| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * Copyright 2013 Red Hat Inc. | 
 |  * | 
 |  * Authors: Jérôme Glisse <jglisse@redhat.com> | 
 |  */ | 
 | /* | 
 |  * Refer to include/linux/hmm.h for information about heterogeneous memory | 
 |  * management or HMM for short. | 
 |  */ | 
 | #include <linux/pagewalk.h> | 
 | #include <linux/hmm.h> | 
 | #include <linux/init.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/jump_label.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/memory_hotplug.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | struct hmm_vma_walk { | 
 | 	struct hmm_range	*range; | 
 | 	unsigned long		last; | 
 | }; | 
 |  | 
 | enum { | 
 | 	HMM_NEED_FAULT = 1 << 0, | 
 | 	HMM_NEED_WRITE_FAULT = 1 << 1, | 
 | 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, | 
 | }; | 
 |  | 
 | static int hmm_pfns_fill(unsigned long addr, unsigned long end, | 
 | 			 struct hmm_range *range, unsigned long cpu_flags) | 
 | { | 
 | 	unsigned long i = (addr - range->start) >> PAGE_SHIFT; | 
 |  | 
 | 	for (; addr < end; addr += PAGE_SIZE, i++) | 
 | 		range->hmm_pfns[i] = cpu_flags; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) | 
 |  * @addr: range virtual start address (inclusive) | 
 |  * @end: range virtual end address (exclusive) | 
 |  * @required_fault: HMM_NEED_* flags | 
 |  * @walk: mm_walk structure | 
 |  * Return: -EBUSY after page fault, or page fault error | 
 |  * | 
 |  * This function will be called whenever pmd_none() or pte_none() returns true, | 
 |  * or whenever there is no page directory covering the virtual address range. | 
 |  */ | 
 | static int hmm_vma_fault(unsigned long addr, unsigned long end, | 
 | 			 unsigned int required_fault, struct mm_walk *walk) | 
 | { | 
 | 	struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
 | 	struct vm_area_struct *vma = walk->vma; | 
 | 	unsigned int fault_flags = FAULT_FLAG_REMOTE; | 
 |  | 
 | 	WARN_ON_ONCE(!required_fault); | 
 | 	hmm_vma_walk->last = addr; | 
 |  | 
 | 	if (required_fault & HMM_NEED_WRITE_FAULT) { | 
 | 		if (!(vma->vm_flags & VM_WRITE)) | 
 | 			return -EPERM; | 
 | 		fault_flags |= FAULT_FLAG_WRITE; | 
 | 	} | 
 |  | 
 | 	for (; addr < end; addr += PAGE_SIZE) | 
 | 		if (handle_mm_fault(vma, addr, fault_flags, NULL) & | 
 | 		    VM_FAULT_ERROR) | 
 | 			return -EFAULT; | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, | 
 | 				       unsigned long pfn_req_flags, | 
 | 				       unsigned long cpu_flags) | 
 | { | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 |  | 
 | 	/* | 
 | 	 * So we not only consider the individual per page request we also | 
 | 	 * consider the default flags requested for the range. The API can | 
 | 	 * be used 2 ways. The first one where the HMM user coalesces | 
 | 	 * multiple page faults into one request and sets flags per pfn for | 
 | 	 * those faults. The second one where the HMM user wants to pre- | 
 | 	 * fault a range with specific flags. For the latter one it is a | 
 | 	 * waste to have the user pre-fill the pfn arrays with a default | 
 | 	 * flags value. | 
 | 	 */ | 
 | 	pfn_req_flags &= range->pfn_flags_mask; | 
 | 	pfn_req_flags |= range->default_flags; | 
 |  | 
 | 	/* We aren't ask to do anything ... */ | 
 | 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) | 
 | 		return 0; | 
 |  | 
 | 	/* Need to write fault ? */ | 
 | 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && | 
 | 	    !(cpu_flags & HMM_PFN_WRITE)) | 
 | 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; | 
 |  | 
 | 	/* If CPU page table is not valid then we need to fault */ | 
 | 	if (!(cpu_flags & HMM_PFN_VALID)) | 
 | 		return HMM_NEED_FAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int | 
 | hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, | 
 | 		     const unsigned long hmm_pfns[], unsigned long npages, | 
 | 		     unsigned long cpu_flags) | 
 | { | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 | 	unsigned int required_fault = 0; | 
 | 	unsigned long i; | 
 |  | 
 | 	/* | 
 | 	 * If the default flags do not request to fault pages, and the mask does | 
 | 	 * not allow for individual pages to be faulted, then | 
 | 	 * hmm_pte_need_fault() will always return 0. | 
 | 	 */ | 
 | 	if (!((range->default_flags | range->pfn_flags_mask) & | 
 | 	      HMM_PFN_REQ_FAULT)) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < npages; ++i) { | 
 | 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], | 
 | 						     cpu_flags); | 
 | 		if (required_fault == HMM_NEED_ALL_BITS) | 
 | 			return required_fault; | 
 | 	} | 
 | 	return required_fault; | 
 | } | 
 |  | 
 | static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, | 
 | 			     __always_unused int depth, struct mm_walk *walk) | 
 | { | 
 | 	struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 | 	unsigned int required_fault; | 
 | 	unsigned long i, npages; | 
 | 	unsigned long *hmm_pfns; | 
 |  | 
 | 	i = (addr - range->start) >> PAGE_SHIFT; | 
 | 	npages = (end - addr) >> PAGE_SHIFT; | 
 | 	hmm_pfns = &range->hmm_pfns[i]; | 
 | 	required_fault = | 
 | 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); | 
 | 	if (!walk->vma) { | 
 | 		if (required_fault) | 
 | 			return -EFAULT; | 
 | 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); | 
 | 	} | 
 | 	if (required_fault) | 
 | 		return hmm_vma_fault(addr, end, required_fault, walk); | 
 | 	return hmm_pfns_fill(addr, end, range, 0); | 
 | } | 
 |  | 
 | static inline unsigned long hmm_pfn_flags_order(unsigned long order) | 
 | { | 
 | 	return order << HMM_PFN_ORDER_SHIFT; | 
 | } | 
 |  | 
 | static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, | 
 | 						 pmd_t pmd) | 
 | { | 
 | 	if (pmd_protnone(pmd)) | 
 | 		return 0; | 
 | 	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : | 
 | 				 HMM_PFN_VALID) | | 
 | 	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, | 
 | 			      unsigned long end, unsigned long hmm_pfns[], | 
 | 			      pmd_t pmd) | 
 | { | 
 | 	struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 | 	unsigned long pfn, npages, i; | 
 | 	unsigned int required_fault; | 
 | 	unsigned long cpu_flags; | 
 |  | 
 | 	npages = (end - addr) >> PAGE_SHIFT; | 
 | 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); | 
 | 	required_fault = | 
 | 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); | 
 | 	if (required_fault) | 
 | 		return hmm_vma_fault(addr, end, required_fault, walk); | 
 |  | 
 | 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | 
 | 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) | 
 | 		hmm_pfns[i] = pfn | cpu_flags; | 
 | 	return 0; | 
 | } | 
 | #else /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 | /* stub to allow the code below to compile */ | 
 | int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, | 
 | 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 |  | 
 | static inline bool hmm_is_device_private_entry(struct hmm_range *range, | 
 | 		swp_entry_t entry) | 
 | { | 
 | 	return is_device_private_entry(entry) && | 
 | 		pfn_swap_entry_to_page(entry)->pgmap->owner == | 
 | 		range->dev_private_owner; | 
 | } | 
 |  | 
 | static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, | 
 | 						 pte_t pte) | 
 | { | 
 | 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) | 
 | 		return 0; | 
 | 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; | 
 | } | 
 |  | 
 | static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, | 
 | 			      unsigned long end, pmd_t *pmdp, pte_t *ptep, | 
 | 			      unsigned long *hmm_pfn) | 
 | { | 
 | 	struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 | 	unsigned int required_fault; | 
 | 	unsigned long cpu_flags; | 
 | 	pte_t pte = *ptep; | 
 | 	uint64_t pfn_req_flags = *hmm_pfn; | 
 |  | 
 | 	if (pte_none(pte)) { | 
 | 		required_fault = | 
 | 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); | 
 | 		if (required_fault) | 
 | 			goto fault; | 
 | 		*hmm_pfn = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!pte_present(pte)) { | 
 | 		swp_entry_t entry = pte_to_swp_entry(pte); | 
 |  | 
 | 		/* | 
 | 		 * Never fault in device private pages, but just report | 
 | 		 * the PFN even if not present. | 
 | 		 */ | 
 | 		if (hmm_is_device_private_entry(range, entry)) { | 
 | 			cpu_flags = HMM_PFN_VALID; | 
 | 			if (is_writable_device_private_entry(entry)) | 
 | 				cpu_flags |= HMM_PFN_WRITE; | 
 | 			*hmm_pfn = swp_offset(entry) | cpu_flags; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		required_fault = | 
 | 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); | 
 | 		if (!required_fault) { | 
 | 			*hmm_pfn = 0; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (!non_swap_entry(entry)) | 
 | 			goto fault; | 
 |  | 
 | 		if (is_device_exclusive_entry(entry)) | 
 | 			goto fault; | 
 |  | 
 | 		if (is_migration_entry(entry)) { | 
 | 			pte_unmap(ptep); | 
 | 			hmm_vma_walk->last = addr; | 
 | 			migration_entry_wait(walk->mm, pmdp, addr); | 
 | 			return -EBUSY; | 
 | 		} | 
 |  | 
 | 		/* Report error for everything else */ | 
 | 		pte_unmap(ptep); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	cpu_flags = pte_to_hmm_pfn_flags(range, pte); | 
 | 	required_fault = | 
 | 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); | 
 | 	if (required_fault) | 
 | 		goto fault; | 
 |  | 
 | 	/* | 
 | 	 * Bypass devmap pte such as DAX page when all pfn requested | 
 | 	 * flags(pfn_req_flags) are fulfilled. | 
 | 	 * Since each architecture defines a struct page for the zero page, just | 
 | 	 * fall through and treat it like a normal page. | 
 | 	 */ | 
 | 	if (pte_special(pte) && !pte_devmap(pte) && | 
 | 	    !is_zero_pfn(pte_pfn(pte))) { | 
 | 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { | 
 | 			pte_unmap(ptep); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		*hmm_pfn = HMM_PFN_ERROR; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*hmm_pfn = pte_pfn(pte) | cpu_flags; | 
 | 	return 0; | 
 |  | 
 | fault: | 
 | 	pte_unmap(ptep); | 
 | 	/* Fault any virtual address we were asked to fault */ | 
 | 	return hmm_vma_fault(addr, end, required_fault, walk); | 
 | } | 
 |  | 
 | static int hmm_vma_walk_pmd(pmd_t *pmdp, | 
 | 			    unsigned long start, | 
 | 			    unsigned long end, | 
 | 			    struct mm_walk *walk) | 
 | { | 
 | 	struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 | 	unsigned long *hmm_pfns = | 
 | 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; | 
 | 	unsigned long npages = (end - start) >> PAGE_SHIFT; | 
 | 	unsigned long addr = start; | 
 | 	pte_t *ptep; | 
 | 	pmd_t pmd; | 
 |  | 
 | again: | 
 | 	pmd = READ_ONCE(*pmdp); | 
 | 	if (pmd_none(pmd)) | 
 | 		return hmm_vma_walk_hole(start, end, -1, walk); | 
 |  | 
 | 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { | 
 | 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { | 
 | 			hmm_vma_walk->last = addr; | 
 | 			pmd_migration_entry_wait(walk->mm, pmdp); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		return hmm_pfns_fill(start, end, range, 0); | 
 | 	} | 
 |  | 
 | 	if (!pmd_present(pmd)) { | 
 | 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) | 
 | 			return -EFAULT; | 
 | 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); | 
 | 	} | 
 |  | 
 | 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { | 
 | 		/* | 
 | 		 * No need to take pmd_lock here, even if some other thread | 
 | 		 * is splitting the huge pmd we will get that event through | 
 | 		 * mmu_notifier callback. | 
 | 		 * | 
 | 		 * So just read pmd value and check again it's a transparent | 
 | 		 * huge or device mapping one and compute corresponding pfn | 
 | 		 * values. | 
 | 		 */ | 
 | 		pmd = pmd_read_atomic(pmdp); | 
 | 		barrier(); | 
 | 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) | 
 | 			goto again; | 
 |  | 
 | 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have handled all the valid cases above ie either none, migration, | 
 | 	 * huge or transparent huge. At this point either it is a valid pmd | 
 | 	 * entry pointing to pte directory or it is a bad pmd that will not | 
 | 	 * recover. | 
 | 	 */ | 
 | 	if (pmd_bad(pmd)) { | 
 | 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) | 
 | 			return -EFAULT; | 
 | 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); | 
 | 	} | 
 |  | 
 | 	ptep = pte_offset_map(pmdp, addr); | 
 | 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { | 
 | 		int r; | 
 |  | 
 | 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); | 
 | 		if (r) { | 
 | 			/* hmm_vma_handle_pte() did pte_unmap() */ | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 | 	pte_unmap(ptep - 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ | 
 |     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | 
 | static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, | 
 | 						 pud_t pud) | 
 | { | 
 | 	if (!pud_present(pud)) | 
 | 		return 0; | 
 | 	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : | 
 | 				 HMM_PFN_VALID) | | 
 | 	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT); | 
 | } | 
 |  | 
 | static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, | 
 | 		struct mm_walk *walk) | 
 | { | 
 | 	struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 | 	unsigned long addr = start; | 
 | 	pud_t pud; | 
 | 	int ret = 0; | 
 | 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); | 
 |  | 
 | 	if (!ptl) | 
 | 		return 0; | 
 |  | 
 | 	/* Normally we don't want to split the huge page */ | 
 | 	walk->action = ACTION_CONTINUE; | 
 |  | 
 | 	pud = READ_ONCE(*pudp); | 
 | 	if (pud_none(pud)) { | 
 | 		spin_unlock(ptl); | 
 | 		return hmm_vma_walk_hole(start, end, -1, walk); | 
 | 	} | 
 |  | 
 | 	if (pud_huge(pud) && pud_devmap(pud)) { | 
 | 		unsigned long i, npages, pfn; | 
 | 		unsigned int required_fault; | 
 | 		unsigned long *hmm_pfns; | 
 | 		unsigned long cpu_flags; | 
 |  | 
 | 		if (!pud_present(pud)) { | 
 | 			spin_unlock(ptl); | 
 | 			return hmm_vma_walk_hole(start, end, -1, walk); | 
 | 		} | 
 |  | 
 | 		i = (addr - range->start) >> PAGE_SHIFT; | 
 | 		npages = (end - addr) >> PAGE_SHIFT; | 
 | 		hmm_pfns = &range->hmm_pfns[i]; | 
 |  | 
 | 		cpu_flags = pud_to_hmm_pfn_flags(range, pud); | 
 | 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, | 
 | 						      npages, cpu_flags); | 
 | 		if (required_fault) { | 
 | 			spin_unlock(ptl); | 
 | 			return hmm_vma_fault(addr, end, required_fault, walk); | 
 | 		} | 
 |  | 
 | 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | 
 | 		for (i = 0; i < npages; ++i, ++pfn) | 
 | 			hmm_pfns[i] = pfn | cpu_flags; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* Ask for the PUD to be split */ | 
 | 	walk->action = ACTION_SUBTREE; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock(ptl); | 
 | 	return ret; | 
 | } | 
 | #else | 
 | #define hmm_vma_walk_pud	NULL | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, | 
 | 				      unsigned long start, unsigned long end, | 
 | 				      struct mm_walk *walk) | 
 | { | 
 | 	unsigned long addr = start, i, pfn; | 
 | 	struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 | 	struct vm_area_struct *vma = walk->vma; | 
 | 	unsigned int required_fault; | 
 | 	unsigned long pfn_req_flags; | 
 | 	unsigned long cpu_flags; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t entry; | 
 |  | 
 | 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); | 
 | 	entry = huge_ptep_get(pte); | 
 |  | 
 | 	i = (start - range->start) >> PAGE_SHIFT; | 
 | 	pfn_req_flags = range->hmm_pfns[i]; | 
 | 	cpu_flags = pte_to_hmm_pfn_flags(range, entry) | | 
 | 		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma))); | 
 | 	required_fault = | 
 | 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); | 
 | 	if (required_fault) { | 
 | 		spin_unlock(ptl); | 
 | 		return hmm_vma_fault(addr, end, required_fault, walk); | 
 | 	} | 
 |  | 
 | 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); | 
 | 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++) | 
 | 		range->hmm_pfns[i] = pfn | cpu_flags; | 
 |  | 
 | 	spin_unlock(ptl); | 
 | 	return 0; | 
 | } | 
 | #else | 
 | #define hmm_vma_walk_hugetlb_entry NULL | 
 | #endif /* CONFIG_HUGETLB_PAGE */ | 
 |  | 
 | static int hmm_vma_walk_test(unsigned long start, unsigned long end, | 
 | 			     struct mm_walk *walk) | 
 | { | 
 | 	struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
 | 	struct hmm_range *range = hmm_vma_walk->range; | 
 | 	struct vm_area_struct *vma = walk->vma; | 
 |  | 
 | 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) && | 
 | 	    vma->vm_flags & VM_READ) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * vma ranges that don't have struct page backing them or map I/O | 
 | 	 * devices directly cannot be handled by hmm_range_fault(). | 
 | 	 * | 
 | 	 * If the vma does not allow read access, then assume that it does not | 
 | 	 * allow write access either. HMM does not support architectures that | 
 | 	 * allow write without read. | 
 | 	 * | 
 | 	 * If a fault is requested for an unsupported range then it is a hard | 
 | 	 * failure. | 
 | 	 */ | 
 | 	if (hmm_range_need_fault(hmm_vma_walk, | 
 | 				 range->hmm_pfns + | 
 | 					 ((start - range->start) >> PAGE_SHIFT), | 
 | 				 (end - start) >> PAGE_SHIFT, 0)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); | 
 |  | 
 | 	/* Skip this vma and continue processing the next vma. */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static const struct mm_walk_ops hmm_walk_ops = { | 
 | 	.pud_entry	= hmm_vma_walk_pud, | 
 | 	.pmd_entry	= hmm_vma_walk_pmd, | 
 | 	.pte_hole	= hmm_vma_walk_hole, | 
 | 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry, | 
 | 	.test_walk	= hmm_vma_walk_test, | 
 | }; | 
 |  | 
 | /** | 
 |  * hmm_range_fault - try to fault some address in a virtual address range | 
 |  * @range:	argument structure | 
 |  * | 
 |  * Returns 0 on success or one of the following error codes: | 
 |  * | 
 |  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma | 
 |  *		(e.g., device file vma). | 
 |  * -ENOMEM:	Out of memory. | 
 |  * -EPERM:	Invalid permission (e.g., asking for write and range is read | 
 |  *		only). | 
 |  * -EBUSY:	The range has been invalidated and the caller needs to wait for | 
 |  *		the invalidation to finish. | 
 |  * -EFAULT:     A page was requested to be valid and could not be made valid | 
 |  *              ie it has no backing VMA or it is illegal to access | 
 |  * | 
 |  * This is similar to get_user_pages(), except that it can read the page tables | 
 |  * without mutating them (ie causing faults). | 
 |  */ | 
 | int hmm_range_fault(struct hmm_range *range) | 
 | { | 
 | 	struct hmm_vma_walk hmm_vma_walk = { | 
 | 		.range = range, | 
 | 		.last = range->start, | 
 | 	}; | 
 | 	struct mm_struct *mm = range->notifier->mm; | 
 | 	int ret; | 
 |  | 
 | 	mmap_assert_locked(mm); | 
 |  | 
 | 	do { | 
 | 		/* If range is no longer valid force retry. */ | 
 | 		if (mmu_interval_check_retry(range->notifier, | 
 | 					     range->notifier_seq)) | 
 | 			return -EBUSY; | 
 | 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end, | 
 | 				      &hmm_walk_ops, &hmm_vma_walk); | 
 | 		/* | 
 | 		 * When -EBUSY is returned the loop restarts with | 
 | 		 * hmm_vma_walk.last set to an address that has not been stored | 
 | 		 * in pfns. All entries < last in the pfn array are set to their | 
 | 		 * output, and all >= are still at their input values. | 
 | 		 */ | 
 | 	} while (ret == -EBUSY); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(hmm_range_fault); |