | 
 | 				       &ring->tphys, GFP_NOWAIT); | 
 | 	if (!ring->txd) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ring->rxd = &ring->txd[MTK_DMA_SIZE]; | 
 | 	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd); | 
 | 	ring->cur_tptr = 0; | 
 | 	ring->cur_rptr = MTK_DMA_SIZE - 1; | 
 |  | 
 | 	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT); | 
 | 	if (!ring->cb) { | 
 | 		err = -ENOMEM; | 
 | 		goto err_free_dma; | 
 | 	} | 
 |  | 
 | 	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1); | 
 |  | 
 | 	/* Disable HSDMA and wait for the completion */ | 
 | 	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); | 
 | 	err = mtk_hsdma_busy_wait(hsdma); | 
 | 	if (err) | 
 | 		goto err_free_cb; | 
 |  | 
 | 	/* Reset */ | 
 | 	mtk_dma_set(hsdma, MTK_HSDMA_RESET, | 
 | 		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX); | 
 | 	mtk_dma_clr(hsdma, MTK_HSDMA_RESET, | 
 | 		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX); | 
 |  | 
 | 	/* Setup HSDMA initial pointer in the ring */ | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0); | 
 |  | 
 | 	/* Enable HSDMA */ | 
 | 	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); | 
 |  | 
 | 	/* Setup delayed interrupt */ | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT); | 
 |  | 
 | 	/* Enable interrupt */ | 
 | 	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_free_cb: | 
 | 	kfree(ring->cb); | 
 |  | 
 | err_free_dma: | 
 | 	dma_free_coherent(hsdma2dev(hsdma), | 
 | 			  pc->sz_ring, ring->txd, ring->tphys); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma, | 
 | 				 struct mtk_hsdma_pchan *pc) | 
 | { | 
 | 	struct mtk_hsdma_ring *ring = &pc->ring; | 
 |  | 
 | 	/* Disable HSDMA and then wait for the completion */ | 
 | 	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); | 
 | 	mtk_hsdma_busy_wait(hsdma); | 
 |  | 
 | 	/* Reset pointer in the ring */ | 
 | 	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1); | 
 |  | 
 | 	kfree(ring->cb); | 
 |  | 
 | 	dma_free_coherent(hsdma2dev(hsdma), | 
 | 			  pc->sz_ring, ring->txd, ring->tphys); | 
 | } | 
 |  | 
 | static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma, | 
 | 					 struct mtk_hsdma_pchan *pc, | 
 | 					 struct mtk_hsdma_vdesc *hvd) | 
 | { | 
 | 	struct mtk_hsdma_ring *ring = &pc->ring; | 
 | 	struct mtk_hsdma_pdesc *txd, *rxd; | 
 | 	u16 reserved, prev, tlen, num_sgs; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Protect against PC is accessed by multiple VCs simultaneously */ | 
 | 	spin_lock_irqsave(&hsdma->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Reserve rooms, where pc->nr_free is used to track how many free | 
 | 	 * rooms in the ring being updated in user and IRQ context. | 
 | 	 */ | 
 | 	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN); | 
 | 	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free)); | 
 |  | 
 | 	if (!reserved) { | 
 | 		spin_unlock_irqrestore(&hsdma->lock, flags); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	atomic_sub(reserved, &pc->nr_free); | 
 |  | 
 | 	while (reserved--) { | 
 | 		/* Limit size by PD capability for valid data moving */ | 
 | 		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ? | 
 | 		       MTK_HSDMA_MAX_LEN : hvd->len; | 
 |  | 
 | 		/* | 
 | 		 * Setup PDs using the remaining VD info mapped on those | 
 | 		 * reserved rooms. And since RXD is shared memory between the | 
 | 		 * host and the device allocated by dma_alloc_coherent call, | 
 | 		 * the helper macro WRITE_ONCE can ensure the data written to | 
 | 		 * RAM would really happens. | 
 | 		 */ | 
 | 		txd = &ring->txd[ring->cur_tptr]; | 
 | 		WRITE_ONCE(txd->desc1, hvd->src); | 
 | 		WRITE_ONCE(txd->desc2, | 
 | 			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen)); | 
 |  | 
 | 		rxd = &ring->rxd[ring->cur_tptr]; | 
 | 		WRITE_ONCE(rxd->desc1, hvd->dest); | 
 | 		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen)); | 
 |  | 
 | 		/* Associate VD, the PD belonged to */ | 
 | 		ring->cb[ring->cur_tptr].vd = &hvd->vd; | 
 |  | 
 | 		/* Move forward the pointer of TX ring */ | 
 | 		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr, | 
 | 							 MTK_DMA_SIZE); | 
 |  | 
 | 		/* Update VD with remaining data */ | 
 | 		hvd->src  += tlen; | 
 | 		hvd->dest += tlen; | 
 | 		hvd->len  -= tlen; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Tagging flag for the last PD for VD will be responsible for | 
 | 	 * completing VD. | 
 | 	 */ | 
 | 	if (!hvd->len) { | 
 | 		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE); | 
 | 		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED; | 
 | 	} | 
 |  | 
 | 	/* Ensure all changes indeed done before we're going on */ | 
 | 	wmb(); | 
 |  | 
 | 	/* | 
 | 	 * Updating into hardware the pointer of TX ring lets HSDMA to take | 
 | 	 * action for those pending PDs. | 
 | 	 */ | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr); | 
 |  | 
 | 	spin_unlock_irqrestore(&hsdma->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma, | 
 | 					  struct mtk_hsdma_vchan *hvc) | 
 | { | 
 | 	struct virt_dma_desc *vd, *vd2; | 
 | 	int err; | 
 |  | 
 | 	lockdep_assert_held(&hvc->vc.lock); | 
 |  | 
 | 	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) { | 
 | 		struct mtk_hsdma_vdesc *hvd; | 
 |  | 
 | 		hvd = to_hsdma_vdesc(vd); | 
 |  | 
 | 		/* Map VD into PC and all VCs shares a single PC */ | 
 | 		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd); | 
 |  | 
 | 		/* | 
 | 		 * Move VD from desc_issued to desc_hw_processing when entire | 
 | 		 * VD is fit into available PDs. Otherwise, the uncompleted | 
 | 		 * VDs would stay in list desc_issued and then restart the | 
 | 		 * processing as soon as possible once underlying ring space | 
 | 		 * got freed. | 
 | 		 */ | 
 | 		if (err == -ENOSPC || hvd->len > 0) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * The extra list desc_hw_processing is used because | 
 | 		 * hardware can't provide sufficient information allowing us | 
 | 		 * to know what VDs are still working on the underlying ring. | 
 | 		 * Through the additional list, it can help us to implement | 
 | 		 * terminate_all, residue calculation and such thing needed | 
 | 		 * to know detail descriptor status on the hardware. | 
 | 		 */ | 
 | 		list_move_tail(&vd->node, &hvc->desc_hw_processing); | 
 | 	} | 
 | } | 
 |  | 
 | static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma) | 
 | { | 
 | 	struct mtk_hsdma_vchan *hvc; | 
 | 	struct mtk_hsdma_pdesc *rxd; | 
 | 	struct mtk_hsdma_vdesc *hvd; | 
 | 	struct mtk_hsdma_pchan *pc; | 
 | 	struct mtk_hsdma_cb *cb; | 
 | 	int i = MTK_DMA_SIZE; | 
 | 	__le32 desc2; | 
 | 	u32 status; | 
 | 	u16 next; | 
 |  | 
 | 	/* Read IRQ status */ | 
 | 	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS); | 
 | 	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE))) | 
 | 		goto rx_done; | 
 |  | 
 | 	pc = hsdma->pc; | 
 |  | 
 | 	/* | 
 | 	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to | 
 | 	 * reclaim these finished descriptors: The most number of PDs the ISR | 
 | 	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we | 
 | 	 * take it as limited count instead of just using a dangerous infinite | 
 | 	 * poll. | 
 | 	 */ | 
 | 	while (i--) { | 
 | 		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr, | 
 | 					       MTK_DMA_SIZE); | 
 | 		rxd = &pc->ring.rxd[next]; | 
 |  | 
 | 		/* | 
 | 		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data | 
 | 		 * moving for the PD is still under going. | 
 | 		 */ | 
 | 		desc2 = READ_ONCE(rxd->desc2); | 
 | 		if (!(desc2 & hsdma->soc->ddone)) | 
 | 			break; | 
 |  | 
 | 		cb = &pc->ring.cb[next]; | 
 | 		if (unlikely(!cb->vd)) { | 
 | 			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Update residue of VD the associated PD belonged to */ | 
 | 		hvd = to_hsdma_vdesc(cb->vd); | 
 | 		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2); | 
 |  | 
 | 		/* Complete VD until the relevant last PD is finished */ | 
 | 		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) { | 
 | 			hvc = to_hsdma_vchan(cb->vd->tx.chan); | 
 |  | 
 | 			spin_lock(&hvc->vc.lock); | 
 |  | 
 | 			/* Remove VD from list desc_hw_processing */ | 
 | 			list_del(&cb->vd->node); | 
 |  | 
 | 			/* Add VD into list desc_completed */ | 
 | 			vchan_cookie_complete(cb->vd); | 
 |  | 
 | 			if (hvc->issue_synchronize && | 
 | 			    list_empty(&hvc->desc_hw_processing)) { | 
 | 				complete(&hvc->issue_completion); | 
 | 				hvc->issue_synchronize = false; | 
 | 			} | 
 | 			spin_unlock(&hvc->vc.lock); | 
 |  | 
 | 			cb->flag = 0; | 
 | 		} | 
 |  | 
 | 		cb->vd = 0; | 
 |  | 
 | 		/* | 
 | 		 * Recycle the RXD with the helper WRITE_ONCE that can ensure | 
 | 		 * data written into RAM would really happens. | 
 | 		 */ | 
 | 		WRITE_ONCE(rxd->desc1, 0); | 
 | 		WRITE_ONCE(rxd->desc2, 0); | 
 | 		pc->ring.cur_rptr = next; | 
 |  | 
 | 		/* Release rooms */ | 
 | 		atomic_inc(&pc->nr_free); | 
 | 	} | 
 |  | 
 | 	/* Ensure all changes indeed done before we're going on */ | 
 | 	wmb(); | 
 |  | 
 | 	/* Update CPU pointer for those completed PDs */ | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr); | 
 |  | 
 | 	/* | 
 | 	 * Acking the pending IRQ allows hardware no longer to keep the used | 
 | 	 * IRQ line in certain trigger state when software has completed all | 
 | 	 * the finished physical descriptors. | 
 | 	 */ | 
 | 	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1) | 
 | 		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status); | 
 |  | 
 | 	/* ASAP handles pending VDs in all VCs after freeing some rooms */ | 
 | 	for (i = 0; i < hsdma->dma_requests; i++) { | 
 | 		hvc = &hsdma->vc[i]; | 
 | 		spin_lock(&hvc->vc.lock); | 
 | 		mtk_hsdma_issue_vchan_pending(hsdma, hvc); | 
 | 		spin_unlock(&hvc->vc.lock); | 
 | 	} | 
 |  | 
 | rx_done: | 
 | 	/* All completed PDs are cleaned up, so enable interrupt again */ | 
 | 	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); | 
 | } | 
 |  | 
 | static irqreturn_t mtk_hsdma_irq(int irq, void *devid) | 
 | { | 
 | 	struct mtk_hsdma_device *hsdma = devid; | 
 |  | 
 | 	/* | 
 | 	 * Disable interrupt until all completed PDs are cleaned up in | 
 | 	 * mtk_hsdma_free_rooms call. | 
 | 	 */ | 
 | 	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); | 
 |  | 
 | 	mtk_hsdma_free_rooms_in_ring(hsdma); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c, | 
 | 							dma_cookie_t cookie) | 
 | { | 
 | 	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); | 
 | 	struct virt_dma_desc *vd; | 
 |  | 
 | 	list_for_each_entry(vd, &hvc->desc_hw_processing, node) | 
 | 		if (vd->tx.cookie == cookie) | 
 | 			return vd; | 
 |  | 
 | 	list_for_each_entry(vd, &hvc->vc.desc_issued, node) | 
 | 		if (vd->tx.cookie == cookie) | 
 | 			return vd; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c, | 
 | 					   dma_cookie_t cookie, | 
 | 					   struct dma_tx_state *txstate) | 
 | { | 
 | 	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); | 
 | 	struct mtk_hsdma_vdesc *hvd; | 
 | 	struct virt_dma_desc *vd; | 
 | 	enum dma_status ret; | 
 | 	unsigned long flags; | 
 | 	size_t bytes = 0; | 
 |  | 
 | 	ret = dma_cookie_status(c, cookie, txstate); | 
 | 	if (ret == DMA_COMPLETE || !txstate) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock_irqsave(&hvc->vc.lock, flags); | 
 | 	vd = mtk_hsdma_find_active_desc(c, cookie); | 
 | 	spin_unlock_irqrestore(&hvc->vc.lock, flags); | 
 |  | 
 | 	if (vd) { | 
 | 		hvd = to_hsdma_vdesc(vd); | 
 | 		bytes = hvd->residue; | 
 | 	} | 
 |  | 
 | 	dma_set_residue(txstate, bytes); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mtk_hsdma_issue_pending(struct dma_chan *c) | 
 | { | 
 | 	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); | 
 | 	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&hvc->vc.lock, flags); | 
 |  | 
 | 	if (vchan_issue_pending(&hvc->vc)) | 
 | 		mtk_hsdma_issue_vchan_pending(hsdma, hvc); | 
 |  | 
 | 	spin_unlock_irqrestore(&hvc->vc.lock, flags); | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor * | 
 | mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, | 
 | 			  dma_addr_t src, size_t len, unsigned long flags) | 
 | { | 
 | 	struct mtk_hsdma_vdesc *hvd; | 
 |  | 
 | 	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT); | 
 | 	if (!hvd) | 
 | 		return NULL; | 
 |  | 
 | 	hvd->len = len; | 
 | 	hvd->residue = len; | 
 | 	hvd->src = src; | 
 | 	hvd->dest = dest; | 
 |  | 
 | 	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags); | 
 | } | 
 |  | 
 | static int mtk_hsdma_free_inactive_desc(struct dma_chan *c) | 
 | { | 
 | 	struct virt_dma_chan *vc = to_virt_chan(c); | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(head); | 
 |  | 
 | 	spin_lock_irqsave(&vc->lock, flags); | 
 | 	list_splice_tail_init(&vc->desc_allocated, &head); | 
 | 	list_splice_tail_init(&vc->desc_submitted, &head); | 
 | 	list_splice_tail_init(&vc->desc_issued, &head); | 
 | 	spin_unlock_irqrestore(&vc->lock, flags); | 
 |  | 
 | 	/* At the point, we don't expect users put descriptor into VC again */ | 
 | 	vchan_dma_desc_free_list(vc, &head); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mtk_hsdma_free_active_desc(struct dma_chan *c) | 
 | { | 
 | 	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); | 
 | 	bool sync_needed = false; | 
 |  | 
 | 	/* | 
 | 	 * Once issue_synchronize is being set, which means once the hardware | 
 | 	 * consumes all descriptors for the channel in the ring, the | 
 | 	 * synchronization must be be notified immediately it is completed. | 
 | 	 */ | 
 | 	spin_lock(&hvc->vc.lock); | 
 | 	if (!list_empty(&hvc->desc_hw_processing)) { | 
 | 		hvc->issue_synchronize = true; | 
 | 		sync_needed = true; | 
 | 	} | 
 | 	spin_unlock(&hvc->vc.lock); | 
 |  | 
 | 	if (sync_needed) | 
 | 		wait_for_completion(&hvc->issue_completion); | 
 | 	/* | 
 | 	 * At the point, we expect that all remaining descriptors in the ring | 
 | 	 * for the channel should be all processing done. | 
 | 	 */ | 
 | 	WARN_ONCE(!list_empty(&hvc->desc_hw_processing), | 
 | 		  "Desc pending still in list desc_hw_processing\n"); | 
 |  | 
 | 	/* Free all descriptors in list desc_completed */ | 
 | 	vchan_synchronize(&hvc->vc); | 
 |  | 
 | 	WARN_ONCE(!list_empty(&hvc->vc.desc_completed), | 
 | 		  "Desc pending still in list desc_completed\n"); | 
 | } | 
 |  | 
 | static int mtk_hsdma_terminate_all(struct dma_chan *c) | 
 | { | 
 | 	/* | 
 | 	 * Free pending descriptors not processed yet by hardware that have | 
 | 	 * previously been submitted to the channel. | 
 | 	 */ | 
 | 	mtk_hsdma_free_inactive_desc(c); | 
 |  | 
 | 	/* | 
 | 	 * However, the DMA engine doesn't provide any way to stop these | 
 | 	 * descriptors being processed currently by hardware. The only way is | 
 | 	 * to just waiting until these descriptors are all processed completely | 
 | 	 * through mtk_hsdma_free_active_desc call. | 
 | 	 */ | 
 | 	mtk_hsdma_free_active_desc(c); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c) | 
 | { | 
 | 	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Since HSDMA has only one PC, the resource for PC is being allocated | 
 | 	 * when the first VC is being created and the other VCs would run on | 
 | 	 * the same PC. | 
 | 	 */ | 
 | 	if (!refcount_read(&hsdma->pc_refcnt)) { | 
 | 		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc); | 
 | 		if (err) | 
 | 			return err; | 
 | 		/* | 
 | 		 * refcount_inc would complain increment on 0; use-after-free. | 
 | 		 * Thus, we need to explicitly set it as 1 initially. | 
 | 		 */ | 
 | 		refcount_set(&hsdma->pc_refcnt, 1); | 
 | 	} else { | 
 | 		refcount_inc(&hsdma->pc_refcnt); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mtk_hsdma_free_chan_resources(struct dma_chan *c) | 
 | { | 
 | 	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); | 
 |  | 
 | 	/* Free all descriptors in all lists on the VC */ | 
 | 	mtk_hsdma_terminate_all(c); | 
 |  | 
 | 	/* The resource for PC is not freed until all the VCs are destroyed */ | 
 | 	if (!refcount_dec_and_test(&hsdma->pc_refcnt)) | 
 | 		return; | 
 |  | 
 | 	mtk_hsdma_free_pchan(hsdma, hsdma->pc); | 
 | } | 
 |  | 
 | static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	pm_runtime_enable(hsdma2dev(hsdma)); | 
 | 	pm_runtime_get_sync(hsdma2dev(hsdma)); | 
 |  | 
 | 	err = clk_prepare_enable(hsdma->clk); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0); | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma) | 
 | { | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0); | 
 |  | 
 | 	clk_disable_unprepare(hsdma->clk); | 
 |  | 
 | 	pm_runtime_put_sync(hsdma2dev(hsdma)); | 
 | 	pm_runtime_disable(hsdma2dev(hsdma)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct mtk_hsdma_soc mt7623_soc = { | 
 | 	.ddone = BIT(31), | 
 | 	.ls0 = BIT(30), | 
 | }; | 
 |  | 
 | static const struct mtk_hsdma_soc mt7622_soc = { | 
 | 	.ddone = BIT(15), | 
 | 	.ls0 = BIT(14), | 
 | }; | 
 |  | 
 | static const struct of_device_id mtk_hsdma_match[] = { | 
 | 	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc}, | 
 | 	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc}, | 
 | 	{ /* sentinel */ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, mtk_hsdma_match); | 
 |  | 
 | static int mtk_hsdma_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct mtk_hsdma_device *hsdma; | 
 | 	struct mtk_hsdma_vchan *vc; | 
 | 	struct dma_device *dd; | 
 | 	struct resource *res; | 
 | 	int i, err; | 
 |  | 
 | 	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL); | 
 | 	if (!hsdma) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dd = &hsdma->ddev; | 
 |  | 
 | 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	hsdma->base = devm_ioremap_resource(&pdev->dev, res); | 
 | 	if (IS_ERR(hsdma->base)) | 
 | 		return PTR_ERR(hsdma->base); | 
 |  | 
 | 	hsdma->soc = of_device_get_match_data(&pdev->dev); | 
 | 	if (!hsdma->soc) { | 
 | 		dev_err(&pdev->dev, "No device match found\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma"); | 
 | 	if (IS_ERR(hsdma->clk)) { | 
 | 		dev_err(&pdev->dev, "No clock for %s\n", | 
 | 			dev_name(&pdev->dev)); | 
 | 		return PTR_ERR(hsdma->clk); | 
 | 	} | 
 |  | 
 | 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); | 
 | 	if (!res) { | 
 | 		dev_err(&pdev->dev, "No irq resource for %s\n", | 
 | 			dev_name(&pdev->dev)); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	hsdma->irq = res->start; | 
 |  | 
 | 	refcount_set(&hsdma->pc_refcnt, 0); | 
 | 	spin_lock_init(&hsdma->lock); | 
 |  | 
 | 	dma_cap_set(DMA_MEMCPY, dd->cap_mask); | 
 |  | 
 | 	dd->copy_align = MTK_HSDMA_ALIGN_SIZE; | 
 | 	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources; | 
 | 	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources; | 
 | 	dd->device_tx_status = mtk_hsdma_tx_status; | 
 | 	dd->device_issue_pending = mtk_hsdma_issue_pending; | 
 | 	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy; | 
 | 	dd->device_terminate_all = mtk_hsdma_terminate_all; | 
 | 	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS; | 
 | 	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS; | 
 | 	dd->directions = BIT(DMA_MEM_TO_MEM); | 
 | 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; | 
 | 	dd->dev = &pdev->dev; | 
 | 	INIT_LIST_HEAD(&dd->channels); | 
 |  | 
 | 	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS; | 
 | 	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, | 
 | 						      "dma-requests", | 
 | 						      &hsdma->dma_requests)) { | 
 | 		dev_info(&pdev->dev, | 
 | 			 "Using %u as missing dma-requests property\n", | 
 | 			 MTK_HSDMA_NR_VCHANS); | 
 | 	} | 
 |  | 
 | 	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS, | 
 | 				 sizeof(*hsdma->pc), GFP_KERNEL); | 
 | 	if (!hsdma->pc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests, | 
 | 				 sizeof(*hsdma->vc), GFP_KERNEL); | 
 | 	if (!hsdma->vc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < hsdma->dma_requests; i++) { | 
 | 		vc = &hsdma->vc[i]; | 
 | 		vc->vc.desc_free = mtk_hsdma_vdesc_free; | 
 | 		vchan_init(&vc->vc, dd); | 
 | 		init_completion(&vc->issue_completion); | 
 | 		INIT_LIST_HEAD(&vc->desc_hw_processing); | 
 | 	} | 
 |  | 
 | 	err = dma_async_device_register(dd); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = of_dma_controller_register(pdev->dev.of_node, | 
 | 					 of_dma_xlate_by_chan_id, hsdma); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"MediaTek HSDMA OF registration failed %d\n", err); | 
 | 		goto err_unregister; | 
 | 	} | 
 |  | 
 | 	mtk_hsdma_hw_init(hsdma); | 
 |  | 
 | 	err = devm_request_irq(&pdev->dev, hsdma->irq, | 
 | 			       mtk_hsdma_irq, 0, | 
 | 			       dev_name(&pdev->dev), hsdma); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"request_irq failed with err %d\n", err); | 
 | 		goto err_free; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, hsdma); | 
 |  | 
 | 	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_free: | 
 | 	mtk_hsdma_hw_deinit(hsdma); | 
 | 	of_dma_controller_free(pdev->dev.of_node); | 
 | err_unregister: | 
 | 	dma_async_device_unregister(dd); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int mtk_hsdma_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev); | 
 | 	struct mtk_hsdma_vchan *vc; | 
 | 	int i; | 
 |  | 
 | 	/* Kill VC task */ | 
 | 	for (i = 0; i < hsdma->dma_requests; i++) { | 
 | 		vc = &hsdma->vc[i]; | 
 |  | 
 | 		list_del(&vc->vc.chan.device_node); | 
 | 		tasklet_kill(&vc->vc.task); | 
 | 	} | 
 |  | 
 | 	/* Disable DMA interrupt */ | 
 | 	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0); | 
 |  | 
 | 	/* Waits for any pending IRQ handlers to complete */ | 
 | 	synchronize_irq(hsdma->irq); | 
 |  | 
 | 	/* Disable hardware */ | 
 | 	mtk_hsdma_hw_deinit(hsdma); | 
 |  | 
 | 	dma_async_device_unregister(&hsdma->ddev); | 
 | 	of_dma_controller_free(pdev->dev.of_node); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct platform_driver mtk_hsdma_driver = { | 
 | 	.probe		= mtk_hsdma_probe, | 
 | 	.remove		= mtk_hsdma_remove, | 
 | 	.driver = { | 
 | 		.name		= KBUILD_MODNAME, | 
 | 		.of_match_table	= mtk_hsdma_match, | 
 | 	}, | 
 | }; | 
 | module_platform_driver(mtk_hsdma_driver); | 
 |  | 
 | MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver"); | 
 | MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); | 
 | MODULE_LICENSE("GPL v2"); |