| /*************************************************************************** | 
 |                           dpti.c  -  description | 
 |                              ------------------- | 
 |     begin                : Thu Sep 7 2000 | 
 |     copyright            : (C) 2000 by Adaptec | 
 |  | 
 | 			   July 30, 2001 First version being submitted | 
 | 			   for inclusion in the kernel.  V2.4 | 
 |  | 
 |     See Documentation/scsi/dpti.txt for history, notes, license info | 
 |     and credits | 
 |  ***************************************************************************/ | 
 |  | 
 | /*************************************************************************** | 
 |  *                                                                         * | 
 |  *   This program is free software; you can redistribute it and/or modify  * | 
 |  *   it under the terms of the GNU General Public License as published by  * | 
 |  *   the Free Software Foundation; either version 2 of the License, or     * | 
 |  *   (at your option) any later version.                                   * | 
 |  *                                                                         * | 
 |  ***************************************************************************/ | 
 | /*************************************************************************** | 
 |  * Sat Dec 20 2003 Go Taniguchi <go@turbolinux.co.jp> | 
 |  - Support 2.6 kernel and DMA-mapping | 
 |  - ioctl fix for raid tools | 
 |  - use schedule_timeout in long long loop | 
 |  **************************************************************************/ | 
 |  | 
 | /*#define DEBUG 1 */ | 
 | /*#define UARTDELAY 1 */ | 
 |  | 
 | #include <linux/module.h> | 
 |  | 
 | MODULE_AUTHOR("Deanna Bonds, with _lots_ of help from Mark Salyzyn"); | 
 | MODULE_DESCRIPTION("Adaptec I2O RAID Driver"); | 
 |  | 
 | //////////////////////////////////////////////////////////////// | 
 |  | 
 | #include <linux/ioctl.h>	/* For SCSI-Passthrough */ | 
 | #include <linux/uaccess.h> | 
 |  | 
 | #include <linux/stat.h> | 
 | #include <linux/slab.h>		/* for kmalloc() */ | 
 | #include <linux/pci.h>		/* for PCI support */ | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/delay.h>	/* for udelay */ | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel.h>	/* for printk */ | 
 | #include <linux/sched.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/dma-mapping.h> | 
 |  | 
 | #include <linux/timer.h> | 
 | #include <linux/string.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/mutex.h> | 
 |  | 
 | #include <asm/processor.h>	/* for boot_cpu_data */ | 
 | #include <asm/pgtable.h> | 
 | #include <asm/io.h>		/* for virt_to_bus, etc. */ | 
 |  | 
 | #include <scsi/scsi.h> | 
 | #include <scsi/scsi_cmnd.h> | 
 | #include <scsi/scsi_device.h> | 
 | #include <scsi/scsi_host.h> | 
 | #include <scsi/scsi_tcq.h> | 
 |  | 
 | #include "dpt/dptsig.h" | 
 | #include "dpti.h" | 
 |  | 
 | /*============================================================================ | 
 |  * Create a binary signature - this is read by dptsig | 
 |  * Needed for our management apps | 
 |  *============================================================================ | 
 |  */ | 
 | static DEFINE_MUTEX(adpt_mutex); | 
 | static dpt_sig_S DPTI_sig = { | 
 | 	{'d', 'P', 't', 'S', 'i', 'G'}, SIG_VERSION, | 
 | #ifdef __i386__ | 
 | 	PROC_INTEL, PROC_386 | PROC_486 | PROC_PENTIUM | PROC_SEXIUM, | 
 | #elif defined(__ia64__) | 
 | 	PROC_INTEL, PROC_IA64, | 
 | #elif defined(__sparc__) | 
 | 	PROC_ULTRASPARC, PROC_ULTRASPARC, | 
 | #elif defined(__alpha__) | 
 | 	PROC_ALPHA, PROC_ALPHA, | 
 | #else | 
 | 	(-1),(-1), | 
 | #endif | 
 | 	 FT_HBADRVR, 0, OEM_DPT, OS_LINUX, CAP_OVERLAP, DEV_ALL, | 
 | 	ADF_ALL_SC5, 0, 0, DPT_VERSION, DPT_REVISION, DPT_SUBREVISION, | 
 | 	DPT_MONTH, DPT_DAY, DPT_YEAR, "Adaptec Linux I2O RAID Driver" | 
 | }; | 
 |  | 
 |  | 
 |  | 
 |  | 
 | /*============================================================================ | 
 |  * Globals | 
 |  *============================================================================ | 
 |  */ | 
 |  | 
 | static DEFINE_MUTEX(adpt_configuration_lock); | 
 |  | 
 | static struct i2o_sys_tbl *sys_tbl; | 
 | static dma_addr_t sys_tbl_pa; | 
 | static int sys_tbl_ind; | 
 | static int sys_tbl_len; | 
 |  | 
 | static adpt_hba* hba_chain = NULL; | 
 | static int hba_count = 0; | 
 |  | 
 | static struct class *adpt_sysfs_class; | 
 |  | 
 | static long adpt_unlocked_ioctl(struct file *, unsigned int, unsigned long); | 
 | #ifdef CONFIG_COMPAT | 
 | static long compat_adpt_ioctl(struct file *, unsigned int, unsigned long); | 
 | #endif | 
 |  | 
 | static const struct file_operations adpt_fops = { | 
 | 	.unlocked_ioctl	= adpt_unlocked_ioctl, | 
 | 	.open		= adpt_open, | 
 | 	.release	= adpt_close, | 
 | #ifdef CONFIG_COMPAT | 
 | 	.compat_ioctl	= compat_adpt_ioctl, | 
 | #endif | 
 | 	.llseek		= noop_llseek, | 
 | }; | 
 |  | 
 | /* Structures and definitions for synchronous message posting. | 
 |  * See adpt_i2o_post_wait() for description | 
 |  * */ | 
 | struct adpt_i2o_post_wait_data | 
 | { | 
 | 	int status; | 
 | 	u32 id; | 
 | 	adpt_wait_queue_head_t *wq; | 
 | 	struct adpt_i2o_post_wait_data *next; | 
 | }; | 
 |  | 
 | static struct adpt_i2o_post_wait_data *adpt_post_wait_queue = NULL; | 
 | static u32 adpt_post_wait_id = 0; | 
 | static DEFINE_SPINLOCK(adpt_post_wait_lock); | 
 |  | 
 |  | 
 | /*============================================================================ | 
 |  * 				Functions | 
 |  *============================================================================ | 
 |  */ | 
 |  | 
 | static inline int dpt_dma64(adpt_hba *pHba) | 
 | { | 
 | 	return (sizeof(dma_addr_t) > 4 && (pHba)->dma64); | 
 | } | 
 |  | 
 | static inline u32 dma_high(dma_addr_t addr) | 
 | { | 
 | 	return upper_32_bits(addr); | 
 | } | 
 |  | 
 | static inline u32 dma_low(dma_addr_t addr) | 
 | { | 
 | 	return (u32)addr; | 
 | } | 
 |  | 
 | static u8 adpt_read_blink_led(adpt_hba* host) | 
 | { | 
 | 	if (host->FwDebugBLEDflag_P) { | 
 | 		if( readb(host->FwDebugBLEDflag_P) == 0xbc ){ | 
 | 			return readb(host->FwDebugBLEDvalue_P); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*============================================================================ | 
 |  * Scsi host template interface functions | 
 |  *============================================================================ | 
 |  */ | 
 |  | 
 | #ifdef MODULE | 
 | static struct pci_device_id dptids[] = { | 
 | 	{ PCI_DPT_VENDOR_ID, PCI_DPT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, | 
 | 	{ PCI_DPT_VENDOR_ID, PCI_DPT_RAPTOR_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, | 
 | 	{ 0, } | 
 | }; | 
 | #endif | 
 |  | 
 | MODULE_DEVICE_TABLE(pci,dptids); | 
 |  | 
 | static int adpt_detect(struct scsi_host_template* sht) | 
 | { | 
 | 	struct pci_dev *pDev = NULL; | 
 | 	adpt_hba *pHba; | 
 | 	adpt_hba *next; | 
 |  | 
 | 	PINFO("Detecting Adaptec I2O RAID controllers...\n"); | 
 |  | 
 |         /* search for all Adatpec I2O RAID cards */ | 
 | 	while ((pDev = pci_get_device( PCI_DPT_VENDOR_ID, PCI_ANY_ID, pDev))) { | 
 | 		if(pDev->device == PCI_DPT_DEVICE_ID || | 
 | 		   pDev->device == PCI_DPT_RAPTOR_DEVICE_ID){ | 
 | 			if(adpt_install_hba(sht, pDev) ){ | 
 | 				PERROR("Could not Init an I2O RAID device\n"); | 
 | 				PERROR("Will not try to detect others.\n"); | 
 | 				return hba_count-1; | 
 | 			} | 
 | 			pci_dev_get(pDev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* In INIT state, Activate IOPs */ | 
 | 	for (pHba = hba_chain; pHba; pHba = next) { | 
 | 		next = pHba->next; | 
 | 		// Activate does get status , init outbound, and get hrt | 
 | 		if (adpt_i2o_activate_hba(pHba) < 0) { | 
 | 			adpt_i2o_delete_hba(pHba); | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | 	/* Active IOPs in HOLD state */ | 
 |  | 
 | rebuild_sys_tab: | 
 | 	if (hba_chain == NULL)  | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If build_sys_table fails, we kill everything and bail | 
 | 	 * as we can't init the IOPs w/o a system table | 
 | 	 */	 | 
 | 	if (adpt_i2o_build_sys_table() < 0) { | 
 | 		adpt_i2o_sys_shutdown(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	PDEBUG("HBA's in HOLD state\n"); | 
 |  | 
 | 	/* If IOP don't get online, we need to rebuild the System table */ | 
 | 	for (pHba = hba_chain; pHba; pHba = pHba->next) { | 
 | 		if (adpt_i2o_online_hba(pHba) < 0) { | 
 | 			adpt_i2o_delete_hba(pHba);	 | 
 | 			goto rebuild_sys_tab; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Active IOPs now in OPERATIONAL state */ | 
 | 	PDEBUG("HBA's in OPERATIONAL state\n"); | 
 |  | 
 | 	printk("dpti: If you have a lot of devices this could take a few minutes.\n"); | 
 | 	for (pHba = hba_chain; pHba; pHba = next) { | 
 | 		next = pHba->next; | 
 | 		printk(KERN_INFO"%s: Reading the hardware resource table.\n", pHba->name); | 
 | 		if (adpt_i2o_lct_get(pHba) < 0){ | 
 | 			adpt_i2o_delete_hba(pHba); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (adpt_i2o_parse_lct(pHba) < 0){ | 
 | 			adpt_i2o_delete_hba(pHba); | 
 | 			continue; | 
 | 		} | 
 | 		adpt_inquiry(pHba); | 
 | 	} | 
 |  | 
 | 	adpt_sysfs_class = class_create(THIS_MODULE, "dpt_i2o"); | 
 | 	if (IS_ERR(adpt_sysfs_class)) { | 
 | 		printk(KERN_WARNING"dpti: unable to create dpt_i2o class\n"); | 
 | 		adpt_sysfs_class = NULL; | 
 | 	} | 
 |  | 
 | 	for (pHba = hba_chain; pHba; pHba = next) { | 
 | 		next = pHba->next; | 
 | 		if (adpt_scsi_host_alloc(pHba, sht) < 0){ | 
 | 			adpt_i2o_delete_hba(pHba); | 
 | 			continue; | 
 | 		} | 
 | 		pHba->initialized = TRUE; | 
 | 		pHba->state &= ~DPTI_STATE_RESET; | 
 | 		if (adpt_sysfs_class) { | 
 | 			struct device *dev = device_create(adpt_sysfs_class, | 
 | 				NULL, MKDEV(DPTI_I2O_MAJOR, pHba->unit), NULL, | 
 | 				"dpti%d", pHba->unit); | 
 | 			if (IS_ERR(dev)) { | 
 | 				printk(KERN_WARNING"dpti%d: unable to " | 
 | 					"create device in dpt_i2o class\n", | 
 | 					pHba->unit); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Register our control device node | 
 | 	// nodes will need to be created in /dev to access this | 
 | 	// the nodes can not be created from within the driver | 
 | 	if (hba_count && register_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER, &adpt_fops)) { | 
 | 		adpt_i2o_sys_shutdown(); | 
 | 		return 0; | 
 | 	} | 
 | 	return hba_count; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * scsi_unregister will be called AFTER we return. | 
 |  */ | 
 | static int adpt_release(struct Scsi_Host *host) | 
 | { | 
 | 	adpt_hba* pHba = (adpt_hba*) host->hostdata[0]; | 
 | //	adpt_i2o_quiesce_hba(pHba); | 
 | 	adpt_i2o_delete_hba(pHba); | 
 | 	scsi_unregister(host); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void adpt_inquiry(adpt_hba* pHba) | 
 | { | 
 | 	u32 msg[17];  | 
 | 	u32 *mptr; | 
 | 	u32 *lenptr; | 
 | 	int direction; | 
 | 	int scsidir; | 
 | 	u32 len; | 
 | 	u32 reqlen; | 
 | 	u8* buf; | 
 | 	dma_addr_t addr; | 
 | 	u8  scb[16]; | 
 | 	s32 rcode; | 
 |  | 
 | 	memset(msg, 0, sizeof(msg)); | 
 | 	buf = dma_alloc_coherent(&pHba->pDev->dev, 80, &addr, GFP_KERNEL); | 
 | 	if(!buf){ | 
 | 		printk(KERN_ERR"%s: Could not allocate buffer\n",pHba->name); | 
 | 		return; | 
 | 	} | 
 | 	memset((void*)buf, 0, 36); | 
 | 	 | 
 | 	len = 36; | 
 | 	direction = 0x00000000;	 | 
 | 	scsidir  =0x40000000;	// DATA IN  (iop<--dev) | 
 |  | 
 | 	if (dpt_dma64(pHba)) | 
 | 		reqlen = 17;		// SINGLE SGE, 64 bit | 
 | 	else | 
 | 		reqlen = 14;		// SINGLE SGE, 32 bit | 
 | 	/* Stick the headers on */ | 
 | 	msg[0] = reqlen<<16 | SGL_OFFSET_12; | 
 | 	msg[1] = (0xff<<24|HOST_TID<<12|ADAPTER_TID); | 
 | 	msg[2] = 0; | 
 | 	msg[3]  = 0; | 
 | 	// Adaptec/DPT Private stuff  | 
 | 	msg[4] = I2O_CMD_SCSI_EXEC|DPT_ORGANIZATION_ID<<16; | 
 | 	msg[5] = ADAPTER_TID | 1<<16 /* Interpret*/; | 
 | 	/* Direction, disconnect ok | sense data | simple queue , CDBLen */ | 
 | 	// I2O_SCB_FLAG_ENABLE_DISCONNECT |  | 
 | 	// I2O_SCB_FLAG_SIMPLE_QUEUE_TAG |  | 
 | 	// I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE; | 
 | 	msg[6] = scsidir|0x20a00000| 6 /* cmd len*/; | 
 |  | 
 | 	mptr=msg+7; | 
 |  | 
 | 	memset(scb, 0, sizeof(scb)); | 
 | 	// Write SCSI command into the message - always 16 byte block  | 
 | 	scb[0] = INQUIRY; | 
 | 	scb[1] = 0; | 
 | 	scb[2] = 0; | 
 | 	scb[3] = 0; | 
 | 	scb[4] = 36; | 
 | 	scb[5] = 0; | 
 | 	// Don't care about the rest of scb | 
 |  | 
 | 	memcpy(mptr, scb, sizeof(scb)); | 
 | 	mptr+=4; | 
 | 	lenptr=mptr++;		/* Remember me - fill in when we know */ | 
 |  | 
 | 	/* Now fill in the SGList and command */ | 
 | 	*lenptr = len; | 
 | 	if (dpt_dma64(pHba)) { | 
 | 		*mptr++ = (0x7C<<24)+(2<<16)+0x02; /* Enable 64 bit */ | 
 | 		*mptr++ = 1 << PAGE_SHIFT; | 
 | 		*mptr++ = 0xD0000000|direction|len; | 
 | 		*mptr++ = dma_low(addr); | 
 | 		*mptr++ = dma_high(addr); | 
 | 	} else { | 
 | 		*mptr++ = 0xD0000000|direction|len; | 
 | 		*mptr++ = addr; | 
 | 	} | 
 |  | 
 | 	// Send it on it's way | 
 | 	rcode = adpt_i2o_post_wait(pHba, msg, reqlen<<2, 120); | 
 | 	if (rcode != 0) { | 
 | 		sprintf(pHba->detail, "Adaptec I2O RAID"); | 
 | 		printk(KERN_INFO "%s: Inquiry Error (%d)\n",pHba->name,rcode); | 
 | 		if (rcode != -ETIME && rcode != -EINTR) | 
 | 			dma_free_coherent(&pHba->pDev->dev, 80, buf, addr); | 
 | 	} else { | 
 | 		memset(pHba->detail, 0, sizeof(pHba->detail)); | 
 | 		memcpy(&(pHba->detail), "Vendor: Adaptec ", 16); | 
 | 		memcpy(&(pHba->detail[16]), " Model: ", 8); | 
 | 		memcpy(&(pHba->detail[24]), (u8*) &buf[16], 16); | 
 | 		memcpy(&(pHba->detail[40]), " FW: ", 4); | 
 | 		memcpy(&(pHba->detail[44]), (u8*) &buf[32], 4); | 
 | 		pHba->detail[48] = '\0';	/* precautionary */ | 
 | 		dma_free_coherent(&pHba->pDev->dev, 80, buf, addr); | 
 | 	} | 
 | 	adpt_i2o_status_get(pHba); | 
 | 	return ; | 
 | } | 
 |  | 
 |  | 
 | static int adpt_slave_configure(struct scsi_device * device) | 
 | { | 
 | 	struct Scsi_Host *host = device->host; | 
 | 	adpt_hba* pHba; | 
 |  | 
 | 	pHba = (adpt_hba *) host->hostdata[0]; | 
 |  | 
 | 	if (host->can_queue && device->tagged_supported) { | 
 | 		scsi_change_queue_depth(device, | 
 | 				host->can_queue - 1); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int adpt_queue_lck(struct scsi_cmnd * cmd, void (*done) (struct scsi_cmnd *)) | 
 | { | 
 | 	adpt_hba* pHba = NULL; | 
 | 	struct adpt_device* pDev = NULL;	/* dpt per device information */ | 
 |  | 
 | 	cmd->scsi_done = done; | 
 | 	/* | 
 | 	 * SCSI REQUEST_SENSE commands will be executed automatically by the  | 
 | 	 * Host Adapter for any errors, so they should not be executed  | 
 | 	 * explicitly unless the Sense Data is zero indicating that no error  | 
 | 	 * occurred. | 
 | 	 */ | 
 |  | 
 | 	if ((cmd->cmnd[0] == REQUEST_SENSE) && (cmd->sense_buffer[0] != 0)) { | 
 | 		cmd->result = (DID_OK << 16); | 
 | 		cmd->scsi_done(cmd); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	pHba = (adpt_hba*)cmd->device->host->hostdata[0]; | 
 | 	if (!pHba) { | 
 | 		return FAILED; | 
 | 	} | 
 |  | 
 | 	rmb(); | 
 | 	if ((pHba->state) & DPTI_STATE_RESET) | 
 | 		return SCSI_MLQUEUE_HOST_BUSY; | 
 |  | 
 | 	// TODO if the cmd->device if offline then I may need to issue a bus rescan | 
 | 	// followed by a get_lct to see if the device is there anymore | 
 | 	if((pDev = (struct adpt_device*) (cmd->device->hostdata)) == NULL) { | 
 | 		/* | 
 | 		 * First command request for this device.  Set up a pointer | 
 | 		 * to the device structure.  This should be a TEST_UNIT_READY | 
 | 		 * command from scan_scsis_single. | 
 | 		 */ | 
 | 		if ((pDev = adpt_find_device(pHba, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun)) == NULL) { | 
 | 			// TODO: if any luns are at this bus, scsi id then fake a TEST_UNIT_READY and INQUIRY response  | 
 | 			// with type 7F (for all luns less than the max for this bus,id) so the lun scan will continue. | 
 | 			cmd->result = (DID_NO_CONNECT << 16); | 
 | 			cmd->scsi_done(cmd); | 
 | 			return 0; | 
 | 		} | 
 | 		cmd->device->hostdata = pDev; | 
 | 	} | 
 | 	pDev->pScsi_dev = cmd->device; | 
 |  | 
 | 	/* | 
 | 	 * If we are being called from when the device is being reset,  | 
 | 	 * delay processing of the command until later. | 
 | 	 */ | 
 | 	if (pDev->state & DPTI_DEV_RESET ) { | 
 | 		return FAILED; | 
 | 	} | 
 | 	return adpt_scsi_to_i2o(pHba, cmd, pDev); | 
 | } | 
 |  | 
 | static DEF_SCSI_QCMD(adpt_queue) | 
 |  | 
 | static int adpt_bios_param(struct scsi_device *sdev, struct block_device *dev, | 
 | 		sector_t capacity, int geom[]) | 
 | { | 
 | 	int heads=-1; | 
 | 	int sectors=-1; | 
 | 	int cylinders=-1; | 
 |  | 
 | 	// *** First lets set the default geometry **** | 
 | 	 | 
 | 	// If the capacity is less than ox2000 | 
 | 	if (capacity < 0x2000 ) {	// floppy | 
 | 		heads = 18; | 
 | 		sectors = 2; | 
 | 	}  | 
 | 	// else if between 0x2000 and 0x20000 | 
 | 	else if (capacity < 0x20000) { | 
 | 		heads = 64; | 
 | 		sectors = 32; | 
 | 	} | 
 | 	// else if between 0x20000 and 0x40000 | 
 | 	else if (capacity < 0x40000) { | 
 | 		heads = 65; | 
 | 		sectors = 63; | 
 | 	} | 
 | 	// else if between 0x4000 and 0x80000 | 
 | 	else if (capacity < 0x80000) { | 
 | 		heads = 128; | 
 | 		sectors = 63; | 
 | 	} | 
 | 	// else if greater than 0x80000 | 
 | 	else { | 
 | 		heads = 255; | 
 | 		sectors = 63; | 
 | 	} | 
 | 	cylinders = sector_div(capacity, heads * sectors); | 
 |  | 
 | 	// Special case if CDROM | 
 | 	if(sdev->type == 5) {  // CDROM | 
 | 		heads = 252; | 
 | 		sectors = 63; | 
 | 		cylinders = 1111; | 
 | 	} | 
 |  | 
 | 	geom[0] = heads; | 
 | 	geom[1] = sectors; | 
 | 	geom[2] = cylinders; | 
 | 	 | 
 | 	PDEBUG("adpt_bios_param: exit\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static const char *adpt_info(struct Scsi_Host *host) | 
 | { | 
 | 	adpt_hba* pHba; | 
 |  | 
 | 	pHba = (adpt_hba *) host->hostdata[0]; | 
 | 	return (char *) (pHba->detail); | 
 | } | 
 |  | 
 | static int adpt_show_info(struct seq_file *m, struct Scsi_Host *host) | 
 | { | 
 | 	struct adpt_device* d; | 
 | 	int id; | 
 | 	int chan; | 
 | 	adpt_hba* pHba; | 
 | 	int unit; | 
 |  | 
 | 	// Find HBA (host bus adapter) we are looking for | 
 | 	mutex_lock(&adpt_configuration_lock); | 
 | 	for (pHba = hba_chain; pHba; pHba = pHba->next) { | 
 | 		if (pHba->host == host) { | 
 | 			break;	/* found adapter */ | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&adpt_configuration_lock); | 
 | 	if (pHba == NULL) { | 
 | 		return 0; | 
 | 	} | 
 | 	host = pHba->host; | 
 |  | 
 | 	seq_printf(m, "Adaptec I2O RAID Driver Version: %s\n\n", DPT_I2O_VERSION); | 
 | 	seq_printf(m, "%s\n", pHba->detail); | 
 | 	seq_printf(m, "SCSI Host=scsi%d  Control Node=/dev/%s  irq=%d\n",  | 
 | 			pHba->host->host_no, pHba->name, host->irq); | 
 | 	seq_printf(m, "\tpost fifo size  = %d\n\treply fifo size = %d\n\tsg table size   = %d\n\n", | 
 | 			host->can_queue, (int) pHba->reply_fifo_size , host->sg_tablesize); | 
 |  | 
 | 	seq_puts(m, "Devices:\n"); | 
 | 	for(chan = 0; chan < MAX_CHANNEL; chan++) { | 
 | 		for(id = 0; id < MAX_ID; id++) { | 
 | 			d = pHba->channel[chan].device[id]; | 
 | 			while(d) { | 
 | 				seq_printf(m,"\t%-24.24s", d->pScsi_dev->vendor); | 
 | 				seq_printf(m," Rev: %-8.8s\n", d->pScsi_dev->rev); | 
 |  | 
 | 				unit = d->pI2o_dev->lct_data.tid; | 
 | 				seq_printf(m, "\tTID=%d, (Channel=%d, Target=%d, Lun=%llu)  (%s)\n\n", | 
 | 					       unit, (int)d->scsi_channel, (int)d->scsi_id, d->scsi_lun, | 
 | 					       scsi_device_online(d->pScsi_dev)? "online":"offline");  | 
 | 				d = d->next_lun; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Turn a struct scsi_cmnd * into a unique 32 bit 'context'. | 
 |  */ | 
 | static u32 adpt_cmd_to_context(struct scsi_cmnd *cmd) | 
 | { | 
 | 	return (u32)cmd->serial_number; | 
 | } | 
 |  | 
 | /* | 
 |  *	Go from a u32 'context' to a struct scsi_cmnd * . | 
 |  *	This could probably be made more efficient. | 
 |  */ | 
 | static struct scsi_cmnd * | 
 | 	adpt_cmd_from_context(adpt_hba * pHba, u32 context) | 
 | { | 
 | 	struct scsi_cmnd * cmd; | 
 | 	struct scsi_device * d; | 
 |  | 
 | 	if (context == 0) | 
 | 		return NULL; | 
 |  | 
 | 	spin_unlock(pHba->host->host_lock); | 
 | 	shost_for_each_device(d, pHba->host) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&d->list_lock, flags); | 
 | 		list_for_each_entry(cmd, &d->cmd_list, list) { | 
 | 			if (((u32)cmd->serial_number == context)) { | 
 | 				spin_unlock_irqrestore(&d->list_lock, flags); | 
 | 				scsi_device_put(d); | 
 | 				spin_lock(pHba->host->host_lock); | 
 | 				return cmd; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&d->list_lock, flags); | 
 | 	} | 
 | 	spin_lock(pHba->host->host_lock); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  *	Turn a pointer to ioctl reply data into an u32 'context' | 
 |  */ | 
 | static u32 adpt_ioctl_to_context(adpt_hba * pHba, void *reply) | 
 | { | 
 | #if BITS_PER_LONG == 32 | 
 | 	return (u32)(unsigned long)reply; | 
 | #else | 
 | 	ulong flags = 0; | 
 | 	u32 nr, i; | 
 |  | 
 | 	spin_lock_irqsave(pHba->host->host_lock, flags); | 
 | 	nr = ARRAY_SIZE(pHba->ioctl_reply_context); | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		if (pHba->ioctl_reply_context[i] == NULL) { | 
 | 			pHba->ioctl_reply_context[i] = reply; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(pHba->host->host_lock, flags); | 
 | 	if (i >= nr) { | 
 | 		printk(KERN_WARNING"%s: Too many outstanding " | 
 | 				"ioctl commands\n", pHba->name); | 
 | 		return (u32)-1; | 
 | 	} | 
 |  | 
 | 	return i; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  *	Go from an u32 'context' to a pointer to ioctl reply data. | 
 |  */ | 
 | static void *adpt_ioctl_from_context(adpt_hba *pHba, u32 context) | 
 | { | 
 | #if BITS_PER_LONG == 32 | 
 | 	return (void *)(unsigned long)context; | 
 | #else | 
 | 	void *p = pHba->ioctl_reply_context[context]; | 
 | 	pHba->ioctl_reply_context[context] = NULL; | 
 |  | 
 | 	return p; | 
 | #endif | 
 | } | 
 |  | 
 | /*=========================================================================== | 
 |  * Error Handling routines | 
 |  *=========================================================================== | 
 |  */ | 
 |  | 
 | static int adpt_abort(struct scsi_cmnd * cmd) | 
 | { | 
 | 	adpt_hba* pHba = NULL;	/* host bus adapter structure */ | 
 | 	struct adpt_device* dptdevice;	/* dpt per device information */ | 
 | 	u32 msg[5]; | 
 | 	int rcode; | 
 |  | 
 | 	if(cmd->serial_number == 0){ | 
 | 		return FAILED; | 
 | 	} | 
 | 	pHba = (adpt_hba*) cmd->device->host->hostdata[0]; | 
 | 	printk(KERN_INFO"%s: Trying to Abort\n",pHba->name); | 
 | 	if ((dptdevice = (void*) (cmd->device->hostdata)) == NULL) { | 
 | 		printk(KERN_ERR "%s: Unable to abort: No device in cmnd\n",pHba->name); | 
 | 		return FAILED; | 
 | 	} | 
 |  | 
 | 	memset(msg, 0, sizeof(msg)); | 
 | 	msg[0] = FIVE_WORD_MSG_SIZE|SGL_OFFSET_0; | 
 | 	msg[1] = I2O_CMD_SCSI_ABORT<<24|HOST_TID<<12|dptdevice->tid; | 
 | 	msg[2] = 0; | 
 | 	msg[3]= 0;  | 
 | 	msg[4] = adpt_cmd_to_context(cmd); | 
 | 	if (pHba->host) | 
 | 		spin_lock_irq(pHba->host->host_lock); | 
 | 	rcode = adpt_i2o_post_wait(pHba, msg, sizeof(msg), FOREVER); | 
 | 	if (pHba->host) | 
 | 		spin_unlock_irq(pHba->host->host_lock); | 
 | 	if (rcode != 0) { | 
 | 		if(rcode == -EOPNOTSUPP ){ | 
 | 			printk(KERN_INFO"%s: Abort cmd not supported\n",pHba->name); | 
 | 			return FAILED; | 
 | 		} | 
 | 		printk(KERN_INFO"%s: Abort failed.\n",pHba->name); | 
 | 		return FAILED; | 
 | 	}  | 
 | 	printk(KERN_INFO"%s: Abort complete.\n",pHba->name); | 
 | 	return SUCCESS; | 
 | } | 
 |  | 
 |  | 
 | #define I2O_DEVICE_RESET 0x27 | 
 | // This is the same for BLK and SCSI devices | 
 | // NOTE this is wrong in the i2o.h definitions | 
 | // This is not currently supported by our adapter but we issue it anyway | 
 | static int adpt_device_reset(struct scsi_cmnd* cmd) | 
 | { | 
 | 	adpt_hba* pHba; | 
 | 	u32 msg[4]; | 
 | 	u32 rcode; | 
 | 	int old_state; | 
 | 	struct adpt_device* d = cmd->device->hostdata; | 
 |  | 
 | 	pHba = (void*) cmd->device->host->hostdata[0]; | 
 | 	printk(KERN_INFO"%s: Trying to reset device\n",pHba->name); | 
 | 	if (!d) { | 
 | 		printk(KERN_INFO"%s: Reset Device: Device Not found\n",pHba->name); | 
 | 		return FAILED; | 
 | 	} | 
 | 	memset(msg, 0, sizeof(msg)); | 
 | 	msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0; | 
 | 	msg[1] = (I2O_DEVICE_RESET<<24|HOST_TID<<12|d->tid); | 
 | 	msg[2] = 0; | 
 | 	msg[3] = 0; | 
 |  | 
 | 	if (pHba->host) | 
 | 		spin_lock_irq(pHba->host->host_lock); | 
 | 	old_state = d->state; | 
 | 	d->state |= DPTI_DEV_RESET; | 
 | 	rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER); | 
 | 	d->state = old_state; | 
 | 	if (pHba->host) | 
 | 		spin_unlock_irq(pHba->host->host_lock); | 
 | 	if (rcode != 0) { | 
 | 		if(rcode == -EOPNOTSUPP ){ | 
 | 			printk(KERN_INFO"%s: Device reset not supported\n",pHba->name); | 
 | 			return FAILED; | 
 | 		} | 
 | 		printk(KERN_INFO"%s: Device reset failed\n",pHba->name); | 
 | 		return FAILED; | 
 | 	} else { | 
 | 		printk(KERN_INFO"%s: Device reset successful\n",pHba->name); | 
 | 		return SUCCESS; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | #define I2O_HBA_BUS_RESET 0x87 | 
 | // This version of bus reset is called by the eh_error handler | 
 | static int adpt_bus_reset(struct scsi_cmnd* cmd) | 
 | { | 
 | 	adpt_hba* pHba; | 
 | 	u32 msg[4]; | 
 | 	u32 rcode; | 
 |  | 
 | 	pHba = (adpt_hba*)cmd->device->host->hostdata[0]; | 
 | 	memset(msg, 0, sizeof(msg)); | 
 | 	printk(KERN_WARNING"%s: Bus reset: SCSI Bus %d: tid: %d\n",pHba->name, cmd->device->channel,pHba->channel[cmd->device->channel].tid ); | 
 | 	msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0; | 
 | 	msg[1] = (I2O_HBA_BUS_RESET<<24|HOST_TID<<12|pHba->channel[cmd->device->channel].tid); | 
 | 	msg[2] = 0; | 
 | 	msg[3] = 0; | 
 | 	if (pHba->host) | 
 | 		spin_lock_irq(pHba->host->host_lock); | 
 | 	rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER); | 
 | 	if (pHba->host) | 
 | 		spin_unlock_irq(pHba->host->host_lock); | 
 | 	if (rcode != 0) { | 
 | 		printk(KERN_WARNING"%s: Bus reset failed.\n",pHba->name); | 
 | 		return FAILED; | 
 | 	} else { | 
 | 		printk(KERN_WARNING"%s: Bus reset success.\n",pHba->name); | 
 | 		return SUCCESS; | 
 | 	} | 
 | } | 
 |  | 
 | // This version of reset is called by the eh_error_handler | 
 | static int __adpt_reset(struct scsi_cmnd* cmd) | 
 | { | 
 | 	adpt_hba* pHba; | 
 | 	int rcode; | 
 | 	pHba = (adpt_hba*)cmd->device->host->hostdata[0]; | 
 | 	printk(KERN_WARNING"%s: Hba Reset: scsi id %d: tid: %d\n",pHba->name,cmd->device->channel,pHba->channel[cmd->device->channel].tid ); | 
 | 	rcode =  adpt_hba_reset(pHba); | 
 | 	if(rcode == 0){ | 
 | 		printk(KERN_WARNING"%s: HBA reset complete\n",pHba->name); | 
 | 		return SUCCESS; | 
 | 	} else { | 
 | 		printk(KERN_WARNING"%s: HBA reset failed (%x)\n",pHba->name, rcode); | 
 | 		return FAILED; | 
 | 	} | 
 | } | 
 |  | 
 | static int adpt_reset(struct scsi_cmnd* cmd) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	spin_lock_irq(cmd->device->host->host_lock); | 
 | 	rc = __adpt_reset(cmd); | 
 | 	spin_unlock_irq(cmd->device->host->host_lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | // This version of reset is called by the ioctls and indirectly from eh_error_handler via adpt_reset | 
 | static int adpt_hba_reset(adpt_hba* pHba) | 
 | { | 
 | 	int rcode; | 
 |  | 
 | 	pHba->state |= DPTI_STATE_RESET; | 
 |  | 
 | 	// Activate does get status , init outbound, and get hrt | 
 | 	if ((rcode=adpt_i2o_activate_hba(pHba)) < 0) { | 
 | 		printk(KERN_ERR "%s: Could not activate\n", pHba->name); | 
 | 		adpt_i2o_delete_hba(pHba); | 
 | 		return rcode; | 
 | 	} | 
 |  | 
 | 	if ((rcode=adpt_i2o_build_sys_table()) < 0) { | 
 | 		adpt_i2o_delete_hba(pHba); | 
 | 		return rcode; | 
 | 	} | 
 | 	PDEBUG("%s: in HOLD state\n",pHba->name); | 
 |  | 
 | 	if ((rcode=adpt_i2o_online_hba(pHba)) < 0) { | 
 | 		adpt_i2o_delete_hba(pHba);	 | 
 | 		return rcode; | 
 | 	} | 
 | 	PDEBUG("%s: in OPERATIONAL state\n",pHba->name); | 
 |  | 
 | 	if ((rcode=adpt_i2o_lct_get(pHba)) < 0){ | 
 | 		adpt_i2o_delete_hba(pHba); | 
 | 		return rcode; | 
 | 	} | 
 |  | 
 | 	if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0){ | 
 | 		adpt_i2o_delete_hba(pHba); | 
 | 		return rcode; | 
 | 	} | 
 | 	pHba->state &= ~DPTI_STATE_RESET; | 
 |  | 
 | 	adpt_fail_posted_scbs(pHba); | 
 | 	return 0;	/* return success */ | 
 | } | 
 |  | 
 | /*=========================================================================== | 
 |  *  | 
 |  *=========================================================================== | 
 |  */ | 
 |  | 
 |  | 
 | static void adpt_i2o_sys_shutdown(void) | 
 | { | 
 | 	adpt_hba *pHba, *pNext; | 
 | 	struct adpt_i2o_post_wait_data *p1, *old; | 
 |  | 
 | 	 printk(KERN_INFO"Shutting down Adaptec I2O controllers.\n"); | 
 | 	 printk(KERN_INFO"   This could take a few minutes if there are many devices attached\n"); | 
 | 	/* Delete all IOPs from the controller chain */ | 
 | 	/* They should have already been released by the | 
 | 	 * scsi-core | 
 | 	 */ | 
 | 	for (pHba = hba_chain; pHba; pHba = pNext) { | 
 | 		pNext = pHba->next; | 
 | 		adpt_i2o_delete_hba(pHba); | 
 | 	} | 
 |  | 
 | 	/* Remove any timedout entries from the wait queue.  */ | 
 | //	spin_lock_irqsave(&adpt_post_wait_lock, flags); | 
 | 	/* Nothing should be outstanding at this point so just | 
 | 	 * free them  | 
 | 	 */ | 
 | 	for(p1 = adpt_post_wait_queue; p1;) { | 
 | 		old = p1; | 
 | 		p1 = p1->next; | 
 | 		kfree(old); | 
 | 	} | 
 | //	spin_unlock_irqrestore(&adpt_post_wait_lock, flags); | 
 | 	adpt_post_wait_queue = NULL; | 
 |  | 
 | 	 printk(KERN_INFO "Adaptec I2O controllers down.\n"); | 
 | } | 
 |  | 
 | static int adpt_install_hba(struct scsi_host_template* sht, struct pci_dev* pDev) | 
 | { | 
 |  | 
 | 	adpt_hba* pHba = NULL; | 
 | 	adpt_hba* p = NULL; | 
 | 	ulong base_addr0_phys = 0; | 
 | 	ulong base_addr1_phys = 0; | 
 | 	u32 hba_map0_area_size = 0; | 
 | 	u32 hba_map1_area_size = 0; | 
 | 	void __iomem *base_addr_virt = NULL; | 
 | 	void __iomem *msg_addr_virt = NULL; | 
 | 	int dma64 = 0; | 
 |  | 
 | 	int raptorFlag = FALSE; | 
 |  | 
 | 	if(pci_enable_device(pDev)) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (pci_request_regions(pDev, "dpt_i2o")) { | 
 | 		PERROR("dpti: adpt_config_hba: pci request region failed\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pci_set_master(pDev); | 
 |  | 
 | 	/* | 
 | 	 *	See if we should enable dma64 mode. | 
 | 	 */ | 
 | 	if (sizeof(dma_addr_t) > 4 && | 
 | 	    pci_set_dma_mask(pDev, DMA_BIT_MASK(64)) == 0) { | 
 | 		if (dma_get_required_mask(&pDev->dev) > DMA_BIT_MASK(32)) | 
 | 			dma64 = 1; | 
 | 	} | 
 | 	if (!dma64 && pci_set_dma_mask(pDev, DMA_BIT_MASK(32)) != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* adapter only supports message blocks below 4GB */ | 
 | 	pci_set_consistent_dma_mask(pDev, DMA_BIT_MASK(32)); | 
 |  | 
 | 	base_addr0_phys = pci_resource_start(pDev,0); | 
 | 	hba_map0_area_size = pci_resource_len(pDev,0); | 
 |  | 
 | 	// Check if standard PCI card or single BAR Raptor | 
 | 	if(pDev->device == PCI_DPT_DEVICE_ID){ | 
 | 		if(pDev->subsystem_device >=0xc032 && pDev->subsystem_device <= 0xc03b){ | 
 | 			// Raptor card with this device id needs 4M | 
 | 			hba_map0_area_size = 0x400000; | 
 | 		} else { // Not Raptor - it is a PCI card | 
 | 			if(hba_map0_area_size > 0x100000 ){  | 
 | 				hba_map0_area_size = 0x100000; | 
 | 			} | 
 | 		} | 
 | 	} else {// Raptor split BAR config | 
 | 		// Use BAR1 in this configuration | 
 | 		base_addr1_phys = pci_resource_start(pDev,1); | 
 | 		hba_map1_area_size = pci_resource_len(pDev,1); | 
 | 		raptorFlag = TRUE; | 
 | 	} | 
 |  | 
 | #if BITS_PER_LONG == 64 | 
 | 	/* | 
 | 	 *	The original Adaptec 64 bit driver has this comment here: | 
 | 	 *	"x86_64 machines need more optimal mappings" | 
 | 	 * | 
 | 	 *	I assume some HBAs report ridiculously large mappings | 
 | 	 *	and we need to limit them on platforms with IOMMUs. | 
 | 	 */ | 
 | 	if (raptorFlag == TRUE) { | 
 | 		if (hba_map0_area_size > 128) | 
 | 			hba_map0_area_size = 128; | 
 | 		if (hba_map1_area_size > 524288) | 
 | 			hba_map1_area_size = 524288; | 
 | 	} else { | 
 | 		if (hba_map0_area_size > 524288) | 
 | 			hba_map0_area_size = 524288; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	base_addr_virt = ioremap(base_addr0_phys,hba_map0_area_size); | 
 | 	if (!base_addr_virt) { | 
 | 		pci_release_regions(pDev); | 
 | 		PERROR("dpti: adpt_config_hba: io remap failed\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 |         if(raptorFlag == TRUE) { | 
 | 		msg_addr_virt = ioremap(base_addr1_phys, hba_map1_area_size ); | 
 | 		if (!msg_addr_virt) { | 
 | 			PERROR("dpti: adpt_config_hba: io remap failed on BAR1\n"); | 
 | 			iounmap(base_addr_virt); | 
 | 			pci_release_regions(pDev); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else { | 
 | 		msg_addr_virt = base_addr_virt; | 
 | 	} | 
 | 	 | 
 | 	// Allocate and zero the data structure | 
 | 	pHba = kzalloc(sizeof(adpt_hba), GFP_KERNEL); | 
 | 	if (!pHba) { | 
 | 		if (msg_addr_virt != base_addr_virt) | 
 | 			iounmap(msg_addr_virt); | 
 | 		iounmap(base_addr_virt); | 
 | 		pci_release_regions(pDev); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&adpt_configuration_lock); | 
 |  | 
 | 	if(hba_chain != NULL){ | 
 | 		for(p = hba_chain; p->next; p = p->next); | 
 | 		p->next = pHba; | 
 | 	} else { | 
 | 		hba_chain = pHba; | 
 | 	} | 
 | 	pHba->next = NULL; | 
 | 	pHba->unit = hba_count; | 
 | 	sprintf(pHba->name, "dpti%d", hba_count); | 
 | 	hba_count++; | 
 | 	 | 
 | 	mutex_unlock(&adpt_configuration_lock); | 
 |  | 
 | 	pHba->pDev = pDev; | 
 | 	pHba->base_addr_phys = base_addr0_phys; | 
 |  | 
 | 	// Set up the Virtual Base Address of the I2O Device | 
 | 	pHba->base_addr_virt = base_addr_virt; | 
 | 	pHba->msg_addr_virt = msg_addr_virt; | 
 | 	pHba->irq_mask = base_addr_virt+0x30; | 
 | 	pHba->post_port = base_addr_virt+0x40; | 
 | 	pHba->reply_port = base_addr_virt+0x44; | 
 |  | 
 | 	pHba->hrt = NULL; | 
 | 	pHba->lct = NULL; | 
 | 	pHba->lct_size = 0; | 
 | 	pHba->status_block = NULL; | 
 | 	pHba->post_count = 0; | 
 | 	pHba->state = DPTI_STATE_RESET; | 
 | 	pHba->pDev = pDev; | 
 | 	pHba->devices = NULL; | 
 | 	pHba->dma64 = dma64; | 
 |  | 
 | 	// Initializing the spinlocks | 
 | 	spin_lock_init(&pHba->state_lock); | 
 | 	spin_lock_init(&adpt_post_wait_lock); | 
 |  | 
 | 	if(raptorFlag == 0){ | 
 | 		printk(KERN_INFO "Adaptec I2O RAID controller" | 
 | 				 " %d at %p size=%x irq=%d%s\n",  | 
 | 			hba_count-1, base_addr_virt, | 
 | 			hba_map0_area_size, pDev->irq, | 
 | 			dma64 ? " (64-bit DMA)" : ""); | 
 | 	} else { | 
 | 		printk(KERN_INFO"Adaptec I2O RAID controller %d irq=%d%s\n", | 
 | 			hba_count-1, pDev->irq, | 
 | 			dma64 ? " (64-bit DMA)" : ""); | 
 | 		printk(KERN_INFO"     BAR0 %p - size= %x\n",base_addr_virt,hba_map0_area_size); | 
 | 		printk(KERN_INFO"     BAR1 %p - size= %x\n",msg_addr_virt,hba_map1_area_size); | 
 | 	} | 
 |  | 
 | 	if (request_irq (pDev->irq, adpt_isr, IRQF_SHARED, pHba->name, pHba)) { | 
 | 		printk(KERN_ERR"%s: Couldn't register IRQ %d\n", pHba->name, pDev->irq); | 
 | 		adpt_i2o_delete_hba(pHba); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void adpt_i2o_delete_hba(adpt_hba* pHba) | 
 | { | 
 | 	adpt_hba* p1; | 
 | 	adpt_hba* p2; | 
 | 	struct i2o_device* d; | 
 | 	struct i2o_device* next; | 
 | 	int i; | 
 | 	int j; | 
 | 	struct adpt_device* pDev; | 
 | 	struct adpt_device* pNext; | 
 |  | 
 |  | 
 | 	mutex_lock(&adpt_configuration_lock); | 
 | 	// scsi_unregister calls our adpt_release which | 
 | 	// does a quiese | 
 | 	if(pHba->host){ | 
 | 		free_irq(pHba->host->irq, pHba); | 
 | 	} | 
 | 	p2 = NULL; | 
 | 	for( p1 = hba_chain; p1; p2 = p1,p1=p1->next){ | 
 | 		if(p1 == pHba) { | 
 | 			if(p2) { | 
 | 				p2->next = p1->next; | 
 | 			} else { | 
 | 				hba_chain = p1->next; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hba_count--; | 
 | 	mutex_unlock(&adpt_configuration_lock); | 
 |  | 
 | 	iounmap(pHba->base_addr_virt); | 
 | 	pci_release_regions(pHba->pDev); | 
 | 	if(pHba->msg_addr_virt != pHba->base_addr_virt){ | 
 | 		iounmap(pHba->msg_addr_virt); | 
 | 	} | 
 | 	if(pHba->FwDebugBuffer_P) | 
 | 	   	iounmap(pHba->FwDebugBuffer_P); | 
 | 	if(pHba->hrt) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, | 
 | 			pHba->hrt->num_entries * pHba->hrt->entry_len << 2, | 
 | 			pHba->hrt, pHba->hrt_pa); | 
 | 	} | 
 | 	if(pHba->lct) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, pHba->lct_size, | 
 | 			pHba->lct, pHba->lct_pa); | 
 | 	} | 
 | 	if(pHba->status_block) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, sizeof(i2o_status_block), | 
 | 			pHba->status_block, pHba->status_block_pa); | 
 | 	} | 
 | 	if(pHba->reply_pool) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, | 
 | 			pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4, | 
 | 			pHba->reply_pool, pHba->reply_pool_pa); | 
 | 	} | 
 |  | 
 | 	for(d = pHba->devices; d ; d = next){ | 
 | 		next = d->next; | 
 | 		kfree(d); | 
 | 	} | 
 | 	for(i = 0 ; i < pHba->top_scsi_channel ; i++){ | 
 | 		for(j = 0; j < MAX_ID; j++){ | 
 | 			if(pHba->channel[i].device[j] != NULL){ | 
 | 				for(pDev = pHba->channel[i].device[j]; pDev; pDev = pNext){ | 
 | 					pNext = pDev->next_lun; | 
 | 					kfree(pDev); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	pci_dev_put(pHba->pDev); | 
 | 	if (adpt_sysfs_class) | 
 | 		device_destroy(adpt_sysfs_class, | 
 | 				MKDEV(DPTI_I2O_MAJOR, pHba->unit)); | 
 | 	kfree(pHba); | 
 |  | 
 | 	if(hba_count <= 0){ | 
 | 		unregister_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER);    | 
 | 		if (adpt_sysfs_class) { | 
 | 			class_destroy(adpt_sysfs_class); | 
 | 			adpt_sysfs_class = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static struct adpt_device* adpt_find_device(adpt_hba* pHba, u32 chan, u32 id, u64 lun) | 
 | { | 
 | 	struct adpt_device* d; | 
 |  | 
 | 	if(chan < 0 || chan >= MAX_CHANNEL) | 
 | 		return NULL; | 
 | 	 | 
 | 	if( pHba->channel[chan].device == NULL){ | 
 | 		printk(KERN_DEBUG"Adaptec I2O RAID: Trying to find device before they are allocated\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	d = pHba->channel[chan].device[id]; | 
 | 	if(!d || d->tid == 0) { | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* If it is the only lun at that address then this should match*/ | 
 | 	if(d->scsi_lun == lun){ | 
 | 		return d; | 
 | 	} | 
 |  | 
 | 	/* else we need to look through all the luns */ | 
 | 	for(d=d->next_lun ; d ; d = d->next_lun){ | 
 | 		if(d->scsi_lun == lun){ | 
 | 			return d; | 
 | 		} | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | static int adpt_i2o_post_wait(adpt_hba* pHba, u32* msg, int len, int timeout) | 
 | { | 
 | 	// I used my own version of the WAIT_QUEUE_HEAD | 
 | 	// to handle some version differences | 
 | 	// When embedded in the kernel this could go back to the vanilla one | 
 | 	ADPT_DECLARE_WAIT_QUEUE_HEAD(adpt_wq_i2o_post); | 
 | 	int status = 0; | 
 | 	ulong flags = 0; | 
 | 	struct adpt_i2o_post_wait_data *p1, *p2; | 
 | 	struct adpt_i2o_post_wait_data *wait_data = | 
 | 		kmalloc(sizeof(struct adpt_i2o_post_wait_data), GFP_ATOMIC); | 
 | 	DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 	if (!wait_data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * The spin locking is needed to keep anyone from playing | 
 | 	 * with the queue pointers and id while we do the same | 
 | 	 */ | 
 | 	spin_lock_irqsave(&adpt_post_wait_lock, flags); | 
 |        // TODO we need a MORE unique way of getting ids | 
 |        // to support async LCT get | 
 | 	wait_data->next = adpt_post_wait_queue; | 
 | 	adpt_post_wait_queue = wait_data; | 
 | 	adpt_post_wait_id++; | 
 | 	adpt_post_wait_id &= 0x7fff; | 
 | 	wait_data->id =  adpt_post_wait_id; | 
 | 	spin_unlock_irqrestore(&adpt_post_wait_lock, flags); | 
 |  | 
 | 	wait_data->wq = &adpt_wq_i2o_post; | 
 | 	wait_data->status = -ETIMEDOUT; | 
 |  | 
 | 	add_wait_queue(&adpt_wq_i2o_post, &wait); | 
 |  | 
 | 	msg[2] |= 0x80000000 | ((u32)wait_data->id); | 
 | 	timeout *= HZ; | 
 | 	if((status = adpt_i2o_post_this(pHba, msg, len)) == 0){ | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		if(pHba->host) | 
 | 			spin_unlock_irq(pHba->host->host_lock); | 
 | 		if (!timeout) | 
 | 			schedule(); | 
 | 		else{ | 
 | 			timeout = schedule_timeout(timeout); | 
 | 			if (timeout == 0) { | 
 | 				// I/O issued, but cannot get result in | 
 | 				// specified time. Freeing resorces is | 
 | 				// dangerous. | 
 | 				status = -ETIME; | 
 | 			} | 
 | 		} | 
 | 		if(pHba->host) | 
 | 			spin_lock_irq(pHba->host->host_lock); | 
 | 	} | 
 | 	remove_wait_queue(&adpt_wq_i2o_post, &wait); | 
 |  | 
 | 	if(status == -ETIMEDOUT){ | 
 | 		printk(KERN_INFO"dpti%d: POST WAIT TIMEOUT\n",pHba->unit); | 
 | 		// We will have to free the wait_data memory during shutdown | 
 | 		return status; | 
 | 	} | 
 |  | 
 | 	/* Remove the entry from the queue.  */ | 
 | 	p2 = NULL; | 
 | 	spin_lock_irqsave(&adpt_post_wait_lock, flags); | 
 | 	for(p1 = adpt_post_wait_queue; p1; p2 = p1, p1 = p1->next) { | 
 | 		if(p1 == wait_data) { | 
 | 			if(p1->status == I2O_DETAIL_STATUS_UNSUPPORTED_FUNCTION ) { | 
 | 				status = -EOPNOTSUPP; | 
 | 			} | 
 | 			if(p2) { | 
 | 				p2->next = p1->next; | 
 | 			} else { | 
 | 				adpt_post_wait_queue = p1->next; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&adpt_post_wait_lock, flags); | 
 |  | 
 | 	kfree(wait_data); | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 |  | 
 | static s32 adpt_i2o_post_this(adpt_hba* pHba, u32* data, int len) | 
 | { | 
 |  | 
 | 	u32 m = EMPTY_QUEUE; | 
 | 	u32 __iomem *msg; | 
 | 	ulong timeout = jiffies + 30*HZ; | 
 | 	do { | 
 | 		rmb(); | 
 | 		m = readl(pHba->post_port); | 
 | 		if (m != EMPTY_QUEUE) { | 
 | 			break; | 
 | 		} | 
 | 		if(time_after(jiffies,timeout)){ | 
 | 			printk(KERN_WARNING"dpti%d: Timeout waiting for message frame!\n", pHba->unit); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} while(m == EMPTY_QUEUE); | 
 | 		 | 
 | 	msg = pHba->msg_addr_virt + m; | 
 | 	memcpy_toio(msg, data, len); | 
 | 	wmb(); | 
 |  | 
 | 	//post message | 
 | 	writel(m, pHba->post_port); | 
 | 	wmb(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void adpt_i2o_post_wait_complete(u32 context, int status) | 
 | { | 
 | 	struct adpt_i2o_post_wait_data *p1 = NULL; | 
 | 	/* | 
 | 	 * We need to search through the adpt_post_wait | 
 | 	 * queue to see if the given message is still | 
 | 	 * outstanding.  If not, it means that the IOP | 
 | 	 * took longer to respond to the message than we | 
 | 	 * had allowed and timer has already expired. | 
 | 	 * Not much we can do about that except log | 
 | 	 * it for debug purposes, increase timeout, and recompile | 
 | 	 * | 
 | 	 * Lock needed to keep anyone from moving queue pointers | 
 | 	 * around while we're looking through them. | 
 | 	 */ | 
 |  | 
 | 	context &= 0x7fff; | 
 |  | 
 | 	spin_lock(&adpt_post_wait_lock); | 
 | 	for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) { | 
 | 		if(p1->id == context) { | 
 | 			p1->status = status; | 
 | 			spin_unlock(&adpt_post_wait_lock); | 
 | 			wake_up_interruptible(p1->wq); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&adpt_post_wait_lock); | 
 |         // If this happens we lose commands that probably really completed | 
 | 	printk(KERN_DEBUG"dpti: Could Not find task %d in wait queue\n",context); | 
 | 	printk(KERN_DEBUG"      Tasks in wait queue:\n"); | 
 | 	for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) { | 
 | 		printk(KERN_DEBUG"           %d\n",p1->id); | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | static s32 adpt_i2o_reset_hba(adpt_hba* pHba)			 | 
 | { | 
 | 	u32 msg[8]; | 
 | 	u8* status; | 
 | 	dma_addr_t addr; | 
 | 	u32 m = EMPTY_QUEUE ; | 
 | 	ulong timeout = jiffies + (TMOUT_IOPRESET*HZ); | 
 |  | 
 | 	if(pHba->initialized  == FALSE) {	// First time reset should be quick | 
 | 		timeout = jiffies + (25*HZ); | 
 | 	} else { | 
 | 		adpt_i2o_quiesce_hba(pHba); | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		rmb(); | 
 | 		m = readl(pHba->post_port); | 
 | 		if (m != EMPTY_QUEUE) { | 
 | 			break; | 
 | 		} | 
 | 		if(time_after(jiffies,timeout)){ | 
 | 			printk(KERN_WARNING"Timeout waiting for message!\n"); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} while (m == EMPTY_QUEUE); | 
 |  | 
 | 	status = dma_alloc_coherent(&pHba->pDev->dev, 4, &addr, GFP_KERNEL); | 
 | 	if(status == NULL) { | 
 | 		adpt_send_nop(pHba, m); | 
 | 		printk(KERN_ERR"IOP reset failed - no free memory.\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	memset(status,0,4); | 
 |  | 
 | 	msg[0]=EIGHT_WORD_MSG_SIZE|SGL_OFFSET_0; | 
 | 	msg[1]=I2O_CMD_ADAPTER_RESET<<24|HOST_TID<<12|ADAPTER_TID; | 
 | 	msg[2]=0; | 
 | 	msg[3]=0; | 
 | 	msg[4]=0; | 
 | 	msg[5]=0; | 
 | 	msg[6]=dma_low(addr); | 
 | 	msg[7]=dma_high(addr); | 
 |  | 
 | 	memcpy_toio(pHba->msg_addr_virt+m, msg, sizeof(msg)); | 
 | 	wmb(); | 
 | 	writel(m, pHba->post_port); | 
 | 	wmb(); | 
 |  | 
 | 	while(*status == 0){ | 
 | 		if(time_after(jiffies,timeout)){ | 
 | 			printk(KERN_WARNING"%s: IOP Reset Timeout\n",pHba->name); | 
 | 			/* We lose 4 bytes of "status" here, but we cannot | 
 | 			   free these because controller may awake and corrupt | 
 | 			   those bytes at any time */ | 
 | 			/* dma_free_coherent(&pHba->pDev->dev, 4, buf, addr); */ | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		rmb(); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} | 
 |  | 
 | 	if(*status == 0x01 /*I2O_EXEC_IOP_RESET_IN_PROGRESS*/) { | 
 | 		PDEBUG("%s: Reset in progress...\n", pHba->name); | 
 | 		// Here we wait for message frame to become available | 
 | 		// indicated that reset has finished | 
 | 		do { | 
 | 			rmb(); | 
 | 			m = readl(pHba->post_port); | 
 | 			if (m != EMPTY_QUEUE) { | 
 | 				break; | 
 | 			} | 
 | 			if(time_after(jiffies,timeout)){ | 
 | 				printk(KERN_ERR "%s:Timeout waiting for IOP Reset.\n",pHba->name); | 
 | 				/* We lose 4 bytes of "status" here, but we | 
 | 				   cannot free these because controller may | 
 | 				   awake and corrupt those bytes at any time */ | 
 | 				/* dma_free_coherent(&pHba->pDev->dev, 4, buf, addr); */ | 
 | 				return -ETIMEDOUT; | 
 | 			} | 
 | 			schedule_timeout_uninterruptible(1); | 
 | 		} while (m == EMPTY_QUEUE); | 
 | 		// Flush the offset | 
 | 		adpt_send_nop(pHba, m); | 
 | 	} | 
 | 	adpt_i2o_status_get(pHba); | 
 | 	if(*status == 0x02 || | 
 | 			pHba->status_block->iop_state != ADAPTER_STATE_RESET) { | 
 | 		printk(KERN_WARNING"%s: Reset reject, trying to clear\n", | 
 | 				pHba->name); | 
 | 	} else { | 
 | 		PDEBUG("%s: Reset completed.\n", pHba->name); | 
 | 	} | 
 |  | 
 | 	dma_free_coherent(&pHba->pDev->dev, 4, status, addr); | 
 | #ifdef UARTDELAY | 
 | 	// This delay is to allow someone attached to the card through the debug UART to  | 
 | 	// set up the dump levels that they want before the rest of the initialization sequence | 
 | 	adpt_delay(20000); | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int adpt_i2o_parse_lct(adpt_hba* pHba) | 
 | { | 
 | 	int i; | 
 | 	int max; | 
 | 	int tid; | 
 | 	struct i2o_device *d; | 
 | 	i2o_lct *lct = pHba->lct; | 
 | 	u8 bus_no = 0; | 
 | 	s16 scsi_id; | 
 | 	u64 scsi_lun; | 
 | 	u32 buf[10]; // larger than 7, or 8 ... | 
 | 	struct adpt_device* pDev;  | 
 | 	 | 
 | 	if (lct == NULL) { | 
 | 		printk(KERN_ERR "%s: LCT is empty???\n",pHba->name); | 
 | 		return -1; | 
 | 	} | 
 | 	 | 
 | 	max = lct->table_size;	 | 
 | 	max -= 3; | 
 | 	max /= 9; | 
 |  | 
 | 	for(i=0;i<max;i++) { | 
 | 		if( lct->lct_entry[i].user_tid != 0xfff){ | 
 | 			/* | 
 | 			 * If we have hidden devices, we need to inform the upper layers about | 
 | 			 * the possible maximum id reference to handle device access when | 
 | 			 * an array is disassembled. This code has no other purpose but to | 
 | 			 * allow us future access to devices that are currently hidden | 
 | 			 * behind arrays, hotspares or have not been configured (JBOD mode). | 
 | 			 */ | 
 | 			if( lct->lct_entry[i].class_id != I2O_CLASS_RANDOM_BLOCK_STORAGE && | 
 | 			    lct->lct_entry[i].class_id != I2O_CLASS_SCSI_PERIPHERAL && | 
 | 			    lct->lct_entry[i].class_id != I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){ | 
 | 			    	continue; | 
 | 			} | 
 | 			tid = lct->lct_entry[i].tid; | 
 | 			// I2O_DPT_DEVICE_INFO_GROUP_NO; | 
 | 			if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) { | 
 | 				continue; | 
 | 			} | 
 | 			bus_no = buf[0]>>16; | 
 | 			scsi_id = buf[1]; | 
 | 			scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]); | 
 | 			if(bus_no >= MAX_CHANNEL) {	// Something wrong skip it | 
 | 				printk(KERN_WARNING"%s: Channel number %d out of range \n", pHba->name, bus_no); | 
 | 				continue; | 
 | 			} | 
 | 			if (scsi_id >= MAX_ID){ | 
 | 				printk(KERN_WARNING"%s: SCSI ID %d out of range \n", pHba->name, bus_no); | 
 | 				continue; | 
 | 			} | 
 | 			if(bus_no > pHba->top_scsi_channel){ | 
 | 				pHba->top_scsi_channel = bus_no; | 
 | 			} | 
 | 			if(scsi_id > pHba->top_scsi_id){ | 
 | 				pHba->top_scsi_id = scsi_id; | 
 | 			} | 
 | 			if(scsi_lun > pHba->top_scsi_lun){ | 
 | 				pHba->top_scsi_lun = scsi_lun; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		d = kmalloc(sizeof(struct i2o_device), GFP_KERNEL); | 
 | 		if(d==NULL) | 
 | 		{ | 
 | 			printk(KERN_CRIT"%s: Out of memory for I2O device data.\n",pHba->name); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		 | 
 | 		d->controller = pHba; | 
 | 		d->next = NULL; | 
 |  | 
 | 		memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry)); | 
 |  | 
 | 		d->flags = 0; | 
 | 		tid = d->lct_data.tid; | 
 | 		adpt_i2o_report_hba_unit(pHba, d); | 
 | 		adpt_i2o_install_device(pHba, d); | 
 | 	} | 
 | 	bus_no = 0; | 
 | 	for(d = pHba->devices; d ; d = d->next) { | 
 | 		if(d->lct_data.class_id  == I2O_CLASS_BUS_ADAPTER_PORT || | 
 | 		   d->lct_data.class_id  == I2O_CLASS_FIBRE_CHANNEL_PORT){ | 
 | 			tid = d->lct_data.tid; | 
 | 			// TODO get the bus_no from hrt-but for now they are in order | 
 | 			//bus_no =  | 
 | 			if(bus_no > pHba->top_scsi_channel){ | 
 | 				pHba->top_scsi_channel = bus_no; | 
 | 			} | 
 | 			pHba->channel[bus_no].type = d->lct_data.class_id; | 
 | 			pHba->channel[bus_no].tid = tid; | 
 | 			if(adpt_i2o_query_scalar(pHba, tid, 0x0200, -1, buf, 28)>=0) | 
 | 			{ | 
 | 				pHba->channel[bus_no].scsi_id = buf[1]; | 
 | 				PDEBUG("Bus %d - SCSI ID %d.\n", bus_no, buf[1]); | 
 | 			} | 
 | 			// TODO remove - this is just until we get from hrt | 
 | 			bus_no++; | 
 | 			if(bus_no >= MAX_CHANNEL) {	// Something wrong skip it | 
 | 				printk(KERN_WARNING"%s: Channel number %d out of range - LCT\n", pHba->name, bus_no); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Setup adpt_device table | 
 | 	for(d = pHba->devices; d ; d = d->next) { | 
 | 		if(d->lct_data.class_id  == I2O_CLASS_RANDOM_BLOCK_STORAGE || | 
 | 		   d->lct_data.class_id  == I2O_CLASS_SCSI_PERIPHERAL || | 
 | 		   d->lct_data.class_id  == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){ | 
 |  | 
 | 			tid = d->lct_data.tid; | 
 | 			scsi_id = -1; | 
 | 			// I2O_DPT_DEVICE_INFO_GROUP_NO; | 
 | 			if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)>=0) { | 
 | 				bus_no = buf[0]>>16; | 
 | 				scsi_id = buf[1]; | 
 | 				scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]); | 
 | 				if(bus_no >= MAX_CHANNEL) {	// Something wrong skip it | 
 | 					continue; | 
 | 				} | 
 | 				if (scsi_id >= MAX_ID) { | 
 | 					continue; | 
 | 				} | 
 | 				if( pHba->channel[bus_no].device[scsi_id] == NULL){ | 
 | 					pDev =  kzalloc(sizeof(struct adpt_device),GFP_KERNEL); | 
 | 					if(pDev == NULL) { | 
 | 						return -ENOMEM; | 
 | 					} | 
 | 					pHba->channel[bus_no].device[scsi_id] = pDev; | 
 | 				} else { | 
 | 					for( pDev = pHba->channel[bus_no].device[scsi_id];	 | 
 | 							pDev->next_lun; pDev = pDev->next_lun){ | 
 | 					} | 
 | 					pDev->next_lun = kzalloc(sizeof(struct adpt_device),GFP_KERNEL); | 
 | 					if(pDev->next_lun == NULL) { | 
 | 						return -ENOMEM; | 
 | 					} | 
 | 					pDev = pDev->next_lun; | 
 | 				} | 
 | 				pDev->tid = tid; | 
 | 				pDev->scsi_channel = bus_no; | 
 | 				pDev->scsi_id = scsi_id; | 
 | 				pDev->scsi_lun = scsi_lun; | 
 | 				pDev->pI2o_dev = d; | 
 | 				d->owner = pDev; | 
 | 				pDev->type = (buf[0])&0xff; | 
 | 				pDev->flags = (buf[0]>>8)&0xff; | 
 | 				if(scsi_id > pHba->top_scsi_id){ | 
 | 					pHba->top_scsi_id = scsi_id; | 
 | 				} | 
 | 				if(scsi_lun > pHba->top_scsi_lun){ | 
 | 					pHba->top_scsi_lun = scsi_lun; | 
 | 				} | 
 | 			} | 
 | 			if(scsi_id == -1){ | 
 | 				printk(KERN_WARNING"Could not find SCSI ID for %s\n", | 
 | 						d->lct_data.identity_tag); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  *	Each I2O controller has a chain of devices on it - these match | 
 |  *	the useful parts of the LCT of the board. | 
 |  */ | 
 |   | 
 | static int adpt_i2o_install_device(adpt_hba* pHba, struct i2o_device *d) | 
 | { | 
 | 	mutex_lock(&adpt_configuration_lock); | 
 | 	d->controller=pHba; | 
 | 	d->owner=NULL; | 
 | 	d->next=pHba->devices; | 
 | 	d->prev=NULL; | 
 | 	if (pHba->devices != NULL){ | 
 | 		pHba->devices->prev=d; | 
 | 	} | 
 | 	pHba->devices=d; | 
 | 	*d->dev_name = 0; | 
 |  | 
 | 	mutex_unlock(&adpt_configuration_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int adpt_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	int minor; | 
 | 	adpt_hba* pHba; | 
 |  | 
 | 	mutex_lock(&adpt_mutex); | 
 | 	//TODO check for root access | 
 | 	// | 
 | 	minor = iminor(inode); | 
 | 	if (minor >= hba_count) { | 
 | 		mutex_unlock(&adpt_mutex); | 
 | 		return -ENXIO; | 
 | 	} | 
 | 	mutex_lock(&adpt_configuration_lock); | 
 | 	for (pHba = hba_chain; pHba; pHba = pHba->next) { | 
 | 		if (pHba->unit == minor) { | 
 | 			break;	/* found adapter */ | 
 | 		} | 
 | 	} | 
 | 	if (pHba == NULL) { | 
 | 		mutex_unlock(&adpt_configuration_lock); | 
 | 		mutex_unlock(&adpt_mutex); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | //	if(pHba->in_use){ | 
 | 	//	mutex_unlock(&adpt_configuration_lock); | 
 | //		return -EBUSY; | 
 | //	} | 
 |  | 
 | 	pHba->in_use = 1; | 
 | 	mutex_unlock(&adpt_configuration_lock); | 
 | 	mutex_unlock(&adpt_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int adpt_close(struct inode *inode, struct file *file) | 
 | { | 
 | 	int minor; | 
 | 	adpt_hba* pHba; | 
 |  | 
 | 	minor = iminor(inode); | 
 | 	if (minor >= hba_count) { | 
 | 		return -ENXIO; | 
 | 	} | 
 | 	mutex_lock(&adpt_configuration_lock); | 
 | 	for (pHba = hba_chain; pHba; pHba = pHba->next) { | 
 | 		if (pHba->unit == minor) { | 
 | 			break;	/* found adapter */ | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&adpt_configuration_lock); | 
 | 	if (pHba == NULL) { | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	pHba->in_use = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int adpt_i2o_passthru(adpt_hba* pHba, u32 __user *arg) | 
 | { | 
 | 	u32 msg[MAX_MESSAGE_SIZE]; | 
 | 	u32* reply = NULL; | 
 | 	u32 size = 0; | 
 | 	u32 reply_size = 0; | 
 | 	u32 __user *user_msg = arg; | 
 | 	u32 __user * user_reply = NULL; | 
 | 	void *sg_list[pHba->sg_tablesize]; | 
 | 	u32 sg_offset = 0; | 
 | 	u32 sg_count = 0; | 
 | 	int sg_index = 0; | 
 | 	u32 i = 0; | 
 | 	u32 rcode = 0; | 
 | 	void *p = NULL; | 
 | 	dma_addr_t addr; | 
 | 	ulong flags = 0; | 
 |  | 
 | 	memset(&msg, 0, MAX_MESSAGE_SIZE*4); | 
 | 	// get user msg size in u32s  | 
 | 	if(get_user(size, &user_msg[0])){ | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	size = size>>16; | 
 |  | 
 | 	user_reply = &user_msg[size]; | 
 | 	if(size > MAX_MESSAGE_SIZE){ | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	size *= 4; // Convert to bytes | 
 |  | 
 | 	/* Copy in the user's I2O command */ | 
 | 	if(copy_from_user(msg, user_msg, size)) { | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	get_user(reply_size, &user_reply[0]); | 
 | 	reply_size = reply_size>>16; | 
 | 	if(reply_size > REPLY_FRAME_SIZE){ | 
 | 		reply_size = REPLY_FRAME_SIZE; | 
 | 	} | 
 | 	reply_size *= 4; | 
 | 	reply = kzalloc(REPLY_FRAME_SIZE*4, GFP_KERNEL); | 
 | 	if(reply == NULL) { | 
 | 		printk(KERN_WARNING"%s: Could not allocate reply buffer\n",pHba->name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	sg_offset = (msg[0]>>4)&0xf; | 
 | 	msg[2] = 0x40000000; // IOCTL context | 
 | 	msg[3] = adpt_ioctl_to_context(pHba, reply); | 
 | 	if (msg[3] == (u32)-1) { | 
 | 		kfree(reply); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	memset(sg_list,0, sizeof(sg_list[0])*pHba->sg_tablesize); | 
 | 	if(sg_offset) { | 
 | 		// TODO add 64 bit API | 
 | 		struct sg_simple_element *sg =  (struct sg_simple_element*) (msg+sg_offset); | 
 | 		sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element); | 
 | 		if (sg_count > pHba->sg_tablesize){ | 
 | 			printk(KERN_DEBUG"%s:IOCTL SG List too large (%u)\n", pHba->name,sg_count); | 
 | 			kfree (reply); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		for(i = 0; i < sg_count; i++) { | 
 | 			int sg_size; | 
 |  | 
 | 			if (!(sg[i].flag_count & 0x10000000 /*I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT*/)) { | 
 | 				printk(KERN_DEBUG"%s:Bad SG element %d - not simple (%x)\n",pHba->name,i,  sg[i].flag_count); | 
 | 				rcode = -EINVAL; | 
 | 				goto cleanup; | 
 | 			} | 
 | 			sg_size = sg[i].flag_count & 0xffffff;       | 
 | 			/* Allocate memory for the transfer */ | 
 | 			p = dma_alloc_coherent(&pHba->pDev->dev, sg_size, &addr, GFP_KERNEL); | 
 | 			if(!p) { | 
 | 				printk(KERN_DEBUG"%s: Could not allocate SG buffer - size = %d buffer number %d of %d\n", | 
 | 						pHba->name,sg_size,i,sg_count); | 
 | 				rcode = -ENOMEM; | 
 | 				goto cleanup; | 
 | 			} | 
 | 			sg_list[sg_index++] = p; // sglist indexed with input frame, not our internal frame. | 
 | 			/* Copy in the user's SG buffer if necessary */ | 
 | 			if(sg[i].flag_count & 0x04000000 /*I2O_SGL_FLAGS_DIR*/) { | 
 | 				// sg_simple_element API is 32 bit | 
 | 				if (copy_from_user(p,(void __user *)(ulong)sg[i].addr_bus, sg_size)) { | 
 | 					printk(KERN_DEBUG"%s: Could not copy SG buf %d FROM user\n",pHba->name,i); | 
 | 					rcode = -EFAULT; | 
 | 					goto cleanup; | 
 | 				} | 
 | 			} | 
 | 			/* sg_simple_element API is 32 bit, but addr < 4GB */ | 
 | 			sg[i].addr_bus = addr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * Stop any new commands from enterring the | 
 | 		 * controller while processing the ioctl | 
 | 		 */ | 
 | 		if (pHba->host) { | 
 | 			scsi_block_requests(pHba->host); | 
 | 			spin_lock_irqsave(pHba->host->host_lock, flags); | 
 | 		} | 
 | 		rcode = adpt_i2o_post_wait(pHba, msg, size, FOREVER); | 
 | 		if (rcode != 0) | 
 | 			printk("adpt_i2o_passthru: post wait failed %d %p\n", | 
 | 					rcode, reply); | 
 | 		if (pHba->host) { | 
 | 			spin_unlock_irqrestore(pHba->host->host_lock, flags); | 
 | 			scsi_unblock_requests(pHba->host); | 
 | 		} | 
 | 	} while (rcode == -ETIMEDOUT); | 
 |  | 
 | 	if(rcode){ | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	if(sg_offset) { | 
 | 	/* Copy back the Scatter Gather buffers back to user space */ | 
 | 		u32 j; | 
 | 		// TODO add 64 bit API | 
 | 		struct sg_simple_element* sg; | 
 | 		int sg_size; | 
 |  | 
 | 		// re-acquire the original message to handle correctly the sg copy operation | 
 | 		memset(&msg, 0, MAX_MESSAGE_SIZE*4);  | 
 | 		// get user msg size in u32s  | 
 | 		if(get_user(size, &user_msg[0])){ | 
 | 			rcode = -EFAULT;  | 
 | 			goto cleanup;  | 
 | 		} | 
 | 		size = size>>16; | 
 | 		size *= 4; | 
 | 		if (size > MAX_MESSAGE_SIZE) { | 
 | 			rcode = -EINVAL; | 
 | 			goto cleanup; | 
 | 		} | 
 | 		/* Copy in the user's I2O command */ | 
 | 		if (copy_from_user (msg, user_msg, size)) { | 
 | 			rcode = -EFAULT; | 
 | 			goto cleanup; | 
 | 		} | 
 | 		sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element); | 
 |  | 
 | 		// TODO add 64 bit API | 
 | 		sg 	 = (struct sg_simple_element*)(msg + sg_offset); | 
 | 		for (j = 0; j < sg_count; j++) { | 
 | 			/* Copy out the SG list to user's buffer if necessary */ | 
 | 			if(! (sg[j].flag_count & 0x4000000 /*I2O_SGL_FLAGS_DIR*/)) { | 
 | 				sg_size = sg[j].flag_count & 0xffffff;  | 
 | 				// sg_simple_element API is 32 bit | 
 | 				if (copy_to_user((void __user *)(ulong)sg[j].addr_bus,sg_list[j], sg_size)) { | 
 | 					printk(KERN_WARNING"%s: Could not copy %p TO user %x\n",pHba->name, sg_list[j], sg[j].addr_bus); | 
 | 					rcode = -EFAULT; | 
 | 					goto cleanup; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	}  | 
 |  | 
 | 	/* Copy back the reply to user space */ | 
 | 	if (reply_size) { | 
 | 		// we wrote our own values for context - now restore the user supplied ones | 
 | 		if(copy_from_user(reply+2, user_msg+2, sizeof(u32)*2)) { | 
 | 			printk(KERN_WARNING"%s: Could not copy message context FROM user\n",pHba->name); | 
 | 			rcode = -EFAULT; | 
 | 		} | 
 | 		if(copy_to_user(user_reply, reply, reply_size)) { | 
 | 			printk(KERN_WARNING"%s: Could not copy reply TO user\n",pHba->name); | 
 | 			rcode = -EFAULT; | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | cleanup: | 
 | 	if (rcode != -ETIME && rcode != -EINTR) { | 
 | 		struct sg_simple_element *sg = | 
 | 				(struct sg_simple_element*) (msg +sg_offset); | 
 | 		kfree (reply); | 
 | 		while(sg_index) { | 
 | 			if(sg_list[--sg_index]) { | 
 | 				dma_free_coherent(&pHba->pDev->dev, | 
 | 					sg[sg_index].flag_count & 0xffffff, | 
 | 					sg_list[sg_index], | 
 | 					sg[sg_index].addr_bus); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return rcode; | 
 | } | 
 |  | 
 | #if defined __ia64__  | 
 | static void adpt_ia64_info(sysInfo_S* si) | 
 | { | 
 | 	// This is all the info we need for now | 
 | 	// We will add more info as our new | 
 | 	// managmenent utility requires it | 
 | 	si->processorType = PROC_IA64; | 
 | } | 
 | #endif | 
 |  | 
 | #if defined __sparc__  | 
 | static void adpt_sparc_info(sysInfo_S* si) | 
 | { | 
 | 	// This is all the info we need for now | 
 | 	// We will add more info as our new | 
 | 	// managmenent utility requires it | 
 | 	si->processorType = PROC_ULTRASPARC; | 
 | } | 
 | #endif | 
 | #if defined __alpha__  | 
 | static void adpt_alpha_info(sysInfo_S* si) | 
 | { | 
 | 	// This is all the info we need for now | 
 | 	// We will add more info as our new | 
 | 	// managmenent utility requires it | 
 | 	si->processorType = PROC_ALPHA; | 
 | } | 
 | #endif | 
 |  | 
 | #if defined __i386__ | 
 |  | 
 | #include <uapi/asm/vm86.h> | 
 |  | 
 | static void adpt_i386_info(sysInfo_S* si) | 
 | { | 
 | 	// This is all the info we need for now | 
 | 	// We will add more info as our new | 
 | 	// managmenent utility requires it | 
 | 	switch (boot_cpu_data.x86) { | 
 | 	case CPU_386: | 
 | 		si->processorType = PROC_386; | 
 | 		break; | 
 | 	case CPU_486: | 
 | 		si->processorType = PROC_486; | 
 | 		break; | 
 | 	case CPU_586: | 
 | 		si->processorType = PROC_PENTIUM; | 
 | 		break; | 
 | 	default:  // Just in case  | 
 | 		si->processorType = PROC_PENTIUM; | 
 | 		break; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This routine returns information about the system.  This does not effect | 
 |  * any logic and if the info is wrong - it doesn't matter. | 
 |  */ | 
 |  | 
 | /* Get all the info we can not get from kernel services */ | 
 | static int adpt_system_info(void __user *buffer) | 
 | { | 
 | 	sysInfo_S si; | 
 |  | 
 | 	memset(&si, 0, sizeof(si)); | 
 |  | 
 | 	si.osType = OS_LINUX; | 
 | 	si.osMajorVersion = 0; | 
 | 	si.osMinorVersion = 0; | 
 | 	si.osRevision = 0; | 
 | 	si.busType = SI_PCI_BUS; | 
 | 	si.processorFamily = DPTI_sig.dsProcessorFamily; | 
 |  | 
 | #if defined __i386__ | 
 | 	adpt_i386_info(&si); | 
 | #elif defined (__ia64__) | 
 | 	adpt_ia64_info(&si); | 
 | #elif defined(__sparc__) | 
 | 	adpt_sparc_info(&si); | 
 | #elif defined (__alpha__) | 
 | 	adpt_alpha_info(&si); | 
 | #else | 
 | 	si.processorType = 0xff ; | 
 | #endif | 
 | 	if (copy_to_user(buffer, &si, sizeof(si))){ | 
 | 		printk(KERN_WARNING"dpti: Could not copy buffer TO user\n"); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int adpt_ioctl(struct inode *inode, struct file *file, uint cmd, ulong arg) | 
 | { | 
 | 	int minor; | 
 | 	int error = 0; | 
 | 	adpt_hba* pHba; | 
 | 	ulong flags = 0; | 
 | 	void __user *argp = (void __user *)arg; | 
 |  | 
 | 	minor = iminor(inode); | 
 | 	if (minor >= DPTI_MAX_HBA){ | 
 | 		return -ENXIO; | 
 | 	} | 
 | 	mutex_lock(&adpt_configuration_lock); | 
 | 	for (pHba = hba_chain; pHba; pHba = pHba->next) { | 
 | 		if (pHba->unit == minor) { | 
 | 			break;	/* found adapter */ | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&adpt_configuration_lock); | 
 | 	if(pHba == NULL){ | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	while((volatile u32) pHba->state & DPTI_STATE_RESET ) | 
 | 		schedule_timeout_uninterruptible(2); | 
 |  | 
 | 	switch (cmd) { | 
 | 	// TODO: handle 3 cases | 
 | 	case DPT_SIGNATURE: | 
 | 		if (copy_to_user(argp, &DPTI_sig, sizeof(DPTI_sig))) { | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		break; | 
 | 	case I2OUSRCMD: | 
 | 		return adpt_i2o_passthru(pHba, argp); | 
 |  | 
 | 	case DPT_CTRLINFO:{ | 
 | 		drvrHBAinfo_S HbaInfo; | 
 |  | 
 | #define FLG_OSD_PCI_VALID 0x0001 | 
 | #define FLG_OSD_DMA	  0x0002 | 
 | #define FLG_OSD_I2O	  0x0004 | 
 | 		memset(&HbaInfo, 0, sizeof(HbaInfo)); | 
 | 		HbaInfo.drvrHBAnum = pHba->unit; | 
 | 		HbaInfo.baseAddr = (ulong) pHba->base_addr_phys; | 
 | 		HbaInfo.blinkState = adpt_read_blink_led(pHba); | 
 | 		HbaInfo.pciBusNum =  pHba->pDev->bus->number; | 
 | 		HbaInfo.pciDeviceNum=PCI_SLOT(pHba->pDev->devfn);  | 
 | 		HbaInfo.Interrupt = pHba->pDev->irq;  | 
 | 		HbaInfo.hbaFlags = FLG_OSD_PCI_VALID | FLG_OSD_DMA | FLG_OSD_I2O; | 
 | 		if(copy_to_user(argp, &HbaInfo, sizeof(HbaInfo))){ | 
 | 			printk(KERN_WARNING"%s: Could not copy HbaInfo TO user\n",pHba->name); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		break; | 
 | 		} | 
 | 	case DPT_SYSINFO: | 
 | 		return adpt_system_info(argp); | 
 | 	case DPT_BLINKLED:{ | 
 | 		u32 value; | 
 | 		value = (u32)adpt_read_blink_led(pHba); | 
 | 		if (copy_to_user(argp, &value, sizeof(value))) { | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		break; | 
 | 		} | 
 | 	case I2ORESETCMD: | 
 | 		if(pHba->host) | 
 | 			spin_lock_irqsave(pHba->host->host_lock, flags); | 
 | 		adpt_hba_reset(pHba); | 
 | 		if(pHba->host) | 
 | 			spin_unlock_irqrestore(pHba->host->host_lock, flags); | 
 | 		break; | 
 | 	case I2ORESCANCMD: | 
 | 		adpt_rescan(pHba); | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static long adpt_unlocked_ioctl(struct file *file, uint cmd, ulong arg) | 
 | { | 
 | 	struct inode *inode; | 
 | 	long ret; | 
 |   | 
 | 	inode = file_inode(file); | 
 |   | 
 | 	mutex_lock(&adpt_mutex); | 
 | 	ret = adpt_ioctl(inode, file, cmd, arg); | 
 | 	mutex_unlock(&adpt_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | static long compat_adpt_ioctl(struct file *file, | 
 | 				unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct inode *inode; | 
 | 	long ret; | 
 |   | 
 | 	inode = file_inode(file); | 
 |   | 
 | 	mutex_lock(&adpt_mutex); | 
 |   | 
 | 	switch(cmd) { | 
 | 		case DPT_SIGNATURE: | 
 | 		case I2OUSRCMD: | 
 | 		case DPT_CTRLINFO: | 
 | 		case DPT_SYSINFO: | 
 | 		case DPT_BLINKLED: | 
 | 		case I2ORESETCMD: | 
 | 		case I2ORESCANCMD: | 
 | 		case (DPT_TARGET_BUSY & 0xFFFF): | 
 | 		case DPT_TARGET_BUSY: | 
 | 			ret = adpt_ioctl(inode, file, cmd, arg); | 
 | 			break; | 
 | 		default: | 
 | 			ret =  -ENOIOCTLCMD; | 
 | 	} | 
 |   | 
 | 	mutex_unlock(&adpt_mutex); | 
 |   | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | static irqreturn_t adpt_isr(int irq, void *dev_id) | 
 | { | 
 | 	struct scsi_cmnd* cmd; | 
 | 	adpt_hba* pHba = dev_id; | 
 | 	u32 m; | 
 | 	void __iomem *reply; | 
 | 	u32 status=0; | 
 | 	u32 context; | 
 | 	ulong flags = 0; | 
 | 	int handled = 0; | 
 |  | 
 | 	if (pHba == NULL){ | 
 | 		printk(KERN_WARNING"adpt_isr: NULL dev_id\n"); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 | 	if(pHba->host) | 
 | 		spin_lock_irqsave(pHba->host->host_lock, flags); | 
 |  | 
 | 	while( readl(pHba->irq_mask) & I2O_INTERRUPT_PENDING_B) { | 
 | 		m = readl(pHba->reply_port); | 
 | 		if(m == EMPTY_QUEUE){ | 
 | 			// Try twice then give up | 
 | 			rmb(); | 
 | 			m = readl(pHba->reply_port); | 
 | 			if(m == EMPTY_QUEUE){  | 
 | 				// This really should not happen | 
 | 				printk(KERN_ERR"dpti: Could not get reply frame\n"); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		if (pHba->reply_pool_pa <= m && | 
 | 		    m < pHba->reply_pool_pa + | 
 | 			(pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4)) { | 
 | 			reply = (u8 *)pHba->reply_pool + | 
 | 						(m - pHba->reply_pool_pa); | 
 | 		} else { | 
 | 			/* Ick, we should *never* be here */ | 
 | 			printk(KERN_ERR "dpti: reply frame not from pool\n"); | 
 | 			reply = (u8 *)bus_to_virt(m); | 
 | 		} | 
 |  | 
 | 		if (readl(reply) & MSG_FAIL) { | 
 | 			u32 old_m = readl(reply+28);  | 
 | 			void __iomem *msg; | 
 | 			u32 old_context; | 
 | 			PDEBUG("%s: Failed message\n",pHba->name); | 
 | 			if(old_m >= 0x100000){ | 
 | 				printk(KERN_ERR"%s: Bad preserved MFA (%x)- dropping frame\n",pHba->name,old_m); | 
 | 				writel(m,pHba->reply_port); | 
 | 				continue; | 
 | 			} | 
 | 			// Transaction context is 0 in failed reply frame | 
 | 			msg = pHba->msg_addr_virt + old_m; | 
 | 			old_context = readl(msg+12); | 
 | 			writel(old_context, reply+12); | 
 | 			adpt_send_nop(pHba, old_m); | 
 | 		}  | 
 | 		context = readl(reply+8); | 
 | 		if(context & 0x40000000){ // IOCTL | 
 | 			void *p = adpt_ioctl_from_context(pHba, readl(reply+12)); | 
 | 			if( p != NULL) { | 
 | 				memcpy_fromio(p, reply, REPLY_FRAME_SIZE * 4); | 
 | 			} | 
 | 			// All IOCTLs will also be post wait | 
 | 		} | 
 | 		if(context & 0x80000000){ // Post wait message | 
 | 			status = readl(reply+16); | 
 | 			if(status  >> 24){ | 
 | 				status &=  0xffff; /* Get detail status */ | 
 | 			} else { | 
 | 				status = I2O_POST_WAIT_OK; | 
 | 			} | 
 | 			if(!(context & 0x40000000)) { | 
 | 				cmd = adpt_cmd_from_context(pHba, | 
 | 							readl(reply+12)); | 
 | 				if(cmd != NULL) { | 
 | 					printk(KERN_WARNING"%s: Apparent SCSI cmd in Post Wait Context - cmd=%p context=%x\n", pHba->name, cmd, context); | 
 | 				} | 
 | 			} | 
 | 			adpt_i2o_post_wait_complete(context, status); | 
 | 		} else { // SCSI message | 
 | 			cmd = adpt_cmd_from_context (pHba, readl(reply+12)); | 
 | 			if(cmd != NULL){ | 
 | 				scsi_dma_unmap(cmd); | 
 | 				if(cmd->serial_number != 0) { // If not timedout | 
 | 					adpt_i2o_to_scsi(reply, cmd); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		writel(m, pHba->reply_port); | 
 | 		wmb(); | 
 | 		rmb(); | 
 | 	} | 
 | 	handled = 1; | 
 | out:	if(pHba->host) | 
 | 		spin_unlock_irqrestore(pHba->host->host_lock, flags); | 
 | 	return IRQ_RETVAL(handled); | 
 | } | 
 |  | 
 | static s32 adpt_scsi_to_i2o(adpt_hba* pHba, struct scsi_cmnd* cmd, struct adpt_device* d) | 
 | { | 
 | 	int i; | 
 | 	u32 msg[MAX_MESSAGE_SIZE]; | 
 | 	u32* mptr; | 
 | 	u32* lptr; | 
 | 	u32 *lenptr; | 
 | 	int direction; | 
 | 	int scsidir; | 
 | 	int nseg; | 
 | 	u32 len; | 
 | 	u32 reqlen; | 
 | 	s32 rcode; | 
 | 	dma_addr_t addr; | 
 |  | 
 | 	memset(msg, 0 , sizeof(msg)); | 
 | 	len = scsi_bufflen(cmd); | 
 | 	direction = 0x00000000;	 | 
 | 	 | 
 | 	scsidir = 0x00000000;			// DATA NO XFER | 
 | 	if(len) { | 
 | 		/* | 
 | 		 * Set SCBFlags to indicate if data is being transferred | 
 | 		 * in or out, or no data transfer | 
 | 		 * Note:  Do not have to verify index is less than 0 since | 
 | 		 * cmd->cmnd[0] is an unsigned char | 
 | 		 */ | 
 | 		switch(cmd->sc_data_direction){ | 
 | 		case DMA_FROM_DEVICE: | 
 | 			scsidir  =0x40000000;	// DATA IN  (iop<--dev) | 
 | 			break; | 
 | 		case DMA_TO_DEVICE: | 
 | 			direction=0x04000000;	// SGL OUT | 
 | 			scsidir  =0x80000000;	// DATA OUT (iop-->dev) | 
 | 			break; | 
 | 		case DMA_NONE: | 
 | 			break; | 
 | 		case DMA_BIDIRECTIONAL: | 
 | 			scsidir  =0x40000000;	// DATA IN  (iop<--dev) | 
 | 			// Assume In - and continue; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_WARNING"%s: scsi opcode 0x%x not supported.\n", | 
 | 			     pHba->name, cmd->cmnd[0]); | 
 | 			cmd->result = (DID_OK <<16) | (INITIATOR_ERROR << 8); | 
 | 			cmd->scsi_done(cmd); | 
 | 			return 	0; | 
 | 		} | 
 | 	} | 
 | 	// msg[0] is set later | 
 | 	// I2O_CMD_SCSI_EXEC | 
 | 	msg[1] = ((0xff<<24)|(HOST_TID<<12)|d->tid); | 
 | 	msg[2] = 0; | 
 | 	msg[3] = adpt_cmd_to_context(cmd);  /* Want SCSI control block back */ | 
 | 	// Our cards use the transaction context as the tag for queueing | 
 | 	// Adaptec/DPT Private stuff  | 
 | 	msg[4] = I2O_CMD_SCSI_EXEC|(DPT_ORGANIZATION_ID<<16); | 
 | 	msg[5] = d->tid; | 
 | 	/* Direction, disconnect ok | sense data | simple queue , CDBLen */ | 
 | 	// I2O_SCB_FLAG_ENABLE_DISCONNECT |  | 
 | 	// I2O_SCB_FLAG_SIMPLE_QUEUE_TAG |  | 
 | 	// I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE; | 
 | 	msg[6] = scsidir|0x20a00000|cmd->cmd_len; | 
 |  | 
 | 	mptr=msg+7; | 
 |  | 
 | 	// Write SCSI command into the message - always 16 byte block  | 
 | 	memset(mptr, 0,  16); | 
 | 	memcpy(mptr, cmd->cmnd, cmd->cmd_len); | 
 | 	mptr+=4; | 
 | 	lenptr=mptr++;		/* Remember me - fill in when we know */ | 
 | 	if (dpt_dma64(pHba)) { | 
 | 		reqlen = 16;		// SINGLE SGE | 
 | 		*mptr++ = (0x7C<<24)+(2<<16)+0x02; /* Enable 64 bit */ | 
 | 		*mptr++ = 1 << PAGE_SHIFT; | 
 | 	} else { | 
 | 		reqlen = 14;		// SINGLE SGE | 
 | 	} | 
 | 	/* Now fill in the SGList and command */ | 
 |  | 
 | 	nseg = scsi_dma_map(cmd); | 
 | 	BUG_ON(nseg < 0); | 
 | 	if (nseg) { | 
 | 		struct scatterlist *sg; | 
 |  | 
 | 		len = 0; | 
 | 		scsi_for_each_sg(cmd, sg, nseg, i) { | 
 | 			lptr = mptr; | 
 | 			*mptr++ = direction|0x10000000|sg_dma_len(sg); | 
 | 			len+=sg_dma_len(sg); | 
 | 			addr = sg_dma_address(sg); | 
 | 			*mptr++ = dma_low(addr); | 
 | 			if (dpt_dma64(pHba)) | 
 | 				*mptr++ = dma_high(addr); | 
 | 			/* Make this an end of list */ | 
 | 			if (i == nseg - 1) | 
 | 				*lptr = direction|0xD0000000|sg_dma_len(sg); | 
 | 		} | 
 | 		reqlen = mptr - msg; | 
 | 		*lenptr = len; | 
 | 		 | 
 | 		if(cmd->underflow && len != cmd->underflow){ | 
 | 			printk(KERN_WARNING"Cmd len %08X Cmd underflow %08X\n", | 
 | 				len, cmd->underflow); | 
 | 		} | 
 | 	} else { | 
 | 		*lenptr = len = 0; | 
 | 		reqlen = 12; | 
 | 	} | 
 | 	 | 
 | 	/* Stick the headers on */ | 
 | 	msg[0] = reqlen<<16 | ((reqlen > 12) ? SGL_OFFSET_12 : SGL_OFFSET_0); | 
 | 	 | 
 | 	// Send it on it's way | 
 | 	rcode = adpt_i2o_post_this(pHba, msg, reqlen<<2); | 
 | 	if (rcode == 0) { | 
 | 		return 0; | 
 | 	} | 
 | 	return rcode; | 
 | } | 
 |  | 
 |  | 
 | static s32 adpt_scsi_host_alloc(adpt_hba* pHba, struct scsi_host_template *sht) | 
 | { | 
 | 	struct Scsi_Host *host; | 
 |  | 
 | 	host = scsi_host_alloc(sht, sizeof(adpt_hba*)); | 
 | 	if (host == NULL) { | 
 | 		printk("%s: scsi_host_alloc returned NULL\n", pHba->name); | 
 | 		return -1; | 
 | 	} | 
 | 	host->hostdata[0] = (unsigned long)pHba; | 
 | 	pHba->host = host; | 
 |  | 
 | 	host->irq = pHba->pDev->irq; | 
 | 	/* no IO ports, so don't have to set host->io_port and | 
 | 	 * host->n_io_port | 
 | 	 */ | 
 | 	host->io_port = 0; | 
 | 	host->n_io_port = 0; | 
 | 				/* see comments in scsi_host.h */ | 
 | 	host->max_id = 16; | 
 | 	host->max_lun = 256; | 
 | 	host->max_channel = pHba->top_scsi_channel + 1; | 
 | 	host->cmd_per_lun = 1; | 
 | 	host->unique_id = (u32)sys_tbl_pa + pHba->unit; | 
 | 	host->sg_tablesize = pHba->sg_tablesize; | 
 | 	host->can_queue = pHba->post_fifo_size; | 
 | 	host->use_cmd_list = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static s32 adpt_i2o_to_scsi(void __iomem *reply, struct scsi_cmnd* cmd) | 
 | { | 
 | 	adpt_hba* pHba; | 
 | 	u32 hba_status; | 
 | 	u32 dev_status; | 
 | 	u32 reply_flags = readl(reply) & 0xff00; // Leave it shifted up 8 bits  | 
 | 	// I know this would look cleaner if I just read bytes | 
 | 	// but the model I have been using for all the rest of the | 
 | 	// io is in 4 byte words - so I keep that model | 
 | 	u16 detailed_status = readl(reply+16) &0xffff; | 
 | 	dev_status = (detailed_status & 0xff); | 
 | 	hba_status = detailed_status >> 8; | 
 |  | 
 | 	// calculate resid for sg  | 
 | 	scsi_set_resid(cmd, scsi_bufflen(cmd) - readl(reply+20)); | 
 |  | 
 | 	pHba = (adpt_hba*) cmd->device->host->hostdata[0]; | 
 |  | 
 | 	cmd->sense_buffer[0] = '\0';  // initialize sense valid flag to false | 
 |  | 
 | 	if(!(reply_flags & MSG_FAIL)) { | 
 | 		switch(detailed_status & I2O_SCSI_DSC_MASK) { | 
 | 		case I2O_SCSI_DSC_SUCCESS: | 
 | 			cmd->result = (DID_OK << 16); | 
 | 			// handle underflow | 
 | 			if (readl(reply+20) < cmd->underflow) { | 
 | 				cmd->result = (DID_ERROR <<16); | 
 | 				printk(KERN_WARNING"%s: SCSI CMD underflow\n",pHba->name); | 
 | 			} | 
 | 			break; | 
 | 		case I2O_SCSI_DSC_REQUEST_ABORTED: | 
 | 			cmd->result = (DID_ABORT << 16); | 
 | 			break; | 
 | 		case I2O_SCSI_DSC_PATH_INVALID: | 
 | 		case I2O_SCSI_DSC_DEVICE_NOT_PRESENT: | 
 | 		case I2O_SCSI_DSC_SELECTION_TIMEOUT: | 
 | 		case I2O_SCSI_DSC_COMMAND_TIMEOUT: | 
 | 		case I2O_SCSI_DSC_NO_ADAPTER: | 
 | 		case I2O_SCSI_DSC_RESOURCE_UNAVAILABLE: | 
 | 			printk(KERN_WARNING"%s: SCSI Timeout-Device (%d,%d,%llu) hba status=0x%x, dev status=0x%x, cmd=0x%x\n", | 
 | 				pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, hba_status, dev_status, cmd->cmnd[0]); | 
 | 			cmd->result = (DID_TIME_OUT << 16); | 
 | 			break; | 
 | 		case I2O_SCSI_DSC_ADAPTER_BUSY: | 
 | 		case I2O_SCSI_DSC_BUS_BUSY: | 
 | 			cmd->result = (DID_BUS_BUSY << 16); | 
 | 			break; | 
 | 		case I2O_SCSI_DSC_SCSI_BUS_RESET: | 
 | 		case I2O_SCSI_DSC_BDR_MESSAGE_SENT: | 
 | 			cmd->result = (DID_RESET << 16); | 
 | 			break; | 
 | 		case I2O_SCSI_DSC_PARITY_ERROR_FAILURE: | 
 | 			printk(KERN_WARNING"%s: SCSI CMD parity error\n",pHba->name); | 
 | 			cmd->result = (DID_PARITY << 16); | 
 | 			break; | 
 | 		case I2O_SCSI_DSC_UNABLE_TO_ABORT: | 
 | 		case I2O_SCSI_DSC_COMPLETE_WITH_ERROR: | 
 | 		case I2O_SCSI_DSC_UNABLE_TO_TERMINATE: | 
 | 		case I2O_SCSI_DSC_MR_MESSAGE_RECEIVED: | 
 | 		case I2O_SCSI_DSC_AUTOSENSE_FAILED: | 
 | 		case I2O_SCSI_DSC_DATA_OVERRUN: | 
 | 		case I2O_SCSI_DSC_UNEXPECTED_BUS_FREE: | 
 | 		case I2O_SCSI_DSC_SEQUENCE_FAILURE: | 
 | 		case I2O_SCSI_DSC_REQUEST_LENGTH_ERROR: | 
 | 		case I2O_SCSI_DSC_PROVIDE_FAILURE: | 
 | 		case I2O_SCSI_DSC_REQUEST_TERMINATED: | 
 | 		case I2O_SCSI_DSC_IDE_MESSAGE_SENT: | 
 | 		case I2O_SCSI_DSC_UNACKNOWLEDGED_EVENT: | 
 | 		case I2O_SCSI_DSC_MESSAGE_RECEIVED: | 
 | 		case I2O_SCSI_DSC_INVALID_CDB: | 
 | 		case I2O_SCSI_DSC_LUN_INVALID: | 
 | 		case I2O_SCSI_DSC_SCSI_TID_INVALID: | 
 | 		case I2O_SCSI_DSC_FUNCTION_UNAVAILABLE: | 
 | 		case I2O_SCSI_DSC_NO_NEXUS: | 
 | 		case I2O_SCSI_DSC_CDB_RECEIVED: | 
 | 		case I2O_SCSI_DSC_LUN_ALREADY_ENABLED: | 
 | 		case I2O_SCSI_DSC_QUEUE_FROZEN: | 
 | 		case I2O_SCSI_DSC_REQUEST_INVALID: | 
 | 		default: | 
 | 			printk(KERN_WARNING"%s: SCSI error %0x-Device(%d,%d,%llu) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n", | 
 | 				pHba->name, detailed_status & I2O_SCSI_DSC_MASK, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, | 
 | 			       hba_status, dev_status, cmd->cmnd[0]); | 
 | 			cmd->result = (DID_ERROR << 16); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		// copy over the request sense data if it was a check | 
 | 		// condition status | 
 | 		if (dev_status == SAM_STAT_CHECK_CONDITION) { | 
 | 			u32 len = min(SCSI_SENSE_BUFFERSIZE, 40); | 
 | 			// Copy over the sense data | 
 | 			memcpy_fromio(cmd->sense_buffer, (reply+28) , len); | 
 | 			if(cmd->sense_buffer[0] == 0x70 /* class 7 */ &&  | 
 | 			   cmd->sense_buffer[2] == DATA_PROTECT ){ | 
 | 				/* This is to handle an array failed */ | 
 | 				cmd->result = (DID_TIME_OUT << 16); | 
 | 				printk(KERN_WARNING"%s: SCSI Data Protect-Device (%d,%d,%llu) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n", | 
 | 					pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, | 
 | 					hba_status, dev_status, cmd->cmnd[0]); | 
 |  | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* In this condtion we could not talk to the tid | 
 | 		 * the card rejected it.  We should signal a retry | 
 | 		 * for a limitted number of retries. | 
 | 		 */ | 
 | 		cmd->result = (DID_TIME_OUT << 16); | 
 | 		printk(KERN_WARNING"%s: I2O MSG_FAIL - Device (%d,%d,%llu) tid=%d, cmd=0x%x\n", | 
 | 			pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, | 
 | 			((struct adpt_device*)(cmd->device->hostdata))->tid, cmd->cmnd[0]); | 
 | 	} | 
 |  | 
 | 	cmd->result |= (dev_status); | 
 |  | 
 | 	if(cmd->scsi_done != NULL){ | 
 | 		cmd->scsi_done(cmd); | 
 | 	}  | 
 | 	return cmd->result; | 
 | } | 
 |  | 
 |  | 
 | static s32 adpt_rescan(adpt_hba* pHba) | 
 | { | 
 | 	s32 rcode; | 
 | 	ulong flags = 0; | 
 |  | 
 | 	if(pHba->host) | 
 | 		spin_lock_irqsave(pHba->host->host_lock, flags); | 
 | 	if ((rcode=adpt_i2o_lct_get(pHba)) < 0) | 
 | 		goto out; | 
 | 	if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0) | 
 | 		goto out; | 
 | 	rcode = 0; | 
 | out:	if(pHba->host) | 
 | 		spin_unlock_irqrestore(pHba->host->host_lock, flags); | 
 | 	return rcode; | 
 | } | 
 |  | 
 |  | 
 | static s32 adpt_i2o_reparse_lct(adpt_hba* pHba) | 
 | { | 
 | 	int i; | 
 | 	int max; | 
 | 	int tid; | 
 | 	struct i2o_device *d; | 
 | 	i2o_lct *lct = pHba->lct; | 
 | 	u8 bus_no = 0; | 
 | 	s16 scsi_id; | 
 | 	u64 scsi_lun; | 
 | 	u32 buf[10]; // at least 8 u32's | 
 | 	struct adpt_device* pDev = NULL; | 
 | 	struct i2o_device* pI2o_dev = NULL; | 
 | 	 | 
 | 	if (lct == NULL) { | 
 | 		printk(KERN_ERR "%s: LCT is empty???\n",pHba->name); | 
 | 		return -1; | 
 | 	} | 
 | 	 | 
 | 	max = lct->table_size;	 | 
 | 	max -= 3; | 
 | 	max /= 9; | 
 |  | 
 | 	// Mark each drive as unscanned | 
 | 	for (d = pHba->devices; d; d = d->next) { | 
 | 		pDev =(struct adpt_device*) d->owner; | 
 | 		if(!pDev){ | 
 | 			continue; | 
 | 		} | 
 | 		pDev->state |= DPTI_DEV_UNSCANNED; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "%s: LCT has %d entries.\n", pHba->name,max); | 
 | 	 | 
 | 	for(i=0;i<max;i++) { | 
 | 		if( lct->lct_entry[i].user_tid != 0xfff){ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if( lct->lct_entry[i].class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE || | 
 | 		    lct->lct_entry[i].class_id == I2O_CLASS_SCSI_PERIPHERAL || | 
 | 		    lct->lct_entry[i].class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){ | 
 | 			tid = lct->lct_entry[i].tid; | 
 | 			if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) { | 
 | 				printk(KERN_ERR"%s: Could not query device\n",pHba->name); | 
 | 				continue; | 
 | 			} | 
 | 			bus_no = buf[0]>>16; | 
 | 			if (bus_no >= MAX_CHANNEL) {	/* Something wrong skip it */ | 
 | 				printk(KERN_WARNING | 
 | 					"%s: Channel number %d out of range\n", | 
 | 					pHba->name, bus_no); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			scsi_id = buf[1]; | 
 | 			scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]); | 
 | 			pDev = pHba->channel[bus_no].device[scsi_id]; | 
 | 			/* da lun */ | 
 | 			while(pDev) { | 
 | 				if(pDev->scsi_lun == scsi_lun) { | 
 | 					break; | 
 | 				} | 
 | 				pDev = pDev->next_lun; | 
 | 			} | 
 | 			if(!pDev ) { // Something new add it | 
 | 				d = kmalloc(sizeof(struct i2o_device), | 
 | 					    GFP_ATOMIC); | 
 | 				if(d==NULL) | 
 | 				{ | 
 | 					printk(KERN_CRIT "Out of memory for I2O device data.\n"); | 
 | 					return -ENOMEM; | 
 | 				} | 
 | 				 | 
 | 				d->controller = pHba; | 
 | 				d->next = NULL; | 
 |  | 
 | 				memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry)); | 
 |  | 
 | 				d->flags = 0; | 
 | 				adpt_i2o_report_hba_unit(pHba, d); | 
 | 				adpt_i2o_install_device(pHba, d); | 
 | 	 | 
 | 				pDev = pHba->channel[bus_no].device[scsi_id];	 | 
 | 				if( pDev == NULL){ | 
 | 					pDev = | 
 | 					  kzalloc(sizeof(struct adpt_device), | 
 | 						  GFP_ATOMIC); | 
 | 					if(pDev == NULL) { | 
 | 						return -ENOMEM; | 
 | 					} | 
 | 					pHba->channel[bus_no].device[scsi_id] = pDev; | 
 | 				} else { | 
 | 					while (pDev->next_lun) { | 
 | 						pDev = pDev->next_lun; | 
 | 					} | 
 | 					pDev = pDev->next_lun = | 
 | 					  kzalloc(sizeof(struct adpt_device), | 
 | 						  GFP_ATOMIC); | 
 | 					if(pDev == NULL) { | 
 | 						return -ENOMEM; | 
 | 					} | 
 | 				} | 
 | 				pDev->tid = d->lct_data.tid; | 
 | 				pDev->scsi_channel = bus_no; | 
 | 				pDev->scsi_id = scsi_id; | 
 | 				pDev->scsi_lun = scsi_lun; | 
 | 				pDev->pI2o_dev = d; | 
 | 				d->owner = pDev; | 
 | 				pDev->type = (buf[0])&0xff; | 
 | 				pDev->flags = (buf[0]>>8)&0xff; | 
 | 				// Too late, SCSI system has made up it's mind, but what the hey ... | 
 | 				if(scsi_id > pHba->top_scsi_id){ | 
 | 					pHba->top_scsi_id = scsi_id; | 
 | 				} | 
 | 				if(scsi_lun > pHba->top_scsi_lun){ | 
 | 					pHba->top_scsi_lun = scsi_lun; | 
 | 				} | 
 | 				continue; | 
 | 			} // end of new i2o device | 
 |  | 
 | 			// We found an old device - check it | 
 | 			while(pDev) { | 
 | 				if(pDev->scsi_lun == scsi_lun) { | 
 | 					if(!scsi_device_online(pDev->pScsi_dev)) { | 
 | 						printk(KERN_WARNING"%s: Setting device (%d,%d,%llu) back online\n", | 
 | 								pHba->name,bus_no,scsi_id,scsi_lun); | 
 | 						if (pDev->pScsi_dev) { | 
 | 							scsi_device_set_state(pDev->pScsi_dev, SDEV_RUNNING); | 
 | 						} | 
 | 					} | 
 | 					d = pDev->pI2o_dev; | 
 | 					if(d->lct_data.tid != tid) { // something changed | 
 | 						pDev->tid = tid; | 
 | 						memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry)); | 
 | 						if (pDev->pScsi_dev) { | 
 | 							pDev->pScsi_dev->changed = TRUE; | 
 | 							pDev->pScsi_dev->removable = TRUE; | 
 | 						} | 
 | 					} | 
 | 					// Found it - mark it scanned | 
 | 					pDev->state = DPTI_DEV_ONLINE; | 
 | 					break; | 
 | 				} | 
 | 				pDev = pDev->next_lun; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	for (pI2o_dev = pHba->devices; pI2o_dev; pI2o_dev = pI2o_dev->next) { | 
 | 		pDev =(struct adpt_device*) pI2o_dev->owner; | 
 | 		if(!pDev){ | 
 | 			continue; | 
 | 		} | 
 | 		// Drive offline drives that previously existed but could not be found | 
 | 		// in the LCT table | 
 | 		if (pDev->state & DPTI_DEV_UNSCANNED){ | 
 | 			pDev->state = DPTI_DEV_OFFLINE; | 
 | 			printk(KERN_WARNING"%s: Device (%d,%d,%llu) offline\n",pHba->name,pDev->scsi_channel,pDev->scsi_id,pDev->scsi_lun); | 
 | 			if (pDev->pScsi_dev) { | 
 | 				scsi_device_set_state(pDev->pScsi_dev, SDEV_OFFLINE); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void adpt_fail_posted_scbs(adpt_hba* pHba) | 
 | { | 
 | 	struct scsi_cmnd* 	cmd = NULL; | 
 | 	struct scsi_device* 	d = NULL; | 
 |  | 
 | 	shost_for_each_device(d, pHba->host) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&d->list_lock, flags); | 
 | 		list_for_each_entry(cmd, &d->cmd_list, list) { | 
 | 			if(cmd->serial_number == 0){ | 
 | 				continue; | 
 | 			} | 
 | 			cmd->result = (DID_OK << 16) | (QUEUE_FULL <<1); | 
 | 			cmd->scsi_done(cmd); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&d->list_lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /*============================================================================ | 
 |  *  Routines from i2o subsystem | 
 |  *============================================================================ | 
 |  */ | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |  *	Bring an I2O controller into HOLD state. See the spec. | 
 |  */ | 
 | static int adpt_i2o_activate_hba(adpt_hba* pHba) | 
 | { | 
 | 	int rcode; | 
 |  | 
 | 	if(pHba->initialized ) { | 
 | 		if (adpt_i2o_status_get(pHba) < 0) { | 
 | 			if((rcode = adpt_i2o_reset_hba(pHba)) != 0){ | 
 | 				printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name); | 
 | 				return rcode; | 
 | 			} | 
 | 			if (adpt_i2o_status_get(pHba) < 0) { | 
 | 				printk(KERN_INFO "HBA not responding.\n"); | 
 | 				return -1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if(pHba->status_block->iop_state == ADAPTER_STATE_FAULTED) { | 
 | 			printk(KERN_CRIT "%s: hardware fault\n", pHba->name); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		if (pHba->status_block->iop_state == ADAPTER_STATE_READY || | 
 | 		    pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL || | 
 | 		    pHba->status_block->iop_state == ADAPTER_STATE_HOLD || | 
 | 		    pHba->status_block->iop_state == ADAPTER_STATE_FAILED) { | 
 | 			adpt_i2o_reset_hba(pHba);			 | 
 | 			if (adpt_i2o_status_get(pHba) < 0 || pHba->status_block->iop_state != ADAPTER_STATE_RESET) { | 
 | 				printk(KERN_ERR "%s: Failed to initialize.\n", pHba->name); | 
 | 				return -1; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if((rcode = adpt_i2o_reset_hba(pHba)) != 0){ | 
 | 			printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name); | 
 | 			return rcode; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	if (adpt_i2o_init_outbound_q(pHba) < 0) { | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* In HOLD state */ | 
 | 	 | 
 | 	if (adpt_i2o_hrt_get(pHba) < 0) { | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Bring a controller online into OPERATIONAL state.  | 
 |  */ | 
 |   | 
 | static int adpt_i2o_online_hba(adpt_hba* pHba) | 
 | { | 
 | 	if (adpt_i2o_systab_send(pHba) < 0) | 
 | 		return -1; | 
 | 	/* In READY state */ | 
 |  | 
 | 	if (adpt_i2o_enable_hba(pHba) < 0) | 
 | 		return -1; | 
 |  | 
 | 	/* In OPERATIONAL state  */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static s32 adpt_send_nop(adpt_hba*pHba,u32 m) | 
 | { | 
 | 	u32 __iomem *msg; | 
 | 	ulong timeout = jiffies + 5*HZ; | 
 |  | 
 | 	while(m == EMPTY_QUEUE){ | 
 | 		rmb(); | 
 | 		m = readl(pHba->post_port); | 
 | 		if(m != EMPTY_QUEUE){ | 
 | 			break; | 
 | 		} | 
 | 		if(time_after(jiffies,timeout)){ | 
 | 			printk(KERN_ERR "%s: Timeout waiting for message frame!\n",pHba->name); | 
 | 			return 2; | 
 | 		} | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} | 
 | 	msg = (u32 __iomem *)(pHba->msg_addr_virt + m); | 
 | 	writel( THREE_WORD_MSG_SIZE | SGL_OFFSET_0,&msg[0]); | 
 | 	writel( I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | 0,&msg[1]); | 
 | 	writel( 0,&msg[2]); | 
 | 	wmb(); | 
 |  | 
 | 	writel(m, pHba->post_port); | 
 | 	wmb(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static s32 adpt_i2o_init_outbound_q(adpt_hba* pHba) | 
 | { | 
 | 	u8 *status; | 
 | 	dma_addr_t addr; | 
 | 	u32 __iomem *msg = NULL; | 
 | 	int i; | 
 | 	ulong timeout = jiffies + TMOUT_INITOUTBOUND*HZ; | 
 | 	u32 m; | 
 |  | 
 | 	do { | 
 | 		rmb(); | 
 | 		m = readl(pHba->post_port); | 
 | 		if (m != EMPTY_QUEUE) { | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if(time_after(jiffies,timeout)){ | 
 | 			printk(KERN_WARNING"%s: Timeout waiting for message frame\n",pHba->name); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} while(m == EMPTY_QUEUE); | 
 |  | 
 | 	msg=(u32 __iomem *)(pHba->msg_addr_virt+m); | 
 |  | 
 | 	status = dma_alloc_coherent(&pHba->pDev->dev, 4, &addr, GFP_KERNEL); | 
 | 	if (!status) { | 
 | 		adpt_send_nop(pHba, m); | 
 | 		printk(KERN_WARNING"%s: IOP reset failed - no free memory.\n", | 
 | 			pHba->name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	memset(status, 0, 4); | 
 |  | 
 | 	writel(EIGHT_WORD_MSG_SIZE| SGL_OFFSET_6, &msg[0]); | 
 | 	writel(I2O_CMD_OUTBOUND_INIT<<24 | HOST_TID<<12 | ADAPTER_TID, &msg[1]); | 
 | 	writel(0, &msg[2]); | 
 | 	writel(0x0106, &msg[3]);	/* Transaction context */ | 
 | 	writel(4096, &msg[4]);		/* Host page frame size */ | 
 | 	writel((REPLY_FRAME_SIZE)<<16|0x80, &msg[5]);	/* Outbound msg frame size and Initcode */ | 
 | 	writel(0xD0000004, &msg[6]);		/* Simple SG LE, EOB */ | 
 | 	writel((u32)addr, &msg[7]); | 
 |  | 
 | 	writel(m, pHba->post_port); | 
 | 	wmb(); | 
 |  | 
 | 	// Wait for the reply status to come back | 
 | 	do { | 
 | 		if (*status) { | 
 | 			if (*status != 0x01 /*I2O_EXEC_OUTBOUND_INIT_IN_PROGRESS*/) { | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		rmb(); | 
 | 		if(time_after(jiffies,timeout)){ | 
 | 			printk(KERN_WARNING"%s: Timeout Initializing\n",pHba->name); | 
 | 			/* We lose 4 bytes of "status" here, but we | 
 | 			   cannot free these because controller may | 
 | 			   awake and corrupt those bytes at any time */ | 
 | 			/* dma_free_coherent(&pHba->pDev->dev, 4, status, addr); */ | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} while (1); | 
 |  | 
 | 	// If the command was successful, fill the fifo with our reply | 
 | 	// message packets | 
 | 	if(*status != 0x04 /*I2O_EXEC_OUTBOUND_INIT_COMPLETE*/) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, 4, status, addr); | 
 | 		return -2; | 
 | 	} | 
 | 	dma_free_coherent(&pHba->pDev->dev, 4, status, addr); | 
 |  | 
 | 	if(pHba->reply_pool != NULL) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, | 
 | 			pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4, | 
 | 			pHba->reply_pool, pHba->reply_pool_pa); | 
 | 	} | 
 |  | 
 | 	pHba->reply_pool = dma_alloc_coherent(&pHba->pDev->dev, | 
 | 				pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4, | 
 | 				&pHba->reply_pool_pa, GFP_KERNEL); | 
 | 	if (!pHba->reply_pool) { | 
 | 		printk(KERN_ERR "%s: Could not allocate reply pool\n", pHba->name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	memset(pHba->reply_pool, 0 , pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4); | 
 |  | 
 | 	for(i = 0; i < pHba->reply_fifo_size; i++) { | 
 | 		writel(pHba->reply_pool_pa + (i * REPLY_FRAME_SIZE * 4), | 
 | 			pHba->reply_port); | 
 | 		wmb(); | 
 | 	} | 
 | 	adpt_i2o_status_get(pHba); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * I2O System Table.  Contains information about | 
 |  * all the IOPs in the system.  Used to inform IOPs | 
 |  * about each other's existence. | 
 |  * | 
 |  * sys_tbl_ver is the CurrentChangeIndicator that is | 
 |  * used by IOPs to track changes. | 
 |  */ | 
 |  | 
 |  | 
 |  | 
 | static s32 adpt_i2o_status_get(adpt_hba* pHba) | 
 | { | 
 | 	ulong timeout; | 
 | 	u32 m; | 
 | 	u32 __iomem *msg; | 
 | 	u8 *status_block=NULL; | 
 |  | 
 | 	if(pHba->status_block == NULL) { | 
 | 		pHba->status_block = dma_alloc_coherent(&pHba->pDev->dev, | 
 | 					sizeof(i2o_status_block), | 
 | 					&pHba->status_block_pa, GFP_KERNEL); | 
 | 		if(pHba->status_block == NULL) { | 
 | 			printk(KERN_ERR | 
 | 			"dpti%d: Get Status Block failed; Out of memory. \n",  | 
 | 			pHba->unit); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 | 	memset(pHba->status_block, 0, sizeof(i2o_status_block)); | 
 | 	status_block = (u8*)(pHba->status_block); | 
 | 	timeout = jiffies+TMOUT_GETSTATUS*HZ; | 
 | 	do { | 
 | 		rmb(); | 
 | 		m = readl(pHba->post_port); | 
 | 		if (m != EMPTY_QUEUE) { | 
 | 			break; | 
 | 		} | 
 | 		if(time_after(jiffies,timeout)){ | 
 | 			printk(KERN_ERR "%s: Timeout waiting for message !\n", | 
 | 					pHba->name); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} while(m==EMPTY_QUEUE); | 
 |  | 
 | 	 | 
 | 	msg=(u32 __iomem *)(pHba->msg_addr_virt+m); | 
 |  | 
 | 	writel(NINE_WORD_MSG_SIZE|SGL_OFFSET_0, &msg[0]); | 
 | 	writel(I2O_CMD_STATUS_GET<<24|HOST_TID<<12|ADAPTER_TID, &msg[1]); | 
 | 	writel(1, &msg[2]); | 
 | 	writel(0, &msg[3]); | 
 | 	writel(0, &msg[4]); | 
 | 	writel(0, &msg[5]); | 
 | 	writel( dma_low(pHba->status_block_pa), &msg[6]); | 
 | 	writel( dma_high(pHba->status_block_pa), &msg[7]); | 
 | 	writel(sizeof(i2o_status_block), &msg[8]); // 88 bytes | 
 |  | 
 | 	//post message | 
 | 	writel(m, pHba->post_port); | 
 | 	wmb(); | 
 |  | 
 | 	while(status_block[87]!=0xff){ | 
 | 		if(time_after(jiffies,timeout)){ | 
 | 			printk(KERN_ERR"dpti%d: Get status timeout.\n", | 
 | 				pHba->unit); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		rmb(); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} | 
 |  | 
 | 	// Set up our number of outbound and inbound messages | 
 | 	pHba->post_fifo_size = pHba->status_block->max_inbound_frames; | 
 | 	if (pHba->post_fifo_size > MAX_TO_IOP_MESSAGES) { | 
 | 		pHba->post_fifo_size = MAX_TO_IOP_MESSAGES; | 
 | 	} | 
 |  | 
 | 	pHba->reply_fifo_size = pHba->status_block->max_outbound_frames; | 
 | 	if (pHba->reply_fifo_size > MAX_FROM_IOP_MESSAGES) { | 
 | 		pHba->reply_fifo_size = MAX_FROM_IOP_MESSAGES; | 
 | 	} | 
 |  | 
 | 	// Calculate the Scatter Gather list size | 
 | 	if (dpt_dma64(pHba)) { | 
 | 		pHba->sg_tablesize | 
 | 		  = ((pHba->status_block->inbound_frame_size * 4 | 
 | 		  - 14 * sizeof(u32)) | 
 | 		  / (sizeof(struct sg_simple_element) + sizeof(u32))); | 
 | 	} else { | 
 | 		pHba->sg_tablesize | 
 | 		  = ((pHba->status_block->inbound_frame_size * 4 | 
 | 		  - 12 * sizeof(u32)) | 
 | 		  / sizeof(struct sg_simple_element)); | 
 | 	} | 
 | 	if (pHba->sg_tablesize > SG_LIST_ELEMENTS) { | 
 | 		pHba->sg_tablesize = SG_LIST_ELEMENTS; | 
 | 	} | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | 	printk("dpti%d: State = ",pHba->unit); | 
 | 	switch(pHba->status_block->iop_state) { | 
 | 		case 0x01: | 
 | 			printk("INIT\n"); | 
 | 			break; | 
 | 		case 0x02: | 
 | 			printk("RESET\n"); | 
 | 			break; | 
 | 		case 0x04: | 
 | 			printk("HOLD\n"); | 
 | 			break; | 
 | 		case 0x05: | 
 | 			printk("READY\n"); | 
 | 			break; | 
 | 		case 0x08: | 
 | 			printk("OPERATIONAL\n"); | 
 | 			break; | 
 | 		case 0x10: | 
 | 			printk("FAILED\n"); | 
 | 			break; | 
 | 		case 0x11: | 
 | 			printk("FAULTED\n"); | 
 | 			break; | 
 | 		default: | 
 | 			printk("%x (unknown!!)\n",pHba->status_block->iop_state); | 
 | 	} | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the IOP's Logical Configuration Table | 
 |  */ | 
 | static int adpt_i2o_lct_get(adpt_hba* pHba) | 
 | { | 
 | 	u32 msg[8]; | 
 | 	int ret; | 
 | 	u32 buf[16]; | 
 |  | 
 | 	if ((pHba->lct_size == 0) || (pHba->lct == NULL)){ | 
 | 		pHba->lct_size = pHba->status_block->expected_lct_size; | 
 | 	} | 
 | 	do { | 
 | 		if (pHba->lct == NULL) { | 
 | 			pHba->lct = dma_alloc_coherent(&pHba->pDev->dev, | 
 | 					pHba->lct_size, &pHba->lct_pa, | 
 | 					GFP_ATOMIC); | 
 | 			if(pHba->lct == NULL) { | 
 | 				printk(KERN_CRIT "%s: Lct Get failed. Out of memory.\n", | 
 | 					pHba->name); | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 		} | 
 | 		memset(pHba->lct, 0, pHba->lct_size); | 
 |  | 
 | 		msg[0] = EIGHT_WORD_MSG_SIZE|SGL_OFFSET_6; | 
 | 		msg[1] = I2O_CMD_LCT_NOTIFY<<24 | HOST_TID<<12 | ADAPTER_TID; | 
 | 		msg[2] = 0; | 
 | 		msg[3] = 0; | 
 | 		msg[4] = 0xFFFFFFFF;	/* All devices */ | 
 | 		msg[5] = 0x00000000;	/* Report now */ | 
 | 		msg[6] = 0xD0000000|pHba->lct_size; | 
 | 		msg[7] = (u32)pHba->lct_pa; | 
 |  | 
 | 		if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 360))) { | 
 | 			printk(KERN_ERR "%s: LCT Get failed (status=%#10x.\n",  | 
 | 				pHba->name, ret);	 | 
 | 			printk(KERN_ERR"Adaptec: Error Reading Hardware.\n"); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		if ((pHba->lct->table_size << 2) > pHba->lct_size) { | 
 | 			pHba->lct_size = pHba->lct->table_size << 2; | 
 | 			dma_free_coherent(&pHba->pDev->dev, pHba->lct_size, | 
 | 					pHba->lct, pHba->lct_pa); | 
 | 			pHba->lct = NULL; | 
 | 		} | 
 | 	} while (pHba->lct == NULL); | 
 |  | 
 | 	PDEBUG("%s: Hardware resource table read.\n", pHba->name); | 
 |  | 
 |  | 
 | 	// I2O_DPT_EXEC_IOP_BUFFERS_GROUP_NO; | 
 | 	if(adpt_i2o_query_scalar(pHba, 0 , 0x8000, -1, buf, sizeof(buf))>=0) { | 
 | 		pHba->FwDebugBufferSize = buf[1]; | 
 | 		pHba->FwDebugBuffer_P = ioremap(pHba->base_addr_phys + buf[0], | 
 | 						pHba->FwDebugBufferSize); | 
 | 		if (pHba->FwDebugBuffer_P) { | 
 | 			pHba->FwDebugFlags_P     = pHba->FwDebugBuffer_P + | 
 | 							FW_DEBUG_FLAGS_OFFSET; | 
 | 			pHba->FwDebugBLEDvalue_P = pHba->FwDebugBuffer_P + | 
 | 							FW_DEBUG_BLED_OFFSET; | 
 | 			pHba->FwDebugBLEDflag_P  = pHba->FwDebugBLEDvalue_P + 1; | 
 | 			pHba->FwDebugStrLength_P = pHba->FwDebugBuffer_P + | 
 | 						FW_DEBUG_STR_LENGTH_OFFSET; | 
 | 			pHba->FwDebugBuffer_P += buf[2];  | 
 | 			pHba->FwDebugFlags = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int adpt_i2o_build_sys_table(void) | 
 | { | 
 | 	adpt_hba* pHba = hba_chain; | 
 | 	int count = 0; | 
 |  | 
 | 	if (sys_tbl) | 
 | 		dma_free_coherent(&pHba->pDev->dev, sys_tbl_len, | 
 | 					sys_tbl, sys_tbl_pa); | 
 |  | 
 | 	sys_tbl_len = sizeof(struct i2o_sys_tbl) +	// Header + IOPs | 
 | 				(hba_count) * sizeof(struct i2o_sys_tbl_entry); | 
 |  | 
 | 	sys_tbl = dma_alloc_coherent(&pHba->pDev->dev, | 
 | 				sys_tbl_len, &sys_tbl_pa, GFP_KERNEL); | 
 | 	if (!sys_tbl) { | 
 | 		printk(KERN_WARNING "SysTab Set failed. Out of memory.\n");	 | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	memset(sys_tbl, 0, sys_tbl_len); | 
 |  | 
 | 	sys_tbl->num_entries = hba_count; | 
 | 	sys_tbl->version = I2OVERSION; | 
 | 	sys_tbl->change_ind = sys_tbl_ind++; | 
 |  | 
 | 	for(pHba = hba_chain; pHba; pHba = pHba->next) { | 
 | 		u64 addr; | 
 | 		// Get updated Status Block so we have the latest information | 
 | 		if (adpt_i2o_status_get(pHba)) { | 
 | 			sys_tbl->num_entries--; | 
 | 			continue; // try next one	 | 
 | 		} | 
 |  | 
 | 		sys_tbl->iops[count].org_id = pHba->status_block->org_id; | 
 | 		sys_tbl->iops[count].iop_id = pHba->unit + 2; | 
 | 		sys_tbl->iops[count].seg_num = 0; | 
 | 		sys_tbl->iops[count].i2o_version = pHba->status_block->i2o_version; | 
 | 		sys_tbl->iops[count].iop_state = pHba->status_block->iop_state; | 
 | 		sys_tbl->iops[count].msg_type = pHba->status_block->msg_type; | 
 | 		sys_tbl->iops[count].frame_size = pHba->status_block->inbound_frame_size; | 
 | 		sys_tbl->iops[count].last_changed = sys_tbl_ind - 1; // ?? | 
 | 		sys_tbl->iops[count].iop_capabilities = pHba->status_block->iop_capabilities; | 
 | 		addr = pHba->base_addr_phys + 0x40; | 
 | 		sys_tbl->iops[count].inbound_low = dma_low(addr); | 
 | 		sys_tbl->iops[count].inbound_high = dma_high(addr); | 
 |  | 
 | 		count++; | 
 | 	} | 
 |  | 
 | #ifdef DEBUG | 
 | { | 
 | 	u32 *table = (u32*)sys_tbl; | 
 | 	printk(KERN_DEBUG"sys_tbl_len=%d in 32bit words\n",(sys_tbl_len >>2)); | 
 | 	for(count = 0; count < (sys_tbl_len >>2); count++) { | 
 | 		printk(KERN_INFO "sys_tbl[%d] = %0#10x\n",  | 
 | 			count, table[count]); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  *	 Dump the information block associated with a given unit (TID) | 
 |  */ | 
 |   | 
 | static void adpt_i2o_report_hba_unit(adpt_hba* pHba, struct i2o_device *d) | 
 | { | 
 | 	char buf[64]; | 
 | 	int unit = d->lct_data.tid; | 
 |  | 
 | 	printk(KERN_INFO "TID %3.3d ", unit); | 
 |  | 
 | 	if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 3, buf, 16)>=0) | 
 | 	{ | 
 | 		buf[16]=0; | 
 | 		printk(" Vendor: %-12.12s", buf); | 
 | 	} | 
 | 	if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 4, buf, 16)>=0) | 
 | 	{ | 
 | 		buf[16]=0; | 
 | 		printk(" Device: %-12.12s", buf); | 
 | 	} | 
 | 	if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 6, buf, 8)>=0) | 
 | 	{ | 
 | 		buf[8]=0; | 
 | 		printk(" Rev: %-12.12s\n", buf); | 
 | 	} | 
 | #ifdef DEBUG | 
 | 	 printk(KERN_INFO "\tClass: %.21s\n", adpt_i2o_get_class_name(d->lct_data.class_id)); | 
 | 	 printk(KERN_INFO "\tSubclass: 0x%04X\n", d->lct_data.sub_class); | 
 | 	 printk(KERN_INFO "\tFlags: "); | 
 |  | 
 | 	 if(d->lct_data.device_flags&(1<<0)) | 
 | 		  printk("C");	     // ConfigDialog requested | 
 | 	 if(d->lct_data.device_flags&(1<<1)) | 
 | 		  printk("U");	     // Multi-user capable | 
 | 	 if(!(d->lct_data.device_flags&(1<<4))) | 
 | 		  printk("P");	     // Peer service enabled! | 
 | 	 if(!(d->lct_data.device_flags&(1<<5))) | 
 | 		  printk("M");	     // Mgmt service enabled! | 
 | 	 printk("\n"); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef DEBUG | 
 | /* | 
 |  *	Do i2o class name lookup | 
 |  */ | 
 | static const char *adpt_i2o_get_class_name(int class) | 
 | { | 
 | 	int idx = 16; | 
 | 	static char *i2o_class_name[] = { | 
 | 		"Executive", | 
 | 		"Device Driver Module", | 
 | 		"Block Device", | 
 | 		"Tape Device", | 
 | 		"LAN Interface", | 
 | 		"WAN Interface", | 
 | 		"Fibre Channel Port", | 
 | 		"Fibre Channel Device", | 
 | 		"SCSI Device", | 
 | 		"ATE Port", | 
 | 		"ATE Device", | 
 | 		"Floppy Controller", | 
 | 		"Floppy Device", | 
 | 		"Secondary Bus Port", | 
 | 		"Peer Transport Agent", | 
 | 		"Peer Transport", | 
 | 		"Unknown" | 
 | 	}; | 
 | 	 | 
 | 	switch(class&0xFFF) { | 
 | 	case I2O_CLASS_EXECUTIVE: | 
 | 		idx = 0; break; | 
 | 	case I2O_CLASS_DDM: | 
 | 		idx = 1; break; | 
 | 	case I2O_CLASS_RANDOM_BLOCK_STORAGE: | 
 | 		idx = 2; break; | 
 | 	case I2O_CLASS_SEQUENTIAL_STORAGE: | 
 | 		idx = 3; break; | 
 | 	case I2O_CLASS_LAN: | 
 | 		idx = 4; break; | 
 | 	case I2O_CLASS_WAN: | 
 | 		idx = 5; break; | 
 | 	case I2O_CLASS_FIBRE_CHANNEL_PORT: | 
 | 		idx = 6; break; | 
 | 	case I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL: | 
 | 		idx = 7; break; | 
 | 	case I2O_CLASS_SCSI_PERIPHERAL: | 
 | 		idx = 8; break; | 
 | 	case I2O_CLASS_ATE_PORT: | 
 | 		idx = 9; break; | 
 | 	case I2O_CLASS_ATE_PERIPHERAL: | 
 | 		idx = 10; break; | 
 | 	case I2O_CLASS_FLOPPY_CONTROLLER: | 
 | 		idx = 11; break; | 
 | 	case I2O_CLASS_FLOPPY_DEVICE: | 
 | 		idx = 12; break; | 
 | 	case I2O_CLASS_BUS_ADAPTER_PORT: | 
 | 		idx = 13; break; | 
 | 	case I2O_CLASS_PEER_TRANSPORT_AGENT: | 
 | 		idx = 14; break; | 
 | 	case I2O_CLASS_PEER_TRANSPORT: | 
 | 		idx = 15; break; | 
 | 	} | 
 | 	return i2o_class_name[idx]; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | static s32 adpt_i2o_hrt_get(adpt_hba* pHba) | 
 | { | 
 | 	u32 msg[6]; | 
 | 	int ret, size = sizeof(i2o_hrt); | 
 |  | 
 | 	do { | 
 | 		if (pHba->hrt == NULL) { | 
 | 			pHba->hrt = dma_alloc_coherent(&pHba->pDev->dev, | 
 | 					size, &pHba->hrt_pa, GFP_KERNEL); | 
 | 			if (pHba->hrt == NULL) { | 
 | 				printk(KERN_CRIT "%s: Hrt Get failed; Out of memory.\n", pHba->name); | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		msg[0]= SIX_WORD_MSG_SIZE| SGL_OFFSET_4; | 
 | 		msg[1]= I2O_CMD_HRT_GET<<24 | HOST_TID<<12 | ADAPTER_TID; | 
 | 		msg[2]= 0; | 
 | 		msg[3]= 0; | 
 | 		msg[4]= (0xD0000000 | size);    /* Simple transaction */ | 
 | 		msg[5]= (u32)pHba->hrt_pa;	/* Dump it here */ | 
 |  | 
 | 		if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg),20))) { | 
 | 			printk(KERN_ERR "%s: Unable to get HRT (status=%#10x)\n", pHba->name, ret); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		if (pHba->hrt->num_entries * pHba->hrt->entry_len << 2 > size) { | 
 | 			int newsize = pHba->hrt->num_entries * pHba->hrt->entry_len << 2; | 
 | 			dma_free_coherent(&pHba->pDev->dev, size, | 
 | 				pHba->hrt, pHba->hrt_pa); | 
 | 			size = newsize; | 
 | 			pHba->hrt = NULL; | 
 | 		} | 
 | 	} while(pHba->hrt == NULL); | 
 | 	return 0; | 
 | }                                                                                                                                        | 
 |  | 
 | /* | 
 |  *	 Query one scalar group value or a whole scalar group. | 
 |  */		    	 | 
 | static int adpt_i2o_query_scalar(adpt_hba* pHba, int tid,  | 
 | 			int group, int field, void *buf, int buflen) | 
 | { | 
 | 	u16 opblk[] = { 1, 0, I2O_PARAMS_FIELD_GET, group, 1, field }; | 
 | 	u8 *opblk_va; | 
 | 	dma_addr_t opblk_pa; | 
 | 	u8 *resblk_va; | 
 | 	dma_addr_t resblk_pa; | 
 |  | 
 | 	int size; | 
 |  | 
 | 	/* 8 bytes for header */ | 
 | 	resblk_va = dma_alloc_coherent(&pHba->pDev->dev, | 
 | 			sizeof(u8) * (8 + buflen), &resblk_pa, GFP_KERNEL); | 
 | 	if (resblk_va == NULL) { | 
 | 		printk(KERN_CRIT "%s: query scalar failed; Out of memory.\n", pHba->name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	opblk_va = dma_alloc_coherent(&pHba->pDev->dev, | 
 | 			sizeof(opblk), &opblk_pa, GFP_KERNEL); | 
 | 	if (opblk_va == NULL) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen), | 
 | 			resblk_va, resblk_pa); | 
 | 		printk(KERN_CRIT "%s: query operation failed; Out of memory.\n", | 
 | 			pHba->name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	if (field == -1)  		/* whole group */ | 
 | 			opblk[4] = -1; | 
 |  | 
 | 	memcpy(opblk_va, opblk, sizeof(opblk)); | 
 | 	size = adpt_i2o_issue_params(I2O_CMD_UTIL_PARAMS_GET, pHba, tid,  | 
 | 		opblk_va, opblk_pa, sizeof(opblk), | 
 | 		resblk_va, resblk_pa, sizeof(u8)*(8+buflen)); | 
 | 	dma_free_coherent(&pHba->pDev->dev, sizeof(opblk), opblk_va, opblk_pa); | 
 | 	if (size == -ETIME) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen), | 
 | 							resblk_va, resblk_pa); | 
 | 		printk(KERN_WARNING "%s: issue params failed; Timed out.\n", pHba->name); | 
 | 		return -ETIME; | 
 | 	} else if (size == -EINTR) { | 
 | 		dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen), | 
 | 							resblk_va, resblk_pa); | 
 | 		printk(KERN_WARNING "%s: issue params failed; Interrupted.\n", pHba->name); | 
 | 		return -EINTR; | 
 | 	} | 
 | 			 | 
 | 	memcpy(buf, resblk_va+8, buflen);  /* cut off header */ | 
 |  | 
 | 	dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen), | 
 | 						resblk_va, resblk_pa); | 
 | 	if (size < 0) | 
 | 		return size;	 | 
 |  | 
 | 	return buflen; | 
 | } | 
 |  | 
 |  | 
 | /*	Issue UTIL_PARAMS_GET or UTIL_PARAMS_SET | 
 |  * | 
 |  *	This function can be used for all UtilParamsGet/Set operations. | 
 |  *	The OperationBlock is given in opblk-buffer,  | 
 |  *	and results are returned in resblk-buffer. | 
 |  *	Note that the minimum sized resblk is 8 bytes and contains | 
 |  *	ResultCount, ErrorInfoSize, BlockStatus and BlockSize. | 
 |  */ | 
 | static int adpt_i2o_issue_params(int cmd, adpt_hba* pHba, int tid,  | 
 | 		  void *opblk_va,  dma_addr_t opblk_pa, int oplen, | 
 | 		void *resblk_va, dma_addr_t resblk_pa, int reslen) | 
 | { | 
 | 	u32 msg[9];  | 
 | 	u32 *res = (u32 *)resblk_va; | 
 | 	int wait_status; | 
 |  | 
 | 	msg[0] = NINE_WORD_MSG_SIZE | SGL_OFFSET_5; | 
 | 	msg[1] = cmd << 24 | HOST_TID << 12 | tid;  | 
 | 	msg[2] = 0; | 
 | 	msg[3] = 0; | 
 | 	msg[4] = 0; | 
 | 	msg[5] = 0x54000000 | oplen;	/* OperationBlock */ | 
 | 	msg[6] = (u32)opblk_pa; | 
 | 	msg[7] = 0xD0000000 | reslen;	/* ResultBlock */ | 
 | 	msg[8] = (u32)resblk_pa; | 
 |  | 
 | 	if ((wait_status = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 20))) { | 
 | 		printk("adpt_i2o_issue_params: post_wait failed (%p)\n", resblk_va); | 
 |    		return wait_status; 	/* -DetailedStatus */ | 
 | 	} | 
 |  | 
 | 	if (res[1]&0x00FF0000) { 	/* BlockStatus != SUCCESS */ | 
 | 		printk(KERN_WARNING "%s: %s - Error:\n  ErrorInfoSize = 0x%02x, " | 
 | 			"BlockStatus = 0x%02x, BlockSize = 0x%04x\n", | 
 | 			pHba->name, | 
 | 			(cmd == I2O_CMD_UTIL_PARAMS_SET) ? "PARAMS_SET" | 
 | 							 : "PARAMS_GET",    | 
 | 			res[1]>>24, (res[1]>>16)&0xFF, res[1]&0xFFFF); | 
 | 		return -((res[1] >> 16) & 0xFF); /* -BlockStatus */ | 
 | 	} | 
 |  | 
 | 	 return 4 + ((res[1] & 0x0000FFFF) << 2); /* bytes used in resblk */  | 
 | } | 
 |  | 
 |  | 
 | static s32 adpt_i2o_quiesce_hba(adpt_hba* pHba) | 
 | { | 
 | 	u32 msg[4]; | 
 | 	int ret; | 
 |  | 
 | 	adpt_i2o_status_get(pHba); | 
 |  | 
 | 	/* SysQuiesce discarded if IOP not in READY or OPERATIONAL state */ | 
 |  | 
 | 	if((pHba->status_block->iop_state != ADAPTER_STATE_READY) && | 
 |    	   (pHba->status_block->iop_state != ADAPTER_STATE_OPERATIONAL)){ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0; | 
 | 	msg[1] = I2O_CMD_SYS_QUIESCE<<24|HOST_TID<<12|ADAPTER_TID; | 
 | 	msg[2] = 0; | 
 | 	msg[3] = 0; | 
 |  | 
 | 	if((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) { | 
 | 		printk(KERN_INFO"dpti%d: Unable to quiesce (status=%#x).\n", | 
 | 				pHba->unit, -ret); | 
 | 	} else { | 
 | 		printk(KERN_INFO"dpti%d: Quiesced.\n",pHba->unit); | 
 | 	} | 
 |  | 
 | 	adpt_i2o_status_get(pHba); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /*  | 
 |  * Enable IOP. Allows the IOP to resume external operations. | 
 |  */ | 
 | static int adpt_i2o_enable_hba(adpt_hba* pHba) | 
 | { | 
 | 	u32 msg[4]; | 
 | 	int ret; | 
 | 	 | 
 | 	adpt_i2o_status_get(pHba); | 
 | 	if(!pHba->status_block){ | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	/* Enable only allowed on READY state */ | 
 | 	if(pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL) | 
 | 		return 0; | 
 |  | 
 | 	if(pHba->status_block->iop_state != ADAPTER_STATE_READY) | 
 | 		return -EINVAL; | 
 |  | 
 | 	msg[0]=FOUR_WORD_MSG_SIZE|SGL_OFFSET_0; | 
 | 	msg[1]=I2O_CMD_SYS_ENABLE<<24|HOST_TID<<12|ADAPTER_TID; | 
 | 	msg[2]= 0; | 
 | 	msg[3]= 0; | 
 |  | 
 | 	if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) { | 
 | 		printk(KERN_WARNING"%s: Could not enable (status=%#10x).\n",  | 
 | 			pHba->name, ret); | 
 | 	} else { | 
 | 		PDEBUG("%s: Enabled.\n", pHba->name); | 
 | 	} | 
 |  | 
 | 	adpt_i2o_status_get(pHba); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | static int adpt_i2o_systab_send(adpt_hba* pHba) | 
 | { | 
 | 	 u32 msg[12]; | 
 | 	 int ret; | 
 |  | 
 | 	msg[0] = I2O_MESSAGE_SIZE(12) | SGL_OFFSET_6; | 
 | 	msg[1] = I2O_CMD_SYS_TAB_SET<<24 | HOST_TID<<12 | ADAPTER_TID; | 
 | 	msg[2] = 0; | 
 | 	msg[3] = 0; | 
 | 	msg[4] = (0<<16) | ((pHba->unit+2) << 12); /* Host 0 IOP ID (unit + 2) */ | 
 | 	msg[5] = 0;				   /* Segment 0 */ | 
 |  | 
 | 	/*  | 
 | 	 * Provide three SGL-elements: | 
 | 	 * System table (SysTab), Private memory space declaration and  | 
 | 	 * Private i/o space declaration   | 
 | 	 */ | 
 | 	msg[6] = 0x54000000 | sys_tbl_len; | 
 | 	msg[7] = (u32)sys_tbl_pa; | 
 | 	msg[8] = 0x54000000 | 0; | 
 | 	msg[9] = 0; | 
 | 	msg[10] = 0xD4000000 | 0; | 
 | 	msg[11] = 0; | 
 |  | 
 | 	if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 120))) { | 
 | 		printk(KERN_INFO "%s: Unable to set SysTab (status=%#10x).\n",  | 
 | 			pHba->name, ret); | 
 | 	} | 
 | #ifdef DEBUG | 
 | 	else { | 
 | 		PINFO("%s: SysTab set.\n", pHba->name); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return ret;	 | 
 |  } | 
 |  | 
 |  | 
 | /*============================================================================ | 
 |  * | 
 |  *============================================================================ | 
 |  */ | 
 |  | 
 |  | 
 | #ifdef UARTDELAY  | 
 |  | 
 | static static void adpt_delay(int millisec) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < millisec; i++) { | 
 | 		udelay(1000);	/* delay for one millisecond */ | 
 | 	} | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static struct scsi_host_template driver_template = { | 
 | 	.module			= THIS_MODULE, | 
 | 	.name			= "dpt_i2o", | 
 | 	.proc_name		= "dpt_i2o", | 
 | 	.show_info		= adpt_show_info, | 
 | 	.info			= adpt_info, | 
 | 	.queuecommand		= adpt_queue, | 
 | 	.eh_abort_handler	= adpt_abort, | 
 | 	.eh_device_reset_handler = adpt_device_reset, | 
 | 	.eh_bus_reset_handler	= adpt_bus_reset, | 
 | 	.eh_host_reset_handler	= adpt_reset, | 
 | 	.bios_param		= adpt_bios_param, | 
 | 	.slave_configure	= adpt_slave_configure, | 
 | 	.can_queue		= MAX_TO_IOP_MESSAGES, | 
 | 	.this_id		= 7, | 
 | 	.use_clustering		= ENABLE_CLUSTERING, | 
 | }; | 
 |  | 
 | static int __init adpt_init(void) | 
 | { | 
 | 	int		error; | 
 | 	adpt_hba	*pHba, *next; | 
 |  | 
 | 	printk("Loading Adaptec I2O RAID: Version " DPT_I2O_VERSION "\n"); | 
 |  | 
 | 	error = adpt_detect(&driver_template); | 
 | 	if (error < 0) | 
 | 		return error; | 
 | 	if (hba_chain == NULL) | 
 | 		return -ENODEV; | 
 |  | 
 | 	for (pHba = hba_chain; pHba; pHba = pHba->next) { | 
 | 		error = scsi_add_host(pHba->host, &pHba->pDev->dev); | 
 | 		if (error) | 
 | 			goto fail; | 
 | 		scsi_scan_host(pHba->host); | 
 | 	} | 
 | 	return 0; | 
 | fail: | 
 | 	for (pHba = hba_chain; pHba; pHba = next) { | 
 | 		next = pHba->next; | 
 | 		scsi_remove_host(pHba->host); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | static void __exit adpt_exit(void) | 
 | { | 
 | 	adpt_hba	*pHba, *next; | 
 |  | 
 | 	for (pHba = hba_chain; pHba; pHba = pHba->next) | 
 | 		scsi_remove_host(pHba->host); | 
 | 	for (pHba = hba_chain; pHba; pHba = next) { | 
 | 		next = pHba->next; | 
 | 		adpt_release(pHba->host); | 
 | 	} | 
 | } | 
 |  | 
 | module_init(adpt_init); | 
 | module_exit(adpt_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); |