|  | /* | 
|  | *    Disk Array driver for HP Smart Array SAS controllers | 
|  | *    Copyright 2016 Microsemi Corporation | 
|  | *    Copyright 2014-2015 PMC-Sierra, Inc. | 
|  | *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. | 
|  | * | 
|  | *    This program is free software; you can redistribute it and/or modify | 
|  | *    it under the terms of the GNU General Public License as published by | 
|  | *    the Free Software Foundation; version 2 of the License. | 
|  | * | 
|  | *    This program is distributed in the hope that it will be useful, | 
|  | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *    NON INFRINGEMENT.  See the GNU General Public License for more details. | 
|  | * | 
|  | *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/blktrace_api.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <scsi/scsi.h> | 
|  | #include <scsi/scsi_cmnd.h> | 
|  | #include <scsi/scsi_device.h> | 
|  | #include <scsi/scsi_host.h> | 
|  | #include <scsi/scsi_tcq.h> | 
|  | #include <scsi/scsi_eh.h> | 
|  | #include <scsi/scsi_transport_sas.h> | 
|  | #include <scsi/scsi_dbg.h> | 
|  | #include <linux/cciss_ioctl.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/percpu-defs.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <asm/div64.h> | 
|  | #include "hpsa_cmd.h" | 
|  | #include "hpsa.h" | 
|  |  | 
|  | /* | 
|  | * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' | 
|  | * with an optional trailing '-' followed by a byte value (0-255). | 
|  | */ | 
|  | #define HPSA_DRIVER_VERSION "3.4.20-170" | 
|  | #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" | 
|  | #define HPSA "hpsa" | 
|  |  | 
|  | /* How long to wait for CISS doorbell communication */ | 
|  | #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */ | 
|  | #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */ | 
|  | #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */ | 
|  | #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */ | 
|  | #define MAX_IOCTL_CONFIG_WAIT 1000 | 
|  |  | 
|  | /*define how many times we will try a command because of bus resets */ | 
|  | #define MAX_CMD_RETRIES 3 | 
|  | /* How long to wait before giving up on a command */ | 
|  | #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ) | 
|  |  | 
|  | /* Embedded module documentation macros - see modules.h */ | 
|  | MODULE_AUTHOR("Hewlett-Packard Company"); | 
|  | MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ | 
|  | HPSA_DRIVER_VERSION); | 
|  | MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); | 
|  | MODULE_VERSION(HPSA_DRIVER_VERSION); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("cciss"); | 
|  |  | 
|  | static int hpsa_simple_mode; | 
|  | module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); | 
|  | MODULE_PARM_DESC(hpsa_simple_mode, | 
|  | "Use 'simple mode' rather than 'performant mode'"); | 
|  |  | 
|  | /* define the PCI info for the cards we can control */ | 
|  | static const struct pci_device_id hpsa_pci_device_id[] = { | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE}, | 
|  | {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, | 
|  | {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, | 
|  | {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, | 
|  | {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, | 
|  | {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, | 
|  | {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, | 
|  | {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, | 
|  | {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, | 
|  | {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, | 
|  | {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, | 
|  | {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID, | 
|  | PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, | 
|  | {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID, | 
|  | PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, | 
|  | {0,} | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); | 
|  |  | 
|  | /*  board_id = Subsystem Device ID & Vendor ID | 
|  | *  product = Marketing Name for the board | 
|  | *  access = Address of the struct of function pointers | 
|  | */ | 
|  | static struct board_type products[] = { | 
|  | {0x40700E11, "Smart Array 5300", &SA5A_access}, | 
|  | {0x40800E11, "Smart Array 5i", &SA5B_access}, | 
|  | {0x40820E11, "Smart Array 532", &SA5B_access}, | 
|  | {0x40830E11, "Smart Array 5312", &SA5B_access}, | 
|  | {0x409A0E11, "Smart Array 641", &SA5A_access}, | 
|  | {0x409B0E11, "Smart Array 642", &SA5A_access}, | 
|  | {0x409C0E11, "Smart Array 6400", &SA5A_access}, | 
|  | {0x409D0E11, "Smart Array 6400 EM", &SA5A_access}, | 
|  | {0x40910E11, "Smart Array 6i", &SA5A_access}, | 
|  | {0x3225103C, "Smart Array P600", &SA5A_access}, | 
|  | {0x3223103C, "Smart Array P800", &SA5A_access}, | 
|  | {0x3234103C, "Smart Array P400", &SA5A_access}, | 
|  | {0x3235103C, "Smart Array P400i", &SA5A_access}, | 
|  | {0x3211103C, "Smart Array E200i", &SA5A_access}, | 
|  | {0x3212103C, "Smart Array E200", &SA5A_access}, | 
|  | {0x3213103C, "Smart Array E200i", &SA5A_access}, | 
|  | {0x3214103C, "Smart Array E200i", &SA5A_access}, | 
|  | {0x3215103C, "Smart Array E200i", &SA5A_access}, | 
|  | {0x3237103C, "Smart Array E500", &SA5A_access}, | 
|  | {0x323D103C, "Smart Array P700m", &SA5A_access}, | 
|  | {0x3241103C, "Smart Array P212", &SA5_access}, | 
|  | {0x3243103C, "Smart Array P410", &SA5_access}, | 
|  | {0x3245103C, "Smart Array P410i", &SA5_access}, | 
|  | {0x3247103C, "Smart Array P411", &SA5_access}, | 
|  | {0x3249103C, "Smart Array P812", &SA5_access}, | 
|  | {0x324A103C, "Smart Array P712m", &SA5_access}, | 
|  | {0x324B103C, "Smart Array P711m", &SA5_access}, | 
|  | {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ | 
|  | {0x3350103C, "Smart Array P222", &SA5_access}, | 
|  | {0x3351103C, "Smart Array P420", &SA5_access}, | 
|  | {0x3352103C, "Smart Array P421", &SA5_access}, | 
|  | {0x3353103C, "Smart Array P822", &SA5_access}, | 
|  | {0x3354103C, "Smart Array P420i", &SA5_access}, | 
|  | {0x3355103C, "Smart Array P220i", &SA5_access}, | 
|  | {0x3356103C, "Smart Array P721m", &SA5_access}, | 
|  | {0x1920103C, "Smart Array P430i", &SA5_access}, | 
|  | {0x1921103C, "Smart Array P830i", &SA5_access}, | 
|  | {0x1922103C, "Smart Array P430", &SA5_access}, | 
|  | {0x1923103C, "Smart Array P431", &SA5_access}, | 
|  | {0x1924103C, "Smart Array P830", &SA5_access}, | 
|  | {0x1925103C, "Smart Array P831", &SA5_access}, | 
|  | {0x1926103C, "Smart Array P731m", &SA5_access}, | 
|  | {0x1928103C, "Smart Array P230i", &SA5_access}, | 
|  | {0x1929103C, "Smart Array P530", &SA5_access}, | 
|  | {0x21BD103C, "Smart Array P244br", &SA5_access}, | 
|  | {0x21BE103C, "Smart Array P741m", &SA5_access}, | 
|  | {0x21BF103C, "Smart HBA H240ar", &SA5_access}, | 
|  | {0x21C0103C, "Smart Array P440ar", &SA5_access}, | 
|  | {0x21C1103C, "Smart Array P840ar", &SA5_access}, | 
|  | {0x21C2103C, "Smart Array P440", &SA5_access}, | 
|  | {0x21C3103C, "Smart Array P441", &SA5_access}, | 
|  | {0x21C4103C, "Smart Array", &SA5_access}, | 
|  | {0x21C5103C, "Smart Array P841", &SA5_access}, | 
|  | {0x21C6103C, "Smart HBA H244br", &SA5_access}, | 
|  | {0x21C7103C, "Smart HBA H240", &SA5_access}, | 
|  | {0x21C8103C, "Smart HBA H241", &SA5_access}, | 
|  | {0x21C9103C, "Smart Array", &SA5_access}, | 
|  | {0x21CA103C, "Smart Array P246br", &SA5_access}, | 
|  | {0x21CB103C, "Smart Array P840", &SA5_access}, | 
|  | {0x21CC103C, "Smart Array", &SA5_access}, | 
|  | {0x21CD103C, "Smart Array", &SA5_access}, | 
|  | {0x21CE103C, "Smart HBA", &SA5_access}, | 
|  | {0x05809005, "SmartHBA-SA", &SA5_access}, | 
|  | {0x05819005, "SmartHBA-SA 8i", &SA5_access}, | 
|  | {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, | 
|  | {0x05839005, "SmartHBA-SA 8e", &SA5_access}, | 
|  | {0x05849005, "SmartHBA-SA 16i", &SA5_access}, | 
|  | {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, | 
|  | {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, | 
|  | {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, | 
|  | {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, | 
|  | {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, | 
|  | {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, | 
|  | {0xFFFF103C, "Unknown Smart Array", &SA5_access}, | 
|  | }; | 
|  |  | 
|  | static struct scsi_transport_template *hpsa_sas_transport_template; | 
|  | static int hpsa_add_sas_host(struct ctlr_info *h); | 
|  | static void hpsa_delete_sas_host(struct ctlr_info *h); | 
|  | static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, | 
|  | struct hpsa_scsi_dev_t *device); | 
|  | static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); | 
|  | static struct hpsa_scsi_dev_t | 
|  | *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, | 
|  | struct sas_rphy *rphy); | 
|  |  | 
|  | #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) | 
|  | static const struct scsi_cmnd hpsa_cmd_busy; | 
|  | #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) | 
|  | static const struct scsi_cmnd hpsa_cmd_idle; | 
|  | static int number_of_controllers; | 
|  |  | 
|  | static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); | 
|  | static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); | 
|  | static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd, | 
|  | void __user *arg); | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd, | 
|  | void __user *arg); | 
|  | #endif | 
|  |  | 
|  | static void cmd_free(struct ctlr_info *h, struct CommandList *c); | 
|  | static struct CommandList *cmd_alloc(struct ctlr_info *h); | 
|  | static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); | 
|  | static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, | 
|  | struct scsi_cmnd *scmd); | 
|  | static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, | 
|  | void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, | 
|  | int cmd_type); | 
|  | static void hpsa_free_cmd_pool(struct ctlr_info *h); | 
|  | #define VPD_PAGE (1 << 8) | 
|  | #define HPSA_SIMPLE_ERROR_BITS 0x03 | 
|  |  | 
|  | static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); | 
|  | static void hpsa_scan_start(struct Scsi_Host *); | 
|  | static int hpsa_scan_finished(struct Scsi_Host *sh, | 
|  | unsigned long elapsed_time); | 
|  | static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); | 
|  |  | 
|  | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); | 
|  | static int hpsa_slave_alloc(struct scsi_device *sdev); | 
|  | static int hpsa_slave_configure(struct scsi_device *sdev); | 
|  | static void hpsa_slave_destroy(struct scsi_device *sdev); | 
|  |  | 
|  | static void hpsa_update_scsi_devices(struct ctlr_info *h); | 
|  | static int check_for_unit_attention(struct ctlr_info *h, | 
|  | struct CommandList *c); | 
|  | static void check_ioctl_unit_attention(struct ctlr_info *h, | 
|  | struct CommandList *c); | 
|  | /* performant mode helper functions */ | 
|  | static void calc_bucket_map(int *bucket, int num_buckets, | 
|  | int nsgs, int min_blocks, u32 *bucket_map); | 
|  | static void hpsa_free_performant_mode(struct ctlr_info *h); | 
|  | static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); | 
|  | static inline u32 next_command(struct ctlr_info *h, u8 q); | 
|  | static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, | 
|  | u32 *cfg_base_addr, u64 *cfg_base_addr_index, | 
|  | u64 *cfg_offset); | 
|  | static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, | 
|  | unsigned long *memory_bar); | 
|  | static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, | 
|  | bool *legacy_board); | 
|  | static int wait_for_device_to_become_ready(struct ctlr_info *h, | 
|  | unsigned char lunaddr[], | 
|  | int reply_queue); | 
|  | static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, | 
|  | int wait_for_ready); | 
|  | static inline void finish_cmd(struct CommandList *c); | 
|  | static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); | 
|  | #define BOARD_NOT_READY 0 | 
|  | #define BOARD_READY 1 | 
|  | static void hpsa_drain_accel_commands(struct ctlr_info *h); | 
|  | static void hpsa_flush_cache(struct ctlr_info *h); | 
|  | static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, | 
|  | u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); | 
|  | static void hpsa_command_resubmit_worker(struct work_struct *work); | 
|  | static u32 lockup_detected(struct ctlr_info *h); | 
|  | static int detect_controller_lockup(struct ctlr_info *h); | 
|  | static void hpsa_disable_rld_caching(struct ctlr_info *h); | 
|  | static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, | 
|  | struct ReportExtendedLUNdata *buf, int bufsize); | 
|  | static bool hpsa_vpd_page_supported(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], u8 page); | 
|  | static int hpsa_luns_changed(struct ctlr_info *h); | 
|  | static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, | 
|  | struct hpsa_scsi_dev_t *dev, | 
|  | unsigned char *scsi3addr); | 
|  |  | 
|  | static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) | 
|  | { | 
|  | unsigned long *priv = shost_priv(sdev->host); | 
|  | return (struct ctlr_info *) *priv; | 
|  | } | 
|  |  | 
|  | static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) | 
|  | { | 
|  | unsigned long *priv = shost_priv(sh); | 
|  | return (struct ctlr_info *) *priv; | 
|  | } | 
|  |  | 
|  | static inline bool hpsa_is_cmd_idle(struct CommandList *c) | 
|  | { | 
|  | return c->scsi_cmd == SCSI_CMD_IDLE; | 
|  | } | 
|  |  | 
|  | /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */ | 
|  | static void decode_sense_data(const u8 *sense_data, int sense_data_len, | 
|  | u8 *sense_key, u8 *asc, u8 *ascq) | 
|  | { | 
|  | struct scsi_sense_hdr sshdr; | 
|  | bool rc; | 
|  |  | 
|  | *sense_key = -1; | 
|  | *asc = -1; | 
|  | *ascq = -1; | 
|  |  | 
|  | if (sense_data_len < 1) | 
|  | return; | 
|  |  | 
|  | rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); | 
|  | if (rc) { | 
|  | *sense_key = sshdr.sense_key; | 
|  | *asc = sshdr.asc; | 
|  | *ascq = sshdr.ascq; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_for_unit_attention(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | u8 sense_key, asc, ascq; | 
|  | int sense_len; | 
|  |  | 
|  | if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) | 
|  | sense_len = sizeof(c->err_info->SenseInfo); | 
|  | else | 
|  | sense_len = c->err_info->SenseLen; | 
|  |  | 
|  | decode_sense_data(c->err_info->SenseInfo, sense_len, | 
|  | &sense_key, &asc, &ascq); | 
|  | if (sense_key != UNIT_ATTENTION || asc == 0xff) | 
|  | return 0; | 
|  |  | 
|  | switch (asc) { | 
|  | case STATE_CHANGED: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: a state change detected, command retried\n", | 
|  | h->devname); | 
|  | break; | 
|  | case LUN_FAILED: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: LUN failure detected\n", h->devname); | 
|  | break; | 
|  | case REPORT_LUNS_CHANGED: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: report LUN data changed\n", h->devname); | 
|  | /* | 
|  | * Note: this REPORT_LUNS_CHANGED condition only occurs on the external | 
|  | * target (array) devices. | 
|  | */ | 
|  | break; | 
|  | case POWER_OR_RESET: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: a power on or device reset detected\n", | 
|  | h->devname); | 
|  | break; | 
|  | case UNIT_ATTENTION_CLEARED: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: unit attention cleared by another initiator\n", | 
|  | h->devname); | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: unknown unit attention detected\n", | 
|  | h->devname); | 
|  | break; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_for_busy(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | if (c->err_info->CommandStatus != CMD_TARGET_STATUS || | 
|  | (c->err_info->ScsiStatus != SAM_STAT_BUSY && | 
|  | c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) | 
|  | return 0; | 
|  | dev_warn(&h->pdev->dev, HPSA "device busy"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u32 lockup_detected(struct ctlr_info *h); | 
|  | static ssize_t host_show_lockup_detected(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | int ld; | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | ld = lockup_detected(h); | 
|  |  | 
|  | return sprintf(buf, "ld=%d\n", ld); | 
|  | } | 
|  |  | 
|  | static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int status, len; | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | char tmpbuf[10]; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) | 
|  | return -EACCES; | 
|  | len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; | 
|  | strncpy(tmpbuf, buf, len); | 
|  | tmpbuf[len] = '\0'; | 
|  | if (sscanf(tmpbuf, "%d", &status) != 1) | 
|  | return -EINVAL; | 
|  | h = shost_to_hba(shost); | 
|  | h->acciopath_status = !!status; | 
|  | dev_warn(&h->pdev->dev, | 
|  | "hpsa: HP SSD Smart Path %s via sysfs update.\n", | 
|  | h->acciopath_status ? "enabled" : "disabled"); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t host_store_raid_offload_debug(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int debug_level, len; | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | char tmpbuf[10]; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) | 
|  | return -EACCES; | 
|  | len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; | 
|  | strncpy(tmpbuf, buf, len); | 
|  | tmpbuf[len] = '\0'; | 
|  | if (sscanf(tmpbuf, "%d", &debug_level) != 1) | 
|  | return -EINVAL; | 
|  | if (debug_level < 0) | 
|  | debug_level = 0; | 
|  | h = shost_to_hba(shost); | 
|  | h->raid_offload_debug = debug_level; | 
|  | dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", | 
|  | h->raid_offload_debug); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t host_store_rescan(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | h = shost_to_hba(shost); | 
|  | hpsa_scan_start(h->scsi_host); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | device->offload_enabled = 0; | 
|  | device->offload_to_be_enabled = 0; | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_firmware_revision(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | unsigned char *fwrev; | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | if (!h->hba_inquiry_data) | 
|  | return 0; | 
|  | fwrev = &h->hba_inquiry_data[32]; | 
|  | return snprintf(buf, 20, "%c%c%c%c\n", | 
|  | fwrev[0], fwrev[1], fwrev[2], fwrev[3]); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_commands_outstanding(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | struct ctlr_info *h = shost_to_hba(shost); | 
|  |  | 
|  | return snprintf(buf, 20, "%d\n", | 
|  | atomic_read(&h->commands_outstanding)); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_transport_mode(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | return snprintf(buf, 20, "%s\n", | 
|  | h->transMethod & CFGTBL_Trans_Performant ? | 
|  | "performant" : "simple"); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | return snprintf(buf, 30, "HP SSD Smart Path %s\n", | 
|  | (h->acciopath_status == 1) ?  "enabled" : "disabled"); | 
|  | } | 
|  |  | 
|  | /* List of controllers which cannot be hard reset on kexec with reset_devices */ | 
|  | static u32 unresettable_controller[] = { | 
|  | 0x324a103C, /* Smart Array P712m */ | 
|  | 0x324b103C, /* Smart Array P711m */ | 
|  | 0x3223103C, /* Smart Array P800 */ | 
|  | 0x3234103C, /* Smart Array P400 */ | 
|  | 0x3235103C, /* Smart Array P400i */ | 
|  | 0x3211103C, /* Smart Array E200i */ | 
|  | 0x3212103C, /* Smart Array E200 */ | 
|  | 0x3213103C, /* Smart Array E200i */ | 
|  | 0x3214103C, /* Smart Array E200i */ | 
|  | 0x3215103C, /* Smart Array E200i */ | 
|  | 0x3237103C, /* Smart Array E500 */ | 
|  | 0x323D103C, /* Smart Array P700m */ | 
|  | 0x40800E11, /* Smart Array 5i */ | 
|  | 0x409C0E11, /* Smart Array 6400 */ | 
|  | 0x409D0E11, /* Smart Array 6400 EM */ | 
|  | 0x40700E11, /* Smart Array 5300 */ | 
|  | 0x40820E11, /* Smart Array 532 */ | 
|  | 0x40830E11, /* Smart Array 5312 */ | 
|  | 0x409A0E11, /* Smart Array 641 */ | 
|  | 0x409B0E11, /* Smart Array 642 */ | 
|  | 0x40910E11, /* Smart Array 6i */ | 
|  | }; | 
|  |  | 
|  | /* List of controllers which cannot even be soft reset */ | 
|  | static u32 soft_unresettable_controller[] = { | 
|  | 0x40800E11, /* Smart Array 5i */ | 
|  | 0x40700E11, /* Smart Array 5300 */ | 
|  | 0x40820E11, /* Smart Array 532 */ | 
|  | 0x40830E11, /* Smart Array 5312 */ | 
|  | 0x409A0E11, /* Smart Array 641 */ | 
|  | 0x409B0E11, /* Smart Array 642 */ | 
|  | 0x40910E11, /* Smart Array 6i */ | 
|  | /* Exclude 640x boards.  These are two pci devices in one slot | 
|  | * which share a battery backed cache module.  One controls the | 
|  | * cache, the other accesses the cache through the one that controls | 
|  | * it.  If we reset the one controlling the cache, the other will | 
|  | * likely not be happy.  Just forbid resetting this conjoined mess. | 
|  | * The 640x isn't really supported by hpsa anyway. | 
|  | */ | 
|  | 0x409C0E11, /* Smart Array 6400 */ | 
|  | 0x409D0E11, /* Smart Array 6400 EM */ | 
|  | }; | 
|  |  | 
|  | static int board_id_in_array(u32 a[], int nelems, u32 board_id) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nelems; i++) | 
|  | if (a[i] == board_id) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ctlr_is_hard_resettable(u32 board_id) | 
|  | { | 
|  | return !board_id_in_array(unresettable_controller, | 
|  | ARRAY_SIZE(unresettable_controller), board_id); | 
|  | } | 
|  |  | 
|  | static int ctlr_is_soft_resettable(u32 board_id) | 
|  | { | 
|  | return !board_id_in_array(soft_unresettable_controller, | 
|  | ARRAY_SIZE(soft_unresettable_controller), board_id); | 
|  | } | 
|  |  | 
|  | static int ctlr_is_resettable(u32 board_id) | 
|  | { | 
|  | return ctlr_is_hard_resettable(board_id) || | 
|  | ctlr_is_soft_resettable(board_id); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_resettable(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); | 
|  | } | 
|  |  | 
|  | static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) | 
|  | { | 
|  | return (scsi3addr[3] & 0xC0) == 0x40; | 
|  | } | 
|  |  | 
|  | static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", | 
|  | "1(+0)ADM", "UNKNOWN", "PHYS DRV" | 
|  | }; | 
|  | #define HPSA_RAID_0	0 | 
|  | #define HPSA_RAID_4	1 | 
|  | #define HPSA_RAID_1	2	/* also used for RAID 10 */ | 
|  | #define HPSA_RAID_5	3	/* also used for RAID 50 */ | 
|  | #define HPSA_RAID_51	4 | 
|  | #define HPSA_RAID_6	5	/* also used for RAID 60 */ | 
|  | #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */ | 
|  | #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) | 
|  | #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) | 
|  |  | 
|  | static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | return !device->physical_device; | 
|  | } | 
|  |  | 
|  | static ssize_t raid_level_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | ssize_t l = 0; | 
|  | unsigned char rlevel; | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Is this even a logical drive? */ | 
|  | if (!is_logical_device(hdev)) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | l = snprintf(buf, PAGE_SIZE, "N/A\n"); | 
|  | return l; | 
|  | } | 
|  |  | 
|  | rlevel = hdev->raid_level; | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (rlevel > RAID_UNKNOWN) | 
|  | rlevel = RAID_UNKNOWN; | 
|  | l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static ssize_t lunid_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  | unsigned char lunid[8]; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  | memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return snprintf(buf, 20, "0x%8phN\n", lunid); | 
|  | } | 
|  |  | 
|  | static ssize_t unique_id_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  | unsigned char sn[16]; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  | memcpy(sn, hdev->device_id, sizeof(sn)); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return snprintf(buf, 16 * 2 + 2, | 
|  | "%02X%02X%02X%02X%02X%02X%02X%02X" | 
|  | "%02X%02X%02X%02X%02X%02X%02X%02X\n", | 
|  | sn[0], sn[1], sn[2], sn[3], | 
|  | sn[4], sn[5], sn[6], sn[7], | 
|  | sn[8], sn[9], sn[10], sn[11], | 
|  | sn[12], sn[13], sn[14], sn[15]); | 
|  | } | 
|  |  | 
|  | static ssize_t sas_address_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  | u64 sas_address; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  | sas_address = hdev->sas_address; | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  | int offload_enabled; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  | offload_enabled = hdev->offload_enabled; | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) | 
|  | return snprintf(buf, 20, "%d\n", offload_enabled); | 
|  | else | 
|  | return snprintf(buf, 40, "%s\n", | 
|  | "Not applicable for a controller"); | 
|  | } | 
|  |  | 
|  | #define MAX_PATHS 8 | 
|  | static ssize_t path_info_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  | int i; | 
|  | int output_len = 0; | 
|  | u8 box; | 
|  | u8 bay; | 
|  | u8 path_map_index = 0; | 
|  | char *active; | 
|  | unsigned char phys_connector[2]; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->devlock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->devlock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | bay = hdev->bay; | 
|  | for (i = 0; i < MAX_PATHS; i++) { | 
|  | path_map_index = 1<<i; | 
|  | if (i == hdev->active_path_index) | 
|  | active = "Active"; | 
|  | else if (hdev->path_map & path_map_index) | 
|  | active = "Inactive"; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | output_len += scnprintf(buf + output_len, | 
|  | PAGE_SIZE - output_len, | 
|  | "[%d:%d:%d:%d] %20.20s ", | 
|  | h->scsi_host->host_no, | 
|  | hdev->bus, hdev->target, hdev->lun, | 
|  | scsi_device_type(hdev->devtype)); | 
|  |  | 
|  | if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { | 
|  | output_len += scnprintf(buf + output_len, | 
|  | PAGE_SIZE - output_len, | 
|  | "%s\n", active); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | box = hdev->box[i]; | 
|  | memcpy(&phys_connector, &hdev->phys_connector[i], | 
|  | sizeof(phys_connector)); | 
|  | if (phys_connector[0] < '0') | 
|  | phys_connector[0] = '0'; | 
|  | if (phys_connector[1] < '0') | 
|  | phys_connector[1] = '0'; | 
|  | output_len += scnprintf(buf + output_len, | 
|  | PAGE_SIZE - output_len, | 
|  | "PORT: %.2s ", | 
|  | phys_connector); | 
|  | if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && | 
|  | hdev->expose_device) { | 
|  | if (box == 0 || box == 0xFF) { | 
|  | output_len += scnprintf(buf + output_len, | 
|  | PAGE_SIZE - output_len, | 
|  | "BAY: %hhu %s\n", | 
|  | bay, active); | 
|  | } else { | 
|  | output_len += scnprintf(buf + output_len, | 
|  | PAGE_SIZE - output_len, | 
|  | "BOX: %hhu BAY: %hhu %s\n", | 
|  | box, bay, active); | 
|  | } | 
|  | } else if (box != 0 && box != 0xFF) { | 
|  | output_len += scnprintf(buf + output_len, | 
|  | PAGE_SIZE - output_len, "BOX: %hhu %s\n", | 
|  | box, active); | 
|  | } else | 
|  | output_len += scnprintf(buf + output_len, | 
|  | PAGE_SIZE - output_len, "%s\n", active); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&h->devlock, flags); | 
|  | return output_len; | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_ctlr_num(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | return snprintf(buf, 20, "%d\n", h->ctlr); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_legacy_board(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0); | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR_RO(raid_level); | 
|  | static DEVICE_ATTR_RO(lunid); | 
|  | static DEVICE_ATTR_RO(unique_id); | 
|  | static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); | 
|  | static DEVICE_ATTR_RO(sas_address); | 
|  | static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, | 
|  | host_show_hp_ssd_smart_path_enabled, NULL); | 
|  | static DEVICE_ATTR_RO(path_info); | 
|  | static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, | 
|  | host_show_hp_ssd_smart_path_status, | 
|  | host_store_hp_ssd_smart_path_status); | 
|  | static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, | 
|  | host_store_raid_offload_debug); | 
|  | static DEVICE_ATTR(firmware_revision, S_IRUGO, | 
|  | host_show_firmware_revision, NULL); | 
|  | static DEVICE_ATTR(commands_outstanding, S_IRUGO, | 
|  | host_show_commands_outstanding, NULL); | 
|  | static DEVICE_ATTR(transport_mode, S_IRUGO, | 
|  | host_show_transport_mode, NULL); | 
|  | static DEVICE_ATTR(resettable, S_IRUGO, | 
|  | host_show_resettable, NULL); | 
|  | static DEVICE_ATTR(lockup_detected, S_IRUGO, | 
|  | host_show_lockup_detected, NULL); | 
|  | static DEVICE_ATTR(ctlr_num, S_IRUGO, | 
|  | host_show_ctlr_num, NULL); | 
|  | static DEVICE_ATTR(legacy_board, S_IRUGO, | 
|  | host_show_legacy_board, NULL); | 
|  |  | 
|  | static struct device_attribute *hpsa_sdev_attrs[] = { | 
|  | &dev_attr_raid_level, | 
|  | &dev_attr_lunid, | 
|  | &dev_attr_unique_id, | 
|  | &dev_attr_hp_ssd_smart_path_enabled, | 
|  | &dev_attr_path_info, | 
|  | &dev_attr_sas_address, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct device_attribute *hpsa_shost_attrs[] = { | 
|  | &dev_attr_rescan, | 
|  | &dev_attr_firmware_revision, | 
|  | &dev_attr_commands_outstanding, | 
|  | &dev_attr_transport_mode, | 
|  | &dev_attr_resettable, | 
|  | &dev_attr_hp_ssd_smart_path_status, | 
|  | &dev_attr_raid_offload_debug, | 
|  | &dev_attr_lockup_detected, | 
|  | &dev_attr_ctlr_num, | 
|  | &dev_attr_legacy_board, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\ | 
|  | HPSA_MAX_CONCURRENT_PASSTHRUS) | 
|  |  | 
|  | static struct scsi_host_template hpsa_driver_template = { | 
|  | .module			= THIS_MODULE, | 
|  | .name			= HPSA, | 
|  | .proc_name		= HPSA, | 
|  | .queuecommand		= hpsa_scsi_queue_command, | 
|  | .scan_start		= hpsa_scan_start, | 
|  | .scan_finished		= hpsa_scan_finished, | 
|  | .change_queue_depth	= hpsa_change_queue_depth, | 
|  | .this_id		= -1, | 
|  | .eh_device_reset_handler = hpsa_eh_device_reset_handler, | 
|  | .ioctl			= hpsa_ioctl, | 
|  | .slave_alloc		= hpsa_slave_alloc, | 
|  | .slave_configure	= hpsa_slave_configure, | 
|  | .slave_destroy		= hpsa_slave_destroy, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl		= hpsa_compat_ioctl, | 
|  | #endif | 
|  | .sdev_attrs = hpsa_sdev_attrs, | 
|  | .shost_attrs = hpsa_shost_attrs, | 
|  | .max_sectors = 2048, | 
|  | .no_write_same = 1, | 
|  | }; | 
|  |  | 
|  | static inline u32 next_command(struct ctlr_info *h, u8 q) | 
|  | { | 
|  | u32 a; | 
|  | struct reply_queue_buffer *rq = &h->reply_queue[q]; | 
|  |  | 
|  | if (h->transMethod & CFGTBL_Trans_io_accel1) | 
|  | return h->access.command_completed(h, q); | 
|  |  | 
|  | if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) | 
|  | return h->access.command_completed(h, q); | 
|  |  | 
|  | if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { | 
|  | a = rq->head[rq->current_entry]; | 
|  | rq->current_entry++; | 
|  | atomic_dec(&h->commands_outstanding); | 
|  | } else { | 
|  | a = FIFO_EMPTY; | 
|  | } | 
|  | /* Check for wraparound */ | 
|  | if (rq->current_entry == h->max_commands) { | 
|  | rq->current_entry = 0; | 
|  | rq->wraparound ^= 1; | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are some special bits in the bus address of the | 
|  | * command that we have to set for the controller to know | 
|  | * how to process the command: | 
|  | * | 
|  | * Normal performant mode: | 
|  | * bit 0: 1 means performant mode, 0 means simple mode. | 
|  | * bits 1-3 = block fetch table entry | 
|  | * bits 4-6 = command type (== 0) | 
|  | * | 
|  | * ioaccel1 mode: | 
|  | * bit 0 = "performant mode" bit. | 
|  | * bits 1-3 = block fetch table entry | 
|  | * bits 4-6 = command type (== 110) | 
|  | * (command type is needed because ioaccel1 mode | 
|  | * commands are submitted through the same register as normal | 
|  | * mode commands, so this is how the controller knows whether | 
|  | * the command is normal mode or ioaccel1 mode.) | 
|  | * | 
|  | * ioaccel2 mode: | 
|  | * bit 0 = "performant mode" bit. | 
|  | * bits 1-4 = block fetch table entry (note extra bit) | 
|  | * bits 4-6 = not needed, because ioaccel2 mode has | 
|  | * a separate special register for submitting commands. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * set_performant_mode: Modify the tag for cciss performant | 
|  | * set bit 0 for pull model, bits 3-1 for block fetch | 
|  | * register number | 
|  | */ | 
|  | #define DEFAULT_REPLY_QUEUE (-1) | 
|  | static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, | 
|  | int reply_queue) | 
|  | { | 
|  | if (likely(h->transMethod & CFGTBL_Trans_Performant)) { | 
|  | c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); | 
|  | if (unlikely(!h->msix_vectors)) | 
|  | return; | 
|  | c->Header.ReplyQueue = reply_queue; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_ioaccel1_performant_mode(struct ctlr_info *h, | 
|  | struct CommandList *c, | 
|  | int reply_queue) | 
|  | { | 
|  | struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; | 
|  |  | 
|  | /* | 
|  | * Tell the controller to post the reply to the queue for this | 
|  | * processor.  This seems to give the best I/O throughput. | 
|  | */ | 
|  | cp->ReplyQueue = reply_queue; | 
|  | /* | 
|  | * Set the bits in the address sent down to include: | 
|  | *  - performant mode bit (bit 0) | 
|  | *  - pull count (bits 1-3) | 
|  | *  - command type (bits 4-6) | 
|  | */ | 
|  | c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | | 
|  | IOACCEL1_BUSADDR_CMDTYPE; | 
|  | } | 
|  |  | 
|  | static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, | 
|  | struct CommandList *c, | 
|  | int reply_queue) | 
|  | { | 
|  | struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) | 
|  | &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  |  | 
|  | /* Tell the controller to post the reply to the queue for this | 
|  | * processor.  This seems to give the best I/O throughput. | 
|  | */ | 
|  | cp->reply_queue = reply_queue; | 
|  | /* Set the bits in the address sent down to include: | 
|  | *  - performant mode bit not used in ioaccel mode 2 | 
|  | *  - pull count (bits 0-3) | 
|  | *  - command type isn't needed for ioaccel2 | 
|  | */ | 
|  | c->busaddr |= h->ioaccel2_blockFetchTable[0]; | 
|  | } | 
|  |  | 
|  | static void set_ioaccel2_performant_mode(struct ctlr_info *h, | 
|  | struct CommandList *c, | 
|  | int reply_queue) | 
|  | { | 
|  | struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  |  | 
|  | /* | 
|  | * Tell the controller to post the reply to the queue for this | 
|  | * processor.  This seems to give the best I/O throughput. | 
|  | */ | 
|  | cp->reply_queue = reply_queue; | 
|  | /* | 
|  | * Set the bits in the address sent down to include: | 
|  | *  - performant mode bit not used in ioaccel mode 2 | 
|  | *  - pull count (bits 0-3) | 
|  | *  - command type isn't needed for ioaccel2 | 
|  | */ | 
|  | c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); | 
|  | } | 
|  |  | 
|  | static int is_firmware_flash_cmd(u8 *cdb) | 
|  | { | 
|  | return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During firmware flash, the heartbeat register may not update as frequently | 
|  | * as it should.  So we dial down lockup detection during firmware flash. and | 
|  | * dial it back up when firmware flash completes. | 
|  | */ | 
|  | #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) | 
|  | #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) | 
|  | #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ) | 
|  | static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | if (!is_firmware_flash_cmd(c->Request.CDB)) | 
|  | return; | 
|  | atomic_inc(&h->firmware_flash_in_progress); | 
|  | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; | 
|  | } | 
|  |  | 
|  | static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | if (is_firmware_flash_cmd(c->Request.CDB) && | 
|  | atomic_dec_and_test(&h->firmware_flash_in_progress)) | 
|  | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; | 
|  | } | 
|  |  | 
|  | static void __enqueue_cmd_and_start_io(struct ctlr_info *h, | 
|  | struct CommandList *c, int reply_queue) | 
|  | { | 
|  | dial_down_lockup_detection_during_fw_flash(h, c); | 
|  | atomic_inc(&h->commands_outstanding); | 
|  | if (c->device) | 
|  | atomic_inc(&c->device->commands_outstanding); | 
|  |  | 
|  | reply_queue = h->reply_map[raw_smp_processor_id()]; | 
|  | switch (c->cmd_type) { | 
|  | case CMD_IOACCEL1: | 
|  | set_ioaccel1_performant_mode(h, c, reply_queue); | 
|  | writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); | 
|  | break; | 
|  | case CMD_IOACCEL2: | 
|  | set_ioaccel2_performant_mode(h, c, reply_queue); | 
|  | writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); | 
|  | break; | 
|  | case IOACCEL2_TMF: | 
|  | set_ioaccel2_tmf_performant_mode(h, c, reply_queue); | 
|  | writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); | 
|  | break; | 
|  | default: | 
|  | set_performant_mode(h, c, reply_queue); | 
|  | h->access.submit_command(h, c); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); | 
|  | } | 
|  |  | 
|  | static inline int is_hba_lunid(unsigned char scsi3addr[]) | 
|  | { | 
|  | return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; | 
|  | } | 
|  |  | 
|  | static inline int is_scsi_rev_5(struct ctlr_info *h) | 
|  | { | 
|  | if (!h->hba_inquiry_data) | 
|  | return 0; | 
|  | if ((h->hba_inquiry_data[2] & 0x07) == 5) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_find_target_lun(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], int bus, int *target, int *lun) | 
|  | { | 
|  | /* finds an unused bus, target, lun for a new physical device | 
|  | * assumes h->devlock is held | 
|  | */ | 
|  | int i, found = 0; | 
|  | DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); | 
|  |  | 
|  | bitmap_zero(lun_taken, HPSA_MAX_DEVICES); | 
|  |  | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | if (h->dev[i]->bus == bus && h->dev[i]->target != -1) | 
|  | __set_bit(h->dev[i]->target, lun_taken); | 
|  | } | 
|  |  | 
|  | i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); | 
|  | if (i < HPSA_MAX_DEVICES) { | 
|  | /* *bus = 1; */ | 
|  | *target = i; | 
|  | *lun = 0; | 
|  | found = 1; | 
|  | } | 
|  | return !found; | 
|  | } | 
|  |  | 
|  | static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *dev, char *description) | 
|  | { | 
|  | #define LABEL_SIZE 25 | 
|  | char label[LABEL_SIZE]; | 
|  |  | 
|  | if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) | 
|  | return; | 
|  |  | 
|  | switch (dev->devtype) { | 
|  | case TYPE_RAID: | 
|  | snprintf(label, LABEL_SIZE, "controller"); | 
|  | break; | 
|  | case TYPE_ENCLOSURE: | 
|  | snprintf(label, LABEL_SIZE, "enclosure"); | 
|  | break; | 
|  | case TYPE_DISK: | 
|  | case TYPE_ZBC: | 
|  | if (dev->external) | 
|  | snprintf(label, LABEL_SIZE, "external"); | 
|  | else if (!is_logical_dev_addr_mode(dev->scsi3addr)) | 
|  | snprintf(label, LABEL_SIZE, "%s", | 
|  | raid_label[PHYSICAL_DRIVE]); | 
|  | else | 
|  | snprintf(label, LABEL_SIZE, "RAID-%s", | 
|  | dev->raid_level > RAID_UNKNOWN ? "?" : | 
|  | raid_label[dev->raid_level]); | 
|  | break; | 
|  | case TYPE_ROM: | 
|  | snprintf(label, LABEL_SIZE, "rom"); | 
|  | break; | 
|  | case TYPE_TAPE: | 
|  | snprintf(label, LABEL_SIZE, "tape"); | 
|  | break; | 
|  | case TYPE_MEDIUM_CHANGER: | 
|  | snprintf(label, LABEL_SIZE, "changer"); | 
|  | break; | 
|  | default: | 
|  | snprintf(label, LABEL_SIZE, "UNKNOWN"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | dev_printk(level, &h->pdev->dev, | 
|  | "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", | 
|  | h->scsi_host->host_no, dev->bus, dev->target, dev->lun, | 
|  | description, | 
|  | scsi_device_type(dev->devtype), | 
|  | dev->vendor, | 
|  | dev->model, | 
|  | label, | 
|  | dev->offload_config ? '+' : '-', | 
|  | dev->offload_to_be_enabled ? '+' : '-', | 
|  | dev->expose_device); | 
|  | } | 
|  |  | 
|  | /* Add an entry into h->dev[] array. */ | 
|  | static int hpsa_scsi_add_entry(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *device, | 
|  | struct hpsa_scsi_dev_t *added[], int *nadded) | 
|  | { | 
|  | /* assumes h->devlock is held */ | 
|  | int n = h->ndevices; | 
|  | int i; | 
|  | unsigned char addr1[8], addr2[8]; | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  |  | 
|  | if (n >= HPSA_MAX_DEVICES) { | 
|  | dev_err(&h->pdev->dev, "too many devices, some will be " | 
|  | "inaccessible.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* physical devices do not have lun or target assigned until now. */ | 
|  | if (device->lun != -1) | 
|  | /* Logical device, lun is already assigned. */ | 
|  | goto lun_assigned; | 
|  |  | 
|  | /* If this device a non-zero lun of a multi-lun device | 
|  | * byte 4 of the 8-byte LUN addr will contain the logical | 
|  | * unit no, zero otherwise. | 
|  | */ | 
|  | if (device->scsi3addr[4] == 0) { | 
|  | /* This is not a non-zero lun of a multi-lun device */ | 
|  | if (hpsa_find_target_lun(h, device->scsi3addr, | 
|  | device->bus, &device->target, &device->lun) != 0) | 
|  | return -1; | 
|  | goto lun_assigned; | 
|  | } | 
|  |  | 
|  | /* This is a non-zero lun of a multi-lun device. | 
|  | * Search through our list and find the device which | 
|  | * has the same 8 byte LUN address, excepting byte 4 and 5. | 
|  | * Assign the same bus and target for this new LUN. | 
|  | * Use the logical unit number from the firmware. | 
|  | */ | 
|  | memcpy(addr1, device->scsi3addr, 8); | 
|  | addr1[4] = 0; | 
|  | addr1[5] = 0; | 
|  | for (i = 0; i < n; i++) { | 
|  | sd = h->dev[i]; | 
|  | memcpy(addr2, sd->scsi3addr, 8); | 
|  | addr2[4] = 0; | 
|  | addr2[5] = 0; | 
|  | /* differ only in byte 4 and 5? */ | 
|  | if (memcmp(addr1, addr2, 8) == 0) { | 
|  | device->bus = sd->bus; | 
|  | device->target = sd->target; | 
|  | device->lun = device->scsi3addr[4]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (device->lun == -1) { | 
|  | dev_warn(&h->pdev->dev, "physical device with no LUN=0," | 
|  | " suspect firmware bug or unsupported hardware " | 
|  | "configuration.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | lun_assigned: | 
|  |  | 
|  | h->dev[n] = device; | 
|  | h->ndevices++; | 
|  | added[*nadded] = device; | 
|  | (*nadded)++; | 
|  | hpsa_show_dev_msg(KERN_INFO, h, device, | 
|  | device->expose_device ? "added" : "masked"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called during a scan operation. | 
|  | * | 
|  | * Update an entry in h->dev[] array. | 
|  | */ | 
|  | static void hpsa_scsi_update_entry(struct ctlr_info *h, | 
|  | int entry, struct hpsa_scsi_dev_t *new_entry) | 
|  | { | 
|  | /* assumes h->devlock is held */ | 
|  | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); | 
|  |  | 
|  | /* Raid level changed. */ | 
|  | h->dev[entry]->raid_level = new_entry->raid_level; | 
|  |  | 
|  | /* | 
|  | * ioacccel_handle may have changed for a dual domain disk | 
|  | */ | 
|  | h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; | 
|  |  | 
|  | /* Raid offload parameters changed.  Careful about the ordering. */ | 
|  | if (new_entry->offload_config && new_entry->offload_to_be_enabled) { | 
|  | /* | 
|  | * if drive is newly offload_enabled, we want to copy the | 
|  | * raid map data first.  If previously offload_enabled and | 
|  | * offload_config were set, raid map data had better be | 
|  | * the same as it was before. If raid map data has changed | 
|  | * then it had better be the case that | 
|  | * h->dev[entry]->offload_enabled is currently 0. | 
|  | */ | 
|  | h->dev[entry]->raid_map = new_entry->raid_map; | 
|  | h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; | 
|  | } | 
|  | if (new_entry->offload_to_be_enabled) { | 
|  | h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; | 
|  | wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ | 
|  | } | 
|  | h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; | 
|  | h->dev[entry]->offload_config = new_entry->offload_config; | 
|  | h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; | 
|  | h->dev[entry]->queue_depth = new_entry->queue_depth; | 
|  |  | 
|  | /* | 
|  | * We can turn off ioaccel offload now, but need to delay turning | 
|  | * ioaccel on until we can update h->dev[entry]->phys_disk[], but we | 
|  | * can't do that until all the devices are updated. | 
|  | */ | 
|  | h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled; | 
|  |  | 
|  | /* | 
|  | * turn ioaccel off immediately if told to do so. | 
|  | */ | 
|  | if (!new_entry->offload_to_be_enabled) | 
|  | h->dev[entry]->offload_enabled = 0; | 
|  |  | 
|  | hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); | 
|  | } | 
|  |  | 
|  | /* Replace an entry from h->dev[] array. */ | 
|  | static void hpsa_scsi_replace_entry(struct ctlr_info *h, | 
|  | int entry, struct hpsa_scsi_dev_t *new_entry, | 
|  | struct hpsa_scsi_dev_t *added[], int *nadded, | 
|  | struct hpsa_scsi_dev_t *removed[], int *nremoved) | 
|  | { | 
|  | /* assumes h->devlock is held */ | 
|  | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); | 
|  | removed[*nremoved] = h->dev[entry]; | 
|  | (*nremoved)++; | 
|  |  | 
|  | /* | 
|  | * New physical devices won't have target/lun assigned yet | 
|  | * so we need to preserve the values in the slot we are replacing. | 
|  | */ | 
|  | if (new_entry->target == -1) { | 
|  | new_entry->target = h->dev[entry]->target; | 
|  | new_entry->lun = h->dev[entry]->lun; | 
|  | } | 
|  |  | 
|  | h->dev[entry] = new_entry; | 
|  | added[*nadded] = new_entry; | 
|  | (*nadded)++; | 
|  |  | 
|  | hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); | 
|  | } | 
|  |  | 
|  | /* Remove an entry from h->dev[] array. */ | 
|  | static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, | 
|  | struct hpsa_scsi_dev_t *removed[], int *nremoved) | 
|  | { | 
|  | /* assumes h->devlock is held */ | 
|  | int i; | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  |  | 
|  | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); | 
|  |  | 
|  | sd = h->dev[entry]; | 
|  | removed[*nremoved] = h->dev[entry]; | 
|  | (*nremoved)++; | 
|  |  | 
|  | for (i = entry; i < h->ndevices-1; i++) | 
|  | h->dev[i] = h->dev[i+1]; | 
|  | h->ndevices--; | 
|  | hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); | 
|  | } | 
|  |  | 
|  | #define SCSI3ADDR_EQ(a, b) ( \ | 
|  | (a)[7] == (b)[7] && \ | 
|  | (a)[6] == (b)[6] && \ | 
|  | (a)[5] == (b)[5] && \ | 
|  | (a)[4] == (b)[4] && \ | 
|  | (a)[3] == (b)[3] && \ | 
|  | (a)[2] == (b)[2] && \ | 
|  | (a)[1] == (b)[1] && \ | 
|  | (a)[0] == (b)[0]) | 
|  |  | 
|  | static void fixup_botched_add(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *added) | 
|  | { | 
|  | /* called when scsi_add_device fails in order to re-adjust | 
|  | * h->dev[] to match the mid layer's view. | 
|  | */ | 
|  | unsigned long flags; | 
|  | int i, j; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | if (h->dev[i] == added) { | 
|  | for (j = i; j < h->ndevices-1; j++) | 
|  | h->dev[j] = h->dev[j+1]; | 
|  | h->ndevices--; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | kfree(added); | 
|  | } | 
|  |  | 
|  | static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, | 
|  | struct hpsa_scsi_dev_t *dev2) | 
|  | { | 
|  | /* we compare everything except lun and target as these | 
|  | * are not yet assigned.  Compare parts likely | 
|  | * to differ first | 
|  | */ | 
|  | if (memcmp(dev1->scsi3addr, dev2->scsi3addr, | 
|  | sizeof(dev1->scsi3addr)) != 0) | 
|  | return 0; | 
|  | if (memcmp(dev1->device_id, dev2->device_id, | 
|  | sizeof(dev1->device_id)) != 0) | 
|  | return 0; | 
|  | if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) | 
|  | return 0; | 
|  | if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) | 
|  | return 0; | 
|  | if (dev1->devtype != dev2->devtype) | 
|  | return 0; | 
|  | if (dev1->bus != dev2->bus) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int device_updated(struct hpsa_scsi_dev_t *dev1, | 
|  | struct hpsa_scsi_dev_t *dev2) | 
|  | { | 
|  | /* Device attributes that can change, but don't mean | 
|  | * that the device is a different device, nor that the OS | 
|  | * needs to be told anything about the change. | 
|  | */ | 
|  | if (dev1->raid_level != dev2->raid_level) | 
|  | return 1; | 
|  | if (dev1->offload_config != dev2->offload_config) | 
|  | return 1; | 
|  | if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled) | 
|  | return 1; | 
|  | if (!is_logical_dev_addr_mode(dev1->scsi3addr)) | 
|  | if (dev1->queue_depth != dev2->queue_depth) | 
|  | return 1; | 
|  | /* | 
|  | * This can happen for dual domain devices. An active | 
|  | * path change causes the ioaccel handle to change | 
|  | * | 
|  | * for example note the handle differences between p0 and p1 | 
|  | * Device                    WWN               ,WWN hash,Handle | 
|  | * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003 | 
|  | *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004 | 
|  | */ | 
|  | if (dev1->ioaccel_handle != dev2->ioaccel_handle) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Find needle in haystack.  If exact match found, return DEVICE_SAME, | 
|  | * and return needle location in *index.  If scsi3addr matches, but not | 
|  | * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle | 
|  | * location in *index. | 
|  | * In the case of a minor device attribute change, such as RAID level, just | 
|  | * return DEVICE_UPDATED, along with the updated device's location in index. | 
|  | * If needle not found, return DEVICE_NOT_FOUND. | 
|  | */ | 
|  | static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, | 
|  | struct hpsa_scsi_dev_t *haystack[], int haystack_size, | 
|  | int *index) | 
|  | { | 
|  | int i; | 
|  | #define DEVICE_NOT_FOUND 0 | 
|  | #define DEVICE_CHANGED 1 | 
|  | #define DEVICE_SAME 2 | 
|  | #define DEVICE_UPDATED 3 | 
|  | if (needle == NULL) | 
|  | return DEVICE_NOT_FOUND; | 
|  |  | 
|  | for (i = 0; i < haystack_size; i++) { | 
|  | if (haystack[i] == NULL) /* previously removed. */ | 
|  | continue; | 
|  | if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { | 
|  | *index = i; | 
|  | if (device_is_the_same(needle, haystack[i])) { | 
|  | if (device_updated(needle, haystack[i])) | 
|  | return DEVICE_UPDATED; | 
|  | return DEVICE_SAME; | 
|  | } else { | 
|  | /* Keep offline devices offline */ | 
|  | if (needle->volume_offline) | 
|  | return DEVICE_NOT_FOUND; | 
|  | return DEVICE_CHANGED; | 
|  | } | 
|  | } | 
|  | } | 
|  | *index = -1; | 
|  | return DEVICE_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | static void hpsa_monitor_offline_device(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[]) | 
|  | { | 
|  | struct offline_device_entry *device; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Check to see if device is already on the list */ | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | list_for_each_entry(device, &h->offline_device_list, offline_list) { | 
|  | if (memcmp(device->scsi3addr, scsi3addr, | 
|  | sizeof(device->scsi3addr)) == 0) { | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | return; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  |  | 
|  | /* Device is not on the list, add it. */ | 
|  | device = kmalloc(sizeof(*device), GFP_KERNEL); | 
|  | if (!device) | 
|  | return; | 
|  |  | 
|  | memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | list_add_tail(&device->offline_list, &h->offline_device_list); | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Print a message explaining various offline volume states */ | 
|  | static void hpsa_show_volume_status(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *sd) | 
|  | { | 
|  | if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | switch (sd->volume_offline) { | 
|  | case HPSA_LV_OK: | 
|  | break; | 
|  | case HPSA_LV_UNDERGOING_ERASE: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_NOT_AVAILABLE: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_UNDERGOING_RPI: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_PENDING_RPI: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_ENCRYPTED_NO_KEY: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_UNDERGOING_ENCRYPTION: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_PENDING_ENCRYPTION: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_PENDING_ENCRYPTION_REKEYING: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure the list of physical drive pointers for a logical drive with | 
|  | * raid offload configured. | 
|  | */ | 
|  | static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *dev[], int ndevices, | 
|  | struct hpsa_scsi_dev_t *logical_drive) | 
|  | { | 
|  | struct raid_map_data *map = &logical_drive->raid_map; | 
|  | struct raid_map_disk_data *dd = &map->data[0]; | 
|  | int i, j; | 
|  | int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + | 
|  | le16_to_cpu(map->metadata_disks_per_row); | 
|  | int nraid_map_entries = le16_to_cpu(map->row_cnt) * | 
|  | le16_to_cpu(map->layout_map_count) * | 
|  | total_disks_per_row; | 
|  | int nphys_disk = le16_to_cpu(map->layout_map_count) * | 
|  | total_disks_per_row; | 
|  | int qdepth; | 
|  |  | 
|  | if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) | 
|  | nraid_map_entries = RAID_MAP_MAX_ENTRIES; | 
|  |  | 
|  | logical_drive->nphysical_disks = nraid_map_entries; | 
|  |  | 
|  | qdepth = 0; | 
|  | for (i = 0; i < nraid_map_entries; i++) { | 
|  | logical_drive->phys_disk[i] = NULL; | 
|  | if (!logical_drive->offload_config) | 
|  | continue; | 
|  | for (j = 0; j < ndevices; j++) { | 
|  | if (dev[j] == NULL) | 
|  | continue; | 
|  | if (dev[j]->devtype != TYPE_DISK && | 
|  | dev[j]->devtype != TYPE_ZBC) | 
|  | continue; | 
|  | if (is_logical_device(dev[j])) | 
|  | continue; | 
|  | if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) | 
|  | continue; | 
|  |  | 
|  | logical_drive->phys_disk[i] = dev[j]; | 
|  | if (i < nphys_disk) | 
|  | qdepth = min(h->nr_cmds, qdepth + | 
|  | logical_drive->phys_disk[i]->queue_depth); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This can happen if a physical drive is removed and | 
|  | * the logical drive is degraded.  In that case, the RAID | 
|  | * map data will refer to a physical disk which isn't actually | 
|  | * present.  And in that case offload_enabled should already | 
|  | * be 0, but we'll turn it off here just in case | 
|  | */ | 
|  | if (!logical_drive->phys_disk[i]) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n", | 
|  | __func__, | 
|  | h->scsi_host->host_no, logical_drive->bus, | 
|  | logical_drive->target, logical_drive->lun); | 
|  | hpsa_turn_off_ioaccel_for_device(logical_drive); | 
|  | logical_drive->queue_depth = 8; | 
|  | } | 
|  | } | 
|  | if (nraid_map_entries) | 
|  | /* | 
|  | * This is correct for reads, too high for full stripe writes, | 
|  | * way too high for partial stripe writes | 
|  | */ | 
|  | logical_drive->queue_depth = qdepth; | 
|  | else { | 
|  | if (logical_drive->external) | 
|  | logical_drive->queue_depth = EXTERNAL_QD; | 
|  | else | 
|  | logical_drive->queue_depth = h->nr_cmds; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *dev[], int ndevices) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ndevices; i++) { | 
|  | if (dev[i] == NULL) | 
|  | continue; | 
|  | if (dev[i]->devtype != TYPE_DISK && | 
|  | dev[i]->devtype != TYPE_ZBC) | 
|  | continue; | 
|  | if (!is_logical_device(dev[i])) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If offload is currently enabled, the RAID map and | 
|  | * phys_disk[] assignment *better* not be changing | 
|  | * because we would be changing ioaccel phsy_disk[] pointers | 
|  | * on a ioaccel volume processing I/O requests. | 
|  | * | 
|  | * If an ioaccel volume status changed, initially because it was | 
|  | * re-configured and thus underwent a transformation, or | 
|  | * a drive failed, we would have received a state change | 
|  | * request and ioaccel should have been turned off. When the | 
|  | * transformation completes, we get another state change | 
|  | * request to turn ioaccel back on. In this case, we need | 
|  | * to update the ioaccel information. | 
|  | * | 
|  | * Thus: If it is not currently enabled, but will be after | 
|  | * the scan completes, make sure the ioaccel pointers | 
|  | * are up to date. | 
|  | */ | 
|  |  | 
|  | if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled) | 
|  | hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (!h->scsi_host) | 
|  | return 1; | 
|  |  | 
|  | if (is_logical_device(device)) /* RAID */ | 
|  | rc = scsi_add_device(h->scsi_host, device->bus, | 
|  | device->target, device->lun); | 
|  | else /* HBA */ | 
|  | rc = hpsa_add_sas_device(h->sas_host, device); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *dev) | 
|  | { | 
|  | int i; | 
|  | int count = 0; | 
|  |  | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | struct CommandList *c = h->cmd_pool + i; | 
|  | int refcount = atomic_inc_return(&c->refcount); | 
|  |  | 
|  | if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, | 
|  | dev->scsi3addr)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags);	/* Implied MB */ | 
|  | if (!hpsa_is_cmd_idle(c)) | 
|  | ++count; | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | } | 
|  |  | 
|  | cmd_free(h, c); | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #define NUM_WAIT 20 | 
|  | static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | int cmds = 0; | 
|  | int waits = 0; | 
|  | int num_wait = NUM_WAIT; | 
|  |  | 
|  | if (device->external) | 
|  | num_wait = HPSA_EH_PTRAID_TIMEOUT; | 
|  |  | 
|  | while (1) { | 
|  | cmds = hpsa_find_outstanding_commands_for_dev(h, device); | 
|  | if (cmds == 0) | 
|  | break; | 
|  | if (++waits > num_wait) | 
|  | break; | 
|  | msleep(1000); | 
|  | } | 
|  |  | 
|  | if (waits > num_wait) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n", | 
|  | __func__, | 
|  | h->scsi_host->host_no, | 
|  | device->bus, device->target, device->lun, cmds); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_remove_device(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | struct scsi_device *sdev = NULL; | 
|  |  | 
|  | if (!h->scsi_host) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Allow for commands to drain | 
|  | */ | 
|  | device->removed = 1; | 
|  | hpsa_wait_for_outstanding_commands_for_dev(h, device); | 
|  |  | 
|  | if (is_logical_device(device)) { /* RAID */ | 
|  | sdev = scsi_device_lookup(h->scsi_host, device->bus, | 
|  | device->target, device->lun); | 
|  | if (sdev) { | 
|  | scsi_remove_device(sdev); | 
|  | scsi_device_put(sdev); | 
|  | } else { | 
|  | /* | 
|  | * We don't expect to get here.  Future commands | 
|  | * to this device will get a selection timeout as | 
|  | * if the device were gone. | 
|  | */ | 
|  | hpsa_show_dev_msg(KERN_WARNING, h, device, | 
|  | "didn't find device for removal."); | 
|  | } | 
|  | } else { /* HBA */ | 
|  |  | 
|  | hpsa_remove_sas_device(device); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void adjust_hpsa_scsi_table(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *sd[], int nsds) | 
|  | { | 
|  | /* sd contains scsi3 addresses and devtypes, and inquiry | 
|  | * data.  This function takes what's in sd to be the current | 
|  | * reality and updates h->dev[] to reflect that reality. | 
|  | */ | 
|  | int i, entry, device_change, changes = 0; | 
|  | struct hpsa_scsi_dev_t *csd; | 
|  | unsigned long flags; | 
|  | struct hpsa_scsi_dev_t **added, **removed; | 
|  | int nadded, nremoved; | 
|  |  | 
|  | /* | 
|  | * A reset can cause a device status to change | 
|  | * re-schedule the scan to see what happened. | 
|  | */ | 
|  | spin_lock_irqsave(&h->reset_lock, flags); | 
|  | if (h->reset_in_progress) { | 
|  | h->drv_req_rescan = 1; | 
|  | spin_unlock_irqrestore(&h->reset_lock, flags); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&h->reset_lock, flags); | 
|  |  | 
|  | added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL); | 
|  | removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL); | 
|  |  | 
|  | if (!added || !removed) { | 
|  | dev_warn(&h->pdev->dev, "out of memory in " | 
|  | "adjust_hpsa_scsi_table\n"); | 
|  | goto free_and_out; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&h->devlock, flags); | 
|  |  | 
|  | /* find any devices in h->dev[] that are not in | 
|  | * sd[] and remove them from h->dev[], and for any | 
|  | * devices which have changed, remove the old device | 
|  | * info and add the new device info. | 
|  | * If minor device attributes change, just update | 
|  | * the existing device structure. | 
|  | */ | 
|  | i = 0; | 
|  | nremoved = 0; | 
|  | nadded = 0; | 
|  | while (i < h->ndevices) { | 
|  | csd = h->dev[i]; | 
|  | device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); | 
|  | if (device_change == DEVICE_NOT_FOUND) { | 
|  | changes++; | 
|  | hpsa_scsi_remove_entry(h, i, removed, &nremoved); | 
|  | continue; /* remove ^^^, hence i not incremented */ | 
|  | } else if (device_change == DEVICE_CHANGED) { | 
|  | changes++; | 
|  | hpsa_scsi_replace_entry(h, i, sd[entry], | 
|  | added, &nadded, removed, &nremoved); | 
|  | /* Set it to NULL to prevent it from being freed | 
|  | * at the bottom of hpsa_update_scsi_devices() | 
|  | */ | 
|  | sd[entry] = NULL; | 
|  | } else if (device_change == DEVICE_UPDATED) { | 
|  | hpsa_scsi_update_entry(h, i, sd[entry]); | 
|  | } | 
|  | i++; | 
|  | } | 
|  |  | 
|  | /* Now, make sure every device listed in sd[] is also | 
|  | * listed in h->dev[], adding them if they aren't found | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < nsds; i++) { | 
|  | if (!sd[i]) /* if already added above. */ | 
|  | continue; | 
|  |  | 
|  | /* Don't add devices which are NOT READY, FORMAT IN PROGRESS | 
|  | * as the SCSI mid-layer does not handle such devices well. | 
|  | * It relentlessly loops sending TUR at 3Hz, then READ(10) | 
|  | * at 160Hz, and prevents the system from coming up. | 
|  | */ | 
|  | if (sd[i]->volume_offline) { | 
|  | hpsa_show_volume_status(h, sd[i]); | 
|  | hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | device_change = hpsa_scsi_find_entry(sd[i], h->dev, | 
|  | h->ndevices, &entry); | 
|  | if (device_change == DEVICE_NOT_FOUND) { | 
|  | changes++; | 
|  | if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) | 
|  | break; | 
|  | sd[i] = NULL; /* prevent from being freed later. */ | 
|  | } else if (device_change == DEVICE_CHANGED) { | 
|  | /* should never happen... */ | 
|  | changes++; | 
|  | dev_warn(&h->pdev->dev, | 
|  | "device unexpectedly changed.\n"); | 
|  | /* but if it does happen, we just ignore that device */ | 
|  | } | 
|  | } | 
|  | hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); | 
|  |  | 
|  | /* | 
|  | * Now that h->dev[]->phys_disk[] is coherent, we can enable | 
|  | * any logical drives that need it enabled. | 
|  | * | 
|  | * The raid map should be current by now. | 
|  | * | 
|  | * We are updating the device list used for I/O requests. | 
|  | */ | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | if (h->dev[i] == NULL) | 
|  | continue; | 
|  | h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&h->devlock, flags); | 
|  |  | 
|  | /* Monitor devices which are in one of several NOT READY states to be | 
|  | * brought online later. This must be done without holding h->devlock, | 
|  | * so don't touch h->dev[] | 
|  | */ | 
|  | for (i = 0; i < nsds; i++) { | 
|  | if (!sd[i]) /* if already added above. */ | 
|  | continue; | 
|  | if (sd[i]->volume_offline) | 
|  | hpsa_monitor_offline_device(h, sd[i]->scsi3addr); | 
|  | } | 
|  |  | 
|  | /* Don't notify scsi mid layer of any changes the first time through | 
|  | * (or if there are no changes) scsi_scan_host will do it later the | 
|  | * first time through. | 
|  | */ | 
|  | if (!changes) | 
|  | goto free_and_out; | 
|  |  | 
|  | /* Notify scsi mid layer of any removed devices */ | 
|  | for (i = 0; i < nremoved; i++) { | 
|  | if (removed[i] == NULL) | 
|  | continue; | 
|  | if (removed[i]->expose_device) | 
|  | hpsa_remove_device(h, removed[i]); | 
|  | kfree(removed[i]); | 
|  | removed[i] = NULL; | 
|  | } | 
|  |  | 
|  | /* Notify scsi mid layer of any added devices */ | 
|  | for (i = 0; i < nadded; i++) { | 
|  | int rc = 0; | 
|  |  | 
|  | if (added[i] == NULL) | 
|  | continue; | 
|  | if (!(added[i]->expose_device)) | 
|  | continue; | 
|  | rc = hpsa_add_device(h, added[i]); | 
|  | if (!rc) | 
|  | continue; | 
|  | dev_warn(&h->pdev->dev, | 
|  | "addition failed %d, device not added.", rc); | 
|  | /* now we have to remove it from h->dev, | 
|  | * since it didn't get added to scsi mid layer | 
|  | */ | 
|  | fixup_botched_add(h, added[i]); | 
|  | h->drv_req_rescan = 1; | 
|  | } | 
|  |  | 
|  | free_and_out: | 
|  | kfree(added); | 
|  | kfree(removed); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * | 
|  | * Assume's h->devlock is held. | 
|  | */ | 
|  | static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, | 
|  | int bus, int target, int lun) | 
|  | { | 
|  | int i; | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  |  | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | sd = h->dev[i]; | 
|  | if (sd->bus == bus && sd->target == target && sd->lun == lun) | 
|  | return sd; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int hpsa_slave_alloc(struct scsi_device *sdev) | 
|  | { | 
|  | struct hpsa_scsi_dev_t *sd = NULL; | 
|  | unsigned long flags; | 
|  | struct ctlr_info *h; | 
|  |  | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->devlock, flags); | 
|  | if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { | 
|  | struct scsi_target *starget; | 
|  | struct sas_rphy *rphy; | 
|  |  | 
|  | starget = scsi_target(sdev); | 
|  | rphy = target_to_rphy(starget); | 
|  | sd = hpsa_find_device_by_sas_rphy(h, rphy); | 
|  | if (sd) { | 
|  | sd->target = sdev_id(sdev); | 
|  | sd->lun = sdev->lun; | 
|  | } | 
|  | } | 
|  | if (!sd) | 
|  | sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), | 
|  | sdev_id(sdev), sdev->lun); | 
|  |  | 
|  | if (sd && sd->expose_device) { | 
|  | atomic_set(&sd->ioaccel_cmds_out, 0); | 
|  | sdev->hostdata = sd; | 
|  | } else | 
|  | sdev->hostdata = NULL; | 
|  | spin_unlock_irqrestore(&h->devlock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* configure scsi device based on internal per-device structure */ | 
|  | static int hpsa_slave_configure(struct scsi_device *sdev) | 
|  | { | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  | int queue_depth; | 
|  |  | 
|  | sd = sdev->hostdata; | 
|  | sdev->no_uld_attach = !sd || !sd->expose_device; | 
|  |  | 
|  | if (sd) { | 
|  | sd->was_removed = 0; | 
|  | if (sd->external) { | 
|  | queue_depth = EXTERNAL_QD; | 
|  | sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT; | 
|  | blk_queue_rq_timeout(sdev->request_queue, | 
|  | HPSA_EH_PTRAID_TIMEOUT); | 
|  | } else { | 
|  | queue_depth = sd->queue_depth != 0 ? | 
|  | sd->queue_depth : sdev->host->can_queue; | 
|  | } | 
|  | } else | 
|  | queue_depth = sdev->host->can_queue; | 
|  |  | 
|  | scsi_change_queue_depth(sdev, queue_depth); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_slave_destroy(struct scsi_device *sdev) | 
|  | { | 
|  | struct hpsa_scsi_dev_t *hdev = NULL; | 
|  |  | 
|  | hdev = sdev->hostdata; | 
|  |  | 
|  | if (hdev) | 
|  | hdev->was_removed = 1; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!h->ioaccel2_cmd_sg_list) | 
|  | return; | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | kfree(h->ioaccel2_cmd_sg_list[i]); | 
|  | h->ioaccel2_cmd_sg_list[i] = NULL; | 
|  | } | 
|  | kfree(h->ioaccel2_cmd_sg_list); | 
|  | h->ioaccel2_cmd_sg_list = NULL; | 
|  | } | 
|  |  | 
|  | static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (h->chainsize <= 0) | 
|  | return 0; | 
|  |  | 
|  | h->ioaccel2_cmd_sg_list = | 
|  | kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list), | 
|  | GFP_KERNEL); | 
|  | if (!h->ioaccel2_cmd_sg_list) | 
|  | return -ENOMEM; | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | h->ioaccel2_cmd_sg_list[i] = | 
|  | kmalloc_array(h->maxsgentries, | 
|  | sizeof(*h->ioaccel2_cmd_sg_list[i]), | 
|  | GFP_KERNEL); | 
|  | if (!h->ioaccel2_cmd_sg_list[i]) | 
|  | goto clean; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | clean: | 
|  | hpsa_free_ioaccel2_sg_chain_blocks(h); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!h->cmd_sg_list) | 
|  | return; | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | kfree(h->cmd_sg_list[i]); | 
|  | h->cmd_sg_list[i] = NULL; | 
|  | } | 
|  | kfree(h->cmd_sg_list); | 
|  | h->cmd_sg_list = NULL; | 
|  | } | 
|  |  | 
|  | static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (h->chainsize <= 0) | 
|  | return 0; | 
|  |  | 
|  | h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list), | 
|  | GFP_KERNEL); | 
|  | if (!h->cmd_sg_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | h->cmd_sg_list[i] = kmalloc_array(h->chainsize, | 
|  | sizeof(*h->cmd_sg_list[i]), | 
|  | GFP_KERNEL); | 
|  | if (!h->cmd_sg_list[i]) | 
|  | goto clean; | 
|  |  | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | clean: | 
|  | hpsa_free_sg_chain_blocks(h); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, | 
|  | struct io_accel2_cmd *cp, struct CommandList *c) | 
|  | { | 
|  | struct ioaccel2_sg_element *chain_block; | 
|  | u64 temp64; | 
|  | u32 chain_size; | 
|  |  | 
|  | chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; | 
|  | chain_size = le32_to_cpu(cp->sg[0].length); | 
|  | temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(&h->pdev->dev, temp64)) { | 
|  | /* prevent subsequent unmapping */ | 
|  | cp->sg->address = 0; | 
|  | return -1; | 
|  | } | 
|  | cp->sg->address = cpu_to_le64(temp64); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, | 
|  | struct io_accel2_cmd *cp) | 
|  | { | 
|  | struct ioaccel2_sg_element *chain_sg; | 
|  | u64 temp64; | 
|  | u32 chain_size; | 
|  |  | 
|  | chain_sg = cp->sg; | 
|  | temp64 = le64_to_cpu(chain_sg->address); | 
|  | chain_size = le32_to_cpu(cp->sg[0].length); | 
|  | dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | static int hpsa_map_sg_chain_block(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct SGDescriptor *chain_sg, *chain_block; | 
|  | u64 temp64; | 
|  | u32 chain_len; | 
|  |  | 
|  | chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; | 
|  | chain_block = h->cmd_sg_list[c->cmdindex]; | 
|  | chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); | 
|  | chain_len = sizeof(*chain_sg) * | 
|  | (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); | 
|  | chain_sg->Len = cpu_to_le32(chain_len); | 
|  | temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(&h->pdev->dev, temp64)) { | 
|  | /* prevent subsequent unmapping */ | 
|  | chain_sg->Addr = cpu_to_le64(0); | 
|  | return -1; | 
|  | } | 
|  | chain_sg->Addr = cpu_to_le64(temp64); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct SGDescriptor *chain_sg; | 
|  |  | 
|  | if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) | 
|  | return; | 
|  |  | 
|  | chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; | 
|  | dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr), | 
|  | le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Decode the various types of errors on ioaccel2 path. | 
|  | * Return 1 for any error that should generate a RAID path retry. | 
|  | * Return 0 for errors that don't require a RAID path retry. | 
|  | */ | 
|  | static int handle_ioaccel_mode2_error(struct ctlr_info *h, | 
|  | struct CommandList *c, | 
|  | struct scsi_cmnd *cmd, | 
|  | struct io_accel2_cmd *c2, | 
|  | struct hpsa_scsi_dev_t *dev) | 
|  | { | 
|  | int data_len; | 
|  | int retry = 0; | 
|  | u32 ioaccel2_resid = 0; | 
|  |  | 
|  | switch (c2->error_data.serv_response) { | 
|  | case IOACCEL2_SERV_RESPONSE_COMPLETE: | 
|  | switch (c2->error_data.status) { | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: | 
|  | if (cmd) | 
|  | cmd->result = 0; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: | 
|  | cmd->result |= SAM_STAT_CHECK_CONDITION; | 
|  | if (c2->error_data.data_present != | 
|  | IOACCEL2_SENSE_DATA_PRESENT) { | 
|  | memset(cmd->sense_buffer, 0, | 
|  | SCSI_SENSE_BUFFERSIZE); | 
|  | break; | 
|  | } | 
|  | /* copy the sense data */ | 
|  | data_len = c2->error_data.sense_data_len; | 
|  | if (data_len > SCSI_SENSE_BUFFERSIZE) | 
|  | data_len = SCSI_SENSE_BUFFERSIZE; | 
|  | if (data_len > sizeof(c2->error_data.sense_data_buff)) | 
|  | data_len = | 
|  | sizeof(c2->error_data.sense_data_buff); | 
|  | memcpy(cmd->sense_buffer, | 
|  | c2->error_data.sense_data_buff, data_len); | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: | 
|  | retry = 1; | 
|  | break; | 
|  | default: | 
|  | retry = 1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_FAILURE: | 
|  | switch (c2->error_data.status) { | 
|  | case IOACCEL2_STATUS_SR_IO_ERROR: | 
|  | case IOACCEL2_STATUS_SR_IO_ABORTED: | 
|  | case IOACCEL2_STATUS_SR_OVERRUN: | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_UNDERRUN: | 
|  | cmd->result = (DID_OK << 16);		/* host byte */ | 
|  | cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */ | 
|  | ioaccel2_resid = get_unaligned_le32( | 
|  | &c2->error_data.resid_cnt[0]); | 
|  | scsi_set_resid(cmd, ioaccel2_resid); | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: | 
|  | case IOACCEL2_STATUS_SR_INVALID_DEVICE: | 
|  | case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: | 
|  | /* | 
|  | * Did an HBA disk disappear? We will eventually | 
|  | * get a state change event from the controller but | 
|  | * in the meantime, we need to tell the OS that the | 
|  | * HBA disk is no longer there and stop I/O | 
|  | * from going down. This allows the potential re-insert | 
|  | * of the disk to get the same device node. | 
|  | */ | 
|  | if (dev->physical_device && dev->expose_device) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | dev->removed = 1; | 
|  | h->drv_req_rescan = 1; | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: device is gone!\n", __func__); | 
|  | } else | 
|  | /* | 
|  | * Retry by sending down the RAID path. | 
|  | * We will get an event from ctlr to | 
|  | * trigger rescan regardless. | 
|  | */ | 
|  | retry = 1; | 
|  | break; | 
|  | default: | 
|  | retry = 1; | 
|  | } | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: | 
|  | break; | 
|  | default: | 
|  | retry = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (dev->in_reset) | 
|  | retry = 0; | 
|  |  | 
|  | return retry;	/* retry on raid path? */ | 
|  | } | 
|  |  | 
|  | static void hpsa_cmd_resolve_events(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct hpsa_scsi_dev_t *dev = c->device; | 
|  |  | 
|  | /* | 
|  | * Reset c->scsi_cmd here so that the reset handler will know | 
|  | * this command has completed.  Then, check to see if the handler is | 
|  | * waiting for this command, and, if so, wake it. | 
|  | */ | 
|  | c->scsi_cmd = SCSI_CMD_IDLE; | 
|  | mb();	/* Declare command idle before checking for pending events. */ | 
|  | if (dev) { | 
|  | atomic_dec(&dev->commands_outstanding); | 
|  | if (dev->in_reset && | 
|  | atomic_read(&dev->commands_outstanding) <= 0) | 
|  | wake_up_all(&h->event_sync_wait_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | hpsa_cmd_resolve_events(h, c); | 
|  | cmd_tagged_free(h, c); | 
|  | } | 
|  |  | 
|  | static void hpsa_cmd_free_and_done(struct ctlr_info *h, | 
|  | struct CommandList *c, struct scsi_cmnd *cmd) | 
|  | { | 
|  | hpsa_cmd_resolve_and_free(h, c); | 
|  | if (cmd && cmd->scsi_done) | 
|  | cmd->scsi_done(cmd); | 
|  | } | 
|  |  | 
|  | static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | INIT_WORK(&c->work, hpsa_command_resubmit_worker); | 
|  | queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); | 
|  | } | 
|  |  | 
|  | static void process_ioaccel2_completion(struct ctlr_info *h, | 
|  | struct CommandList *c, struct scsi_cmnd *cmd, | 
|  | struct hpsa_scsi_dev_t *dev) | 
|  | { | 
|  | struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  |  | 
|  | /* check for good status */ | 
|  | if (likely(c2->error_data.serv_response == 0 && | 
|  | c2->error_data.status == 0)) { | 
|  | cmd->result = 0; | 
|  | return hpsa_cmd_free_and_done(h, c, cmd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Any RAID offload error results in retry which will use | 
|  | * the normal I/O path so the controller can handle whatever is | 
|  | * wrong. | 
|  | */ | 
|  | if (is_logical_device(dev) && | 
|  | c2->error_data.serv_response == | 
|  | IOACCEL2_SERV_RESPONSE_FAILURE) { | 
|  | if (c2->error_data.status == | 
|  | IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { | 
|  | hpsa_turn_off_ioaccel_for_device(dev); | 
|  | } | 
|  |  | 
|  | if (dev->in_reset) { | 
|  | cmd->result = DID_RESET << 16; | 
|  | return hpsa_cmd_free_and_done(h, c, cmd); | 
|  | } | 
|  |  | 
|  | return hpsa_retry_cmd(h, c); | 
|  | } | 
|  |  | 
|  | if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) | 
|  | return hpsa_retry_cmd(h, c); | 
|  |  | 
|  | return hpsa_cmd_free_and_done(h, c, cmd); | 
|  | } | 
|  |  | 
|  | /* Returns 0 on success, < 0 otherwise. */ | 
|  | static int hpsa_evaluate_tmf_status(struct ctlr_info *h, | 
|  | struct CommandList *cp) | 
|  | { | 
|  | u8 tmf_status = cp->err_info->ScsiStatus; | 
|  |  | 
|  | switch (tmf_status) { | 
|  | case CISS_TMF_COMPLETE: | 
|  | /* | 
|  | * CISS_TMF_COMPLETE never happens, instead, | 
|  | * ei->CommandStatus == 0 for this case. | 
|  | */ | 
|  | case CISS_TMF_SUCCESS: | 
|  | return 0; | 
|  | case CISS_TMF_INVALID_FRAME: | 
|  | case CISS_TMF_NOT_SUPPORTED: | 
|  | case CISS_TMF_FAILED: | 
|  | case CISS_TMF_WRONG_LUN: | 
|  | case CISS_TMF_OVERLAPPED_TAG: | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", | 
|  | tmf_status); | 
|  | break; | 
|  | } | 
|  | return -tmf_status; | 
|  | } | 
|  |  | 
|  | static void complete_scsi_command(struct CommandList *cp) | 
|  | { | 
|  | struct scsi_cmnd *cmd; | 
|  | struct ctlr_info *h; | 
|  | struct ErrorInfo *ei; | 
|  | struct hpsa_scsi_dev_t *dev; | 
|  | struct io_accel2_cmd *c2; | 
|  |  | 
|  | u8 sense_key; | 
|  | u8 asc;      /* additional sense code */ | 
|  | u8 ascq;     /* additional sense code qualifier */ | 
|  | unsigned long sense_data_size; | 
|  |  | 
|  | ei = cp->err_info; | 
|  | cmd = cp->scsi_cmd; | 
|  | h = cp->h; | 
|  |  | 
|  | if (!cmd->device) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | return hpsa_cmd_free_and_done(h, cp, cmd); | 
|  | } | 
|  |  | 
|  | dev = cmd->device->hostdata; | 
|  | if (!dev) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | return hpsa_cmd_free_and_done(h, cp, cmd); | 
|  | } | 
|  | c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; | 
|  |  | 
|  | scsi_dma_unmap(cmd); /* undo the DMA mappings */ | 
|  | if ((cp->cmd_type == CMD_SCSI) && | 
|  | (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) | 
|  | hpsa_unmap_sg_chain_block(h, cp); | 
|  |  | 
|  | if ((cp->cmd_type == CMD_IOACCEL2) && | 
|  | (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) | 
|  | hpsa_unmap_ioaccel2_sg_chain_block(h, c2); | 
|  |  | 
|  | cmd->result = (DID_OK << 16); 		/* host byte */ | 
|  | cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */ | 
|  |  | 
|  | /* SCSI command has already been cleaned up in SML */ | 
|  | if (dev->was_removed) { | 
|  | hpsa_cmd_resolve_and_free(h, cp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { | 
|  | if (dev->physical_device && dev->expose_device && | 
|  | dev->removed) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | return hpsa_cmd_free_and_done(h, cp, cmd); | 
|  | } | 
|  | if (likely(cp->phys_disk != NULL)) | 
|  | atomic_dec(&cp->phys_disk->ioaccel_cmds_out); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We check for lockup status here as it may be set for | 
|  | * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by | 
|  | * fail_all_oustanding_cmds() | 
|  | */ | 
|  | if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { | 
|  | /* DID_NO_CONNECT will prevent a retry */ | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | return hpsa_cmd_free_and_done(h, cp, cmd); | 
|  | } | 
|  |  | 
|  | if (cp->cmd_type == CMD_IOACCEL2) | 
|  | return process_ioaccel2_completion(h, cp, cmd, dev); | 
|  |  | 
|  | scsi_set_resid(cmd, ei->ResidualCnt); | 
|  | if (ei->CommandStatus == 0) | 
|  | return hpsa_cmd_free_and_done(h, cp, cmd); | 
|  |  | 
|  | /* For I/O accelerator commands, copy over some fields to the normal | 
|  | * CISS header used below for error handling. | 
|  | */ | 
|  | if (cp->cmd_type == CMD_IOACCEL1) { | 
|  | struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; | 
|  | cp->Header.SGList = scsi_sg_count(cmd); | 
|  | cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); | 
|  | cp->Request.CDBLen = le16_to_cpu(c->io_flags) & | 
|  | IOACCEL1_IOFLAGS_CDBLEN_MASK; | 
|  | cp->Header.tag = c->tag; | 
|  | memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); | 
|  | memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); | 
|  |  | 
|  | /* Any RAID offload error results in retry which will use | 
|  | * the normal I/O path so the controller can handle whatever's | 
|  | * wrong. | 
|  | */ | 
|  | if (is_logical_device(dev)) { | 
|  | if (ei->CommandStatus == CMD_IOACCEL_DISABLED) | 
|  | dev->offload_enabled = 0; | 
|  | return hpsa_retry_cmd(h, cp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* an error has occurred */ | 
|  | switch (ei->CommandStatus) { | 
|  |  | 
|  | case CMD_TARGET_STATUS: | 
|  | cmd->result |= ei->ScsiStatus; | 
|  | /* copy the sense data */ | 
|  | if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) | 
|  | sense_data_size = SCSI_SENSE_BUFFERSIZE; | 
|  | else | 
|  | sense_data_size = sizeof(ei->SenseInfo); | 
|  | if (ei->SenseLen < sense_data_size) | 
|  | sense_data_size = ei->SenseLen; | 
|  | memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); | 
|  | if (ei->ScsiStatus) | 
|  | decode_sense_data(ei->SenseInfo, sense_data_size, | 
|  | &sense_key, &asc, &ascq); | 
|  | if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { | 
|  | switch (sense_key) { | 
|  | case ABORTED_COMMAND: | 
|  | cmd->result |= DID_SOFT_ERROR << 16; | 
|  | break; | 
|  | case UNIT_ATTENTION: | 
|  | if (asc == 0x3F && ascq == 0x0E) | 
|  | h->drv_req_rescan = 1; | 
|  | break; | 
|  | case ILLEGAL_REQUEST: | 
|  | if (asc == 0x25 && ascq == 0x00) { | 
|  | dev->removed = 1; | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* Problem was not a check condition | 
|  | * Pass it up to the upper layers... | 
|  | */ | 
|  | if (ei->ScsiStatus) { | 
|  | dev_warn(&h->pdev->dev, "cp %p has status 0x%x " | 
|  | "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " | 
|  | "Returning result: 0x%x\n", | 
|  | cp, ei->ScsiStatus, | 
|  | sense_key, asc, ascq, | 
|  | cmd->result); | 
|  | } else {  /* scsi status is zero??? How??? */ | 
|  | dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " | 
|  | "Returning no connection.\n", cp), | 
|  |  | 
|  | /* Ordinarily, this case should never happen, | 
|  | * but there is a bug in some released firmware | 
|  | * revisions that allows it to happen if, for | 
|  | * example, a 4100 backplane loses power and | 
|  | * the tape drive is in it.  We assume that | 
|  | * it's a fatal error of some kind because we | 
|  | * can't show that it wasn't. We will make it | 
|  | * look like selection timeout since that is | 
|  | * the most common reason for this to occur, | 
|  | * and it's severe enough. | 
|  | */ | 
|  |  | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | 
|  | break; | 
|  | case CMD_DATA_OVERRUN: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "CDB %16phN data overrun\n", cp->Request.CDB); | 
|  | break; | 
|  | case CMD_INVALID: { | 
|  | /* print_bytes(cp, sizeof(*cp), 1, 0); | 
|  | print_cmd(cp); */ | 
|  | /* We get CMD_INVALID if you address a non-existent device | 
|  | * instead of a selection timeout (no response).  You will | 
|  | * see this if you yank out a drive, then try to access it. | 
|  | * This is kind of a shame because it means that any other | 
|  | * CMD_INVALID (e.g. driver bug) will get interpreted as a | 
|  | * missing target. */ | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | } | 
|  | break; | 
|  | case CMD_PROTOCOL_ERR: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", | 
|  | cp->Request.CDB); | 
|  | break; | 
|  | case CMD_HARDWARE_ERR: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", | 
|  | cp->Request.CDB); | 
|  | break; | 
|  | case CMD_CONNECTION_LOST: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", | 
|  | cp->Request.CDB); | 
|  | break; | 
|  | case CMD_ABORTED: | 
|  | cmd->result = DID_ABORT << 16; | 
|  | break; | 
|  | case CMD_ABORT_FAILED: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", | 
|  | cp->Request.CDB); | 
|  | break; | 
|  | case CMD_UNSOLICITED_ABORT: | 
|  | cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ | 
|  | dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", | 
|  | cp->Request.CDB); | 
|  | break; | 
|  | case CMD_TIMEOUT: | 
|  | cmd->result = DID_TIME_OUT << 16; | 
|  | dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", | 
|  | cp->Request.CDB); | 
|  | break; | 
|  | case CMD_UNABORTABLE: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "Command unabortable\n"); | 
|  | break; | 
|  | case CMD_TMF_STATUS: | 
|  | if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ | 
|  | cmd->result = DID_ERROR << 16; | 
|  | break; | 
|  | case CMD_IOACCEL_DISABLED: | 
|  | /* This only handles the direct pass-through case since RAID | 
|  | * offload is handled above.  Just attempt a retry. | 
|  | */ | 
|  | cmd->result = DID_SOFT_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, | 
|  | "cp %p had HP SSD Smart Path error\n", cp); | 
|  | break; | 
|  | default: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", | 
|  | cp, ei->CommandStatus); | 
|  | } | 
|  |  | 
|  | return hpsa_cmd_free_and_done(h, cp, cmd); | 
|  | } | 
|  |  | 
|  | static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c, | 
|  | int sg_used, enum dma_data_direction data_direction) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sg_used; i++) | 
|  | dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr), | 
|  | le32_to_cpu(c->SG[i].Len), | 
|  | data_direction); | 
|  | } | 
|  |  | 
|  | static int hpsa_map_one(struct pci_dev *pdev, | 
|  | struct CommandList *cp, | 
|  | unsigned char *buf, | 
|  | size_t buflen, | 
|  | enum dma_data_direction data_direction) | 
|  | { | 
|  | u64 addr64; | 
|  |  | 
|  | if (buflen == 0 || data_direction == DMA_NONE) { | 
|  | cp->Header.SGList = 0; | 
|  | cp->Header.SGTotal = cpu_to_le16(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction); | 
|  | if (dma_mapping_error(&pdev->dev, addr64)) { | 
|  | /* Prevent subsequent unmap of something never mapped */ | 
|  | cp->Header.SGList = 0; | 
|  | cp->Header.SGTotal = cpu_to_le16(0); | 
|  | return -1; | 
|  | } | 
|  | cp->SG[0].Addr = cpu_to_le64(addr64); | 
|  | cp->SG[0].Len = cpu_to_le32(buflen); | 
|  | cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ | 
|  | cp->Header.SGList = 1;   /* no. SGs contig in this cmd */ | 
|  | cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define NO_TIMEOUT ((unsigned long) -1) | 
|  | #define DEFAULT_TIMEOUT 30000 /* milliseconds */ | 
|  | static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, | 
|  | struct CommandList *c, int reply_queue, unsigned long timeout_msecs) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(wait); | 
|  |  | 
|  | c->waiting = &wait; | 
|  | __enqueue_cmd_and_start_io(h, c, reply_queue); | 
|  | if (timeout_msecs == NO_TIMEOUT) { | 
|  | /* TODO: get rid of this no-timeout thing */ | 
|  | wait_for_completion_io(&wait); | 
|  | return IO_OK; | 
|  | } | 
|  | if (!wait_for_completion_io_timeout(&wait, | 
|  | msecs_to_jiffies(timeout_msecs))) { | 
|  | dev_warn(&h->pdev->dev, "Command timed out.\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | return IO_OK; | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, | 
|  | int reply_queue, unsigned long timeout_msecs) | 
|  | { | 
|  | if (unlikely(lockup_detected(h))) { | 
|  | c->err_info->CommandStatus = CMD_CTLR_LOCKUP; | 
|  | return IO_OK; | 
|  | } | 
|  | return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); | 
|  | } | 
|  |  | 
|  | static u32 lockup_detected(struct ctlr_info *h) | 
|  | { | 
|  | int cpu; | 
|  | u32 rc, *lockup_detected; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); | 
|  | rc = *lockup_detected; | 
|  | put_cpu(); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #define MAX_DRIVER_CMD_RETRIES 25 | 
|  | static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, | 
|  | struct CommandList *c, enum dma_data_direction data_direction, | 
|  | unsigned long timeout_msecs) | 
|  | { | 
|  | int backoff_time = 10, retry_count = 0; | 
|  | int rc; | 
|  |  | 
|  | do { | 
|  | memset(c->err_info, 0, sizeof(*c->err_info)); | 
|  | rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, | 
|  | timeout_msecs); | 
|  | if (rc) | 
|  | break; | 
|  | retry_count++; | 
|  | if (retry_count > 3) { | 
|  | msleep(backoff_time); | 
|  | if (backoff_time < 1000) | 
|  | backoff_time *= 2; | 
|  | } | 
|  | } while ((check_for_unit_attention(h, c) || | 
|  | check_for_busy(h, c)) && | 
|  | retry_count <= MAX_DRIVER_CMD_RETRIES); | 
|  | hpsa_pci_unmap(h->pdev, c, 1, data_direction); | 
|  | if (retry_count > MAX_DRIVER_CMD_RETRIES) | 
|  | rc = -EIO; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_print_cmd(struct ctlr_info *h, char *txt, | 
|  | struct CommandList *c) | 
|  | { | 
|  | const u8 *cdb = c->Request.CDB; | 
|  | const u8 *lun = c->Header.LUN.LunAddrBytes; | 
|  |  | 
|  | dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n", | 
|  | txt, lun, cdb); | 
|  | } | 
|  |  | 
|  | static void hpsa_scsi_interpret_error(struct ctlr_info *h, | 
|  | struct CommandList *cp) | 
|  | { | 
|  | const struct ErrorInfo *ei = cp->err_info; | 
|  | struct device *d = &cp->h->pdev->dev; | 
|  | u8 sense_key, asc, ascq; | 
|  | int sense_len; | 
|  |  | 
|  | switch (ei->CommandStatus) { | 
|  | case CMD_TARGET_STATUS: | 
|  | if (ei->SenseLen > sizeof(ei->SenseInfo)) | 
|  | sense_len = sizeof(ei->SenseInfo); | 
|  | else | 
|  | sense_len = ei->SenseLen; | 
|  | decode_sense_data(ei->SenseInfo, sense_len, | 
|  | &sense_key, &asc, &ascq); | 
|  | hpsa_print_cmd(h, "SCSI status", cp); | 
|  | if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) | 
|  | dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", | 
|  | sense_key, asc, ascq); | 
|  | else | 
|  | dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); | 
|  | if (ei->ScsiStatus == 0) | 
|  | dev_warn(d, "SCSI status is abnormally zero.  " | 
|  | "(probably indicates selection timeout " | 
|  | "reported incorrectly due to a known " | 
|  | "firmware bug, circa July, 2001.)\n"); | 
|  | break; | 
|  | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | 
|  | break; | 
|  | case CMD_DATA_OVERRUN: | 
|  | hpsa_print_cmd(h, "overrun condition", cp); | 
|  | break; | 
|  | case CMD_INVALID: { | 
|  | /* controller unfortunately reports SCSI passthru's | 
|  | * to non-existent targets as invalid commands. | 
|  | */ | 
|  | hpsa_print_cmd(h, "invalid command", cp); | 
|  | dev_warn(d, "probably means device no longer present\n"); | 
|  | } | 
|  | break; | 
|  | case CMD_PROTOCOL_ERR: | 
|  | hpsa_print_cmd(h, "protocol error", cp); | 
|  | break; | 
|  | case CMD_HARDWARE_ERR: | 
|  | hpsa_print_cmd(h, "hardware error", cp); | 
|  | break; | 
|  | case CMD_CONNECTION_LOST: | 
|  | hpsa_print_cmd(h, "connection lost", cp); | 
|  | break; | 
|  | case CMD_ABORTED: | 
|  | hpsa_print_cmd(h, "aborted", cp); | 
|  | break; | 
|  | case CMD_ABORT_FAILED: | 
|  | hpsa_print_cmd(h, "abort failed", cp); | 
|  | break; | 
|  | case CMD_UNSOLICITED_ABORT: | 
|  | hpsa_print_cmd(h, "unsolicited abort", cp); | 
|  | break; | 
|  | case CMD_TIMEOUT: | 
|  | hpsa_print_cmd(h, "timed out", cp); | 
|  | break; | 
|  | case CMD_UNABORTABLE: | 
|  | hpsa_print_cmd(h, "unabortable", cp); | 
|  | break; | 
|  | case CMD_CTLR_LOCKUP: | 
|  | hpsa_print_cmd(h, "controller lockup detected", cp); | 
|  | break; | 
|  | default: | 
|  | hpsa_print_cmd(h, "unknown status", cp); | 
|  | dev_warn(d, "Unknown command status %x\n", | 
|  | ei->CommandStatus); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr, | 
|  | u8 page, u8 *buf, size_t bufsize) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  | if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize, | 
|  | page, scsi3addr, TYPE_CMD)) { | 
|  | rc = -1; | 
|  | goto out; | 
|  | } | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if (rc) | 
|  | goto out; | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h, | 
|  | u8 *scsi3addr) | 
|  | { | 
|  | u8 *buf; | 
|  | u64 sa = 0; | 
|  | int rc = 0; | 
|  |  | 
|  | buf = kzalloc(1024, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return 0; | 
|  |  | 
|  | rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC, | 
|  | buf, 1024); | 
|  |  | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | sa = get_unaligned_be64(buf+12); | 
|  |  | 
|  | out: | 
|  | kfree(buf); | 
|  | return sa; | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, | 
|  | u16 page, unsigned char *buf, | 
|  | unsigned char bufsize) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, | 
|  | page, scsi3addr, TYPE_CMD)) { | 
|  | rc = -1; | 
|  | goto out; | 
|  | } | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if (rc) | 
|  | goto out; | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, | 
|  | u8 reset_type, int reply_queue) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  | c->device = dev; | 
|  |  | 
|  | /* fill_cmd can't fail here, no data buffer to map. */ | 
|  | (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG); | 
|  | rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); | 
|  | if (rc) { | 
|  | dev_warn(&h->pdev->dev, "Failed to send reset command\n"); | 
|  | goto out; | 
|  | } | 
|  | /* no unmap needed here because no data xfer. */ | 
|  |  | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, | 
|  | struct hpsa_scsi_dev_t *dev, | 
|  | unsigned char *scsi3addr) | 
|  | { | 
|  | int i; | 
|  | bool match = false; | 
|  | struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  | struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; | 
|  |  | 
|  | if (hpsa_is_cmd_idle(c)) | 
|  | return false; | 
|  |  | 
|  | switch (c->cmd_type) { | 
|  | case CMD_SCSI: | 
|  | case CMD_IOCTL_PEND: | 
|  | match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, | 
|  | sizeof(c->Header.LUN.LunAddrBytes)); | 
|  | break; | 
|  |  | 
|  | case CMD_IOACCEL1: | 
|  | case CMD_IOACCEL2: | 
|  | if (c->phys_disk == dev) { | 
|  | /* HBA mode match */ | 
|  | match = true; | 
|  | } else { | 
|  | /* Possible RAID mode -- check each phys dev. */ | 
|  | /* FIXME:  Do we need to take out a lock here?  If | 
|  | * so, we could just call hpsa_get_pdisk_of_ioaccel2() | 
|  | * instead. */ | 
|  | for (i = 0; i < dev->nphysical_disks && !match; i++) { | 
|  | /* FIXME: an alternate test might be | 
|  | * | 
|  | * match = dev->phys_disk[i]->ioaccel_handle | 
|  | *              == c2->scsi_nexus;      */ | 
|  | match = dev->phys_disk[i] == c->phys_disk; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case IOACCEL2_TMF: | 
|  | for (i = 0; i < dev->nphysical_disks && !match; i++) { | 
|  | match = dev->phys_disk[i]->ioaccel_handle == | 
|  | le32_to_cpu(ac->it_nexus); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0:		/* The command is in the middle of being initialized. */ | 
|  | match = false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", | 
|  | c->cmd_type); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return match; | 
|  | } | 
|  |  | 
|  | static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, | 
|  | u8 reset_type, int reply_queue) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | /* We can really only handle one reset at a time */ | 
|  | if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { | 
|  | dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | rc = hpsa_send_reset(h, dev, reset_type, reply_queue); | 
|  | if (!rc) { | 
|  | /* incremented by sending the reset request */ | 
|  | atomic_dec(&dev->commands_outstanding); | 
|  | wait_event(h->event_sync_wait_queue, | 
|  | atomic_read(&dev->commands_outstanding) <= 0 || | 
|  | lockup_detected(h)); | 
|  | } | 
|  |  | 
|  | if (unlikely(lockup_detected(h))) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Controller lockup detected during reset wait\n"); | 
|  | rc = -ENODEV; | 
|  | } | 
|  |  | 
|  | if (!rc) | 
|  | rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0); | 
|  |  | 
|  | mutex_unlock(&h->reset_mutex); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_get_raid_level(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, unsigned char *raid_level) | 
|  | { | 
|  | int rc; | 
|  | unsigned char *buf; | 
|  |  | 
|  | *raid_level = RAID_UNKNOWN; | 
|  | buf = kzalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  |  | 
|  | if (!hpsa_vpd_page_supported(h, scsi3addr, | 
|  | HPSA_VPD_LV_DEVICE_GEOMETRY)) | 
|  | goto exit; | 
|  |  | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | | 
|  | HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); | 
|  |  | 
|  | if (rc == 0) | 
|  | *raid_level = buf[8]; | 
|  | if (*raid_level > RAID_UNKNOWN) | 
|  | *raid_level = RAID_UNKNOWN; | 
|  | exit: | 
|  | kfree(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #define HPSA_MAP_DEBUG | 
|  | #ifdef HPSA_MAP_DEBUG | 
|  | static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, | 
|  | struct raid_map_data *map_buff) | 
|  | { | 
|  | struct raid_map_disk_data *dd = &map_buff->data[0]; | 
|  | int map, row, col; | 
|  | u16 map_cnt, row_cnt, disks_per_row; | 
|  |  | 
|  | if (rc != 0) | 
|  | return; | 
|  |  | 
|  | /* Show details only if debugging has been activated. */ | 
|  | if (h->raid_offload_debug < 2) | 
|  | return; | 
|  |  | 
|  | dev_info(&h->pdev->dev, "structure_size = %u\n", | 
|  | le32_to_cpu(map_buff->structure_size)); | 
|  | dev_info(&h->pdev->dev, "volume_blk_size = %u\n", | 
|  | le32_to_cpu(map_buff->volume_blk_size)); | 
|  | dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", | 
|  | le64_to_cpu(map_buff->volume_blk_cnt)); | 
|  | dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", | 
|  | map_buff->phys_blk_shift); | 
|  | dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", | 
|  | map_buff->parity_rotation_shift); | 
|  | dev_info(&h->pdev->dev, "strip_size = %u\n", | 
|  | le16_to_cpu(map_buff->strip_size)); | 
|  | dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", | 
|  | le64_to_cpu(map_buff->disk_starting_blk)); | 
|  | dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", | 
|  | le64_to_cpu(map_buff->disk_blk_cnt)); | 
|  | dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", | 
|  | le16_to_cpu(map_buff->data_disks_per_row)); | 
|  | dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", | 
|  | le16_to_cpu(map_buff->metadata_disks_per_row)); | 
|  | dev_info(&h->pdev->dev, "row_cnt = %u\n", | 
|  | le16_to_cpu(map_buff->row_cnt)); | 
|  | dev_info(&h->pdev->dev, "layout_map_count = %u\n", | 
|  | le16_to_cpu(map_buff->layout_map_count)); | 
|  | dev_info(&h->pdev->dev, "flags = 0x%x\n", | 
|  | le16_to_cpu(map_buff->flags)); | 
|  | dev_info(&h->pdev->dev, "encryption = %s\n", | 
|  | le16_to_cpu(map_buff->flags) & | 
|  | RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF"); | 
|  | dev_info(&h->pdev->dev, "dekindex = %u\n", | 
|  | le16_to_cpu(map_buff->dekindex)); | 
|  | map_cnt = le16_to_cpu(map_buff->layout_map_count); | 
|  | for (map = 0; map < map_cnt; map++) { | 
|  | dev_info(&h->pdev->dev, "Map%u:\n", map); | 
|  | row_cnt = le16_to_cpu(map_buff->row_cnt); | 
|  | for (row = 0; row < row_cnt; row++) { | 
|  | dev_info(&h->pdev->dev, "  Row%u:\n", row); | 
|  | disks_per_row = | 
|  | le16_to_cpu(map_buff->data_disks_per_row); | 
|  | for (col = 0; col < disks_per_row; col++, dd++) | 
|  | dev_info(&h->pdev->dev, | 
|  | "    D%02u: h=0x%04x xor=%u,%u\n", | 
|  | col, dd->ioaccel_handle, | 
|  | dd->xor_mult[0], dd->xor_mult[1]); | 
|  | disks_per_row = | 
|  | le16_to_cpu(map_buff->metadata_disks_per_row); | 
|  | for (col = 0; col < disks_per_row; col++, dd++) | 
|  | dev_info(&h->pdev->dev, | 
|  | "    M%02u: h=0x%04x xor=%u,%u\n", | 
|  | col, dd->ioaccel_handle, | 
|  | dd->xor_mult[0], dd->xor_mult[1]); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, | 
|  | __attribute__((unused)) int rc, | 
|  | __attribute__((unused)) struct raid_map_data *map_buff) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int hpsa_get_raid_map(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) | 
|  | { | 
|  | int rc = 0; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, | 
|  | sizeof(this_device->raid_map), 0, | 
|  | scsi3addr, TYPE_CMD)) { | 
|  | dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); | 
|  | cmd_free(h, c); | 
|  | return -1; | 
|  | } | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if (rc) | 
|  | goto out; | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | goto out; | 
|  | } | 
|  | cmd_free(h, c); | 
|  |  | 
|  | /* @todo in the future, dynamically allocate RAID map memory */ | 
|  | if (le32_to_cpu(this_device->raid_map.structure_size) > | 
|  | sizeof(this_device->raid_map)) { | 
|  | dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); | 
|  | rc = -1; | 
|  | } | 
|  | hpsa_debug_map_buff(h, rc, &this_device->raid_map); | 
|  | return rc; | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], u16 bmic_device_index, | 
|  | struct bmic_sense_subsystem_info *buf, size_t bufsize) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, | 
|  | 0, RAID_CTLR_LUNID, TYPE_CMD); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | c->Request.CDB[2] = bmic_device_index & 0xff; | 
|  | c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; | 
|  |  | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if (rc) | 
|  | goto out; | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_bmic_id_controller(struct ctlr_info *h, | 
|  | struct bmic_identify_controller *buf, size_t bufsize) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, | 
|  | 0, RAID_CTLR_LUNID, TYPE_CMD); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if (rc) | 
|  | goto out; | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_bmic_id_physical_device(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], u16 bmic_device_index, | 
|  | struct bmic_identify_physical_device *buf, size_t bufsize) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  | rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, | 
|  | 0, RAID_CTLR_LUNID, TYPE_CMD); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | c->Request.CDB[2] = bmic_device_index & 0xff; | 
|  | c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; | 
|  |  | 
|  | hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | out: | 
|  | cmd_free(h, c); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get enclosure information | 
|  | * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number | 
|  | * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure | 
|  | * Uses id_physical_device to determine the box_index. | 
|  | */ | 
|  | static void hpsa_get_enclosure_info(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, | 
|  | struct ReportExtendedLUNdata *rlep, int rle_index, | 
|  | struct hpsa_scsi_dev_t *encl_dev) | 
|  | { | 
|  | int rc = -1; | 
|  | struct CommandList *c = NULL; | 
|  | struct ErrorInfo *ei = NULL; | 
|  | struct bmic_sense_storage_box_params *bssbp = NULL; | 
|  | struct bmic_identify_physical_device *id_phys = NULL; | 
|  | struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; | 
|  | u16 bmic_device_index = 0; | 
|  |  | 
|  | encl_dev->eli = | 
|  | hpsa_get_enclosure_logical_identifier(h, scsi3addr); | 
|  |  | 
|  | bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); | 
|  |  | 
|  | if (encl_dev->target == -1 || encl_dev->lun == -1) { | 
|  | rc = IO_OK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { | 
|  | rc = IO_OK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); | 
|  | if (!bssbp) | 
|  | goto out; | 
|  |  | 
|  | id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); | 
|  | if (!id_phys) | 
|  | goto out; | 
|  |  | 
|  | rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, | 
|  | id_phys, sizeof(*id_phys)); | 
|  | if (rc) { | 
|  | dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", | 
|  | __func__, encl_dev->external, bmic_device_index); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, | 
|  | sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); | 
|  |  | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | if (id_phys->phys_connector[1] == 'E') | 
|  | c->Request.CDB[5] = id_phys->box_index; | 
|  | else | 
|  | c->Request.CDB[5] = 0; | 
|  |  | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | rc = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; | 
|  | memcpy(&encl_dev->phys_connector[id_phys->active_path_number], | 
|  | bssbp->phys_connector, sizeof(bssbp->phys_connector)); | 
|  |  | 
|  | rc = IO_OK; | 
|  | out: | 
|  | kfree(bssbp); | 
|  | kfree(id_phys); | 
|  |  | 
|  | if (c) | 
|  | cmd_free(h, c); | 
|  |  | 
|  | if (rc != IO_OK) | 
|  | hpsa_show_dev_msg(KERN_INFO, h, encl_dev, | 
|  | "Error, could not get enclosure information"); | 
|  | } | 
|  |  | 
|  | static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr) | 
|  | { | 
|  | struct ReportExtendedLUNdata *physdev; | 
|  | u32 nphysicals; | 
|  | u64 sa = 0; | 
|  | int i; | 
|  |  | 
|  | physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); | 
|  | if (!physdev) | 
|  | return 0; | 
|  |  | 
|  | if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { | 
|  | dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); | 
|  | kfree(physdev); | 
|  | return 0; | 
|  | } | 
|  | nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; | 
|  |  | 
|  | for (i = 0; i < nphysicals; i++) | 
|  | if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { | 
|  | sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); | 
|  | break; | 
|  | } | 
|  |  | 
|  | kfree(physdev); | 
|  |  | 
|  | return sa; | 
|  | } | 
|  |  | 
|  | static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, | 
|  | struct hpsa_scsi_dev_t *dev) | 
|  | { | 
|  | int rc; | 
|  | u64 sa = 0; | 
|  |  | 
|  | if (is_hba_lunid(scsi3addr)) { | 
|  | struct bmic_sense_subsystem_info *ssi; | 
|  |  | 
|  | ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); | 
|  | if (!ssi) | 
|  | return; | 
|  |  | 
|  | rc = hpsa_bmic_sense_subsystem_information(h, | 
|  | scsi3addr, 0, ssi, sizeof(*ssi)); | 
|  | if (rc == 0) { | 
|  | sa = get_unaligned_be64(ssi->primary_world_wide_id); | 
|  | h->sas_address = sa; | 
|  | } | 
|  |  | 
|  | kfree(ssi); | 
|  | } else | 
|  | sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); | 
|  |  | 
|  | dev->sas_address = sa; | 
|  | } | 
|  |  | 
|  | static void hpsa_ext_ctrl_present(struct ctlr_info *h, | 
|  | struct ReportExtendedLUNdata *physdev) | 
|  | { | 
|  | u32 nphysicals; | 
|  | int i; | 
|  |  | 
|  | if (h->discovery_polling) | 
|  | return; | 
|  |  | 
|  | nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1; | 
|  |  | 
|  | for (i = 0; i < nphysicals; i++) { | 
|  | if (physdev->LUN[i].device_type == | 
|  | BMIC_DEVICE_TYPE_CONTROLLER | 
|  | && !is_hba_lunid(physdev->LUN[i].lunid)) { | 
|  | dev_info(&h->pdev->dev, | 
|  | "External controller present, activate discovery polling and disable rld caching\n"); | 
|  | hpsa_disable_rld_caching(h); | 
|  | h->discovery_polling = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get a device id from inquiry page 0x83 */ | 
|  | static bool hpsa_vpd_page_supported(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], u8 page) | 
|  | { | 
|  | int rc; | 
|  | int i; | 
|  | int pages; | 
|  | unsigned char *buf, bufsize; | 
|  |  | 
|  | buf = kzalloc(256, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return false; | 
|  |  | 
|  | /* Get the size of the page list first */ | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, | 
|  | VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, | 
|  | buf, HPSA_VPD_HEADER_SZ); | 
|  | if (rc != 0) | 
|  | goto exit_unsupported; | 
|  | pages = buf[3]; | 
|  | if ((pages + HPSA_VPD_HEADER_SZ) <= 255) | 
|  | bufsize = pages + HPSA_VPD_HEADER_SZ; | 
|  | else | 
|  | bufsize = 255; | 
|  |  | 
|  | /* Get the whole VPD page list */ | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, | 
|  | VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, | 
|  | buf, bufsize); | 
|  | if (rc != 0) | 
|  | goto exit_unsupported; | 
|  |  | 
|  | pages = buf[3]; | 
|  | for (i = 1; i <= pages; i++) | 
|  | if (buf[3 + i] == page) | 
|  | goto exit_supported; | 
|  | exit_unsupported: | 
|  | kfree(buf); | 
|  | return false; | 
|  | exit_supported: | 
|  | kfree(buf); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called during a scan operation. | 
|  | * Sets ioaccel status on the new device list, not the existing device list | 
|  | * | 
|  | * The device list used during I/O will be updated later in | 
|  | * adjust_hpsa_scsi_table. | 
|  | */ | 
|  | static void hpsa_get_ioaccel_status(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) | 
|  | { | 
|  | int rc; | 
|  | unsigned char *buf; | 
|  | u8 ioaccel_status; | 
|  |  | 
|  | this_device->offload_config = 0; | 
|  | this_device->offload_enabled = 0; | 
|  | this_device->offload_to_be_enabled = 0; | 
|  |  | 
|  | buf = kzalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  | if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) | 
|  | goto out; | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, | 
|  | VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); | 
|  | if (rc != 0) | 
|  | goto out; | 
|  |  | 
|  | #define IOACCEL_STATUS_BYTE 4 | 
|  | #define OFFLOAD_CONFIGURED_BIT 0x01 | 
|  | #define OFFLOAD_ENABLED_BIT 0x02 | 
|  | ioaccel_status = buf[IOACCEL_STATUS_BYTE]; | 
|  | this_device->offload_config = | 
|  | !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); | 
|  | if (this_device->offload_config) { | 
|  | bool offload_enabled = | 
|  | !!(ioaccel_status & OFFLOAD_ENABLED_BIT); | 
|  | /* | 
|  | * Check to see if offload can be enabled. | 
|  | */ | 
|  | if (offload_enabled) { | 
|  | rc = hpsa_get_raid_map(h, scsi3addr, this_device); | 
|  | if (rc) /* could not load raid_map */ | 
|  | goto out; | 
|  | this_device->offload_to_be_enabled = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Get the device id from inquiry page 0x83 */ | 
|  | static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, | 
|  | unsigned char *device_id, int index, int buflen) | 
|  | { | 
|  | int rc; | 
|  | unsigned char *buf; | 
|  |  | 
|  | /* Does controller have VPD for device id? */ | 
|  | if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) | 
|  | return 1; /* not supported */ | 
|  |  | 
|  | buf = kzalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | | 
|  | HPSA_VPD_LV_DEVICE_ID, buf, 64); | 
|  | if (rc == 0) { | 
|  | if (buflen > 16) | 
|  | buflen = 16; | 
|  | memcpy(device_id, &buf[8], buflen); | 
|  | } | 
|  |  | 
|  | kfree(buf); | 
|  |  | 
|  | return rc; /*0 - got id,  otherwise, didn't */ | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, | 
|  | void *buf, int bufsize, | 
|  | int extended_response) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | unsigned char scsi3addr[8]; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | /* address the controller */ | 
|  | memset(scsi3addr, 0, sizeof(scsi3addr)); | 
|  | if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, | 
|  | buf, bufsize, 0, scsi3addr, TYPE_CMD)) { | 
|  | rc = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | if (extended_response) | 
|  | c->Request.CDB[1] = extended_response; | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if (rc) | 
|  | goto out; | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && | 
|  | ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -EIO; | 
|  | } else { | 
|  | struct ReportLUNdata *rld = buf; | 
|  |  | 
|  | if (rld->extended_response_flag != extended_response) { | 
|  | if (!h->legacy_board) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "report luns requested format %u, got %u\n", | 
|  | extended_response, | 
|  | rld->extended_response_flag); | 
|  | rc = -EINVAL; | 
|  | } else | 
|  | rc = -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, | 
|  | struct ReportExtendedLUNdata *buf, int bufsize) | 
|  | { | 
|  | int rc; | 
|  | struct ReportLUNdata *lbuf; | 
|  |  | 
|  | rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize, | 
|  | HPSA_REPORT_PHYS_EXTENDED); | 
|  | if (!rc || rc != -EOPNOTSUPP) | 
|  | return rc; | 
|  |  | 
|  | /* REPORT PHYS EXTENDED is not supported */ | 
|  | lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL); | 
|  | if (!lbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0); | 
|  | if (!rc) { | 
|  | int i; | 
|  | u32 nphys; | 
|  |  | 
|  | /* Copy ReportLUNdata header */ | 
|  | memcpy(buf, lbuf, 8); | 
|  | nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8; | 
|  | for (i = 0; i < nphys; i++) | 
|  | memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8); | 
|  | } | 
|  | kfree(lbuf); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, | 
|  | struct ReportLUNdata *buf, int bufsize) | 
|  | { | 
|  | return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); | 
|  | } | 
|  |  | 
|  | static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, | 
|  | int bus, int target, int lun) | 
|  | { | 
|  | device->bus = bus; | 
|  | device->target = target; | 
|  | device->lun = lun; | 
|  | } | 
|  |  | 
|  | /* Use VPD inquiry to get details of volume status */ | 
|  | static int hpsa_get_volume_status(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[]) | 
|  | { | 
|  | int rc; | 
|  | int status; | 
|  | int size; | 
|  | unsigned char *buf; | 
|  |  | 
|  | buf = kzalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return HPSA_VPD_LV_STATUS_UNSUPPORTED; | 
|  |  | 
|  | /* Does controller have VPD for logical volume status? */ | 
|  | if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) | 
|  | goto exit_failed; | 
|  |  | 
|  | /* Get the size of the VPD return buffer */ | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, | 
|  | buf, HPSA_VPD_HEADER_SZ); | 
|  | if (rc != 0) | 
|  | goto exit_failed; | 
|  | size = buf[3]; | 
|  |  | 
|  | /* Now get the whole VPD buffer */ | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, | 
|  | buf, size + HPSA_VPD_HEADER_SZ); | 
|  | if (rc != 0) | 
|  | goto exit_failed; | 
|  | status = buf[4]; /* status byte */ | 
|  |  | 
|  | kfree(buf); | 
|  | return status; | 
|  | exit_failed: | 
|  | kfree(buf); | 
|  | return HPSA_VPD_LV_STATUS_UNSUPPORTED; | 
|  | } | 
|  |  | 
|  | /* Determine offline status of a volume. | 
|  | * Return either: | 
|  | *  0 (not offline) | 
|  | *  0xff (offline for unknown reasons) | 
|  | *  # (integer code indicating one of several NOT READY states | 
|  | *     describing why a volume is to be kept offline) | 
|  | */ | 
|  | static unsigned char hpsa_volume_offline(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[]) | 
|  | { | 
|  | struct CommandList *c; | 
|  | unsigned char *sense; | 
|  | u8 sense_key, asc, ascq; | 
|  | int sense_len; | 
|  | int rc, ldstat = 0; | 
|  | u16 cmd_status; | 
|  | u8 scsi_status; | 
|  | #define ASC_LUN_NOT_READY 0x04 | 
|  | #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 | 
|  | #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); | 
|  | rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, | 
|  | NO_TIMEOUT); | 
|  | if (rc) { | 
|  | cmd_free(h, c); | 
|  | return HPSA_VPD_LV_STATUS_UNSUPPORTED; | 
|  | } | 
|  | sense = c->err_info->SenseInfo; | 
|  | if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) | 
|  | sense_len = sizeof(c->err_info->SenseInfo); | 
|  | else | 
|  | sense_len = c->err_info->SenseLen; | 
|  | decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); | 
|  | cmd_status = c->err_info->CommandStatus; | 
|  | scsi_status = c->err_info->ScsiStatus; | 
|  | cmd_free(h, c); | 
|  |  | 
|  | /* Determine the reason for not ready state */ | 
|  | ldstat = hpsa_get_volume_status(h, scsi3addr); | 
|  |  | 
|  | /* Keep volume offline in certain cases: */ | 
|  | switch (ldstat) { | 
|  | case HPSA_LV_FAILED: | 
|  | case HPSA_LV_UNDERGOING_ERASE: | 
|  | case HPSA_LV_NOT_AVAILABLE: | 
|  | case HPSA_LV_UNDERGOING_RPI: | 
|  | case HPSA_LV_PENDING_RPI: | 
|  | case HPSA_LV_ENCRYPTED_NO_KEY: | 
|  | case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: | 
|  | case HPSA_LV_UNDERGOING_ENCRYPTION: | 
|  | case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: | 
|  | case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: | 
|  | return ldstat; | 
|  | case HPSA_VPD_LV_STATUS_UNSUPPORTED: | 
|  | /* If VPD status page isn't available, | 
|  | * use ASC/ASCQ to determine state | 
|  | */ | 
|  | if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || | 
|  | (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) | 
|  | return ldstat; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return HPSA_LV_OK; | 
|  | } | 
|  |  | 
|  | static int hpsa_update_device_info(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, | 
|  | unsigned char *is_OBDR_device) | 
|  | { | 
|  |  | 
|  | #define OBDR_SIG_OFFSET 43 | 
|  | #define OBDR_TAPE_SIG "$DR-10" | 
|  | #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) | 
|  | #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) | 
|  |  | 
|  | unsigned char *inq_buff; | 
|  | unsigned char *obdr_sig; | 
|  | int rc = 0; | 
|  |  | 
|  | inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); | 
|  | if (!inq_buff) { | 
|  | rc = -ENOMEM; | 
|  | goto bail_out; | 
|  | } | 
|  |  | 
|  | /* Do an inquiry to the device to see what it is. */ | 
|  | if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, | 
|  | (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "%s: inquiry failed, device will be skipped.\n", | 
|  | __func__); | 
|  | rc = HPSA_INQUIRY_FAILED; | 
|  | goto bail_out; | 
|  | } | 
|  |  | 
|  | scsi_sanitize_inquiry_string(&inq_buff[8], 8); | 
|  | scsi_sanitize_inquiry_string(&inq_buff[16], 16); | 
|  |  | 
|  | this_device->devtype = (inq_buff[0] & 0x1f); | 
|  | memcpy(this_device->scsi3addr, scsi3addr, 8); | 
|  | memcpy(this_device->vendor, &inq_buff[8], | 
|  | sizeof(this_device->vendor)); | 
|  | memcpy(this_device->model, &inq_buff[16], | 
|  | sizeof(this_device->model)); | 
|  | this_device->rev = inq_buff[2]; | 
|  | memset(this_device->device_id, 0, | 
|  | sizeof(this_device->device_id)); | 
|  | if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, | 
|  | sizeof(this_device->device_id)) < 0) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n", | 
|  | h->ctlr, __func__, | 
|  | h->scsi_host->host_no, | 
|  | this_device->bus, this_device->target, | 
|  | this_device->lun, | 
|  | scsi_device_type(this_device->devtype), | 
|  | this_device->model); | 
|  | rc = HPSA_LV_FAILED; | 
|  | goto bail_out; | 
|  | } | 
|  |  | 
|  | if ((this_device->devtype == TYPE_DISK || | 
|  | this_device->devtype == TYPE_ZBC) && | 
|  | is_logical_dev_addr_mode(scsi3addr)) { | 
|  | unsigned char volume_offline; | 
|  |  | 
|  | hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); | 
|  | if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) | 
|  | hpsa_get_ioaccel_status(h, scsi3addr, this_device); | 
|  | volume_offline = hpsa_volume_offline(h, scsi3addr); | 
|  | if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED && | 
|  | h->legacy_board) { | 
|  | /* | 
|  | * Legacy boards might not support volume status | 
|  | */ | 
|  | dev_info(&h->pdev->dev, | 
|  | "C0:T%d:L%d Volume status not available, assuming online.\n", | 
|  | this_device->target, this_device->lun); | 
|  | volume_offline = 0; | 
|  | } | 
|  | this_device->volume_offline = volume_offline; | 
|  | if (volume_offline == HPSA_LV_FAILED) { | 
|  | rc = HPSA_LV_FAILED; | 
|  | dev_err(&h->pdev->dev, | 
|  | "%s: LV failed, device will be skipped.\n", | 
|  | __func__); | 
|  | goto bail_out; | 
|  | } | 
|  | } else { | 
|  | this_device->raid_level = RAID_UNKNOWN; | 
|  | this_device->offload_config = 0; | 
|  | hpsa_turn_off_ioaccel_for_device(this_device); | 
|  | this_device->hba_ioaccel_enabled = 0; | 
|  | this_device->volume_offline = 0; | 
|  | this_device->queue_depth = h->nr_cmds; | 
|  | } | 
|  |  | 
|  | if (this_device->external) | 
|  | this_device->queue_depth = EXTERNAL_QD; | 
|  |  | 
|  | if (is_OBDR_device) { | 
|  | /* See if this is a One-Button-Disaster-Recovery device | 
|  | * by looking for "$DR-10" at offset 43 in inquiry data. | 
|  | */ | 
|  | obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; | 
|  | *is_OBDR_device = (this_device->devtype == TYPE_ROM && | 
|  | strncmp(obdr_sig, OBDR_TAPE_SIG, | 
|  | OBDR_SIG_LEN) == 0); | 
|  | } | 
|  | kfree(inq_buff); | 
|  | return 0; | 
|  |  | 
|  | bail_out: | 
|  | kfree(inq_buff); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to assign bus, target, lun mapping of devices. | 
|  | * Logical drive target and lun are assigned at this time, but | 
|  | * physical device lun and target assignment are deferred (assigned | 
|  | * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) | 
|  | */ | 
|  | static void figure_bus_target_lun(struct ctlr_info *h, | 
|  | u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | u32 lunid = get_unaligned_le32(lunaddrbytes); | 
|  |  | 
|  | if (!is_logical_dev_addr_mode(lunaddrbytes)) { | 
|  | /* physical device, target and lun filled in later */ | 
|  | if (is_hba_lunid(lunaddrbytes)) { | 
|  | int bus = HPSA_HBA_BUS; | 
|  |  | 
|  | if (!device->rev) | 
|  | bus = HPSA_LEGACY_HBA_BUS; | 
|  | hpsa_set_bus_target_lun(device, | 
|  | bus, 0, lunid & 0x3fff); | 
|  | } else | 
|  | /* defer target, lun assignment for physical devices */ | 
|  | hpsa_set_bus_target_lun(device, | 
|  | HPSA_PHYSICAL_DEVICE_BUS, -1, -1); | 
|  | return; | 
|  | } | 
|  | /* It's a logical device */ | 
|  | if (device->external) { | 
|  | hpsa_set_bus_target_lun(device, | 
|  | HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, | 
|  | lunid & 0x00ff); | 
|  | return; | 
|  | } | 
|  | hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, | 
|  | 0, lunid & 0x3fff); | 
|  | } | 
|  |  | 
|  | static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position, | 
|  | int i, int nphysicals, int nlocal_logicals) | 
|  | { | 
|  | /* In report logicals, local logicals are listed first, | 
|  | * then any externals. | 
|  | */ | 
|  | int logicals_start = nphysicals + (raid_ctlr_position == 0); | 
|  |  | 
|  | if (i == raid_ctlr_position) | 
|  | return 0; | 
|  |  | 
|  | if (i < logicals_start) | 
|  | return 0; | 
|  |  | 
|  | /* i is in logicals range, but still within local logicals */ | 
|  | if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) | 
|  | return 0; | 
|  |  | 
|  | return 1; /* it's an external lun */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev, | 
|  | * logdev.  The number of luns in physdev and logdev are returned in | 
|  | * *nphysicals and *nlogicals, respectively. | 
|  | * Returns 0 on success, -1 otherwise. | 
|  | */ | 
|  | static int hpsa_gather_lun_info(struct ctlr_info *h, | 
|  | struct ReportExtendedLUNdata *physdev, u32 *nphysicals, | 
|  | struct ReportLUNdata *logdev, u32 *nlogicals) | 
|  | { | 
|  | if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { | 
|  | dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); | 
|  | return -1; | 
|  | } | 
|  | *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; | 
|  | if (*nphysicals > HPSA_MAX_PHYS_LUN) { | 
|  | dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", | 
|  | HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); | 
|  | *nphysicals = HPSA_MAX_PHYS_LUN; | 
|  | } | 
|  | if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { | 
|  | dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); | 
|  | return -1; | 
|  | } | 
|  | *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; | 
|  | /* Reject Logicals in excess of our max capability. */ | 
|  | if (*nlogicals > HPSA_MAX_LUN) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "maximum logical LUNs (%d) exceeded.  " | 
|  | "%d LUNs ignored.\n", HPSA_MAX_LUN, | 
|  | *nlogicals - HPSA_MAX_LUN); | 
|  | *nlogicals = HPSA_MAX_LUN; | 
|  | } | 
|  | if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "maximum logical + physical LUNs (%d) exceeded. " | 
|  | "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | 
|  | *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); | 
|  | *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, | 
|  | int i, int nphysicals, int nlogicals, | 
|  | struct ReportExtendedLUNdata *physdev_list, | 
|  | struct ReportLUNdata *logdev_list) | 
|  | { | 
|  | /* Helper function, figure out where the LUN ID info is coming from | 
|  | * given index i, lists of physical and logical devices, where in | 
|  | * the list the raid controller is supposed to appear (first or last) | 
|  | */ | 
|  |  | 
|  | int logicals_start = nphysicals + (raid_ctlr_position == 0); | 
|  | int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); | 
|  |  | 
|  | if (i == raid_ctlr_position) | 
|  | return RAID_CTLR_LUNID; | 
|  |  | 
|  | if (i < logicals_start) | 
|  | return &physdev_list->LUN[i - | 
|  | (raid_ctlr_position == 0)].lunid[0]; | 
|  |  | 
|  | if (i < last_device) | 
|  | return &logdev_list->LUN[i - nphysicals - | 
|  | (raid_ctlr_position == 0)][0]; | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* get physical drive ioaccel handle and queue depth */ | 
|  | static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *dev, | 
|  | struct ReportExtendedLUNdata *rlep, int rle_index, | 
|  | struct bmic_identify_physical_device *id_phys) | 
|  | { | 
|  | int rc; | 
|  | struct ext_report_lun_entry *rle; | 
|  |  | 
|  | rle = &rlep->LUN[rle_index]; | 
|  |  | 
|  | dev->ioaccel_handle = rle->ioaccel_handle; | 
|  | if ((rle->device_flags & 0x08) && dev->ioaccel_handle) | 
|  | dev->hba_ioaccel_enabled = 1; | 
|  | memset(id_phys, 0, sizeof(*id_phys)); | 
|  | rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], | 
|  | GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, | 
|  | sizeof(*id_phys)); | 
|  | if (!rc) | 
|  | /* Reserve space for FW operations */ | 
|  | #define DRIVE_CMDS_RESERVED_FOR_FW 2 | 
|  | #define DRIVE_QUEUE_DEPTH 7 | 
|  | dev->queue_depth = | 
|  | le16_to_cpu(id_phys->current_queue_depth_limit) - | 
|  | DRIVE_CMDS_RESERVED_FOR_FW; | 
|  | else | 
|  | dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ | 
|  | } | 
|  |  | 
|  | static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, | 
|  | struct ReportExtendedLUNdata *rlep, int rle_index, | 
|  | struct bmic_identify_physical_device *id_phys) | 
|  | { | 
|  | struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; | 
|  |  | 
|  | if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) | 
|  | this_device->hba_ioaccel_enabled = 1; | 
|  |  | 
|  | memcpy(&this_device->active_path_index, | 
|  | &id_phys->active_path_number, | 
|  | sizeof(this_device->active_path_index)); | 
|  | memcpy(&this_device->path_map, | 
|  | &id_phys->redundant_path_present_map, | 
|  | sizeof(this_device->path_map)); | 
|  | memcpy(&this_device->box, | 
|  | &id_phys->alternate_paths_phys_box_on_port, | 
|  | sizeof(this_device->box)); | 
|  | memcpy(&this_device->phys_connector, | 
|  | &id_phys->alternate_paths_phys_connector, | 
|  | sizeof(this_device->phys_connector)); | 
|  | memcpy(&this_device->bay, | 
|  | &id_phys->phys_bay_in_box, | 
|  | sizeof(this_device->bay)); | 
|  | } | 
|  |  | 
|  | /* get number of local logical disks. */ | 
|  | static int hpsa_set_local_logical_count(struct ctlr_info *h, | 
|  | struct bmic_identify_controller *id_ctlr, | 
|  | u32 *nlocals) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | if (!id_ctlr) { | 
|  | dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", | 
|  | __func__); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(id_ctlr, 0, sizeof(*id_ctlr)); | 
|  | rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); | 
|  | if (!rc) | 
|  | if (id_ctlr->configured_logical_drive_count < 255) | 
|  | *nlocals = id_ctlr->configured_logical_drive_count; | 
|  | else | 
|  | *nlocals = le16_to_cpu( | 
|  | id_ctlr->extended_logical_unit_count); | 
|  | else | 
|  | *nlocals = -1; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) | 
|  | { | 
|  | struct bmic_identify_physical_device *id_phys; | 
|  | bool is_spare = false; | 
|  | int rc; | 
|  |  | 
|  | id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); | 
|  | if (!id_phys) | 
|  | return false; | 
|  |  | 
|  | rc = hpsa_bmic_id_physical_device(h, | 
|  | lunaddrbytes, | 
|  | GET_BMIC_DRIVE_NUMBER(lunaddrbytes), | 
|  | id_phys, sizeof(*id_phys)); | 
|  | if (rc == 0) | 
|  | is_spare = (id_phys->more_flags >> 6) & 0x01; | 
|  |  | 
|  | kfree(id_phys); | 
|  | return is_spare; | 
|  | } | 
|  |  | 
|  | #define RPL_DEV_FLAG_NON_DISK                           0x1 | 
|  | #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2 | 
|  | #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4 | 
|  |  | 
|  | #define BMIC_DEVICE_TYPE_ENCLOSURE  6 | 
|  |  | 
|  | static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, | 
|  | struct ext_report_lun_entry *rle) | 
|  | { | 
|  | u8 device_flags; | 
|  | u8 device_type; | 
|  |  | 
|  | if (!MASKED_DEVICE(lunaddrbytes)) | 
|  | return false; | 
|  |  | 
|  | device_flags = rle->device_flags; | 
|  | device_type = rle->device_type; | 
|  |  | 
|  | if (device_flags & RPL_DEV_FLAG_NON_DISK) { | 
|  | if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) | 
|  | return false; | 
|  |  | 
|  | if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Spares may be spun down, we do not want to | 
|  | * do an Inquiry to a RAID set spare drive as | 
|  | * that would have them spun up, that is a | 
|  | * performance hit because I/O to the RAID device | 
|  | * stops while the spin up occurs which can take | 
|  | * over 50 seconds. | 
|  | */ | 
|  | if (hpsa_is_disk_spare(h, lunaddrbytes)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void hpsa_update_scsi_devices(struct ctlr_info *h) | 
|  | { | 
|  | /* the idea here is we could get notified | 
|  | * that some devices have changed, so we do a report | 
|  | * physical luns and report logical luns cmd, and adjust | 
|  | * our list of devices accordingly. | 
|  | * | 
|  | * The scsi3addr's of devices won't change so long as the | 
|  | * adapter is not reset.  That means we can rescan and | 
|  | * tell which devices we already know about, vs. new | 
|  | * devices, vs.  disappearing devices. | 
|  | */ | 
|  | struct ReportExtendedLUNdata *physdev_list = NULL; | 
|  | struct ReportLUNdata *logdev_list = NULL; | 
|  | struct bmic_identify_physical_device *id_phys = NULL; | 
|  | struct bmic_identify_controller *id_ctlr = NULL; | 
|  | u32 nphysicals = 0; | 
|  | u32 nlogicals = 0; | 
|  | u32 nlocal_logicals = 0; | 
|  | u32 ndev_allocated = 0; | 
|  | struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; | 
|  | int ncurrent = 0; | 
|  | int i, n_ext_target_devs, ndevs_to_allocate; | 
|  | int raid_ctlr_position; | 
|  | bool physical_device; | 
|  | DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); | 
|  |  | 
|  | currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL); | 
|  | physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); | 
|  | logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); | 
|  | tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); | 
|  | id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); | 
|  | id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); | 
|  |  | 
|  | if (!currentsd || !physdev_list || !logdev_list || | 
|  | !tmpdevice || !id_phys || !id_ctlr) { | 
|  | dev_err(&h->pdev->dev, "out of memory\n"); | 
|  | goto out; | 
|  | } | 
|  | memset(lunzerobits, 0, sizeof(lunzerobits)); | 
|  |  | 
|  | h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ | 
|  |  | 
|  | if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, | 
|  | logdev_list, &nlogicals)) { | 
|  | h->drv_req_rescan = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Set number of local logicals (non PTRAID) */ | 
|  | if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: Can't determine number of local logical devices.\n", | 
|  | __func__); | 
|  | } | 
|  |  | 
|  | /* We might see up to the maximum number of logical and physical disks | 
|  | * plus external target devices, and a device for the local RAID | 
|  | * controller. | 
|  | */ | 
|  | ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; | 
|  |  | 
|  | hpsa_ext_ctrl_present(h, physdev_list); | 
|  |  | 
|  | /* Allocate the per device structures */ | 
|  | for (i = 0; i < ndevs_to_allocate; i++) { | 
|  | if (i >= HPSA_MAX_DEVICES) { | 
|  | dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." | 
|  | "  %d devices ignored.\n", HPSA_MAX_DEVICES, | 
|  | ndevs_to_allocate - HPSA_MAX_DEVICES); | 
|  | break; | 
|  | } | 
|  |  | 
|  | currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); | 
|  | if (!currentsd[i]) { | 
|  | h->drv_req_rescan = 1; | 
|  | goto out; | 
|  | } | 
|  | ndev_allocated++; | 
|  | } | 
|  |  | 
|  | if (is_scsi_rev_5(h)) | 
|  | raid_ctlr_position = 0; | 
|  | else | 
|  | raid_ctlr_position = nphysicals + nlogicals; | 
|  |  | 
|  | /* adjust our table of devices */ | 
|  | n_ext_target_devs = 0; | 
|  | for (i = 0; i < nphysicals + nlogicals + 1; i++) { | 
|  | u8 *lunaddrbytes, is_OBDR = 0; | 
|  | int rc = 0; | 
|  | int phys_dev_index = i - (raid_ctlr_position == 0); | 
|  | bool skip_device = false; | 
|  |  | 
|  | memset(tmpdevice, 0, sizeof(*tmpdevice)); | 
|  |  | 
|  | physical_device = i < nphysicals + (raid_ctlr_position == 0); | 
|  |  | 
|  | /* Figure out where the LUN ID info is coming from */ | 
|  | lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, | 
|  | i, nphysicals, nlogicals, physdev_list, logdev_list); | 
|  |  | 
|  | /* Determine if this is a lun from an external target array */ | 
|  | tmpdevice->external = | 
|  | figure_external_status(h, raid_ctlr_position, i, | 
|  | nphysicals, nlocal_logicals); | 
|  |  | 
|  | /* | 
|  | * Skip over some devices such as a spare. | 
|  | */ | 
|  | if (!tmpdevice->external && physical_device) { | 
|  | skip_device = hpsa_skip_device(h, lunaddrbytes, | 
|  | &physdev_list->LUN[phys_dev_index]); | 
|  | if (skip_device) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Get device type, vendor, model, device id, raid_map */ | 
|  | rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, | 
|  | &is_OBDR); | 
|  | if (rc == -ENOMEM) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Out of memory, rescan deferred.\n"); | 
|  | h->drv_req_rescan = 1; | 
|  | goto out; | 
|  | } | 
|  | if (rc) { | 
|  | h->drv_req_rescan = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | figure_bus_target_lun(h, lunaddrbytes, tmpdevice); | 
|  | this_device = currentsd[ncurrent]; | 
|  |  | 
|  | *this_device = *tmpdevice; | 
|  | this_device->physical_device = physical_device; | 
|  |  | 
|  | /* | 
|  | * Expose all devices except for physical devices that | 
|  | * are masked. | 
|  | */ | 
|  | if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) | 
|  | this_device->expose_device = 0; | 
|  | else | 
|  | this_device->expose_device = 1; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Get the SAS address for physical devices that are exposed. | 
|  | */ | 
|  | if (this_device->physical_device && this_device->expose_device) | 
|  | hpsa_get_sas_address(h, lunaddrbytes, this_device); | 
|  |  | 
|  | switch (this_device->devtype) { | 
|  | case TYPE_ROM: | 
|  | /* We don't *really* support actual CD-ROM devices, | 
|  | * just "One Button Disaster Recovery" tape drive | 
|  | * which temporarily pretends to be a CD-ROM drive. | 
|  | * So we check that the device is really an OBDR tape | 
|  | * device by checking for "$DR-10" in bytes 43-48 of | 
|  | * the inquiry data. | 
|  | */ | 
|  | if (is_OBDR) | 
|  | ncurrent++; | 
|  | break; | 
|  | case TYPE_DISK: | 
|  | case TYPE_ZBC: | 
|  | if (this_device->physical_device) { | 
|  | /* The disk is in HBA mode. */ | 
|  | /* Never use RAID mapper in HBA mode. */ | 
|  | this_device->offload_enabled = 0; | 
|  | hpsa_get_ioaccel_drive_info(h, this_device, | 
|  | physdev_list, phys_dev_index, id_phys); | 
|  | hpsa_get_path_info(this_device, | 
|  | physdev_list, phys_dev_index, id_phys); | 
|  | } | 
|  | ncurrent++; | 
|  | break; | 
|  | case TYPE_TAPE: | 
|  | case TYPE_MEDIUM_CHANGER: | 
|  | ncurrent++; | 
|  | break; | 
|  | case TYPE_ENCLOSURE: | 
|  | if (!this_device->external) | 
|  | hpsa_get_enclosure_info(h, lunaddrbytes, | 
|  | physdev_list, phys_dev_index, | 
|  | this_device); | 
|  | ncurrent++; | 
|  | break; | 
|  | case TYPE_RAID: | 
|  | /* Only present the Smartarray HBA as a RAID controller. | 
|  | * If it's a RAID controller other than the HBA itself | 
|  | * (an external RAID controller, MSA500 or similar) | 
|  | * don't present it. | 
|  | */ | 
|  | if (!is_hba_lunid(lunaddrbytes)) | 
|  | break; | 
|  | ncurrent++; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | if (ncurrent >= HPSA_MAX_DEVICES) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (h->sas_host == NULL) { | 
|  | int rc = 0; | 
|  |  | 
|  | rc = hpsa_add_sas_host(h); | 
|  | if (rc) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Could not add sas host %d\n", rc); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | adjust_hpsa_scsi_table(h, currentsd, ncurrent); | 
|  | out: | 
|  | kfree(tmpdevice); | 
|  | for (i = 0; i < ndev_allocated; i++) | 
|  | kfree(currentsd[i]); | 
|  | kfree(currentsd); | 
|  | kfree(physdev_list); | 
|  | kfree(logdev_list); | 
|  | kfree(id_ctlr); | 
|  | kfree(id_phys); | 
|  | } | 
|  |  | 
|  | static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, | 
|  | struct scatterlist *sg) | 
|  | { | 
|  | u64 addr64 = (u64) sg_dma_address(sg); | 
|  | unsigned int len = sg_dma_len(sg); | 
|  |  | 
|  | desc->Addr = cpu_to_le64(addr64); | 
|  | desc->Len = cpu_to_le32(len); | 
|  | desc->Ext = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci | 
|  | * dma mapping  and fills in the scatter gather entries of the | 
|  | * hpsa command, cp. | 
|  | */ | 
|  | static int hpsa_scatter_gather(struct ctlr_info *h, | 
|  | struct CommandList *cp, | 
|  | struct scsi_cmnd *cmd) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int use_sg, i, sg_limit, chained, last_sg; | 
|  | struct SGDescriptor *curr_sg; | 
|  |  | 
|  | BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); | 
|  |  | 
|  | use_sg = scsi_dma_map(cmd); | 
|  | if (use_sg < 0) | 
|  | return use_sg; | 
|  |  | 
|  | if (!use_sg) | 
|  | goto sglist_finished; | 
|  |  | 
|  | /* | 
|  | * If the number of entries is greater than the max for a single list, | 
|  | * then we have a chained list; we will set up all but one entry in the | 
|  | * first list (the last entry is saved for link information); | 
|  | * otherwise, we don't have a chained list and we'll set up at each of | 
|  | * the entries in the one list. | 
|  | */ | 
|  | curr_sg = cp->SG; | 
|  | chained = use_sg > h->max_cmd_sg_entries; | 
|  | sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; | 
|  | last_sg = scsi_sg_count(cmd) - 1; | 
|  | scsi_for_each_sg(cmd, sg, sg_limit, i) { | 
|  | hpsa_set_sg_descriptor(curr_sg, sg); | 
|  | curr_sg++; | 
|  | } | 
|  |  | 
|  | if (chained) { | 
|  | /* | 
|  | * Continue with the chained list.  Set curr_sg to the chained | 
|  | * list.  Modify the limit to the total count less the entries | 
|  | * we've already set up.  Resume the scan at the list entry | 
|  | * where the previous loop left off. | 
|  | */ | 
|  | curr_sg = h->cmd_sg_list[cp->cmdindex]; | 
|  | sg_limit = use_sg - sg_limit; | 
|  | for_each_sg(sg, sg, sg_limit, i) { | 
|  | hpsa_set_sg_descriptor(curr_sg, sg); | 
|  | curr_sg++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Back the pointer up to the last entry and mark it as "last". */ | 
|  | (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); | 
|  |  | 
|  | if (use_sg + chained > h->maxSG) | 
|  | h->maxSG = use_sg + chained; | 
|  |  | 
|  | if (chained) { | 
|  | cp->Header.SGList = h->max_cmd_sg_entries; | 
|  | cp->Header.SGTotal = cpu_to_le16(use_sg + 1); | 
|  | if (hpsa_map_sg_chain_block(h, cp)) { | 
|  | scsi_dma_unmap(cmd); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sglist_finished: | 
|  |  | 
|  | cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */ | 
|  | cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void warn_zero_length_transfer(struct ctlr_info *h, | 
|  | u8 *cdb, int cdb_len, | 
|  | const char *func) | 
|  | { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: Blocking zero-length request: CDB:%*phN\n", | 
|  | func, cdb_len, cdb); | 
|  | } | 
|  |  | 
|  | #define IO_ACCEL_INELIGIBLE 1 | 
|  | /* zero-length transfers trigger hardware errors. */ | 
|  | static bool is_zero_length_transfer(u8 *cdb) | 
|  | { | 
|  | u32 block_cnt; | 
|  |  | 
|  | /* Block zero-length transfer sizes on certain commands. */ | 
|  | switch (cdb[0]) { | 
|  | case READ_10: | 
|  | case WRITE_10: | 
|  | case VERIFY:		/* 0x2F */ | 
|  | case WRITE_VERIFY:	/* 0x2E */ | 
|  | block_cnt = get_unaligned_be16(&cdb[7]); | 
|  | break; | 
|  | case READ_12: | 
|  | case WRITE_12: | 
|  | case VERIFY_12: /* 0xAF */ | 
|  | case WRITE_VERIFY_12:	/* 0xAE */ | 
|  | block_cnt = get_unaligned_be32(&cdb[6]); | 
|  | break; | 
|  | case READ_16: | 
|  | case WRITE_16: | 
|  | case VERIFY_16:		/* 0x8F */ | 
|  | block_cnt = get_unaligned_be32(&cdb[10]); | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return block_cnt == 0; | 
|  | } | 
|  |  | 
|  | static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) | 
|  | { | 
|  | int is_write = 0; | 
|  | u32 block; | 
|  | u32 block_cnt; | 
|  |  | 
|  | /* Perform some CDB fixups if needed using 10 byte reads/writes only */ | 
|  | switch (cdb[0]) { | 
|  | case WRITE_6: | 
|  | case WRITE_12: | 
|  | is_write = 1; | 
|  | /* fall through */ | 
|  | case READ_6: | 
|  | case READ_12: | 
|  | if (*cdb_len == 6) { | 
|  | block = (((cdb[1] & 0x1F) << 16) | | 
|  | (cdb[2] << 8) | | 
|  | cdb[3]); | 
|  | block_cnt = cdb[4]; | 
|  | if (block_cnt == 0) | 
|  | block_cnt = 256; | 
|  | } else { | 
|  | BUG_ON(*cdb_len != 12); | 
|  | block = get_unaligned_be32(&cdb[2]); | 
|  | block_cnt = get_unaligned_be32(&cdb[6]); | 
|  | } | 
|  | if (block_cnt > 0xffff) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | cdb[0] = is_write ? WRITE_10 : READ_10; | 
|  | cdb[1] = 0; | 
|  | cdb[2] = (u8) (block >> 24); | 
|  | cdb[3] = (u8) (block >> 16); | 
|  | cdb[4] = (u8) (block >> 8); | 
|  | cdb[5] = (u8) (block); | 
|  | cdb[6] = 0; | 
|  | cdb[7] = (u8) (block_cnt >> 8); | 
|  | cdb[8] = (u8) (block_cnt); | 
|  | cdb[9] = 0; | 
|  | *cdb_len = 10; | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, | 
|  | u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; | 
|  | unsigned int len; | 
|  | unsigned int total_len = 0; | 
|  | struct scatterlist *sg; | 
|  | u64 addr64; | 
|  | int use_sg, i; | 
|  | struct SGDescriptor *curr_sg; | 
|  | u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; | 
|  |  | 
|  | /* TODO: implement chaining support */ | 
|  | if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  |  | 
|  | BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); | 
|  |  | 
|  | if (is_zero_length_transfer(cdb)) { | 
|  | warn_zero_length_transfer(h, cdb, cdb_len, __func__); | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  |  | 
|  | if (fixup_ioaccel_cdb(cdb, &cdb_len)) { | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  |  | 
|  | c->cmd_type = CMD_IOACCEL1; | 
|  |  | 
|  | /* Adjust the DMA address to point to the accelerated command buffer */ | 
|  | c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + | 
|  | (c->cmdindex * sizeof(*cp)); | 
|  | BUG_ON(c->busaddr & 0x0000007F); | 
|  |  | 
|  | use_sg = scsi_dma_map(cmd); | 
|  | if (use_sg < 0) { | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | return use_sg; | 
|  | } | 
|  |  | 
|  | if (use_sg) { | 
|  | curr_sg = cp->SG; | 
|  | scsi_for_each_sg(cmd, sg, use_sg, i) { | 
|  | addr64 = (u64) sg_dma_address(sg); | 
|  | len  = sg_dma_len(sg); | 
|  | total_len += len; | 
|  | curr_sg->Addr = cpu_to_le64(addr64); | 
|  | curr_sg->Len = cpu_to_le32(len); | 
|  | curr_sg->Ext = cpu_to_le32(0); | 
|  | curr_sg++; | 
|  | } | 
|  | (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); | 
|  |  | 
|  | switch (cmd->sc_data_direction) { | 
|  | case DMA_TO_DEVICE: | 
|  | control |= IOACCEL1_CONTROL_DATA_OUT; | 
|  | break; | 
|  | case DMA_FROM_DEVICE: | 
|  | control |= IOACCEL1_CONTROL_DATA_IN; | 
|  | break; | 
|  | case DMA_NONE: | 
|  | control |= IOACCEL1_CONTROL_NODATAXFER; | 
|  | break; | 
|  | default: | 
|  | dev_err(&h->pdev->dev, "unknown data direction: %d\n", | 
|  | cmd->sc_data_direction); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | control |= IOACCEL1_CONTROL_NODATAXFER; | 
|  | } | 
|  |  | 
|  | c->Header.SGList = use_sg; | 
|  | /* Fill out the command structure to submit */ | 
|  | cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); | 
|  | cp->transfer_len = cpu_to_le32(total_len); | 
|  | cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | | 
|  | (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); | 
|  | cp->control = cpu_to_le32(control); | 
|  | memcpy(cp->CDB, cdb, cdb_len); | 
|  | memcpy(cp->CISS_LUN, scsi3addr, 8); | 
|  | /* Tag was already set at init time. */ | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a command directly to a device behind the controller using the | 
|  | * I/O accelerator path. | 
|  | */ | 
|  | static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; | 
|  |  | 
|  | if (!dev) | 
|  | return -1; | 
|  |  | 
|  | c->phys_disk = dev; | 
|  |  | 
|  | if (dev->in_reset) | 
|  | return -1; | 
|  |  | 
|  | return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, | 
|  | cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set encryption parameters for the ioaccel2 request | 
|  | */ | 
|  | static void set_encrypt_ioaccel2(struct ctlr_info *h, | 
|  | struct CommandList *c, struct io_accel2_cmd *cp) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; | 
|  | struct raid_map_data *map = &dev->raid_map; | 
|  | u64 first_block; | 
|  |  | 
|  | /* Are we doing encryption on this device */ | 
|  | if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) | 
|  | return; | 
|  | /* Set the data encryption key index. */ | 
|  | cp->dekindex = map->dekindex; | 
|  |  | 
|  | /* Set the encryption enable flag, encoded into direction field. */ | 
|  | cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; | 
|  |  | 
|  | /* Set encryption tweak values based on logical block address | 
|  | * If block size is 512, tweak value is LBA. | 
|  | * For other block sizes, tweak is (LBA * block size)/ 512) | 
|  | */ | 
|  | switch (cmd->cmnd[0]) { | 
|  | /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ | 
|  | case READ_6: | 
|  | case WRITE_6: | 
|  | first_block = (((cmd->cmnd[1] & 0x1F) << 16) | | 
|  | (cmd->cmnd[2] << 8) | | 
|  | cmd->cmnd[3]); | 
|  | break; | 
|  | case WRITE_10: | 
|  | case READ_10: | 
|  | /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ | 
|  | case WRITE_12: | 
|  | case READ_12: | 
|  | first_block = get_unaligned_be32(&cmd->cmnd[2]); | 
|  | break; | 
|  | case WRITE_16: | 
|  | case READ_16: | 
|  | first_block = get_unaligned_be64(&cmd->cmnd[2]); | 
|  | break; | 
|  | default: | 
|  | dev_err(&h->pdev->dev, | 
|  | "ERROR: %s: size (0x%x) not supported for encryption\n", | 
|  | __func__, cmd->cmnd[0]); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (le32_to_cpu(map->volume_blk_size) != 512) | 
|  | first_block = first_block * | 
|  | le32_to_cpu(map->volume_blk_size)/512; | 
|  |  | 
|  | cp->tweak_lower = cpu_to_le32(first_block); | 
|  | cp->tweak_upper = cpu_to_le32(first_block >> 32); | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, | 
|  | u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  | struct ioaccel2_sg_element *curr_sg; | 
|  | int use_sg, i; | 
|  | struct scatterlist *sg; | 
|  | u64 addr64; | 
|  | u32 len; | 
|  | u32 total_len = 0; | 
|  |  | 
|  | if (!cmd->device) | 
|  | return -1; | 
|  |  | 
|  | if (!cmd->device->hostdata) | 
|  | return -1; | 
|  |  | 
|  | BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); | 
|  |  | 
|  | if (is_zero_length_transfer(cdb)) { | 
|  | warn_zero_length_transfer(h, cdb, cdb_len, __func__); | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  |  | 
|  | if (fixup_ioaccel_cdb(cdb, &cdb_len)) { | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  |  | 
|  | c->cmd_type = CMD_IOACCEL2; | 
|  | /* Adjust the DMA address to point to the accelerated command buffer */ | 
|  | c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + | 
|  | (c->cmdindex * sizeof(*cp)); | 
|  | BUG_ON(c->busaddr & 0x0000007F); | 
|  |  | 
|  | memset(cp, 0, sizeof(*cp)); | 
|  | cp->IU_type = IOACCEL2_IU_TYPE; | 
|  |  | 
|  | use_sg = scsi_dma_map(cmd); | 
|  | if (use_sg < 0) { | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | return use_sg; | 
|  | } | 
|  |  | 
|  | if (use_sg) { | 
|  | curr_sg = cp->sg; | 
|  | if (use_sg > h->ioaccel_maxsg) { | 
|  | addr64 = le64_to_cpu( | 
|  | h->ioaccel2_cmd_sg_list[c->cmdindex]->address); | 
|  | curr_sg->address = cpu_to_le64(addr64); | 
|  | curr_sg->length = 0; | 
|  | curr_sg->reserved[0] = 0; | 
|  | curr_sg->reserved[1] = 0; | 
|  | curr_sg->reserved[2] = 0; | 
|  | curr_sg->chain_indicator = IOACCEL2_CHAIN; | 
|  |  | 
|  | curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; | 
|  | } | 
|  | scsi_for_each_sg(cmd, sg, use_sg, i) { | 
|  | addr64 = (u64) sg_dma_address(sg); | 
|  | len  = sg_dma_len(sg); | 
|  | total_len += len; | 
|  | curr_sg->address = cpu_to_le64(addr64); | 
|  | curr_sg->length = cpu_to_le32(len); | 
|  | curr_sg->reserved[0] = 0; | 
|  | curr_sg->reserved[1] = 0; | 
|  | curr_sg->reserved[2] = 0; | 
|  | curr_sg->chain_indicator = 0; | 
|  | curr_sg++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the last s/g element bit | 
|  | */ | 
|  | (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG; | 
|  |  | 
|  | switch (cmd->sc_data_direction) { | 
|  | case DMA_TO_DEVICE: | 
|  | cp->direction &= ~IOACCEL2_DIRECTION_MASK; | 
|  | cp->direction |= IOACCEL2_DIR_DATA_OUT; | 
|  | break; | 
|  | case DMA_FROM_DEVICE: | 
|  | cp->direction &= ~IOACCEL2_DIRECTION_MASK; | 
|  | cp->direction |= IOACCEL2_DIR_DATA_IN; | 
|  | break; | 
|  | case DMA_NONE: | 
|  | cp->direction &= ~IOACCEL2_DIRECTION_MASK; | 
|  | cp->direction |= IOACCEL2_DIR_NO_DATA; | 
|  | break; | 
|  | default: | 
|  | dev_err(&h->pdev->dev, "unknown data direction: %d\n", | 
|  | cmd->sc_data_direction); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | cp->direction &= ~IOACCEL2_DIRECTION_MASK; | 
|  | cp->direction |= IOACCEL2_DIR_NO_DATA; | 
|  | } | 
|  |  | 
|  | /* Set encryption parameters, if necessary */ | 
|  | set_encrypt_ioaccel2(h, c, cp); | 
|  |  | 
|  | cp->scsi_nexus = cpu_to_le32(ioaccel_handle); | 
|  | cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); | 
|  | memcpy(cp->cdb, cdb, sizeof(cp->cdb)); | 
|  |  | 
|  | cp->data_len = cpu_to_le32(total_len); | 
|  | cp->err_ptr = cpu_to_le64(c->busaddr + | 
|  | offsetof(struct io_accel2_cmd, error_data)); | 
|  | cp->err_len = cpu_to_le32(sizeof(cp->error_data)); | 
|  |  | 
|  | /* fill in sg elements */ | 
|  | if (use_sg > h->ioaccel_maxsg) { | 
|  | cp->sg_count = 1; | 
|  | cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); | 
|  | if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | scsi_dma_unmap(cmd); | 
|  | return -1; | 
|  | } | 
|  | } else | 
|  | cp->sg_count = (u8) use_sg; | 
|  |  | 
|  | if (phys_disk->in_reset) { | 
|  | cmd->result = DID_RESET << 16; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a command to the correct I/O accelerator path. | 
|  | */ | 
|  | static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, | 
|  | u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) | 
|  | { | 
|  | if (!c->scsi_cmd->device) | 
|  | return -1; | 
|  |  | 
|  | if (!c->scsi_cmd->device->hostdata) | 
|  | return -1; | 
|  |  | 
|  | if (phys_disk->in_reset) | 
|  | return -1; | 
|  |  | 
|  | /* Try to honor the device's queue depth */ | 
|  | if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > | 
|  | phys_disk->queue_depth) { | 
|  | atomic_dec(&phys_disk->ioaccel_cmds_out); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  | if (h->transMethod & CFGTBL_Trans_io_accel1) | 
|  | return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, | 
|  | cdb, cdb_len, scsi3addr, | 
|  | phys_disk); | 
|  | else | 
|  | return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, | 
|  | cdb, cdb_len, scsi3addr, | 
|  | phys_disk); | 
|  | } | 
|  |  | 
|  | static void raid_map_helper(struct raid_map_data *map, | 
|  | int offload_to_mirror, u32 *map_index, u32 *current_group) | 
|  | { | 
|  | if (offload_to_mirror == 0)  { | 
|  | /* use physical disk in the first mirrored group. */ | 
|  | *map_index %= le16_to_cpu(map->data_disks_per_row); | 
|  | return; | 
|  | } | 
|  | do { | 
|  | /* determine mirror group that *map_index indicates */ | 
|  | *current_group = *map_index / | 
|  | le16_to_cpu(map->data_disks_per_row); | 
|  | if (offload_to_mirror == *current_group) | 
|  | continue; | 
|  | if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { | 
|  | /* select map index from next group */ | 
|  | *map_index += le16_to_cpu(map->data_disks_per_row); | 
|  | (*current_group)++; | 
|  | } else { | 
|  | /* select map index from first group */ | 
|  | *map_index %= le16_to_cpu(map->data_disks_per_row); | 
|  | *current_group = 0; | 
|  | } | 
|  | } while (offload_to_mirror != *current_group); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to perform offload RAID mapping for a logical volume I/O. | 
|  | */ | 
|  | static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; | 
|  | struct raid_map_data *map = &dev->raid_map; | 
|  | struct raid_map_disk_data *dd = &map->data[0]; | 
|  | int is_write = 0; | 
|  | u32 map_index; | 
|  | u64 first_block, last_block; | 
|  | u32 block_cnt; | 
|  | u32 blocks_per_row; | 
|  | u64 first_row, last_row; | 
|  | u32 first_row_offset, last_row_offset; | 
|  | u32 first_column, last_column; | 
|  | u64 r0_first_row, r0_last_row; | 
|  | u32 r5or6_blocks_per_row; | 
|  | u64 r5or6_first_row, r5or6_last_row; | 
|  | u32 r5or6_first_row_offset, r5or6_last_row_offset; | 
|  | u32 r5or6_first_column, r5or6_last_column; | 
|  | u32 total_disks_per_row; | 
|  | u32 stripesize; | 
|  | u32 first_group, last_group, current_group; | 
|  | u32 map_row; | 
|  | u32 disk_handle; | 
|  | u64 disk_block; | 
|  | u32 disk_block_cnt; | 
|  | u8 cdb[16]; | 
|  | u8 cdb_len; | 
|  | u16 strip_size; | 
|  | #if BITS_PER_LONG == 32 | 
|  | u64 tmpdiv; | 
|  | #endif | 
|  | int offload_to_mirror; | 
|  |  | 
|  | if (!dev) | 
|  | return -1; | 
|  |  | 
|  | if (dev->in_reset) | 
|  | return -1; | 
|  |  | 
|  | /* check for valid opcode, get LBA and block count */ | 
|  | switch (cmd->cmnd[0]) { | 
|  | case WRITE_6: | 
|  | is_write = 1; | 
|  | /* fall through */ | 
|  | case READ_6: | 
|  | first_block = (((cmd->cmnd[1] & 0x1F) << 16) | | 
|  | (cmd->cmnd[2] << 8) | | 
|  | cmd->cmnd[3]); | 
|  | block_cnt = cmd->cmnd[4]; | 
|  | if (block_cnt == 0) | 
|  | block_cnt = 256; | 
|  | break; | 
|  | case WRITE_10: | 
|  | is_write = 1; | 
|  | /* fall through */ | 
|  | case READ_10: | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 24) | | 
|  | (((u64) cmd->cmnd[3]) << 16) | | 
|  | (((u64) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | block_cnt = | 
|  | (((u32) cmd->cmnd[7]) << 8) | | 
|  | cmd->cmnd[8]; | 
|  | break; | 
|  | case WRITE_12: | 
|  | is_write = 1; | 
|  | /* fall through */ | 
|  | case READ_12: | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 24) | | 
|  | (((u64) cmd->cmnd[3]) << 16) | | 
|  | (((u64) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | block_cnt = | 
|  | (((u32) cmd->cmnd[6]) << 24) | | 
|  | (((u32) cmd->cmnd[7]) << 16) | | 
|  | (((u32) cmd->cmnd[8]) << 8) | | 
|  | cmd->cmnd[9]; | 
|  | break; | 
|  | case WRITE_16: | 
|  | is_write = 1; | 
|  | /* fall through */ | 
|  | case READ_16: | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 56) | | 
|  | (((u64) cmd->cmnd[3]) << 48) | | 
|  | (((u64) cmd->cmnd[4]) << 40) | | 
|  | (((u64) cmd->cmnd[5]) << 32) | | 
|  | (((u64) cmd->cmnd[6]) << 24) | | 
|  | (((u64) cmd->cmnd[7]) << 16) | | 
|  | (((u64) cmd->cmnd[8]) << 8) | | 
|  | cmd->cmnd[9]; | 
|  | block_cnt = | 
|  | (((u32) cmd->cmnd[10]) << 24) | | 
|  | (((u32) cmd->cmnd[11]) << 16) | | 
|  | (((u32) cmd->cmnd[12]) << 8) | | 
|  | cmd->cmnd[13]; | 
|  | break; | 
|  | default: | 
|  | return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ | 
|  | } | 
|  | last_block = first_block + block_cnt - 1; | 
|  |  | 
|  | /* check for write to non-RAID-0 */ | 
|  | if (is_write && dev->raid_level != 0) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* check for invalid block or wraparound */ | 
|  | if (last_block >= le64_to_cpu(map->volume_blk_cnt) || | 
|  | last_block < first_block) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* calculate stripe information for the request */ | 
|  | blocks_per_row = le16_to_cpu(map->data_disks_per_row) * | 
|  | le16_to_cpu(map->strip_size); | 
|  | strip_size = le16_to_cpu(map->strip_size); | 
|  | #if BITS_PER_LONG == 32 | 
|  | tmpdiv = first_block; | 
|  | (void) do_div(tmpdiv, blocks_per_row); | 
|  | first_row = tmpdiv; | 
|  | tmpdiv = last_block; | 
|  | (void) do_div(tmpdiv, blocks_per_row); | 
|  | last_row = tmpdiv; | 
|  | first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); | 
|  | last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); | 
|  | tmpdiv = first_row_offset; | 
|  | (void) do_div(tmpdiv, strip_size); | 
|  | first_column = tmpdiv; | 
|  | tmpdiv = last_row_offset; | 
|  | (void) do_div(tmpdiv, strip_size); | 
|  | last_column = tmpdiv; | 
|  | #else | 
|  | first_row = first_block / blocks_per_row; | 
|  | last_row = last_block / blocks_per_row; | 
|  | first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); | 
|  | last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); | 
|  | first_column = first_row_offset / strip_size; | 
|  | last_column = last_row_offset / strip_size; | 
|  | #endif | 
|  |  | 
|  | /* if this isn't a single row/column then give to the controller */ | 
|  | if ((first_row != last_row) || (first_column != last_column)) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* proceeding with driver mapping */ | 
|  | total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + | 
|  | le16_to_cpu(map->metadata_disks_per_row); | 
|  | map_row = ((u32)(first_row >> map->parity_rotation_shift)) % | 
|  | le16_to_cpu(map->row_cnt); | 
|  | map_index = (map_row * total_disks_per_row) + first_column; | 
|  |  | 
|  | switch (dev->raid_level) { | 
|  | case HPSA_RAID_0: | 
|  | break; /* nothing special to do */ | 
|  | case HPSA_RAID_1: | 
|  | /* Handles load balance across RAID 1 members. | 
|  | * (2-drive R1 and R10 with even # of drives.) | 
|  | * Appropriate for SSDs, not optimal for HDDs | 
|  | * Ensure we have the correct raid_map. | 
|  | */ | 
|  | if (le16_to_cpu(map->layout_map_count) != 2) { | 
|  | hpsa_turn_off_ioaccel_for_device(dev); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  | if (dev->offload_to_mirror) | 
|  | map_index += le16_to_cpu(map->data_disks_per_row); | 
|  | dev->offload_to_mirror = !dev->offload_to_mirror; | 
|  | break; | 
|  | case HPSA_RAID_ADM: | 
|  | /* Handles N-way mirrors  (R1-ADM) | 
|  | * and R10 with # of drives divisible by 3.) | 
|  | * Ensure we have the correct raid_map. | 
|  | */ | 
|  | if (le16_to_cpu(map->layout_map_count) != 3) { | 
|  | hpsa_turn_off_ioaccel_for_device(dev); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  |  | 
|  | offload_to_mirror = dev->offload_to_mirror; | 
|  | raid_map_helper(map, offload_to_mirror, | 
|  | &map_index, ¤t_group); | 
|  | /* set mirror group to use next time */ | 
|  | offload_to_mirror = | 
|  | (offload_to_mirror >= | 
|  | le16_to_cpu(map->layout_map_count) - 1) | 
|  | ? 0 : offload_to_mirror + 1; | 
|  | dev->offload_to_mirror = offload_to_mirror; | 
|  | /* Avoid direct use of dev->offload_to_mirror within this | 
|  | * function since multiple threads might simultaneously | 
|  | * increment it beyond the range of dev->layout_map_count -1. | 
|  | */ | 
|  | break; | 
|  | case HPSA_RAID_5: | 
|  | case HPSA_RAID_6: | 
|  | if (le16_to_cpu(map->layout_map_count) <= 1) | 
|  | break; | 
|  |  | 
|  | /* Verify first and last block are in same RAID group */ | 
|  | r5or6_blocks_per_row = | 
|  | le16_to_cpu(map->strip_size) * | 
|  | le16_to_cpu(map->data_disks_per_row); | 
|  | if (r5or6_blocks_per_row == 0) { | 
|  | hpsa_turn_off_ioaccel_for_device(dev); | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  | stripesize = r5or6_blocks_per_row * | 
|  | le16_to_cpu(map->layout_map_count); | 
|  | #if BITS_PER_LONG == 32 | 
|  | tmpdiv = first_block; | 
|  | first_group = do_div(tmpdiv, stripesize); | 
|  | tmpdiv = first_group; | 
|  | (void) do_div(tmpdiv, r5or6_blocks_per_row); | 
|  | first_group = tmpdiv; | 
|  | tmpdiv = last_block; | 
|  | last_group = do_div(tmpdiv, stripesize); | 
|  | tmpdiv = last_group; | 
|  | (void) do_div(tmpdiv, r5or6_blocks_per_row); | 
|  | last_group = tmpdiv; | 
|  | #else | 
|  | first_group = (first_block % stripesize) / r5or6_blocks_per_row; | 
|  | last_group = (last_block % stripesize) / r5or6_blocks_per_row; | 
|  | #endif | 
|  | if (first_group != last_group) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* Verify request is in a single row of RAID 5/6 */ | 
|  | #if BITS_PER_LONG == 32 | 
|  | tmpdiv = first_block; | 
|  | (void) do_div(tmpdiv, stripesize); | 
|  | first_row = r5or6_first_row = r0_first_row = tmpdiv; | 
|  | tmpdiv = last_block; | 
|  | (void) do_div(tmpdiv, stripesize); | 
|  | r5or6_last_row = r0_last_row = tmpdiv; | 
|  | #else | 
|  | first_row = r5or6_first_row = r0_first_row = | 
|  | first_block / stripesize; | 
|  | r5or6_last_row = r0_last_row = last_block / stripesize; | 
|  | #endif | 
|  | if (r5or6_first_row != r5or6_last_row) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  |  | 
|  | /* Verify request is in a single column */ | 
|  | #if BITS_PER_LONG == 32 | 
|  | tmpdiv = first_block; | 
|  | first_row_offset = do_div(tmpdiv, stripesize); | 
|  | tmpdiv = first_row_offset; | 
|  | first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); | 
|  | r5or6_first_row_offset = first_row_offset; | 
|  | tmpdiv = last_block; | 
|  | r5or6_last_row_offset = do_div(tmpdiv, stripesize); | 
|  | tmpdiv = r5or6_last_row_offset; | 
|  | r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); | 
|  | tmpdiv = r5or6_first_row_offset; | 
|  | (void) do_div(tmpdiv, map->strip_size); | 
|  | first_column = r5or6_first_column = tmpdiv; | 
|  | tmpdiv = r5or6_last_row_offset; | 
|  | (void) do_div(tmpdiv, map->strip_size); | 
|  | r5or6_last_column = tmpdiv; | 
|  | #else | 
|  | first_row_offset = r5or6_first_row_offset = | 
|  | (u32)((first_block % stripesize) % | 
|  | r5or6_blocks_per_row); | 
|  |  | 
|  | r5or6_last_row_offset = | 
|  | (u32)((last_block % stripesize) % | 
|  | r5or6_blocks_per_row); | 
|  |  | 
|  | first_column = r5or6_first_column = | 
|  | r5or6_first_row_offset / le16_to_cpu(map->strip_size); | 
|  | r5or6_last_column = | 
|  | r5or6_last_row_offset / le16_to_cpu(map->strip_size); | 
|  | #endif | 
|  | if (r5or6_first_column != r5or6_last_column) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* Request is eligible */ | 
|  | map_row = ((u32)(first_row >> map->parity_rotation_shift)) % | 
|  | le16_to_cpu(map->row_cnt); | 
|  |  | 
|  | map_index = (first_group * | 
|  | (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + | 
|  | (map_row * total_disks_per_row) + first_column; | 
|  | break; | 
|  | default: | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  |  | 
|  | if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | c->phys_disk = dev->phys_disk[map_index]; | 
|  | if (!c->phys_disk) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | disk_handle = dd[map_index].ioaccel_handle; | 
|  | disk_block = le64_to_cpu(map->disk_starting_blk) + | 
|  | first_row * le16_to_cpu(map->strip_size) + | 
|  | (first_row_offset - first_column * | 
|  | le16_to_cpu(map->strip_size)); | 
|  | disk_block_cnt = block_cnt; | 
|  |  | 
|  | /* handle differing logical/physical block sizes */ | 
|  | if (map->phys_blk_shift) { | 
|  | disk_block <<= map->phys_blk_shift; | 
|  | disk_block_cnt <<= map->phys_blk_shift; | 
|  | } | 
|  | BUG_ON(disk_block_cnt > 0xffff); | 
|  |  | 
|  | /* build the new CDB for the physical disk I/O */ | 
|  | if (disk_block > 0xffffffff) { | 
|  | cdb[0] = is_write ? WRITE_16 : READ_16; | 
|  | cdb[1] = 0; | 
|  | cdb[2] = (u8) (disk_block >> 56); | 
|  | cdb[3] = (u8) (disk_block >> 48); | 
|  | cdb[4] = (u8) (disk_block >> 40); | 
|  | cdb[5] = (u8) (disk_block >> 32); | 
|  | cdb[6] = (u8) (disk_block >> 24); | 
|  | cdb[7] = (u8) (disk_block >> 16); | 
|  | cdb[8] = (u8) (disk_block >> 8); | 
|  | cdb[9] = (u8) (disk_block); | 
|  | cdb[10] = (u8) (disk_block_cnt >> 24); | 
|  | cdb[11] = (u8) (disk_block_cnt >> 16); | 
|  | cdb[12] = (u8) (disk_block_cnt >> 8); | 
|  | cdb[13] = (u8) (disk_block_cnt); | 
|  | cdb[14] = 0; | 
|  | cdb[15] = 0; | 
|  | cdb_len = 16; | 
|  | } else { | 
|  | cdb[0] = is_write ? WRITE_10 : READ_10; | 
|  | cdb[1] = 0; | 
|  | cdb[2] = (u8) (disk_block >> 24); | 
|  | cdb[3] = (u8) (disk_block >> 16); | 
|  | cdb[4] = (u8) (disk_block >> 8); | 
|  | cdb[5] = (u8) (disk_block); | 
|  | cdb[6] = 0; | 
|  | cdb[7] = (u8) (disk_block_cnt >> 8); | 
|  | cdb[8] = (u8) (disk_block_cnt); | 
|  | cdb[9] = 0; | 
|  | cdb_len = 10; | 
|  | } | 
|  | return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, | 
|  | dev->scsi3addr, | 
|  | dev->phys_disk[map_index]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit commands down the "normal" RAID stack path | 
|  | * All callers to hpsa_ciss_submit must check lockup_detected | 
|  | * beforehand, before (opt.) and after calling cmd_alloc | 
|  | */ | 
|  | static int hpsa_ciss_submit(struct ctlr_info *h, | 
|  | struct CommandList *c, struct scsi_cmnd *cmd, | 
|  | struct hpsa_scsi_dev_t *dev) | 
|  | { | 
|  | cmd->host_scribble = (unsigned char *) c; | 
|  | c->cmd_type = CMD_SCSI; | 
|  | c->scsi_cmd = cmd; | 
|  | c->Header.ReplyQueue = 0;  /* unused in simple mode */ | 
|  | memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8); | 
|  | c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); | 
|  |  | 
|  | /* Fill in the request block... */ | 
|  |  | 
|  | c->Request.Timeout = 0; | 
|  | BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); | 
|  | c->Request.CDBLen = cmd->cmd_len; | 
|  | memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); | 
|  | switch (cmd->sc_data_direction) { | 
|  | case DMA_TO_DEVICE: | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); | 
|  | break; | 
|  | case DMA_FROM_DEVICE: | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); | 
|  | break; | 
|  | case DMA_NONE: | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); | 
|  | break; | 
|  | case DMA_BIDIRECTIONAL: | 
|  | /* This can happen if a buggy application does a scsi passthru | 
|  | * and sets both inlen and outlen to non-zero. ( see | 
|  | * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) | 
|  | */ | 
|  |  | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); | 
|  | /* This is technically wrong, and hpsa controllers should | 
|  | * reject it with CMD_INVALID, which is the most correct | 
|  | * response, but non-fibre backends appear to let it | 
|  | * slide by, and give the same results as if this field | 
|  | * were set correctly.  Either way is acceptable for | 
|  | * our purposes here. | 
|  | */ | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(&h->pdev->dev, "unknown data direction: %d\n", | 
|  | cmd->sc_data_direction); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ | 
|  | hpsa_cmd_resolve_and_free(h, c); | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  | } | 
|  |  | 
|  | if (dev->in_reset) { | 
|  | hpsa_cmd_resolve_and_free(h, c); | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  | } | 
|  |  | 
|  | c->device = dev; | 
|  |  | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | /* the cmd'll come back via intr handler in complete_scsi_command()  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_cmd_init(struct ctlr_info *h, int index, | 
|  | struct CommandList *c) | 
|  | { | 
|  | dma_addr_t cmd_dma_handle, err_dma_handle; | 
|  |  | 
|  | /* Zero out all of commandlist except the last field, refcount */ | 
|  | memset(c, 0, offsetof(struct CommandList, refcount)); | 
|  | c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); | 
|  | cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); | 
|  | c->err_info = h->errinfo_pool + index; | 
|  | memset(c->err_info, 0, sizeof(*c->err_info)); | 
|  | err_dma_handle = h->errinfo_pool_dhandle | 
|  | + index * sizeof(*c->err_info); | 
|  | c->cmdindex = index; | 
|  | c->busaddr = (u32) cmd_dma_handle; | 
|  | c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); | 
|  | c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); | 
|  | c->h = h; | 
|  | c->scsi_cmd = SCSI_CMD_IDLE; | 
|  | } | 
|  |  | 
|  | static void hpsa_preinitialize_commands(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | struct CommandList *c = h->cmd_pool + i; | 
|  |  | 
|  | hpsa_cmd_init(h, i, c); | 
|  | atomic_set(&c->refcount, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, | 
|  | struct CommandList *c) | 
|  | { | 
|  | dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); | 
|  |  | 
|  | BUG_ON(c->cmdindex != index); | 
|  |  | 
|  | memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); | 
|  | memset(c->err_info, 0, sizeof(*c->err_info)); | 
|  | c->busaddr = (u32) cmd_dma_handle; | 
|  | } | 
|  |  | 
|  | static int hpsa_ioaccel_submit(struct ctlr_info *h, | 
|  | struct CommandList *c, struct scsi_cmnd *cmd) | 
|  | { | 
|  | struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; | 
|  | int rc = IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | if (!dev) | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  |  | 
|  | if (dev->in_reset) | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  |  | 
|  | if (hpsa_simple_mode) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | cmd->host_scribble = (unsigned char *) c; | 
|  |  | 
|  | if (dev->offload_enabled) { | 
|  | hpsa_cmd_init(h, c->cmdindex, c); | 
|  | c->cmd_type = CMD_SCSI; | 
|  | c->scsi_cmd = cmd; | 
|  | c->device = dev; | 
|  | rc = hpsa_scsi_ioaccel_raid_map(h, c); | 
|  | if (rc < 0)     /* scsi_dma_map failed. */ | 
|  | rc = SCSI_MLQUEUE_HOST_BUSY; | 
|  | } else if (dev->hba_ioaccel_enabled) { | 
|  | hpsa_cmd_init(h, c->cmdindex, c); | 
|  | c->cmd_type = CMD_SCSI; | 
|  | c->scsi_cmd = cmd; | 
|  | c->device = dev; | 
|  | rc = hpsa_scsi_ioaccel_direct_map(h, c); | 
|  | if (rc < 0)     /* scsi_dma_map failed. */ | 
|  | rc = SCSI_MLQUEUE_HOST_BUSY; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_command_resubmit_worker(struct work_struct *work) | 
|  | { | 
|  | struct scsi_cmnd *cmd; | 
|  | struct hpsa_scsi_dev_t *dev; | 
|  | struct CommandList *c = container_of(work, struct CommandList, work); | 
|  |  | 
|  | cmd = c->scsi_cmd; | 
|  | dev = cmd->device->hostdata; | 
|  | if (!dev) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | return hpsa_cmd_free_and_done(c->h, c, cmd); | 
|  | } | 
|  |  | 
|  | if (dev->in_reset) { | 
|  | cmd->result = DID_RESET << 16; | 
|  | return hpsa_cmd_free_and_done(c->h, c, cmd); | 
|  | } | 
|  |  | 
|  | if (c->cmd_type == CMD_IOACCEL2) { | 
|  | struct ctlr_info *h = c->h; | 
|  | struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  | int rc; | 
|  |  | 
|  | if (c2->error_data.serv_response == | 
|  | IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { | 
|  | rc = hpsa_ioaccel_submit(h, c, cmd); | 
|  | if (rc == 0) | 
|  | return; | 
|  | if (rc == SCSI_MLQUEUE_HOST_BUSY) { | 
|  | /* | 
|  | * If we get here, it means dma mapping failed. | 
|  | * Try again via scsi mid layer, which will | 
|  | * then get SCSI_MLQUEUE_HOST_BUSY. | 
|  | */ | 
|  | cmd->result = DID_IMM_RETRY << 16; | 
|  | return hpsa_cmd_free_and_done(h, c, cmd); | 
|  | } | 
|  | /* else, fall thru and resubmit down CISS path */ | 
|  | } | 
|  | } | 
|  | hpsa_cmd_partial_init(c->h, c->cmdindex, c); | 
|  | if (hpsa_ciss_submit(c->h, c, cmd, dev)) { | 
|  | /* | 
|  | * If we get here, it means dma mapping failed. Try | 
|  | * again via scsi mid layer, which will then get | 
|  | * SCSI_MLQUEUE_HOST_BUSY. | 
|  | * | 
|  | * hpsa_ciss_submit will have already freed c | 
|  | * if it encountered a dma mapping failure. | 
|  | */ | 
|  | cmd->result = DID_IMM_RETRY << 16; | 
|  | cmd->scsi_done(cmd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Running in struct Scsi_Host->host_lock less mode */ | 
|  | static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct hpsa_scsi_dev_t *dev; | 
|  | struct CommandList *c; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Get the ptr to our adapter structure out of cmd->host. */ | 
|  | h = sdev_to_hba(cmd->device); | 
|  |  | 
|  | BUG_ON(cmd->request->tag < 0); | 
|  |  | 
|  | dev = cmd->device->hostdata; | 
|  | if (!dev) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | cmd->scsi_done(cmd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (dev->removed) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | cmd->scsi_done(cmd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(lockup_detected(h))) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | cmd->scsi_done(cmd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (dev->in_reset) | 
|  | return SCSI_MLQUEUE_DEVICE_BUSY; | 
|  |  | 
|  | c = cmd_tagged_alloc(h, cmd); | 
|  | if (c == NULL) | 
|  | return SCSI_MLQUEUE_DEVICE_BUSY; | 
|  |  | 
|  | /* | 
|  | * This is necessary because the SML doesn't zero out this field during | 
|  | * error recovery. | 
|  | */ | 
|  | cmd->result = 0; | 
|  |  | 
|  | /* | 
|  | * Call alternate submit routine for I/O accelerated commands. | 
|  | * Retries always go down the normal I/O path. | 
|  | */ | 
|  | if (likely(cmd->retries == 0 && | 
|  | !blk_rq_is_passthrough(cmd->request) && | 
|  | h->acciopath_status)) { | 
|  | rc = hpsa_ioaccel_submit(h, c, cmd); | 
|  | if (rc == 0) | 
|  | return 0; | 
|  | if (rc == SCSI_MLQUEUE_HOST_BUSY) { | 
|  | hpsa_cmd_resolve_and_free(h, c); | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  | } | 
|  | } | 
|  | return hpsa_ciss_submit(h, c, cmd, dev); | 
|  | } | 
|  |  | 
|  | static void hpsa_scan_complete(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&h->scan_lock, flags); | 
|  | h->scan_finished = 1; | 
|  | wake_up(&h->scan_wait_queue); | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  | } | 
|  |  | 
|  | static void hpsa_scan_start(struct Scsi_Host *sh) | 
|  | { | 
|  | struct ctlr_info *h = shost_to_hba(sh); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Don't let rescans be initiated on a controller known to be locked | 
|  | * up.  If the controller locks up *during* a rescan, that thread is | 
|  | * probably hosed, but at least we can prevent new rescan threads from | 
|  | * piling up on a locked up controller. | 
|  | */ | 
|  | if (unlikely(lockup_detected(h))) | 
|  | return hpsa_scan_complete(h); | 
|  |  | 
|  | /* | 
|  | * If a scan is already waiting to run, no need to add another | 
|  | */ | 
|  | spin_lock_irqsave(&h->scan_lock, flags); | 
|  | if (h->scan_waiting) { | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  |  | 
|  | /* wait until any scan already in progress is finished. */ | 
|  | while (1) { | 
|  | spin_lock_irqsave(&h->scan_lock, flags); | 
|  | if (h->scan_finished) | 
|  | break; | 
|  | h->scan_waiting = 1; | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  | wait_event(h->scan_wait_queue, h->scan_finished); | 
|  | /* Note: We don't need to worry about a race between this | 
|  | * thread and driver unload because the midlayer will | 
|  | * have incremented the reference count, so unload won't | 
|  | * happen if we're in here. | 
|  | */ | 
|  | } | 
|  | h->scan_finished = 0; /* mark scan as in progress */ | 
|  | h->scan_waiting = 0; | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  |  | 
|  | if (unlikely(lockup_detected(h))) | 
|  | return hpsa_scan_complete(h); | 
|  |  | 
|  | /* | 
|  | * Do the scan after a reset completion | 
|  | */ | 
|  | spin_lock_irqsave(&h->reset_lock, flags); | 
|  | if (h->reset_in_progress) { | 
|  | h->drv_req_rescan = 1; | 
|  | spin_unlock_irqrestore(&h->reset_lock, flags); | 
|  | hpsa_scan_complete(h); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&h->reset_lock, flags); | 
|  |  | 
|  | hpsa_update_scsi_devices(h); | 
|  |  | 
|  | hpsa_scan_complete(h); | 
|  | } | 
|  |  | 
|  | static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) | 
|  | { | 
|  | struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; | 
|  |  | 
|  | if (!logical_drive) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (qdepth < 1) | 
|  | qdepth = 1; | 
|  | else if (qdepth > logical_drive->queue_depth) | 
|  | qdepth = logical_drive->queue_depth; | 
|  |  | 
|  | return scsi_change_queue_depth(sdev, qdepth); | 
|  | } | 
|  |  | 
|  | static int hpsa_scan_finished(struct Scsi_Host *sh, | 
|  | unsigned long elapsed_time) | 
|  | { | 
|  | struct ctlr_info *h = shost_to_hba(sh); | 
|  | unsigned long flags; | 
|  | int finished; | 
|  |  | 
|  | spin_lock_irqsave(&h->scan_lock, flags); | 
|  | finished = h->scan_finished; | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  | return finished; | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_host_alloc(struct ctlr_info *h) | 
|  | { | 
|  | struct Scsi_Host *sh; | 
|  |  | 
|  | sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); | 
|  | if (sh == NULL) { | 
|  | dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | sh->io_port = 0; | 
|  | sh->n_io_port = 0; | 
|  | sh->this_id = -1; | 
|  | sh->max_channel = 3; | 
|  | sh->max_cmd_len = MAX_COMMAND_SIZE; | 
|  | sh->max_lun = HPSA_MAX_LUN; | 
|  | sh->max_id = HPSA_MAX_LUN; | 
|  | sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; | 
|  | sh->cmd_per_lun = sh->can_queue; | 
|  | sh->sg_tablesize = h->maxsgentries; | 
|  | sh->transportt = hpsa_sas_transport_template; | 
|  | sh->hostdata[0] = (unsigned long) h; | 
|  | sh->irq = pci_irq_vector(h->pdev, 0); | 
|  | sh->unique_id = sh->irq; | 
|  |  | 
|  | h->scsi_host = sh; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_add_host(struct ctlr_info *h) | 
|  | { | 
|  | int rv; | 
|  |  | 
|  | rv = scsi_add_host(h->scsi_host, &h->pdev->dev); | 
|  | if (rv) { | 
|  | dev_err(&h->pdev->dev, "scsi_add_host failed\n"); | 
|  | return rv; | 
|  | } | 
|  | scsi_scan_host(h->scsi_host); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The block layer has already gone to the trouble of picking out a unique, | 
|  | * small-integer tag for this request.  We use an offset from that value as | 
|  | * an index to select our command block.  (The offset allows us to reserve the | 
|  | * low-numbered entries for our own uses.) | 
|  | */ | 
|  | static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) | 
|  | { | 
|  | int idx = scmd->request->tag; | 
|  |  | 
|  | if (idx < 0) | 
|  | return idx; | 
|  |  | 
|  | /* Offset to leave space for internal cmds. */ | 
|  | return idx += HPSA_NRESERVED_CMDS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send a TEST_UNIT_READY command to the specified LUN using the specified | 
|  | * reply queue; returns zero if the unit is ready, and non-zero otherwise. | 
|  | */ | 
|  | static int hpsa_send_test_unit_ready(struct ctlr_info *h, | 
|  | struct CommandList *c, unsigned char lunaddr[], | 
|  | int reply_queue) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ | 
|  | (void) fill_cmd(c, TEST_UNIT_READY, h, | 
|  | NULL, 0, 0, lunaddr, TYPE_CMD); | 
|  | rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); | 
|  | if (rc) | 
|  | return rc; | 
|  | /* no unmap needed here because no data xfer. */ | 
|  |  | 
|  | /* Check if the unit is already ready. */ | 
|  | if (c->err_info->CommandStatus == CMD_SUCCESS) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The first command sent after reset will receive "unit attention" to | 
|  | * indicate that the LUN has been reset...this is actually what we're | 
|  | * looking for (but, success is good too). | 
|  | */ | 
|  | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | 
|  | c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && | 
|  | (c->err_info->SenseInfo[2] == NO_SENSE || | 
|  | c->err_info->SenseInfo[2] == UNIT_ATTENTION)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; | 
|  | * returns zero when the unit is ready, and non-zero when giving up. | 
|  | */ | 
|  | static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, | 
|  | struct CommandList *c, | 
|  | unsigned char lunaddr[], int reply_queue) | 
|  | { | 
|  | int rc; | 
|  | int count = 0; | 
|  | int waittime = 1; /* seconds */ | 
|  |  | 
|  | /* Send test unit ready until device ready, or give up. */ | 
|  | for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { | 
|  |  | 
|  | /* | 
|  | * Wait for a bit.  do this first, because if we send | 
|  | * the TUR right away, the reset will just abort it. | 
|  | */ | 
|  | msleep(1000 * waittime); | 
|  |  | 
|  | rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); | 
|  | if (!rc) | 
|  | break; | 
|  |  | 
|  | /* Increase wait time with each try, up to a point. */ | 
|  | if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) | 
|  | waittime *= 2; | 
|  |  | 
|  | dev_warn(&h->pdev->dev, | 
|  | "waiting %d secs for device to become ready.\n", | 
|  | waittime); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int wait_for_device_to_become_ready(struct ctlr_info *h, | 
|  | unsigned char lunaddr[], | 
|  | int reply_queue) | 
|  | { | 
|  | int first_queue; | 
|  | int last_queue; | 
|  | int rq; | 
|  | int rc = 0; | 
|  | struct CommandList *c; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | /* | 
|  | * If no specific reply queue was requested, then send the TUR | 
|  | * repeatedly, requesting a reply on each reply queue; otherwise execute | 
|  | * the loop exactly once using only the specified queue. | 
|  | */ | 
|  | if (reply_queue == DEFAULT_REPLY_QUEUE) { | 
|  | first_queue = 0; | 
|  | last_queue = h->nreply_queues - 1; | 
|  | } else { | 
|  | first_queue = reply_queue; | 
|  | last_queue = reply_queue; | 
|  | } | 
|  |  | 
|  | for (rq = first_queue; rq <= last_queue; rq++) { | 
|  | rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); | 
|  | if (rc) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (rc) | 
|  | dev_warn(&h->pdev->dev, "giving up on device.\n"); | 
|  | else | 
|  | dev_warn(&h->pdev->dev, "device is ready.\n"); | 
|  |  | 
|  | cmd_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Need at least one of these error handlers to keep ../scsi/hosts.c from | 
|  | * complaining.  Doing a host- or bus-reset can't do anything good here. | 
|  | */ | 
|  | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) | 
|  | { | 
|  | int rc = SUCCESS; | 
|  | int i; | 
|  | struct ctlr_info *h; | 
|  | struct hpsa_scsi_dev_t *dev = NULL; | 
|  | u8 reset_type; | 
|  | char msg[48]; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* find the controller to which the command to be aborted was sent */ | 
|  | h = sdev_to_hba(scsicmd->device); | 
|  | if (h == NULL) /* paranoia */ | 
|  | return FAILED; | 
|  |  | 
|  | spin_lock_irqsave(&h->reset_lock, flags); | 
|  | h->reset_in_progress = 1; | 
|  | spin_unlock_irqrestore(&h->reset_lock, flags); | 
|  |  | 
|  | if (lockup_detected(h)) { | 
|  | rc = FAILED; | 
|  | goto return_reset_status; | 
|  | } | 
|  |  | 
|  | dev = scsicmd->device->hostdata; | 
|  | if (!dev) { | 
|  | dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); | 
|  | rc = FAILED; | 
|  | goto return_reset_status; | 
|  | } | 
|  |  | 
|  | if (dev->devtype == TYPE_ENCLOSURE) { | 
|  | rc = SUCCESS; | 
|  | goto return_reset_status; | 
|  | } | 
|  |  | 
|  | /* if controller locked up, we can guarantee command won't complete */ | 
|  | if (lockup_detected(h)) { | 
|  | snprintf(msg, sizeof(msg), | 
|  | "cmd %d RESET FAILED, lockup detected", | 
|  | hpsa_get_cmd_index(scsicmd)); | 
|  | hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); | 
|  | rc = FAILED; | 
|  | goto return_reset_status; | 
|  | } | 
|  |  | 
|  | /* this reset request might be the result of a lockup; check */ | 
|  | if (detect_controller_lockup(h)) { | 
|  | snprintf(msg, sizeof(msg), | 
|  | "cmd %d RESET FAILED, new lockup detected", | 
|  | hpsa_get_cmd_index(scsicmd)); | 
|  | hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); | 
|  | rc = FAILED; | 
|  | goto return_reset_status; | 
|  | } | 
|  |  | 
|  | /* Do not attempt on controller */ | 
|  | if (is_hba_lunid(dev->scsi3addr)) { | 
|  | rc = SUCCESS; | 
|  | goto return_reset_status; | 
|  | } | 
|  |  | 
|  | if (is_logical_dev_addr_mode(dev->scsi3addr)) | 
|  | reset_type = HPSA_DEVICE_RESET_MSG; | 
|  | else | 
|  | reset_type = HPSA_PHYS_TARGET_RESET; | 
|  |  | 
|  | sprintf(msg, "resetting %s", | 
|  | reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); | 
|  | hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); | 
|  |  | 
|  | /* | 
|  | * wait to see if any commands will complete before sending reset | 
|  | */ | 
|  | dev->in_reset = true; /* block any new cmds from OS for this device */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | if (atomic_read(&dev->commands_outstanding) > 0) | 
|  | msleep(1000); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* send a reset to the SCSI LUN which the command was sent to */ | 
|  | rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE); | 
|  | if (rc == 0) | 
|  | rc = SUCCESS; | 
|  | else | 
|  | rc = FAILED; | 
|  |  | 
|  | sprintf(msg, "reset %s %s", | 
|  | reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", | 
|  | rc == SUCCESS ? "completed successfully" : "failed"); | 
|  | hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); | 
|  |  | 
|  | return_reset_status: | 
|  | spin_lock_irqsave(&h->reset_lock, flags); | 
|  | h->reset_in_progress = 0; | 
|  | if (dev) | 
|  | dev->in_reset = false; | 
|  | spin_unlock_irqrestore(&h->reset_lock, flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For operations with an associated SCSI command, a command block is allocated | 
|  | * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the | 
|  | * block request tag as an index into a table of entries.  cmd_tagged_free() is | 
|  | * the complement, although cmd_free() may be called instead. | 
|  | */ | 
|  | static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, | 
|  | struct scsi_cmnd *scmd) | 
|  | { | 
|  | int idx = hpsa_get_cmd_index(scmd); | 
|  | struct CommandList *c = h->cmd_pool + idx; | 
|  |  | 
|  | if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { | 
|  | dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", | 
|  | idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); | 
|  | /* The index value comes from the block layer, so if it's out of | 
|  | * bounds, it's probably not our bug. | 
|  | */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (unlikely(!hpsa_is_cmd_idle(c))) { | 
|  | /* | 
|  | * We expect that the SCSI layer will hand us a unique tag | 
|  | * value.  Thus, there should never be a collision here between | 
|  | * two requests...because if the selected command isn't idle | 
|  | * then someone is going to be very disappointed. | 
|  | */ | 
|  | if (idx != h->last_collision_tag) { /* Print once per tag */ | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: tag collision (tag=%d)\n", __func__, idx); | 
|  | if (scmd) | 
|  | scsi_print_command(scmd); | 
|  | h->last_collision_tag = idx; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | atomic_inc(&c->refcount); | 
|  |  | 
|  | hpsa_cmd_partial_init(h, idx, c); | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | /* | 
|  | * Release our reference to the block.  We don't need to do anything | 
|  | * else to free it, because it is accessed by index. | 
|  | */ | 
|  | (void)atomic_dec(&c->refcount); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For operations that cannot sleep, a command block is allocated at init, | 
|  | * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track | 
|  | * which ones are free or in use.  Lock must be held when calling this. | 
|  | * cmd_free() is the complement. | 
|  | * This function never gives up and returns NULL.  If it hangs, | 
|  | * another thread must call cmd_free() to free some tags. | 
|  | */ | 
|  |  | 
|  | static struct CommandList *cmd_alloc(struct ctlr_info *h) | 
|  | { | 
|  | struct CommandList *c; | 
|  | int refcount, i; | 
|  | int offset = 0; | 
|  |  | 
|  | /* | 
|  | * There is some *extremely* small but non-zero chance that that | 
|  | * multiple threads could get in here, and one thread could | 
|  | * be scanning through the list of bits looking for a free | 
|  | * one, but the free ones are always behind him, and other | 
|  | * threads sneak in behind him and eat them before he can | 
|  | * get to them, so that while there is always a free one, a | 
|  | * very unlucky thread might be starved anyway, never able to | 
|  | * beat the other threads.  In reality, this happens so | 
|  | * infrequently as to be indistinguishable from never. | 
|  | * | 
|  | * Note that we start allocating commands before the SCSI host structure | 
|  | * is initialized.  Since the search starts at bit zero, this | 
|  | * all works, since we have at least one command structure available; | 
|  | * however, it means that the structures with the low indexes have to be | 
|  | * reserved for driver-initiated requests, while requests from the block | 
|  | * layer will use the higher indexes. | 
|  | */ | 
|  |  | 
|  | for (;;) { | 
|  | i = find_next_zero_bit(h->cmd_pool_bits, | 
|  | HPSA_NRESERVED_CMDS, | 
|  | offset); | 
|  | if (unlikely(i >= HPSA_NRESERVED_CMDS)) { | 
|  | offset = 0; | 
|  | continue; | 
|  | } | 
|  | c = h->cmd_pool + i; | 
|  | refcount = atomic_inc_return(&c->refcount); | 
|  | if (unlikely(refcount > 1)) { | 
|  | cmd_free(h, c); /* already in use */ | 
|  | offset = (i + 1) % HPSA_NRESERVED_CMDS; | 
|  | continue; | 
|  | } | 
|  | set_bit(i & (BITS_PER_LONG - 1), | 
|  | h->cmd_pool_bits + (i / BITS_PER_LONG)); | 
|  | break; /* it's ours now. */ | 
|  | } | 
|  | hpsa_cmd_partial_init(h, i, c); | 
|  | c->device = NULL; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the complementary operation to cmd_alloc().  Note, however, in some | 
|  | * corner cases it may also be used to free blocks allocated by | 
|  | * cmd_tagged_alloc() in which case the ref-count decrement does the trick and | 
|  | * the clear-bit is harmless. | 
|  | */ | 
|  | static void cmd_free(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | if (atomic_dec_and_test(&c->refcount)) { | 
|  | int i; | 
|  |  | 
|  | i = c - h->cmd_pool; | 
|  | clear_bit(i & (BITS_PER_LONG - 1), | 
|  | h->cmd_pool_bits + (i / BITS_PER_LONG)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  |  | 
|  | static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd, | 
|  | void __user *arg) | 
|  | { | 
|  | IOCTL32_Command_struct __user *arg32 = | 
|  | (IOCTL32_Command_struct __user *) arg; | 
|  | IOCTL_Command_struct arg64; | 
|  | IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); | 
|  | int err; | 
|  | u32 cp; | 
|  |  | 
|  | memset(&arg64, 0, sizeof(arg64)); | 
|  | err = 0; | 
|  | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | 
|  | sizeof(arg64.LUN_info)); | 
|  | err |= copy_from_user(&arg64.Request, &arg32->Request, | 
|  | sizeof(arg64.Request)); | 
|  | err |= copy_from_user(&arg64.error_info, &arg32->error_info, | 
|  | sizeof(arg64.error_info)); | 
|  | err |= get_user(arg64.buf_size, &arg32->buf_size); | 
|  | err |= get_user(cp, &arg32->buf); | 
|  | arg64.buf = compat_ptr(cp); | 
|  | err |= copy_to_user(p, &arg64, sizeof(arg64)); | 
|  |  | 
|  | if (err) | 
|  | return -EFAULT; | 
|  |  | 
|  | err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); | 
|  | if (err) | 
|  | return err; | 
|  | err |= copy_in_user(&arg32->error_info, &p->error_info, | 
|  | sizeof(arg32->error_info)); | 
|  | if (err) | 
|  | return -EFAULT; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, | 
|  | unsigned int cmd, void __user *arg) | 
|  | { | 
|  | BIG_IOCTL32_Command_struct __user *arg32 = | 
|  | (BIG_IOCTL32_Command_struct __user *) arg; | 
|  | BIG_IOCTL_Command_struct arg64; | 
|  | BIG_IOCTL_Command_struct __user *p = | 
|  | compat_alloc_user_space(sizeof(arg64)); | 
|  | int err; | 
|  | u32 cp; | 
|  |  | 
|  | memset(&arg64, 0, sizeof(arg64)); | 
|  | err = 0; | 
|  | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | 
|  | sizeof(arg64.LUN_info)); | 
|  | err |= copy_from_user(&arg64.Request, &arg32->Request, | 
|  | sizeof(arg64.Request)); | 
|  | err |= copy_from_user(&arg64.error_info, &arg32->error_info, | 
|  | sizeof(arg64.error_info)); | 
|  | err |= get_user(arg64.buf_size, &arg32->buf_size); | 
|  | err |= get_user(arg64.malloc_size, &arg32->malloc_size); | 
|  | err |= get_user(cp, &arg32->buf); | 
|  | arg64.buf = compat_ptr(cp); | 
|  | err |= copy_to_user(p, &arg64, sizeof(arg64)); | 
|  |  | 
|  | if (err) | 
|  | return -EFAULT; | 
|  |  | 
|  | err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); | 
|  | if (err) | 
|  | return err; | 
|  | err |= copy_in_user(&arg32->error_info, &p->error_info, | 
|  | sizeof(arg32->error_info)); | 
|  | if (err) | 
|  | return -EFAULT; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd, | 
|  | void __user *arg) | 
|  | { | 
|  | switch (cmd) { | 
|  | case CCISS_GETPCIINFO: | 
|  | case CCISS_GETINTINFO: | 
|  | case CCISS_SETINTINFO: | 
|  | case CCISS_GETNODENAME: | 
|  | case CCISS_SETNODENAME: | 
|  | case CCISS_GETHEARTBEAT: | 
|  | case CCISS_GETBUSTYPES: | 
|  | case CCISS_GETFIRMVER: | 
|  | case CCISS_GETDRIVVER: | 
|  | case CCISS_REVALIDVOLS: | 
|  | case CCISS_DEREGDISK: | 
|  | case CCISS_REGNEWDISK: | 
|  | case CCISS_REGNEWD: | 
|  | case CCISS_RESCANDISK: | 
|  | case CCISS_GETLUNINFO: | 
|  | return hpsa_ioctl(dev, cmd, arg); | 
|  |  | 
|  | case CCISS_PASSTHRU32: | 
|  | return hpsa_ioctl32_passthru(dev, cmd, arg); | 
|  | case CCISS_BIG_PASSTHRU32: | 
|  | return hpsa_ioctl32_big_passthru(dev, cmd, arg); | 
|  |  | 
|  | default: | 
|  | return -ENOIOCTLCMD; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) | 
|  | { | 
|  | struct hpsa_pci_info pciinfo; | 
|  |  | 
|  | if (!argp) | 
|  | return -EINVAL; | 
|  | pciinfo.domain = pci_domain_nr(h->pdev->bus); | 
|  | pciinfo.bus = h->pdev->bus->number; | 
|  | pciinfo.dev_fn = h->pdev->devfn; | 
|  | pciinfo.board_id = h->board_id; | 
|  | if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) | 
|  | { | 
|  | DriverVer_type DriverVer; | 
|  | unsigned char vmaj, vmin, vsubmin; | 
|  | int rc; | 
|  |  | 
|  | rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", | 
|  | &vmaj, &vmin, &vsubmin); | 
|  | if (rc != 3) { | 
|  | dev_info(&h->pdev->dev, "driver version string '%s' " | 
|  | "unrecognized.", HPSA_DRIVER_VERSION); | 
|  | vmaj = 0; | 
|  | vmin = 0; | 
|  | vsubmin = 0; | 
|  | } | 
|  | DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; | 
|  | if (!argp) | 
|  | return -EINVAL; | 
|  | if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) | 
|  | { | 
|  | IOCTL_Command_struct iocommand; | 
|  | struct CommandList *c; | 
|  | char *buff = NULL; | 
|  | u64 temp64; | 
|  | int rc = 0; | 
|  |  | 
|  | if (!argp) | 
|  | return -EINVAL; | 
|  | if (!capable(CAP_SYS_RAWIO)) | 
|  | return -EPERM; | 
|  | if (copy_from_user(&iocommand, argp, sizeof(iocommand))) | 
|  | return -EFAULT; | 
|  | if ((iocommand.buf_size < 1) && | 
|  | (iocommand.Request.Type.Direction != XFER_NONE)) { | 
|  | return -EINVAL; | 
|  | } | 
|  | if (iocommand.buf_size > 0) { | 
|  | buff = kmalloc(iocommand.buf_size, GFP_KERNEL); | 
|  | if (buff == NULL) | 
|  | return -ENOMEM; | 
|  | if (iocommand.Request.Type.Direction & XFER_WRITE) { | 
|  | /* Copy the data into the buffer we created */ | 
|  | if (copy_from_user(buff, iocommand.buf, | 
|  | iocommand.buf_size)) { | 
|  | rc = -EFAULT; | 
|  | goto out_kfree; | 
|  | } | 
|  | } else { | 
|  | memset(buff, 0, iocommand.buf_size); | 
|  | } | 
|  | } | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | /* Fill in the command type */ | 
|  | c->cmd_type = CMD_IOCTL_PEND; | 
|  | c->scsi_cmd = SCSI_CMD_BUSY; | 
|  | /* Fill in Command Header */ | 
|  | c->Header.ReplyQueue = 0; /* unused in simple mode */ | 
|  | if (iocommand.buf_size > 0) {	/* buffer to fill */ | 
|  | c->Header.SGList = 1; | 
|  | c->Header.SGTotal = cpu_to_le16(1); | 
|  | } else	{ /* no buffers to fill */ | 
|  | c->Header.SGList = 0; | 
|  | c->Header.SGTotal = cpu_to_le16(0); | 
|  | } | 
|  | memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); | 
|  |  | 
|  | /* Fill in Request block */ | 
|  | memcpy(&c->Request, &iocommand.Request, | 
|  | sizeof(c->Request)); | 
|  |  | 
|  | /* Fill in the scatter gather information */ | 
|  | if (iocommand.buf_size > 0) { | 
|  | temp64 = dma_map_single(&h->pdev->dev, buff, | 
|  | iocommand.buf_size, DMA_BIDIRECTIONAL); | 
|  | if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { | 
|  | c->SG[0].Addr = cpu_to_le64(0); | 
|  | c->SG[0].Len = cpu_to_le32(0); | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | c->SG[0].Addr = cpu_to_le64(temp64); | 
|  | c->SG[0].Len = cpu_to_le32(iocommand.buf_size); | 
|  | c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ | 
|  | } | 
|  | rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, | 
|  | NO_TIMEOUT); | 
|  | if (iocommand.buf_size > 0) | 
|  | hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL); | 
|  | check_ioctl_unit_attention(h, c); | 
|  | if (rc) { | 
|  | rc = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Copy the error information out */ | 
|  | memcpy(&iocommand.error_info, c->err_info, | 
|  | sizeof(iocommand.error_info)); | 
|  | if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { | 
|  | rc = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | if ((iocommand.Request.Type.Direction & XFER_READ) && | 
|  | iocommand.buf_size > 0) { | 
|  | /* Copy the data out of the buffer we created */ | 
|  | if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { | 
|  | rc = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | out_kfree: | 
|  | kfree(buff); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) | 
|  | { | 
|  | BIG_IOCTL_Command_struct *ioc; | 
|  | struct CommandList *c; | 
|  | unsigned char **buff = NULL; | 
|  | int *buff_size = NULL; | 
|  | u64 temp64; | 
|  | BYTE sg_used = 0; | 
|  | int status = 0; | 
|  | u32 left; | 
|  | u32 sz; | 
|  | BYTE __user *data_ptr; | 
|  |  | 
|  | if (!argp) | 
|  | return -EINVAL; | 
|  | if (!capable(CAP_SYS_RAWIO)) | 
|  | return -EPERM; | 
|  | ioc = vmemdup_user(argp, sizeof(*ioc)); | 
|  | if (IS_ERR(ioc)) { | 
|  | status = PTR_ERR(ioc); | 
|  | goto cleanup1; | 
|  | } | 
|  | if ((ioc->buf_size < 1) && | 
|  | (ioc->Request.Type.Direction != XFER_NONE)) { | 
|  | status = -EINVAL; | 
|  | goto cleanup1; | 
|  | } | 
|  | /* Check kmalloc limits  using all SGs */ | 
|  | if (ioc->malloc_size > MAX_KMALLOC_SIZE) { | 
|  | status = -EINVAL; | 
|  | goto cleanup1; | 
|  | } | 
|  | if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { | 
|  | status = -EINVAL; | 
|  | goto cleanup1; | 
|  | } | 
|  | buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL); | 
|  | if (!buff) { | 
|  | status = -ENOMEM; | 
|  | goto cleanup1; | 
|  | } | 
|  | buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL); | 
|  | if (!buff_size) { | 
|  | status = -ENOMEM; | 
|  | goto cleanup1; | 
|  | } | 
|  | left = ioc->buf_size; | 
|  | data_ptr = ioc->buf; | 
|  | while (left) { | 
|  | sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; | 
|  | buff_size[sg_used] = sz; | 
|  | buff[sg_used] = kmalloc(sz, GFP_KERNEL); | 
|  | if (buff[sg_used] == NULL) { | 
|  | status = -ENOMEM; | 
|  | goto cleanup1; | 
|  | } | 
|  | if (ioc->Request.Type.Direction & XFER_WRITE) { | 
|  | if (copy_from_user(buff[sg_used], data_ptr, sz)) { | 
|  | status = -EFAULT; | 
|  | goto cleanup1; | 
|  | } | 
|  | } else | 
|  | memset(buff[sg_used], 0, sz); | 
|  | left -= sz; | 
|  | data_ptr += sz; | 
|  | sg_used++; | 
|  | } | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | c->cmd_type = CMD_IOCTL_PEND; | 
|  | c->scsi_cmd = SCSI_CMD_BUSY; | 
|  | c->Header.ReplyQueue = 0; | 
|  | c->Header.SGList = (u8) sg_used; | 
|  | c->Header.SGTotal = cpu_to_le16(sg_used); | 
|  | memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); | 
|  | memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); | 
|  | if (ioc->buf_size > 0) { | 
|  | int i; | 
|  | for (i = 0; i < sg_used; i++) { | 
|  | temp64 = dma_map_single(&h->pdev->dev, buff[i], | 
|  | buff_size[i], DMA_BIDIRECTIONAL); | 
|  | if (dma_mapping_error(&h->pdev->dev, | 
|  | (dma_addr_t) temp64)) { | 
|  | c->SG[i].Addr = cpu_to_le64(0); | 
|  | c->SG[i].Len = cpu_to_le32(0); | 
|  | hpsa_pci_unmap(h->pdev, c, i, | 
|  | DMA_BIDIRECTIONAL); | 
|  | status = -ENOMEM; | 
|  | goto cleanup0; | 
|  | } | 
|  | c->SG[i].Addr = cpu_to_le64(temp64); | 
|  | c->SG[i].Len = cpu_to_le32(buff_size[i]); | 
|  | c->SG[i].Ext = cpu_to_le32(0); | 
|  | } | 
|  | c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); | 
|  | } | 
|  | status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, | 
|  | NO_TIMEOUT); | 
|  | if (sg_used) | 
|  | hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL); | 
|  | check_ioctl_unit_attention(h, c); | 
|  | if (status) { | 
|  | status = -EIO; | 
|  | goto cleanup0; | 
|  | } | 
|  |  | 
|  | /* Copy the error information out */ | 
|  | memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); | 
|  | if (copy_to_user(argp, ioc, sizeof(*ioc))) { | 
|  | status = -EFAULT; | 
|  | goto cleanup0; | 
|  | } | 
|  | if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { | 
|  | int i; | 
|  |  | 
|  | /* Copy the data out of the buffer we created */ | 
|  | BYTE __user *ptr = ioc->buf; | 
|  | for (i = 0; i < sg_used; i++) { | 
|  | if (copy_to_user(ptr, buff[i], buff_size[i])) { | 
|  | status = -EFAULT; | 
|  | goto cleanup0; | 
|  | } | 
|  | ptr += buff_size[i]; | 
|  | } | 
|  | } | 
|  | status = 0; | 
|  | cleanup0: | 
|  | cmd_free(h, c); | 
|  | cleanup1: | 
|  | if (buff) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sg_used; i++) | 
|  | kfree(buff[i]); | 
|  | kfree(buff); | 
|  | } | 
|  | kfree(buff_size); | 
|  | kvfree(ioc); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void check_ioctl_unit_attention(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | 
|  | c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) | 
|  | (void) check_for_unit_attention(h, c); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ioctl | 
|  | */ | 
|  | static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd, | 
|  | void __user *arg) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | void __user *argp = (void __user *)arg; | 
|  | int rc; | 
|  |  | 
|  | h = sdev_to_hba(dev); | 
|  |  | 
|  | switch (cmd) { | 
|  | case CCISS_DEREGDISK: | 
|  | case CCISS_REGNEWDISK: | 
|  | case CCISS_REGNEWD: | 
|  | hpsa_scan_start(h->scsi_host); | 
|  | return 0; | 
|  | case CCISS_GETPCIINFO: | 
|  | return hpsa_getpciinfo_ioctl(h, argp); | 
|  | case CCISS_GETDRIVVER: | 
|  | return hpsa_getdrivver_ioctl(h, argp); | 
|  | case CCISS_PASSTHRU: | 
|  | if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) | 
|  | return -EAGAIN; | 
|  | rc = hpsa_passthru_ioctl(h, argp); | 
|  | atomic_inc(&h->passthru_cmds_avail); | 
|  | return rc; | 
|  | case CCISS_BIG_PASSTHRU: | 
|  | if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) | 
|  | return -EAGAIN; | 
|  | rc = hpsa_big_passthru_ioctl(h, argp); | 
|  | atomic_inc(&h->passthru_cmds_avail); | 
|  | return rc; | 
|  | default: | 
|  | return -ENOTTY; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type) | 
|  | { | 
|  | struct CommandList *c; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | /* fill_cmd can't fail here, no data buffer to map */ | 
|  | (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, | 
|  | RAID_CTLR_LUNID, TYPE_MSG); | 
|  | c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ | 
|  | c->waiting = NULL; | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | /* Don't wait for completion, the reset won't complete.  Don't free | 
|  | * the command either.  This is the last command we will send before | 
|  | * re-initializing everything, so it doesn't matter and won't leak. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, | 
|  | void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, | 
|  | int cmd_type) | 
|  | { | 
|  | enum dma_data_direction dir = DMA_NONE; | 
|  |  | 
|  | c->cmd_type = CMD_IOCTL_PEND; | 
|  | c->scsi_cmd = SCSI_CMD_BUSY; | 
|  | c->Header.ReplyQueue = 0; | 
|  | if (buff != NULL && size > 0) { | 
|  | c->Header.SGList = 1; | 
|  | c->Header.SGTotal = cpu_to_le16(1); | 
|  | } else { | 
|  | c->Header.SGList = 0; | 
|  | c->Header.SGTotal = cpu_to_le16(0); | 
|  | } | 
|  | memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); | 
|  |  | 
|  | if (cmd_type == TYPE_CMD) { | 
|  | switch (cmd) { | 
|  | case HPSA_INQUIRY: | 
|  | /* are we trying to read a vital product page */ | 
|  | if (page_code & VPD_PAGE) { | 
|  | c->Request.CDB[1] = 0x01; | 
|  | c->Request.CDB[2] = (page_code & 0xff); | 
|  | } | 
|  | c->Request.CDBLen = 6; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = HPSA_INQUIRY; | 
|  | c->Request.CDB[4] = size & 0xFF; | 
|  | break; | 
|  | case RECEIVE_DIAGNOSTIC: | 
|  | c->Request.CDBLen = 6; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = cmd; | 
|  | c->Request.CDB[1] = 1; | 
|  | c->Request.CDB[2] = 1; | 
|  | c->Request.CDB[3] = (size >> 8) & 0xFF; | 
|  | c->Request.CDB[4] = size & 0xFF; | 
|  | break; | 
|  | case HPSA_REPORT_LOG: | 
|  | case HPSA_REPORT_PHYS: | 
|  | /* Talking to controller so It's a physical command | 
|  | mode = 00 target = 0.  Nothing to write. | 
|  | */ | 
|  | c->Request.CDBLen = 12; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = cmd; | 
|  | c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0xFF; | 
|  | c->Request.CDB[9] = size & 0xFF; | 
|  | break; | 
|  | case BMIC_SENSE_DIAG_OPTIONS: | 
|  | c->Request.CDBLen = 16; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | /* Spec says this should be BMIC_WRITE */ | 
|  | c->Request.CDB[0] = BMIC_READ; | 
|  | c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; | 
|  | break; | 
|  | case BMIC_SET_DIAG_OPTIONS: | 
|  | c->Request.CDBLen = 16; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, | 
|  | ATTR_SIMPLE, XFER_WRITE); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_WRITE; | 
|  | c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; | 
|  | break; | 
|  | case HPSA_CACHE_FLUSH: | 
|  | c->Request.CDBLen = 12; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, | 
|  | ATTR_SIMPLE, XFER_WRITE); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_WRITE; | 
|  | c->Request.CDB[6] = BMIC_CACHE_FLUSH; | 
|  | c->Request.CDB[7] = (size >> 8) & 0xFF; | 
|  | c->Request.CDB[8] = size & 0xFF; | 
|  | break; | 
|  | case TEST_UNIT_READY: | 
|  | c->Request.CDBLen = 6; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); | 
|  | c->Request.Timeout = 0; | 
|  | break; | 
|  | case HPSA_GET_RAID_MAP: | 
|  | c->Request.CDBLen = 12; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = HPSA_CISS_READ; | 
|  | c->Request.CDB[1] = cmd; | 
|  | c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0xFF; | 
|  | c->Request.CDB[9] = size & 0xFF; | 
|  | break; | 
|  | case BMIC_SENSE_CONTROLLER_PARAMETERS: | 
|  | c->Request.CDBLen = 10; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_READ; | 
|  | c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0xFF; | 
|  | break; | 
|  | case BMIC_IDENTIFY_PHYSICAL_DEVICE: | 
|  | c->Request.CDBLen = 10; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_READ; | 
|  | c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0XFF; | 
|  | break; | 
|  | case BMIC_SENSE_SUBSYSTEM_INFORMATION: | 
|  | c->Request.CDBLen = 10; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_READ; | 
|  | c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0XFF; | 
|  | break; | 
|  | case BMIC_SENSE_STORAGE_BOX_PARAMS: | 
|  | c->Request.CDBLen = 10; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_READ; | 
|  | c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0XFF; | 
|  | break; | 
|  | case BMIC_IDENTIFY_CONTROLLER: | 
|  | c->Request.CDBLen = 10; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_READ; | 
|  | c->Request.CDB[1] = 0; | 
|  | c->Request.CDB[2] = 0; | 
|  | c->Request.CDB[3] = 0; | 
|  | c->Request.CDB[4] = 0; | 
|  | c->Request.CDB[5] = 0; | 
|  | c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0XFF; | 
|  | c->Request.CDB[9] = 0; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); | 
|  | BUG(); | 
|  | } | 
|  | } else if (cmd_type == TYPE_MSG) { | 
|  | switch (cmd) { | 
|  |  | 
|  | case  HPSA_PHYS_TARGET_RESET: | 
|  | c->Request.CDBLen = 16; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); | 
|  | c->Request.Timeout = 0; /* Don't time out */ | 
|  | memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); | 
|  | c->Request.CDB[0] = HPSA_RESET; | 
|  | c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; | 
|  | /* Physical target reset needs no control bytes 4-7*/ | 
|  | c->Request.CDB[4] = 0x00; | 
|  | c->Request.CDB[5] = 0x00; | 
|  | c->Request.CDB[6] = 0x00; | 
|  | c->Request.CDB[7] = 0x00; | 
|  | break; | 
|  | case  HPSA_DEVICE_RESET_MSG: | 
|  | c->Request.CDBLen = 16; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); | 
|  | c->Request.Timeout = 0; /* Don't time out */ | 
|  | memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); | 
|  | c->Request.CDB[0] =  cmd; | 
|  | c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; | 
|  | /* If bytes 4-7 are zero, it means reset the */ | 
|  | /* LunID device */ | 
|  | c->Request.CDB[4] = 0x00; | 
|  | c->Request.CDB[5] = 0x00; | 
|  | c->Request.CDB[6] = 0x00; | 
|  | c->Request.CDB[7] = 0x00; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, "unknown message type %d\n", | 
|  | cmd); | 
|  | BUG(); | 
|  | } | 
|  | } else { | 
|  | dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | switch (GET_DIR(c->Request.type_attr_dir)) { | 
|  | case XFER_READ: | 
|  | dir = DMA_FROM_DEVICE; | 
|  | break; | 
|  | case XFER_WRITE: | 
|  | dir = DMA_TO_DEVICE; | 
|  | break; | 
|  | case XFER_NONE: | 
|  | dir = DMA_NONE; | 
|  | break; | 
|  | default: | 
|  | dir = DMA_BIDIRECTIONAL; | 
|  | } | 
|  | if (hpsa_map_one(h->pdev, c, buff, size, dir)) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map (physical) PCI mem into (virtual) kernel space | 
|  | */ | 
|  | static void __iomem *remap_pci_mem(ulong base, ulong size) | 
|  | { | 
|  | ulong page_base = ((ulong) base) & PAGE_MASK; | 
|  | ulong page_offs = ((ulong) base) - page_base; | 
|  | void __iomem *page_remapped = ioremap(page_base, | 
|  | page_offs + size); | 
|  |  | 
|  | return page_remapped ? (page_remapped + page_offs) : NULL; | 
|  | } | 
|  |  | 
|  | static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) | 
|  | { | 
|  | return h->access.command_completed(h, q); | 
|  | } | 
|  |  | 
|  | static inline bool interrupt_pending(struct ctlr_info *h) | 
|  | { | 
|  | return h->access.intr_pending(h); | 
|  | } | 
|  |  | 
|  | static inline long interrupt_not_for_us(struct ctlr_info *h) | 
|  | { | 
|  | return (h->access.intr_pending(h) == 0) || | 
|  | (h->interrupts_enabled == 0); | 
|  | } | 
|  |  | 
|  | static inline int bad_tag(struct ctlr_info *h, u32 tag_index, | 
|  | u32 raw_tag) | 
|  | { | 
|  | if (unlikely(tag_index >= h->nr_cmds)) { | 
|  | dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void finish_cmd(struct CommandList *c) | 
|  | { | 
|  | dial_up_lockup_detection_on_fw_flash_complete(c->h, c); | 
|  | if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI | 
|  | || c->cmd_type == CMD_IOACCEL2)) | 
|  | complete_scsi_command(c); | 
|  | else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) | 
|  | complete(c->waiting); | 
|  | } | 
|  |  | 
|  | /* process completion of an indexed ("direct lookup") command */ | 
|  | static inline void process_indexed_cmd(struct ctlr_info *h, | 
|  | u32 raw_tag) | 
|  | { | 
|  | u32 tag_index; | 
|  | struct CommandList *c; | 
|  |  | 
|  | tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; | 
|  | if (!bad_tag(h, tag_index, raw_tag)) { | 
|  | c = h->cmd_pool + tag_index; | 
|  | finish_cmd(c); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Some controllers, like p400, will give us one interrupt | 
|  | * after a soft reset, even if we turned interrupts off. | 
|  | * Only need to check for this in the hpsa_xxx_discard_completions | 
|  | * functions. | 
|  | */ | 
|  | static int ignore_bogus_interrupt(struct ctlr_info *h) | 
|  | { | 
|  | if (likely(!reset_devices)) | 
|  | return 0; | 
|  |  | 
|  | if (likely(h->interrupts_enabled)) | 
|  | return 0; | 
|  |  | 
|  | dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " | 
|  | "(known firmware bug.)  Ignoring.\n"); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert &h->q[x] (passed to interrupt handlers) back to h. | 
|  | * Relies on (h-q[x] == x) being true for x such that | 
|  | * 0 <= x < MAX_REPLY_QUEUES. | 
|  | */ | 
|  | static struct ctlr_info *queue_to_hba(u8 *queue) | 
|  | { | 
|  | return container_of((queue - *queue), struct ctlr_info, q[0]); | 
|  | } | 
|  |  | 
|  | static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) | 
|  | { | 
|  | struct ctlr_info *h = queue_to_hba(queue); | 
|  | u8 q = *(u8 *) queue; | 
|  | u32 raw_tag; | 
|  |  | 
|  | if (ignore_bogus_interrupt(h)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | if (interrupt_not_for_us(h)) | 
|  | return IRQ_NONE; | 
|  | h->last_intr_timestamp = get_jiffies_64(); | 
|  | while (interrupt_pending(h)) { | 
|  | raw_tag = get_next_completion(h, q); | 
|  | while (raw_tag != FIFO_EMPTY) | 
|  | raw_tag = next_command(h, q); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) | 
|  | { | 
|  | struct ctlr_info *h = queue_to_hba(queue); | 
|  | u32 raw_tag; | 
|  | u8 q = *(u8 *) queue; | 
|  |  | 
|  | if (ignore_bogus_interrupt(h)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | h->last_intr_timestamp = get_jiffies_64(); | 
|  | raw_tag = get_next_completion(h, q); | 
|  | while (raw_tag != FIFO_EMPTY) | 
|  | raw_tag = next_command(h, q); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) | 
|  | { | 
|  | struct ctlr_info *h = queue_to_hba((u8 *) queue); | 
|  | u32 raw_tag; | 
|  | u8 q = *(u8 *) queue; | 
|  |  | 
|  | if (interrupt_not_for_us(h)) | 
|  | return IRQ_NONE; | 
|  | h->last_intr_timestamp = get_jiffies_64(); | 
|  | while (interrupt_pending(h)) { | 
|  | raw_tag = get_next_completion(h, q); | 
|  | while (raw_tag != FIFO_EMPTY) { | 
|  | process_indexed_cmd(h, raw_tag); | 
|  | raw_tag = next_command(h, q); | 
|  | } | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) | 
|  | { | 
|  | struct ctlr_info *h = queue_to_hba(queue); | 
|  | u32 raw_tag; | 
|  | u8 q = *(u8 *) queue; | 
|  |  | 
|  | h->last_intr_timestamp = get_jiffies_64(); | 
|  | raw_tag = get_next_completion(h, q); | 
|  | while (raw_tag != FIFO_EMPTY) { | 
|  | process_indexed_cmd(h, raw_tag); | 
|  | raw_tag = next_command(h, q); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Send a message CDB to the firmware. Careful, this only works | 
|  | * in simple mode, not performant mode due to the tag lookup. | 
|  | * We only ever use this immediately after a controller reset. | 
|  | */ | 
|  | static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, | 
|  | unsigned char type) | 
|  | { | 
|  | struct Command { | 
|  | struct CommandListHeader CommandHeader; | 
|  | struct RequestBlock Request; | 
|  | struct ErrDescriptor ErrorDescriptor; | 
|  | }; | 
|  | struct Command *cmd; | 
|  | static const size_t cmd_sz = sizeof(*cmd) + | 
|  | sizeof(cmd->ErrorDescriptor); | 
|  | dma_addr_t paddr64; | 
|  | __le32 paddr32; | 
|  | u32 tag; | 
|  | void __iomem *vaddr; | 
|  | int i, err; | 
|  |  | 
|  | vaddr = pci_ioremap_bar(pdev, 0); | 
|  | if (vaddr == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* The Inbound Post Queue only accepts 32-bit physical addresses for the | 
|  | * CCISS commands, so they must be allocated from the lower 4GiB of | 
|  | * memory. | 
|  | */ | 
|  | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); | 
|  | if (err) { | 
|  | iounmap(vaddr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL); | 
|  | if (cmd == NULL) { | 
|  | iounmap(vaddr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* This must fit, because of the 32-bit consistent DMA mask.  Also, | 
|  | * although there's no guarantee, we assume that the address is at | 
|  | * least 4-byte aligned (most likely, it's page-aligned). | 
|  | */ | 
|  | paddr32 = cpu_to_le32(paddr64); | 
|  |  | 
|  | cmd->CommandHeader.ReplyQueue = 0; | 
|  | cmd->CommandHeader.SGList = 0; | 
|  | cmd->CommandHeader.SGTotal = cpu_to_le16(0); | 
|  | cmd->CommandHeader.tag = cpu_to_le64(paddr64); | 
|  | memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); | 
|  |  | 
|  | cmd->Request.CDBLen = 16; | 
|  | cmd->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); | 
|  | cmd->Request.Timeout = 0; /* Don't time out */ | 
|  | cmd->Request.CDB[0] = opcode; | 
|  | cmd->Request.CDB[1] = type; | 
|  | memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ | 
|  | cmd->ErrorDescriptor.Addr = | 
|  | cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); | 
|  | cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); | 
|  |  | 
|  | writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); | 
|  |  | 
|  | for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { | 
|  | tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); | 
|  | if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) | 
|  | break; | 
|  | msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); | 
|  | } | 
|  |  | 
|  | iounmap(vaddr); | 
|  |  | 
|  | /* we leak the DMA buffer here ... no choice since the controller could | 
|  | *  still complete the command. | 
|  | */ | 
|  | if (i == HPSA_MSG_SEND_RETRY_LIMIT) { | 
|  | dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", | 
|  | opcode, type); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64); | 
|  |  | 
|  | if (tag & HPSA_ERROR_BIT) { | 
|  | dev_err(&pdev->dev, "controller message %02x:%02x failed\n", | 
|  | opcode, type); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", | 
|  | opcode, type); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define hpsa_noop(p) hpsa_message(p, 3, 0) | 
|  |  | 
|  | static int hpsa_controller_hard_reset(struct pci_dev *pdev, | 
|  | void __iomem *vaddr, u32 use_doorbell) | 
|  | { | 
|  |  | 
|  | if (use_doorbell) { | 
|  | /* For everything after the P600, the PCI power state method | 
|  | * of resetting the controller doesn't work, so we have this | 
|  | * other way using the doorbell register. | 
|  | */ | 
|  | dev_info(&pdev->dev, "using doorbell to reset controller\n"); | 
|  | writel(use_doorbell, vaddr + SA5_DOORBELL); | 
|  |  | 
|  | /* PMC hardware guys tell us we need a 10 second delay after | 
|  | * doorbell reset and before any attempt to talk to the board | 
|  | * at all to ensure that this actually works and doesn't fall | 
|  | * over in some weird corner cases. | 
|  | */ | 
|  | msleep(10000); | 
|  | } else { /* Try to do it the PCI power state way */ | 
|  |  | 
|  | /* Quoting from the Open CISS Specification: "The Power | 
|  | * Management Control/Status Register (CSR) controls the power | 
|  | * state of the device.  The normal operating state is D0, | 
|  | * CSR=00h.  The software off state is D3, CSR=03h.  To reset | 
|  | * the controller, place the interface device in D3 then to D0, | 
|  | * this causes a secondary PCI reset which will reset the | 
|  | * controller." */ | 
|  |  | 
|  | int rc = 0; | 
|  |  | 
|  | dev_info(&pdev->dev, "using PCI PM to reset controller\n"); | 
|  |  | 
|  | /* enter the D3hot power management state */ | 
|  | rc = pci_set_power_state(pdev, PCI_D3hot); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | msleep(500); | 
|  |  | 
|  | /* enter the D0 power management state */ | 
|  | rc = pci_set_power_state(pdev, PCI_D0); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* | 
|  | * The P600 requires a small delay when changing states. | 
|  | * Otherwise we may think the board did not reset and we bail. | 
|  | * This for kdump only and is particular to the P600. | 
|  | */ | 
|  | msleep(500); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void init_driver_version(char *driver_version, int len) | 
|  | { | 
|  | memset(driver_version, 0, len); | 
|  | strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); | 
|  | } | 
|  |  | 
|  | static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) | 
|  | { | 
|  | char *driver_version; | 
|  | int i, size = sizeof(cfgtable->driver_version); | 
|  |  | 
|  | driver_version = kmalloc(size, GFP_KERNEL); | 
|  | if (!driver_version) | 
|  | return -ENOMEM; | 
|  |  | 
|  | init_driver_version(driver_version, size); | 
|  | for (i = 0; i < size; i++) | 
|  | writeb(driver_version[i], &cfgtable->driver_version[i]); | 
|  | kfree(driver_version); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, | 
|  | unsigned char *driver_ver) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sizeof(cfgtable->driver_version); i++) | 
|  | driver_ver[i] = readb(&cfgtable->driver_version[i]); | 
|  | } | 
|  |  | 
|  | static int controller_reset_failed(struct CfgTable __iomem *cfgtable) | 
|  | { | 
|  |  | 
|  | char *driver_ver, *old_driver_ver; | 
|  | int rc, size = sizeof(cfgtable->driver_version); | 
|  |  | 
|  | old_driver_ver = kmalloc_array(2, size, GFP_KERNEL); | 
|  | if (!old_driver_ver) | 
|  | return -ENOMEM; | 
|  | driver_ver = old_driver_ver + size; | 
|  |  | 
|  | /* After a reset, the 32 bytes of "driver version" in the cfgtable | 
|  | * should have been changed, otherwise we know the reset failed. | 
|  | */ | 
|  | init_driver_version(old_driver_ver, size); | 
|  | read_driver_ver_from_cfgtable(cfgtable, driver_ver); | 
|  | rc = !memcmp(driver_ver, old_driver_ver, size); | 
|  | kfree(old_driver_ver); | 
|  | return rc; | 
|  | } | 
|  | /* This does a hard reset of the controller using PCI power management | 
|  | * states or the using the doorbell register. | 
|  | */ | 
|  | static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) | 
|  | { | 
|  | u64 cfg_offset; | 
|  | u32 cfg_base_addr; | 
|  | u64 cfg_base_addr_index; | 
|  | void __iomem *vaddr; | 
|  | unsigned long paddr; | 
|  | u32 misc_fw_support; | 
|  | int rc; | 
|  | struct CfgTable __iomem *cfgtable; | 
|  | u32 use_doorbell; | 
|  | u16 command_register; | 
|  |  | 
|  | /* For controllers as old as the P600, this is very nearly | 
|  | * the same thing as | 
|  | * | 
|  | * pci_save_state(pci_dev); | 
|  | * pci_set_power_state(pci_dev, PCI_D3hot); | 
|  | * pci_set_power_state(pci_dev, PCI_D0); | 
|  | * pci_restore_state(pci_dev); | 
|  | * | 
|  | * For controllers newer than the P600, the pci power state | 
|  | * method of resetting doesn't work so we have another way | 
|  | * using the doorbell register. | 
|  | */ | 
|  |  | 
|  | if (!ctlr_is_resettable(board_id)) { | 
|  | dev_warn(&pdev->dev, "Controller not resettable\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* if controller is soft- but not hard resettable... */ | 
|  | if (!ctlr_is_hard_resettable(board_id)) | 
|  | return -ENOTSUPP; /* try soft reset later. */ | 
|  |  | 
|  | /* Save the PCI command register */ | 
|  | pci_read_config_word(pdev, 4, &command_register); | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | /* find the first memory BAR, so we can find the cfg table */ | 
|  | rc = hpsa_pci_find_memory_BAR(pdev, &paddr); | 
|  | if (rc) | 
|  | return rc; | 
|  | vaddr = remap_pci_mem(paddr, 0x250); | 
|  | if (!vaddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* find cfgtable in order to check if reset via doorbell is supported */ | 
|  | rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, | 
|  | &cfg_base_addr_index, &cfg_offset); | 
|  | if (rc) | 
|  | goto unmap_vaddr; | 
|  | cfgtable = remap_pci_mem(pci_resource_start(pdev, | 
|  | cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); | 
|  | if (!cfgtable) { | 
|  | rc = -ENOMEM; | 
|  | goto unmap_vaddr; | 
|  | } | 
|  | rc = write_driver_ver_to_cfgtable(cfgtable); | 
|  | if (rc) | 
|  | goto unmap_cfgtable; | 
|  |  | 
|  | /* If reset via doorbell register is supported, use that. | 
|  | * There are two such methods.  Favor the newest method. | 
|  | */ | 
|  | misc_fw_support = readl(&cfgtable->misc_fw_support); | 
|  | use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; | 
|  | if (use_doorbell) { | 
|  | use_doorbell = DOORBELL_CTLR_RESET2; | 
|  | } else { | 
|  | use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; | 
|  | if (use_doorbell) { | 
|  | dev_warn(&pdev->dev, | 
|  | "Soft reset not supported. Firmware update is required.\n"); | 
|  | rc = -ENOTSUPP; /* try soft reset */ | 
|  | goto unmap_cfgtable; | 
|  | } | 
|  | } | 
|  |  | 
|  | rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); | 
|  | if (rc) | 
|  | goto unmap_cfgtable; | 
|  |  | 
|  | pci_restore_state(pdev); | 
|  | pci_write_config_word(pdev, 4, command_register); | 
|  |  | 
|  | /* Some devices (notably the HP Smart Array 5i Controller) | 
|  | need a little pause here */ | 
|  | msleep(HPSA_POST_RESET_PAUSE_MSECS); | 
|  |  | 
|  | rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); | 
|  | if (rc) { | 
|  | dev_warn(&pdev->dev, | 
|  | "Failed waiting for board to become ready after hard reset\n"); | 
|  | goto unmap_cfgtable; | 
|  | } | 
|  |  | 
|  | rc = controller_reset_failed(vaddr); | 
|  | if (rc < 0) | 
|  | goto unmap_cfgtable; | 
|  | if (rc) { | 
|  | dev_warn(&pdev->dev, "Unable to successfully reset " | 
|  | "controller. Will try soft reset.\n"); | 
|  | rc = -ENOTSUPP; | 
|  | } else { | 
|  | dev_info(&pdev->dev, "board ready after hard reset.\n"); | 
|  | } | 
|  |  | 
|  | unmap_cfgtable: | 
|  | iounmap(cfgtable); | 
|  |  | 
|  | unmap_vaddr: | 
|  | iounmap(vaddr); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  We cannot read the structure directly, for portability we must use | 
|  | *   the io functions. | 
|  | *   This is for debug only. | 
|  | */ | 
|  | static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) | 
|  | { | 
|  | #ifdef HPSA_DEBUG | 
|  | int i; | 
|  | char temp_name[17]; | 
|  |  | 
|  | dev_info(dev, "Controller Configuration information\n"); | 
|  | dev_info(dev, "------------------------------------\n"); | 
|  | for (i = 0; i < 4; i++) | 
|  | temp_name[i] = readb(&(tb->Signature[i])); | 
|  | temp_name[4] = '\0'; | 
|  | dev_info(dev, "   Signature = %s\n", temp_name); | 
|  | dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence))); | 
|  | dev_info(dev, "   Transport methods supported = 0x%x\n", | 
|  | readl(&(tb->TransportSupport))); | 
|  | dev_info(dev, "   Transport methods active = 0x%x\n", | 
|  | readl(&(tb->TransportActive))); | 
|  | dev_info(dev, "   Requested transport Method = 0x%x\n", | 
|  | readl(&(tb->HostWrite.TransportRequest))); | 
|  | dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n", | 
|  | readl(&(tb->HostWrite.CoalIntDelay))); | 
|  | dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n", | 
|  | readl(&(tb->HostWrite.CoalIntCount))); | 
|  | dev_info(dev, "   Max outstanding commands = %d\n", | 
|  | readl(&(tb->CmdsOutMax))); | 
|  | dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes))); | 
|  | for (i = 0; i < 16; i++) | 
|  | temp_name[i] = readb(&(tb->ServerName[i])); | 
|  | temp_name[16] = '\0'; | 
|  | dev_info(dev, "   Server Name = %s\n", temp_name); | 
|  | dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n", | 
|  | readl(&(tb->HeartBeat))); | 
|  | #endif				/* HPSA_DEBUG */ | 
|  | } | 
|  |  | 
|  | static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) | 
|  | { | 
|  | int i, offset, mem_type, bar_type; | 
|  |  | 
|  | if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */ | 
|  | return 0; | 
|  | offset = 0; | 
|  | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | 
|  | bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; | 
|  | if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) | 
|  | offset += 4; | 
|  | else { | 
|  | mem_type = pci_resource_flags(pdev, i) & | 
|  | PCI_BASE_ADDRESS_MEM_TYPE_MASK; | 
|  | switch (mem_type) { | 
|  | case PCI_BASE_ADDRESS_MEM_TYPE_32: | 
|  | case PCI_BASE_ADDRESS_MEM_TYPE_1M: | 
|  | offset += 4;	/* 32 bit */ | 
|  | break; | 
|  | case PCI_BASE_ADDRESS_MEM_TYPE_64: | 
|  | offset += 8; | 
|  | break; | 
|  | default:	/* reserved in PCI 2.2 */ | 
|  | dev_warn(&pdev->dev, | 
|  | "base address is invalid\n"); | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) | 
|  | return i + 1; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void hpsa_disable_interrupt_mode(struct ctlr_info *h) | 
|  | { | 
|  | pci_free_irq_vectors(h->pdev); | 
|  | h->msix_vectors = 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_setup_reply_map(struct ctlr_info *h) | 
|  | { | 
|  | const struct cpumask *mask; | 
|  | unsigned int queue, cpu; | 
|  |  | 
|  | for (queue = 0; queue < h->msix_vectors; queue++) { | 
|  | mask = pci_irq_get_affinity(h->pdev, queue); | 
|  | if (!mask) | 
|  | goto fallback; | 
|  |  | 
|  | for_each_cpu(cpu, mask) | 
|  | h->reply_map[cpu] = queue; | 
|  | } | 
|  | return; | 
|  |  | 
|  | fallback: | 
|  | for_each_possible_cpu(cpu) | 
|  | h->reply_map[cpu] = 0; | 
|  | } | 
|  |  | 
|  | /* If MSI/MSI-X is supported by the kernel we will try to enable it on | 
|  | * controllers that are capable. If not, we use legacy INTx mode. | 
|  | */ | 
|  | static int hpsa_interrupt_mode(struct ctlr_info *h) | 
|  | { | 
|  | unsigned int flags = PCI_IRQ_LEGACY; | 
|  | int ret; | 
|  |  | 
|  | /* Some boards advertise MSI but don't really support it */ | 
|  | switch (h->board_id) { | 
|  | case 0x40700E11: | 
|  | case 0x40800E11: | 
|  | case 0x40820E11: | 
|  | case 0x40830E11: | 
|  | break; | 
|  | default: | 
|  | ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES, | 
|  | PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); | 
|  | if (ret > 0) { | 
|  | h->msix_vectors = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | flags |= PCI_IRQ_MSI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, | 
|  | bool *legacy_board) | 
|  | { | 
|  | int i; | 
|  | u32 subsystem_vendor_id, subsystem_device_id; | 
|  |  | 
|  | subsystem_vendor_id = pdev->subsystem_vendor; | 
|  | subsystem_device_id = pdev->subsystem_device; | 
|  | *board_id = ((subsystem_device_id << 16) & 0xffff0000) | | 
|  | subsystem_vendor_id; | 
|  |  | 
|  | if (legacy_board) | 
|  | *legacy_board = false; | 
|  | for (i = 0; i < ARRAY_SIZE(products); i++) | 
|  | if (*board_id == products[i].board_id) { | 
|  | if (products[i].access != &SA5A_access && | 
|  | products[i].access != &SA5B_access) | 
|  | return i; | 
|  | dev_warn(&pdev->dev, | 
|  | "legacy board ID: 0x%08x\n", | 
|  | *board_id); | 
|  | if (legacy_board) | 
|  | *legacy_board = true; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id); | 
|  | if (legacy_board) | 
|  | *legacy_board = true; | 
|  | return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ | 
|  | } | 
|  |  | 
|  | static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, | 
|  | unsigned long *memory_bar) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) | 
|  | if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { | 
|  | /* addressing mode bits already removed */ | 
|  | *memory_bar = pci_resource_start(pdev, i); | 
|  | dev_dbg(&pdev->dev, "memory BAR = %lx\n", | 
|  | *memory_bar); | 
|  | return 0; | 
|  | } | 
|  | dev_warn(&pdev->dev, "no memory BAR found\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, | 
|  | int wait_for_ready) | 
|  | { | 
|  | int i, iterations; | 
|  | u32 scratchpad; | 
|  | if (wait_for_ready) | 
|  | iterations = HPSA_BOARD_READY_ITERATIONS; | 
|  | else | 
|  | iterations = HPSA_BOARD_NOT_READY_ITERATIONS; | 
|  |  | 
|  | for (i = 0; i < iterations; i++) { | 
|  | scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); | 
|  | if (wait_for_ready) { | 
|  | if (scratchpad == HPSA_FIRMWARE_READY) | 
|  | return 0; | 
|  | } else { | 
|  | if (scratchpad != HPSA_FIRMWARE_READY) | 
|  | return 0; | 
|  | } | 
|  | msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); | 
|  | } | 
|  | dev_warn(&pdev->dev, "board not ready, timed out.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, | 
|  | u32 *cfg_base_addr, u64 *cfg_base_addr_index, | 
|  | u64 *cfg_offset) | 
|  | { | 
|  | *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); | 
|  | *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); | 
|  | *cfg_base_addr &= (u32) 0x0000ffff; | 
|  | *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); | 
|  | if (*cfg_base_addr_index == -1) { | 
|  | dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_cfgtables(struct ctlr_info *h) | 
|  | { | 
|  | if (h->transtable) { | 
|  | iounmap(h->transtable); | 
|  | h->transtable = NULL; | 
|  | } | 
|  | if (h->cfgtable) { | 
|  | iounmap(h->cfgtable); | 
|  | h->cfgtable = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find and map CISS config table and transfer table | 
|  | + * several items must be unmapped (freed) later | 
|  | + * */ | 
|  | static int hpsa_find_cfgtables(struct ctlr_info *h) | 
|  | { | 
|  | u64 cfg_offset; | 
|  | u32 cfg_base_addr; | 
|  | u64 cfg_base_addr_index; | 
|  | u32 trans_offset; | 
|  | int rc; | 
|  |  | 
|  | rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, | 
|  | &cfg_base_addr_index, &cfg_offset); | 
|  | if (rc) | 
|  | return rc; | 
|  | h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, | 
|  | cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); | 
|  | if (!h->cfgtable) { | 
|  | dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | rc = write_driver_ver_to_cfgtable(h->cfgtable); | 
|  | if (rc) | 
|  | return rc; | 
|  | /* Find performant mode table. */ | 
|  | trans_offset = readl(&h->cfgtable->TransMethodOffset); | 
|  | h->transtable = remap_pci_mem(pci_resource_start(h->pdev, | 
|  | cfg_base_addr_index)+cfg_offset+trans_offset, | 
|  | sizeof(*h->transtable)); | 
|  | if (!h->transtable) { | 
|  | dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); | 
|  | hpsa_free_cfgtables(h); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) | 
|  | { | 
|  | #define MIN_MAX_COMMANDS 16 | 
|  | BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); | 
|  |  | 
|  | h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); | 
|  |  | 
|  | /* Limit commands in memory limited kdump scenario. */ | 
|  | if (reset_devices && h->max_commands > 32) | 
|  | h->max_commands = 32; | 
|  |  | 
|  | if (h->max_commands < MIN_MAX_COMMANDS) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", | 
|  | h->max_commands, | 
|  | MIN_MAX_COMMANDS); | 
|  | h->max_commands = MIN_MAX_COMMANDS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the controller reports that the total max sg entries is greater than 512, | 
|  | * then we know that chained SG blocks work.  (Original smart arrays did not | 
|  | * support chained SG blocks and would return zero for max sg entries.) | 
|  | */ | 
|  | static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) | 
|  | { | 
|  | return h->maxsgentries > 512; | 
|  | } | 
|  |  | 
|  | /* Interrogate the hardware for some limits: | 
|  | * max commands, max SG elements without chaining, and with chaining, | 
|  | * SG chain block size, etc. | 
|  | */ | 
|  | static void hpsa_find_board_params(struct ctlr_info *h) | 
|  | { | 
|  | hpsa_get_max_perf_mode_cmds(h); | 
|  | h->nr_cmds = h->max_commands; | 
|  | h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); | 
|  | h->fw_support = readl(&(h->cfgtable->misc_fw_support)); | 
|  | if (hpsa_supports_chained_sg_blocks(h)) { | 
|  | /* Limit in-command s/g elements to 32 save dma'able memory. */ | 
|  | h->max_cmd_sg_entries = 32; | 
|  | h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; | 
|  | h->maxsgentries--; /* save one for chain pointer */ | 
|  | } else { | 
|  | /* | 
|  | * Original smart arrays supported at most 31 s/g entries | 
|  | * embedded inline in the command (trying to use more | 
|  | * would lock up the controller) | 
|  | */ | 
|  | h->max_cmd_sg_entries = 31; | 
|  | h->maxsgentries = 31; /* default to traditional values */ | 
|  | h->chainsize = 0; | 
|  | } | 
|  |  | 
|  | /* Find out what task management functions are supported and cache */ | 
|  | h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); | 
|  | if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) | 
|  | dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); | 
|  | if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) | 
|  | dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); | 
|  | if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) | 
|  | dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); | 
|  | } | 
|  |  | 
|  | static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) | 
|  | { | 
|  | if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { | 
|  | dev_err(&h->pdev->dev, "not a valid CISS config table\n"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) | 
|  | { | 
|  | u32 driver_support; | 
|  |  | 
|  | driver_support = readl(&(h->cfgtable->driver_support)); | 
|  | /* Need to enable prefetch in the SCSI core for 6400 in x86 */ | 
|  | #ifdef CONFIG_X86 | 
|  | driver_support |= ENABLE_SCSI_PREFETCH; | 
|  | #endif | 
|  | driver_support |= ENABLE_UNIT_ATTN; | 
|  | writel(driver_support, &(h->cfgtable->driver_support)); | 
|  | } | 
|  |  | 
|  | /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result | 
|  | * in a prefetch beyond physical memory. | 
|  | */ | 
|  | static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) | 
|  | { | 
|  | u32 dma_prefetch; | 
|  |  | 
|  | if (h->board_id != 0x3225103C) | 
|  | return; | 
|  | dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); | 
|  | dma_prefetch |= 0x8000; | 
|  | writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); | 
|  | } | 
|  |  | 
|  | static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  | u32 doorbell_value; | 
|  | unsigned long flags; | 
|  | /* wait until the clear_event_notify bit 6 is cleared by controller. */ | 
|  | for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | doorbell_value = readl(h->vaddr + SA5_DOORBELL); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) | 
|  | goto done; | 
|  | /* delay and try again */ | 
|  | msleep(CLEAR_EVENT_WAIT_INTERVAL); | 
|  | } | 
|  | return -ENODEV; | 
|  | done: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  | u32 doorbell_value; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* under certain very rare conditions, this can take awhile. | 
|  | * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right | 
|  | * as we enter this code.) | 
|  | */ | 
|  | for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { | 
|  | if (h->remove_in_progress) | 
|  | goto done; | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | doorbell_value = readl(h->vaddr + SA5_DOORBELL); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (!(doorbell_value & CFGTBL_ChangeReq)) | 
|  | goto done; | 
|  | /* delay and try again */ | 
|  | msleep(MODE_CHANGE_WAIT_INTERVAL); | 
|  | } | 
|  | return -ENODEV; | 
|  | done: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* return -ENODEV or other reason on error, 0 on success */ | 
|  | static int hpsa_enter_simple_mode(struct ctlr_info *h) | 
|  | { | 
|  | u32 trans_support; | 
|  |  | 
|  | trans_support = readl(&(h->cfgtable->TransportSupport)); | 
|  | if (!(trans_support & SIMPLE_MODE)) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); | 
|  |  | 
|  | /* Update the field, and then ring the doorbell */ | 
|  | writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); | 
|  | writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); | 
|  | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
|  | if (hpsa_wait_for_mode_change_ack(h)) | 
|  | goto error; | 
|  | print_cfg_table(&h->pdev->dev, h->cfgtable); | 
|  | if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) | 
|  | goto error; | 
|  | h->transMethod = CFGTBL_Trans_Simple; | 
|  | return 0; | 
|  | error: | 
|  | dev_err(&h->pdev->dev, "failed to enter simple mode\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* free items allocated or mapped by hpsa_pci_init */ | 
|  | static void hpsa_free_pci_init(struct ctlr_info *h) | 
|  | { | 
|  | hpsa_free_cfgtables(h);			/* pci_init 4 */ | 
|  | iounmap(h->vaddr);			/* pci_init 3 */ | 
|  | h->vaddr = NULL; | 
|  | hpsa_disable_interrupt_mode(h);		/* pci_init 2 */ | 
|  | /* | 
|  | * call pci_disable_device before pci_release_regions per | 
|  | * Documentation/driver-api/pci/pci.rst | 
|  | */ | 
|  | pci_disable_device(h->pdev);		/* pci_init 1 */ | 
|  | pci_release_regions(h->pdev);		/* pci_init 2 */ | 
|  | } | 
|  |  | 
|  | /* several items must be freed later */ | 
|  | static int hpsa_pci_init(struct ctlr_info *h) | 
|  | { | 
|  | int prod_index, err; | 
|  | bool legacy_board; | 
|  |  | 
|  | prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board); | 
|  | if (prod_index < 0) | 
|  | return prod_index; | 
|  | h->product_name = products[prod_index].product_name; | 
|  | h->access = *(products[prod_index].access); | 
|  | h->legacy_board = legacy_board; | 
|  | pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | | 
|  | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); | 
|  |  | 
|  | err = pci_enable_device(h->pdev); | 
|  | if (err) { | 
|  | dev_err(&h->pdev->dev, "failed to enable PCI device\n"); | 
|  | pci_disable_device(h->pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = pci_request_regions(h->pdev, HPSA); | 
|  | if (err) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "failed to obtain PCI resources\n"); | 
|  | pci_disable_device(h->pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | pci_set_master(h->pdev); | 
|  |  | 
|  | err = hpsa_interrupt_mode(h); | 
|  | if (err) | 
|  | goto clean1; | 
|  |  | 
|  | /* setup mapping between CPU and reply queue */ | 
|  | hpsa_setup_reply_map(h); | 
|  |  | 
|  | err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); | 
|  | if (err) | 
|  | goto clean2;	/* intmode+region, pci */ | 
|  | h->vaddr = remap_pci_mem(h->paddr, 0x250); | 
|  | if (!h->vaddr) { | 
|  | dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); | 
|  | err = -ENOMEM; | 
|  | goto clean2;	/* intmode+region, pci */ | 
|  | } | 
|  | err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); | 
|  | if (err) | 
|  | goto clean3;	/* vaddr, intmode+region, pci */ | 
|  | err = hpsa_find_cfgtables(h); | 
|  | if (err) | 
|  | goto clean3;	/* vaddr, intmode+region, pci */ | 
|  | hpsa_find_board_params(h); | 
|  |  | 
|  | if (!hpsa_CISS_signature_present(h)) { | 
|  | err = -ENODEV; | 
|  | goto clean4;	/* cfgtables, vaddr, intmode+region, pci */ | 
|  | } | 
|  | hpsa_set_driver_support_bits(h); | 
|  | hpsa_p600_dma_prefetch_quirk(h); | 
|  | err = hpsa_enter_simple_mode(h); | 
|  | if (err) | 
|  | goto clean4;	/* cfgtables, vaddr, intmode+region, pci */ | 
|  | return 0; | 
|  |  | 
|  | clean4:	/* cfgtables, vaddr, intmode+region, pci */ | 
|  | hpsa_free_cfgtables(h); | 
|  | clean3:	/* vaddr, intmode+region, pci */ | 
|  | iounmap(h->vaddr); | 
|  | h->vaddr = NULL; | 
|  | clean2:	/* intmode+region, pci */ | 
|  | hpsa_disable_interrupt_mode(h); | 
|  | clean1: | 
|  | /* | 
|  | * call pci_disable_device before pci_release_regions per | 
|  | * Documentation/driver-api/pci/pci.rst | 
|  | */ | 
|  | pci_disable_device(h->pdev); | 
|  | pci_release_regions(h->pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void hpsa_hba_inquiry(struct ctlr_info *h) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | #define HBA_INQUIRY_BYTE_COUNT 64 | 
|  | h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); | 
|  | if (!h->hba_inquiry_data) | 
|  | return; | 
|  | rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, | 
|  | h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); | 
|  | if (rc != 0) { | 
|  | kfree(h->hba_inquiry_data); | 
|  | h->hba_inquiry_data = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) | 
|  | { | 
|  | int rc, i; | 
|  | void __iomem *vaddr; | 
|  |  | 
|  | if (!reset_devices) | 
|  | return 0; | 
|  |  | 
|  | /* kdump kernel is loading, we don't know in which state is | 
|  | * the pci interface. The dev->enable_cnt is equal zero | 
|  | * so we call enable+disable, wait a while and switch it on. | 
|  | */ | 
|  | rc = pci_enable_device(pdev); | 
|  | if (rc) { | 
|  | dev_warn(&pdev->dev, "Failed to enable PCI device\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | pci_disable_device(pdev); | 
|  | msleep(260);			/* a randomly chosen number */ | 
|  | rc = pci_enable_device(pdev); | 
|  | if (rc) { | 
|  | dev_warn(&pdev->dev, "failed to enable device.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | vaddr = pci_ioremap_bar(pdev, 0); | 
|  | if (vaddr == NULL) { | 
|  | rc = -ENOMEM; | 
|  | goto out_disable; | 
|  | } | 
|  | writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); | 
|  | iounmap(vaddr); | 
|  |  | 
|  | /* Reset the controller with a PCI power-cycle or via doorbell */ | 
|  | rc = hpsa_kdump_hard_reset_controller(pdev, board_id); | 
|  |  | 
|  | /* -ENOTSUPP here means we cannot reset the controller | 
|  | * but it's already (and still) up and running in | 
|  | * "performant mode".  Or, it might be 640x, which can't reset | 
|  | * due to concerns about shared bbwc between 6402/6404 pair. | 
|  | */ | 
|  | if (rc) | 
|  | goto out_disable; | 
|  |  | 
|  | /* Now try to get the controller to respond to a no-op */ | 
|  | dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); | 
|  | for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { | 
|  | if (hpsa_noop(pdev) == 0) | 
|  | break; | 
|  | else | 
|  | dev_warn(&pdev->dev, "no-op failed%s\n", | 
|  | (i < 11 ? "; re-trying" : "")); | 
|  | } | 
|  |  | 
|  | out_disable: | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_cmd_pool(struct ctlr_info *h) | 
|  | { | 
|  | kfree(h->cmd_pool_bits); | 
|  | h->cmd_pool_bits = NULL; | 
|  | if (h->cmd_pool) { | 
|  | dma_free_coherent(&h->pdev->dev, | 
|  | h->nr_cmds * sizeof(struct CommandList), | 
|  | h->cmd_pool, | 
|  | h->cmd_pool_dhandle); | 
|  | h->cmd_pool = NULL; | 
|  | h->cmd_pool_dhandle = 0; | 
|  | } | 
|  | if (h->errinfo_pool) { | 
|  | dma_free_coherent(&h->pdev->dev, | 
|  | h->nr_cmds * sizeof(struct ErrorInfo), | 
|  | h->errinfo_pool, | 
|  | h->errinfo_pool_dhandle); | 
|  | h->errinfo_pool = NULL; | 
|  | h->errinfo_pool_dhandle = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_alloc_cmd_pool(struct ctlr_info *h) | 
|  | { | 
|  | h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG), | 
|  | sizeof(unsigned long), | 
|  | GFP_KERNEL); | 
|  | h->cmd_pool = dma_alloc_coherent(&h->pdev->dev, | 
|  | h->nr_cmds * sizeof(*h->cmd_pool), | 
|  | &h->cmd_pool_dhandle, GFP_KERNEL); | 
|  | h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev, | 
|  | h->nr_cmds * sizeof(*h->errinfo_pool), | 
|  | &h->errinfo_pool_dhandle, GFP_KERNEL); | 
|  | if ((h->cmd_pool_bits == NULL) | 
|  | || (h->cmd_pool == NULL) | 
|  | || (h->errinfo_pool == NULL)) { | 
|  | dev_err(&h->pdev->dev, "out of memory in %s", __func__); | 
|  | goto clean_up; | 
|  | } | 
|  | hpsa_preinitialize_commands(h); | 
|  | return 0; | 
|  | clean_up: | 
|  | hpsa_free_cmd_pool(h); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ | 
|  | static void hpsa_free_irqs(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  | int irq_vector = 0; | 
|  |  | 
|  | if (hpsa_simple_mode) | 
|  | irq_vector = h->intr_mode; | 
|  |  | 
|  | if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) { | 
|  | /* Single reply queue, only one irq to free */ | 
|  | free_irq(pci_irq_vector(h->pdev, irq_vector), | 
|  | &h->q[h->intr_mode]); | 
|  | h->q[h->intr_mode] = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < h->msix_vectors; i++) { | 
|  | free_irq(pci_irq_vector(h->pdev, i), &h->q[i]); | 
|  | h->q[i] = 0; | 
|  | } | 
|  | for (; i < MAX_REPLY_QUEUES; i++) | 
|  | h->q[i] = 0; | 
|  | } | 
|  |  | 
|  | /* returns 0 on success; cleans up and returns -Enn on error */ | 
|  | static int hpsa_request_irqs(struct ctlr_info *h, | 
|  | irqreturn_t (*msixhandler)(int, void *), | 
|  | irqreturn_t (*intxhandler)(int, void *)) | 
|  | { | 
|  | int rc, i; | 
|  | int irq_vector = 0; | 
|  |  | 
|  | if (hpsa_simple_mode) | 
|  | irq_vector = h->intr_mode; | 
|  |  | 
|  | /* | 
|  | * initialize h->q[x] = x so that interrupt handlers know which | 
|  | * queue to process. | 
|  | */ | 
|  | for (i = 0; i < MAX_REPLY_QUEUES; i++) | 
|  | h->q[i] = (u8) i; | 
|  |  | 
|  | if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) { | 
|  | /* If performant mode and MSI-X, use multiple reply queues */ | 
|  | for (i = 0; i < h->msix_vectors; i++) { | 
|  | sprintf(h->intrname[i], "%s-msix%d", h->devname, i); | 
|  | rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler, | 
|  | 0, h->intrname[i], | 
|  | &h->q[i]); | 
|  | if (rc) { | 
|  | int j; | 
|  |  | 
|  | dev_err(&h->pdev->dev, | 
|  | "failed to get irq %d for %s\n", | 
|  | pci_irq_vector(h->pdev, i), h->devname); | 
|  | for (j = 0; j < i; j++) { | 
|  | free_irq(pci_irq_vector(h->pdev, j), &h->q[j]); | 
|  | h->q[j] = 0; | 
|  | } | 
|  | for (; j < MAX_REPLY_QUEUES; j++) | 
|  | h->q[j] = 0; | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Use single reply pool */ | 
|  | if (h->msix_vectors > 0 || h->pdev->msi_enabled) { | 
|  | sprintf(h->intrname[0], "%s-msi%s", h->devname, | 
|  | h->msix_vectors ? "x" : ""); | 
|  | rc = request_irq(pci_irq_vector(h->pdev, irq_vector), | 
|  | msixhandler, 0, | 
|  | h->intrname[0], | 
|  | &h->q[h->intr_mode]); | 
|  | } else { | 
|  | sprintf(h->intrname[h->intr_mode], | 
|  | "%s-intx", h->devname); | 
|  | rc = request_irq(pci_irq_vector(h->pdev, irq_vector), | 
|  | intxhandler, IRQF_SHARED, | 
|  | h->intrname[0], | 
|  | &h->q[h->intr_mode]); | 
|  | } | 
|  | } | 
|  | if (rc) { | 
|  | dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", | 
|  | pci_irq_vector(h->pdev, irq_vector), h->devname); | 
|  | hpsa_free_irqs(h); | 
|  | return -ENODEV; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_kdump_soft_reset(struct ctlr_info *h) | 
|  | { | 
|  | int rc; | 
|  | hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER); | 
|  |  | 
|  | dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); | 
|  | rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); | 
|  | if (rc) { | 
|  | dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); | 
|  | rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); | 
|  | if (rc) { | 
|  | dev_warn(&h->pdev->dev, "Board failed to become ready " | 
|  | "after soft reset.\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_reply_queues(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < h->nreply_queues; i++) { | 
|  | if (!h->reply_queue[i].head) | 
|  | continue; | 
|  | dma_free_coherent(&h->pdev->dev, | 
|  | h->reply_queue_size, | 
|  | h->reply_queue[i].head, | 
|  | h->reply_queue[i].busaddr); | 
|  | h->reply_queue[i].head = NULL; | 
|  | h->reply_queue[i].busaddr = 0; | 
|  | } | 
|  | h->reply_queue_size = 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) | 
|  | { | 
|  | hpsa_free_performant_mode(h);		/* init_one 7 */ | 
|  | hpsa_free_sg_chain_blocks(h);		/* init_one 6 */ | 
|  | hpsa_free_cmd_pool(h);			/* init_one 5 */ | 
|  | hpsa_free_irqs(h);			/* init_one 4 */ | 
|  | scsi_host_put(h->scsi_host);		/* init_one 3 */ | 
|  | h->scsi_host = NULL;			/* init_one 3 */ | 
|  | hpsa_free_pci_init(h);			/* init_one 2_5 */ | 
|  | free_percpu(h->lockup_detected);	/* init_one 2 */ | 
|  | h->lockup_detected = NULL;		/* init_one 2 */ | 
|  | if (h->resubmit_wq) { | 
|  | destroy_workqueue(h->resubmit_wq);	/* init_one 1 */ | 
|  | h->resubmit_wq = NULL; | 
|  | } | 
|  | if (h->rescan_ctlr_wq) { | 
|  | destroy_workqueue(h->rescan_ctlr_wq); | 
|  | h->rescan_ctlr_wq = NULL; | 
|  | } | 
|  | if (h->monitor_ctlr_wq) { | 
|  | destroy_workqueue(h->monitor_ctlr_wq); | 
|  | h->monitor_ctlr_wq = NULL; | 
|  | } | 
|  |  | 
|  | kfree(h);				/* init_one 1 */ | 
|  | } | 
|  |  | 
|  | /* Called when controller lockup detected. */ | 
|  | static void fail_all_outstanding_cmds(struct ctlr_info *h) | 
|  | { | 
|  | int i, refcount; | 
|  | struct CommandList *c; | 
|  | int failcount = 0; | 
|  |  | 
|  | flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | c = h->cmd_pool + i; | 
|  | refcount = atomic_inc_return(&c->refcount); | 
|  | if (refcount > 1) { | 
|  | c->err_info->CommandStatus = CMD_CTLR_LOCKUP; | 
|  | finish_cmd(c); | 
|  | atomic_dec(&h->commands_outstanding); | 
|  | failcount++; | 
|  | } | 
|  | cmd_free(h, c); | 
|  | } | 
|  | dev_warn(&h->pdev->dev, | 
|  | "failed %d commands in fail_all\n", failcount); | 
|  | } | 
|  |  | 
|  | static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | u32 *lockup_detected; | 
|  | lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); | 
|  | *lockup_detected = value; | 
|  | } | 
|  | wmb(); /* be sure the per-cpu variables are out to memory */ | 
|  | } | 
|  |  | 
|  | static void controller_lockup_detected(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 lockup_detected; | 
|  |  | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); | 
|  | if (!lockup_detected) { | 
|  | /* no heartbeat, but controller gave us a zero. */ | 
|  | dev_warn(&h->pdev->dev, | 
|  | "lockup detected after %d but scratchpad register is zero\n", | 
|  | h->heartbeat_sample_interval / HZ); | 
|  | lockup_detected = 0xffffffff; | 
|  | } | 
|  | set_lockup_detected_for_all_cpus(h, lockup_detected); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", | 
|  | lockup_detected, h->heartbeat_sample_interval / HZ); | 
|  | if (lockup_detected == 0xffff0000) { | 
|  | dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n"); | 
|  | writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL); | 
|  | } | 
|  | pci_disable_device(h->pdev); | 
|  | fail_all_outstanding_cmds(h); | 
|  | } | 
|  |  | 
|  | static int detect_controller_lockup(struct ctlr_info *h) | 
|  | { | 
|  | u64 now; | 
|  | u32 heartbeat; | 
|  | unsigned long flags; | 
|  |  | 
|  | now = get_jiffies_64(); | 
|  | /* If we've received an interrupt recently, we're ok. */ | 
|  | if (time_after64(h->last_intr_timestamp + | 
|  | (h->heartbeat_sample_interval), now)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If we've already checked the heartbeat recently, we're ok. | 
|  | * This could happen if someone sends us a signal. We | 
|  | * otherwise don't care about signals in this thread. | 
|  | */ | 
|  | if (time_after64(h->last_heartbeat_timestamp + | 
|  | (h->heartbeat_sample_interval), now)) | 
|  | return false; | 
|  |  | 
|  | /* If heartbeat has not changed since we last looked, we're not ok. */ | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | heartbeat = readl(&h->cfgtable->HeartBeat); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (h->last_heartbeat == heartbeat) { | 
|  | controller_lockup_detected(h); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* We're ok. */ | 
|  | h->last_heartbeat = heartbeat; | 
|  | h->last_heartbeat_timestamp = now; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set ioaccel status for all ioaccel volumes. | 
|  | * | 
|  | * Called from monitor controller worker (hpsa_event_monitor_worker) | 
|  | * | 
|  | * A Volume (or Volumes that comprise an Array set) may be undergoing a | 
|  | * transformation, so we will be turning off ioaccel for all volumes that | 
|  | * make up the Array. | 
|  | */ | 
|  | static void hpsa_set_ioaccel_status(struct ctlr_info *h) | 
|  | { | 
|  | int rc; | 
|  | int i; | 
|  | u8 ioaccel_status; | 
|  | unsigned char *buf; | 
|  | struct hpsa_scsi_dev_t *device; | 
|  |  | 
|  | if (!h) | 
|  | return; | 
|  |  | 
|  | buf = kmalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Run through current device list used during I/O requests. | 
|  | */ | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | int offload_to_be_enabled = 0; | 
|  | int offload_config = 0; | 
|  |  | 
|  | device = h->dev[i]; | 
|  |  | 
|  | if (!device) | 
|  | continue; | 
|  | if (!hpsa_vpd_page_supported(h, device->scsi3addr, | 
|  | HPSA_VPD_LV_IOACCEL_STATUS)) | 
|  | continue; | 
|  |  | 
|  | memset(buf, 0, 64); | 
|  |  | 
|  | rc = hpsa_scsi_do_inquiry(h, device->scsi3addr, | 
|  | VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, | 
|  | buf, 64); | 
|  | if (rc != 0) | 
|  | continue; | 
|  |  | 
|  | ioaccel_status = buf[IOACCEL_STATUS_BYTE]; | 
|  |  | 
|  | /* | 
|  | * Check if offload is still configured on | 
|  | */ | 
|  | offload_config = | 
|  | !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); | 
|  | /* | 
|  | * If offload is configured on, check to see if ioaccel | 
|  | * needs to be enabled. | 
|  | */ | 
|  | if (offload_config) | 
|  | offload_to_be_enabled = | 
|  | !!(ioaccel_status & OFFLOAD_ENABLED_BIT); | 
|  |  | 
|  | /* | 
|  | * If ioaccel is to be re-enabled, re-enable later during the | 
|  | * scan operation so the driver can get a fresh raidmap | 
|  | * before turning ioaccel back on. | 
|  | */ | 
|  | if (offload_to_be_enabled) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Immediately turn off ioaccel for any volume the | 
|  | * controller tells us to. Some of the reasons could be: | 
|  | *    transformation - change to the LVs of an Array. | 
|  | *    degraded volume - component failure | 
|  | */ | 
|  | hpsa_turn_off_ioaccel_for_device(device); | 
|  | } | 
|  |  | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | static void hpsa_ack_ctlr_events(struct ctlr_info *h) | 
|  | { | 
|  | char *event_type; | 
|  |  | 
|  | if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) | 
|  | return; | 
|  |  | 
|  | /* Ask the controller to clear the events we're handling. */ | 
|  | if ((h->transMethod & (CFGTBL_Trans_io_accel1 | 
|  | | CFGTBL_Trans_io_accel2)) && | 
|  | (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || | 
|  | h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { | 
|  |  | 
|  | if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) | 
|  | event_type = "state change"; | 
|  | if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) | 
|  | event_type = "configuration change"; | 
|  | /* Stop sending new RAID offload reqs via the IO accelerator */ | 
|  | scsi_block_requests(h->scsi_host); | 
|  | hpsa_set_ioaccel_status(h); | 
|  | hpsa_drain_accel_commands(h); | 
|  | /* Set 'accelerator path config change' bit */ | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", | 
|  | h->events, event_type); | 
|  | writel(h->events, &(h->cfgtable->clear_event_notify)); | 
|  | /* Set the "clear event notify field update" bit 6 */ | 
|  | writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); | 
|  | /* Wait until ctlr clears 'clear event notify field', bit 6 */ | 
|  | hpsa_wait_for_clear_event_notify_ack(h); | 
|  | scsi_unblock_requests(h->scsi_host); | 
|  | } else { | 
|  | /* Acknowledge controller notification events. */ | 
|  | writel(h->events, &(h->cfgtable->clear_event_notify)); | 
|  | writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); | 
|  | hpsa_wait_for_clear_event_notify_ack(h); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check a register on the controller to see if there are configuration | 
|  | * changes (added/changed/removed logical drives, etc.) which mean that | 
|  | * we should rescan the controller for devices. | 
|  | * Also check flag for driver-initiated rescan. | 
|  | */ | 
|  | static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) | 
|  | { | 
|  | if (h->drv_req_rescan) { | 
|  | h->drv_req_rescan = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) | 
|  | return 0; | 
|  |  | 
|  | h->events = readl(&(h->cfgtable->event_notify)); | 
|  | return h->events & RESCAN_REQUIRED_EVENT_BITS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if any of the offline devices have become ready | 
|  | */ | 
|  | static int hpsa_offline_devices_ready(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct offline_device_entry *d; | 
|  | struct list_head *this, *tmp; | 
|  |  | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | list_for_each_safe(this, tmp, &h->offline_device_list) { | 
|  | d = list_entry(this, struct offline_device_entry, | 
|  | offline_list); | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | if (!hpsa_volume_offline(h, d->scsi3addr)) { | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | list_del(&d->offline_list); | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | return 1; | 
|  | } | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | } | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_luns_changed(struct ctlr_info *h) | 
|  | { | 
|  | int rc = 1; /* assume there are changes */ | 
|  | struct ReportLUNdata *logdev = NULL; | 
|  |  | 
|  | /* if we can't find out if lun data has changed, | 
|  | * assume that it has. | 
|  | */ | 
|  |  | 
|  | if (!h->lastlogicals) | 
|  | return rc; | 
|  |  | 
|  | logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); | 
|  | if (!logdev) | 
|  | return rc; | 
|  |  | 
|  | if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "report luns failed, can't track lun changes.\n"); | 
|  | goto out; | 
|  | } | 
|  | if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { | 
|  | dev_info(&h->pdev->dev, | 
|  | "Lun changes detected.\n"); | 
|  | memcpy(h->lastlogicals, logdev, sizeof(*logdev)); | 
|  | goto out; | 
|  | } else | 
|  | rc = 0; /* no changes detected. */ | 
|  | out: | 
|  | kfree(logdev); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_perform_rescan(struct ctlr_info *h) | 
|  | { | 
|  | struct Scsi_Host *sh = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Do the scan after the reset | 
|  | */ | 
|  | spin_lock_irqsave(&h->reset_lock, flags); | 
|  | if (h->reset_in_progress) { | 
|  | h->drv_req_rescan = 1; | 
|  | spin_unlock_irqrestore(&h->reset_lock, flags); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&h->reset_lock, flags); | 
|  |  | 
|  | sh = scsi_host_get(h->scsi_host); | 
|  | if (sh != NULL) { | 
|  | hpsa_scan_start(sh); | 
|  | scsi_host_put(sh); | 
|  | h->drv_req_rescan = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * watch for controller events | 
|  | */ | 
|  | static void hpsa_event_monitor_worker(struct work_struct *work) | 
|  | { | 
|  | struct ctlr_info *h = container_of(to_delayed_work(work), | 
|  | struct ctlr_info, event_monitor_work); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | if (h->remove_in_progress) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | if (hpsa_ctlr_needs_rescan(h)) { | 
|  | hpsa_ack_ctlr_events(h); | 
|  | hpsa_perform_rescan(h); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | if (!h->remove_in_progress) | 
|  | queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work, | 
|  | HPSA_EVENT_MONITOR_INTERVAL); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | } | 
|  |  | 
|  | static void hpsa_rescan_ctlr_worker(struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct ctlr_info *h = container_of(to_delayed_work(work), | 
|  | struct ctlr_info, rescan_ctlr_work); | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | if (h->remove_in_progress) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) { | 
|  | hpsa_perform_rescan(h); | 
|  | } else if (h->discovery_polling) { | 
|  | if (hpsa_luns_changed(h)) { | 
|  | dev_info(&h->pdev->dev, | 
|  | "driver discovery polling rescan.\n"); | 
|  | hpsa_perform_rescan(h); | 
|  | } | 
|  | } | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | if (!h->remove_in_progress) | 
|  | queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, | 
|  | h->heartbeat_sample_interval); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | } | 
|  |  | 
|  | static void hpsa_monitor_ctlr_worker(struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct ctlr_info *h = container_of(to_delayed_work(work), | 
|  | struct ctlr_info, monitor_ctlr_work); | 
|  |  | 
|  | detect_controller_lockup(h); | 
|  | if (lockup_detected(h)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | if (!h->remove_in_progress) | 
|  | queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work, | 
|  | h->heartbeat_sample_interval); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | } | 
|  |  | 
|  | static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, | 
|  | char *name) | 
|  | { | 
|  | struct workqueue_struct *wq = NULL; | 
|  |  | 
|  | wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); | 
|  | if (!wq) | 
|  | dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); | 
|  |  | 
|  | return wq; | 
|  | } | 
|  |  | 
|  | static void hpda_free_ctlr_info(struct ctlr_info *h) | 
|  | { | 
|  | kfree(h->reply_map); | 
|  | kfree(h); | 
|  | } | 
|  |  | 
|  | static struct ctlr_info *hpda_alloc_ctlr_info(void) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  |  | 
|  | h = kzalloc(sizeof(*h), GFP_KERNEL); | 
|  | if (!h) | 
|  | return NULL; | 
|  |  | 
|  | h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL); | 
|  | if (!h->reply_map) { | 
|  | kfree(h); | 
|  | return NULL; | 
|  | } | 
|  | return h; | 
|  | } | 
|  |  | 
|  | static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | 
|  | { | 
|  | int dac, rc; | 
|  | struct ctlr_info *h; | 
|  | int try_soft_reset = 0; | 
|  | unsigned long flags; | 
|  | u32 board_id; | 
|  |  | 
|  | if (number_of_controllers == 0) | 
|  | printk(KERN_INFO DRIVER_NAME "\n"); | 
|  |  | 
|  | rc = hpsa_lookup_board_id(pdev, &board_id, NULL); | 
|  | if (rc < 0) { | 
|  | dev_warn(&pdev->dev, "Board ID not found\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | rc = hpsa_init_reset_devices(pdev, board_id); | 
|  | if (rc) { | 
|  | if (rc != -ENOTSUPP) | 
|  | return rc; | 
|  | /* If the reset fails in a particular way (it has no way to do | 
|  | * a proper hard reset, so returns -ENOTSUPP) we can try to do | 
|  | * a soft reset once we get the controller configured up to the | 
|  | * point that it can accept a command. | 
|  | */ | 
|  | try_soft_reset = 1; | 
|  | rc = 0; | 
|  | } | 
|  |  | 
|  | reinit_after_soft_reset: | 
|  |  | 
|  | /* Command structures must be aligned on a 32-byte boundary because | 
|  | * the 5 lower bits of the address are used by the hardware. and by | 
|  | * the driver.  See comments in hpsa.h for more info. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); | 
|  | h = hpda_alloc_ctlr_info(); | 
|  | if (!h) { | 
|  | dev_err(&pdev->dev, "Failed to allocate controller head\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | h->pdev = pdev; | 
|  |  | 
|  | h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; | 
|  | INIT_LIST_HEAD(&h->offline_device_list); | 
|  | spin_lock_init(&h->lock); | 
|  | spin_lock_init(&h->offline_device_lock); | 
|  | spin_lock_init(&h->scan_lock); | 
|  | spin_lock_init(&h->reset_lock); | 
|  | atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); | 
|  |  | 
|  | /* Allocate and clear per-cpu variable lockup_detected */ | 
|  | h->lockup_detected = alloc_percpu(u32); | 
|  | if (!h->lockup_detected) { | 
|  | dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); | 
|  | rc = -ENOMEM; | 
|  | goto clean1;	/* aer/h */ | 
|  | } | 
|  | set_lockup_detected_for_all_cpus(h, 0); | 
|  |  | 
|  | rc = hpsa_pci_init(h); | 
|  | if (rc) | 
|  | goto clean2;	/* lu, aer/h */ | 
|  |  | 
|  | /* relies on h-> settings made by hpsa_pci_init, including | 
|  | * interrupt_mode h->intr */ | 
|  | rc = hpsa_scsi_host_alloc(h); | 
|  | if (rc) | 
|  | goto clean2_5;	/* pci, lu, aer/h */ | 
|  |  | 
|  | sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); | 
|  | h->ctlr = number_of_controllers; | 
|  | number_of_controllers++; | 
|  |  | 
|  | /* configure PCI DMA stuff */ | 
|  | rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | 
|  | if (rc == 0) { | 
|  | dac = 1; | 
|  | } else { | 
|  | rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | 
|  | if (rc == 0) { | 
|  | dac = 0; | 
|  | } else { | 
|  | dev_err(&pdev->dev, "no suitable DMA available\n"); | 
|  | goto clean3;	/* shost, pci, lu, aer/h */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* make sure the board interrupts are off */ | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  |  | 
|  | rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); | 
|  | if (rc) | 
|  | goto clean3;	/* shost, pci, lu, aer/h */ | 
|  | rc = hpsa_alloc_cmd_pool(h); | 
|  | if (rc) | 
|  | goto clean4;	/* irq, shost, pci, lu, aer/h */ | 
|  | rc = hpsa_alloc_sg_chain_blocks(h); | 
|  | if (rc) | 
|  | goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */ | 
|  | init_waitqueue_head(&h->scan_wait_queue); | 
|  | init_waitqueue_head(&h->event_sync_wait_queue); | 
|  | mutex_init(&h->reset_mutex); | 
|  | h->scan_finished = 1; /* no scan currently in progress */ | 
|  | h->scan_waiting = 0; | 
|  |  | 
|  | pci_set_drvdata(pdev, h); | 
|  | h->ndevices = 0; | 
|  |  | 
|  | spin_lock_init(&h->devlock); | 
|  | rc = hpsa_put_ctlr_into_performant_mode(h); | 
|  | if (rc) | 
|  | goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ | 
|  |  | 
|  | /* create the resubmit workqueue */ | 
|  | h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); | 
|  | if (!h->rescan_ctlr_wq) { | 
|  | rc = -ENOMEM; | 
|  | goto clean7; | 
|  | } | 
|  |  | 
|  | h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); | 
|  | if (!h->resubmit_wq) { | 
|  | rc = -ENOMEM; | 
|  | goto clean7;	/* aer/h */ | 
|  | } | 
|  |  | 
|  | h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor"); | 
|  | if (!h->monitor_ctlr_wq) { | 
|  | rc = -ENOMEM; | 
|  | goto clean7; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point, the controller is ready to take commands. | 
|  | * Now, if reset_devices and the hard reset didn't work, try | 
|  | * the soft reset and see if that works. | 
|  | */ | 
|  | if (try_soft_reset) { | 
|  |  | 
|  | /* This is kind of gross.  We may or may not get a completion | 
|  | * from the soft reset command, and if we do, then the value | 
|  | * from the fifo may or may not be valid.  So, we wait 10 secs | 
|  | * after the reset throwing away any completions we get during | 
|  | * that time.  Unregister the interrupt handler and register | 
|  | * fake ones to scoop up any residual completions. | 
|  | */ | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | hpsa_free_irqs(h); | 
|  | rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, | 
|  | hpsa_intx_discard_completions); | 
|  | if (rc) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Failed to request_irq after soft reset.\n"); | 
|  | /* | 
|  | * cannot goto clean7 or free_irqs will be called | 
|  | * again. Instead, do its work | 
|  | */ | 
|  | hpsa_free_performant_mode(h);	/* clean7 */ | 
|  | hpsa_free_sg_chain_blocks(h);	/* clean6 */ | 
|  | hpsa_free_cmd_pool(h);		/* clean5 */ | 
|  | /* | 
|  | * skip hpsa_free_irqs(h) clean4 since that | 
|  | * was just called before request_irqs failed | 
|  | */ | 
|  | goto clean3; | 
|  | } | 
|  |  | 
|  | rc = hpsa_kdump_soft_reset(h); | 
|  | if (rc) | 
|  | /* Neither hard nor soft reset worked, we're hosed. */ | 
|  | goto clean7; | 
|  |  | 
|  | dev_info(&h->pdev->dev, "Board READY.\n"); | 
|  | dev_info(&h->pdev->dev, | 
|  | "Waiting for stale completions to drain.\n"); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_ON); | 
|  | msleep(10000); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  |  | 
|  | rc = controller_reset_failed(h->cfgtable); | 
|  | if (rc) | 
|  | dev_info(&h->pdev->dev, | 
|  | "Soft reset appears to have failed.\n"); | 
|  |  | 
|  | /* since the controller's reset, we have to go back and re-init | 
|  | * everything.  Easiest to just forget what we've done and do it | 
|  | * all over again. | 
|  | */ | 
|  | hpsa_undo_allocations_after_kdump_soft_reset(h); | 
|  | try_soft_reset = 0; | 
|  | if (rc) | 
|  | /* don't goto clean, we already unallocated */ | 
|  | return -ENODEV; | 
|  |  | 
|  | goto reinit_after_soft_reset; | 
|  | } | 
|  |  | 
|  | /* Enable Accelerated IO path at driver layer */ | 
|  | h->acciopath_status = 1; | 
|  | /* Disable discovery polling.*/ | 
|  | h->discovery_polling = 0; | 
|  |  | 
|  |  | 
|  | /* Turn the interrupts on so we can service requests */ | 
|  | h->access.set_intr_mask(h, HPSA_INTR_ON); | 
|  |  | 
|  | hpsa_hba_inquiry(h); | 
|  |  | 
|  | h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); | 
|  | if (!h->lastlogicals) | 
|  | dev_info(&h->pdev->dev, | 
|  | "Can't track change to report lun data\n"); | 
|  |  | 
|  | /* hook into SCSI subsystem */ | 
|  | rc = hpsa_scsi_add_host(h); | 
|  | if (rc) | 
|  | goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ | 
|  |  | 
|  | /* Monitor the controller for firmware lockups */ | 
|  | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; | 
|  | INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); | 
|  | schedule_delayed_work(&h->monitor_ctlr_work, | 
|  | h->heartbeat_sample_interval); | 
|  | INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); | 
|  | queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, | 
|  | h->heartbeat_sample_interval); | 
|  | INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker); | 
|  | schedule_delayed_work(&h->event_monitor_work, | 
|  | HPSA_EVENT_MONITOR_INTERVAL); | 
|  | return 0; | 
|  |  | 
|  | clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ | 
|  | hpsa_free_performant_mode(h); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  | clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ | 
|  | hpsa_free_sg_chain_blocks(h); | 
|  | clean5: /* cmd, irq, shost, pci, lu, aer/h */ | 
|  | hpsa_free_cmd_pool(h); | 
|  | clean4: /* irq, shost, pci, lu, aer/h */ | 
|  | hpsa_free_irqs(h); | 
|  | clean3: /* shost, pci, lu, aer/h */ | 
|  | scsi_host_put(h->scsi_host); | 
|  | h->scsi_host = NULL; | 
|  | clean2_5: /* pci, lu, aer/h */ | 
|  | hpsa_free_pci_init(h); | 
|  | clean2: /* lu, aer/h */ | 
|  | if (h->lockup_detected) { | 
|  | free_percpu(h->lockup_detected); | 
|  | h->lockup_detected = NULL; | 
|  | } | 
|  | clean1:	/* wq/aer/h */ | 
|  | if (h->resubmit_wq) { | 
|  | destroy_workqueue(h->resubmit_wq); | 
|  | h->resubmit_wq = NULL; | 
|  | } | 
|  | if (h->rescan_ctlr_wq) { | 
|  | destroy_workqueue(h->rescan_ctlr_wq); | 
|  | h->rescan_ctlr_wq = NULL; | 
|  | } | 
|  | if (h->monitor_ctlr_wq) { | 
|  | destroy_workqueue(h->monitor_ctlr_wq); | 
|  | h->monitor_ctlr_wq = NULL; | 
|  | } | 
|  | kfree(h); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_flush_cache(struct ctlr_info *h) | 
|  | { | 
|  | char *flush_buf; | 
|  | struct CommandList *c; | 
|  | int rc; | 
|  |  | 
|  | if (unlikely(lockup_detected(h))) | 
|  | return; | 
|  | flush_buf = kzalloc(4, GFP_KERNEL); | 
|  | if (!flush_buf) | 
|  | return; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, | 
|  | RAID_CTLR_LUNID, TYPE_CMD)) { | 
|  | goto out; | 
|  | } | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE, | 
|  | DEFAULT_TIMEOUT); | 
|  | if (rc) | 
|  | goto out; | 
|  | if (c->err_info->CommandStatus != 0) | 
|  | out: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "error flushing cache on controller\n"); | 
|  | cmd_free(h, c); | 
|  | kfree(flush_buf); | 
|  | } | 
|  |  | 
|  | /* Make controller gather fresh report lun data each time we | 
|  | * send down a report luns request | 
|  | */ | 
|  | static void hpsa_disable_rld_caching(struct ctlr_info *h) | 
|  | { | 
|  | u32 *options; | 
|  | struct CommandList *c; | 
|  | int rc; | 
|  |  | 
|  | /* Don't bother trying to set diag options if locked up */ | 
|  | if (unlikely(h->lockup_detected)) | 
|  | return; | 
|  |  | 
|  | options = kzalloc(sizeof(*options), GFP_KERNEL); | 
|  | if (!options) | 
|  | return; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  |  | 
|  | /* first, get the current diag options settings */ | 
|  | if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, | 
|  | RAID_CTLR_LUNID, TYPE_CMD)) | 
|  | goto errout; | 
|  |  | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if ((rc != 0) || (c->err_info->CommandStatus != 0)) | 
|  | goto errout; | 
|  |  | 
|  | /* Now, set the bit for disabling the RLD caching */ | 
|  | *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; | 
|  |  | 
|  | if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, | 
|  | RAID_CTLR_LUNID, TYPE_CMD)) | 
|  | goto errout; | 
|  |  | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if ((rc != 0)  || (c->err_info->CommandStatus != 0)) | 
|  | goto errout; | 
|  |  | 
|  | /* Now verify that it got set: */ | 
|  | if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, | 
|  | RAID_CTLR_LUNID, TYPE_CMD)) | 
|  | goto errout; | 
|  |  | 
|  | rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, | 
|  | NO_TIMEOUT); | 
|  | if ((rc != 0)  || (c->err_info->CommandStatus != 0)) | 
|  | goto errout; | 
|  |  | 
|  | if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) | 
|  | goto out; | 
|  |  | 
|  | errout: | 
|  | dev_err(&h->pdev->dev, | 
|  | "Error: failed to disable report lun data caching.\n"); | 
|  | out: | 
|  | cmd_free(h, c); | 
|  | kfree(options); | 
|  | } | 
|  |  | 
|  | static void __hpsa_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  |  | 
|  | h = pci_get_drvdata(pdev); | 
|  | /* Turn board interrupts off  and send the flush cache command | 
|  | * sendcmd will turn off interrupt, and send the flush... | 
|  | * To write all data in the battery backed cache to disks | 
|  | */ | 
|  | hpsa_flush_cache(h); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  | hpsa_free_irqs(h);			/* init_one 4 */ | 
|  | hpsa_disable_interrupt_mode(h);		/* pci_init 2 */ | 
|  | } | 
|  |  | 
|  | static void hpsa_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | __hpsa_shutdown(pdev); | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  |  | 
|  | static void hpsa_free_device_info(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | kfree(h->dev[i]); | 
|  | h->dev[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_remove_one(struct pci_dev *pdev) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (pci_get_drvdata(pdev) == NULL) { | 
|  | dev_err(&pdev->dev, "unable to remove device\n"); | 
|  | return; | 
|  | } | 
|  | h = pci_get_drvdata(pdev); | 
|  |  | 
|  | /* Get rid of any controller monitoring work items */ | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | h->remove_in_progress = 1; | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | cancel_delayed_work_sync(&h->monitor_ctlr_work); | 
|  | cancel_delayed_work_sync(&h->rescan_ctlr_work); | 
|  | cancel_delayed_work_sync(&h->event_monitor_work); | 
|  | destroy_workqueue(h->rescan_ctlr_wq); | 
|  | destroy_workqueue(h->resubmit_wq); | 
|  | destroy_workqueue(h->monitor_ctlr_wq); | 
|  |  | 
|  | hpsa_delete_sas_host(h); | 
|  |  | 
|  | /* | 
|  | * Call before disabling interrupts. | 
|  | * scsi_remove_host can trigger I/O operations especially | 
|  | * when multipath is enabled. There can be SYNCHRONIZE CACHE | 
|  | * operations which cannot complete and will hang the system. | 
|  | */ | 
|  | if (h->scsi_host) | 
|  | scsi_remove_host(h->scsi_host);		/* init_one 8 */ | 
|  | /* includes hpsa_free_irqs - init_one 4 */ | 
|  | /* includes hpsa_disable_interrupt_mode - pci_init 2 */ | 
|  | __hpsa_shutdown(pdev); | 
|  |  | 
|  | hpsa_free_device_info(h);		/* scan */ | 
|  |  | 
|  | kfree(h->hba_inquiry_data);			/* init_one 10 */ | 
|  | h->hba_inquiry_data = NULL;			/* init_one 10 */ | 
|  | hpsa_free_ioaccel2_sg_chain_blocks(h); | 
|  | hpsa_free_performant_mode(h);			/* init_one 7 */ | 
|  | hpsa_free_sg_chain_blocks(h);			/* init_one 6 */ | 
|  | hpsa_free_cmd_pool(h);				/* init_one 5 */ | 
|  | kfree(h->lastlogicals); | 
|  |  | 
|  | /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ | 
|  |  | 
|  | scsi_host_put(h->scsi_host);			/* init_one 3 */ | 
|  | h->scsi_host = NULL;				/* init_one 3 */ | 
|  |  | 
|  | /* includes hpsa_disable_interrupt_mode - pci_init 2 */ | 
|  | hpsa_free_pci_init(h);				/* init_one 2.5 */ | 
|  |  | 
|  | free_percpu(h->lockup_detected);		/* init_one 2 */ | 
|  | h->lockup_detected = NULL;			/* init_one 2 */ | 
|  | /* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */ | 
|  |  | 
|  | hpda_free_ctlr_info(h);				/* init_one 1 */ | 
|  | } | 
|  |  | 
|  | static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, | 
|  | __attribute__((unused)) pm_message_t state) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static struct pci_driver hpsa_pci_driver = { | 
|  | .name = HPSA, | 
|  | .probe = hpsa_init_one, | 
|  | .remove = hpsa_remove_one, | 
|  | .id_table = hpsa_pci_device_id,	/* id_table */ | 
|  | .shutdown = hpsa_shutdown, | 
|  | .suspend = hpsa_suspend, | 
|  | .resume = hpsa_resume, | 
|  | }; | 
|  |  | 
|  | /* Fill in bucket_map[], given nsgs (the max number of | 
|  | * scatter gather elements supported) and bucket[], | 
|  | * which is an array of 8 integers.  The bucket[] array | 
|  | * contains 8 different DMA transfer sizes (in 16 | 
|  | * byte increments) which the controller uses to fetch | 
|  | * commands.  This function fills in bucket_map[], which | 
|  | * maps a given number of scatter gather elements to one of | 
|  | * the 8 DMA transfer sizes.  The point of it is to allow the | 
|  | * controller to only do as much DMA as needed to fetch the | 
|  | * command, with the DMA transfer size encoded in the lower | 
|  | * bits of the command address. | 
|  | */ | 
|  | static void  calc_bucket_map(int bucket[], int num_buckets, | 
|  | int nsgs, int min_blocks, u32 *bucket_map) | 
|  | { | 
|  | int i, j, b, size; | 
|  |  | 
|  | /* Note, bucket_map must have nsgs+1 entries. */ | 
|  | for (i = 0; i <= nsgs; i++) { | 
|  | /* Compute size of a command with i SG entries */ | 
|  | size = i + min_blocks; | 
|  | b = num_buckets; /* Assume the biggest bucket */ | 
|  | /* Find the bucket that is just big enough */ | 
|  | for (j = 0; j < num_buckets; j++) { | 
|  | if (bucket[j] >= size) { | 
|  | b = j; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* for a command with i SG entries, use bucket b. */ | 
|  | bucket_map[i] = b; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return -ENODEV on err, 0 on success (or no action) | 
|  | * allocates numerous items that must be freed later | 
|  | */ | 
|  | static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) | 
|  | { | 
|  | int i; | 
|  | unsigned long register_value; | 
|  | unsigned long transMethod = CFGTBL_Trans_Performant | | 
|  | (trans_support & CFGTBL_Trans_use_short_tags) | | 
|  | CFGTBL_Trans_enable_directed_msix | | 
|  | (trans_support & (CFGTBL_Trans_io_accel1 | | 
|  | CFGTBL_Trans_io_accel2)); | 
|  | struct access_method access = SA5_performant_access; | 
|  |  | 
|  | /* This is a bit complicated.  There are 8 registers on | 
|  | * the controller which we write to to tell it 8 different | 
|  | * sizes of commands which there may be.  It's a way of | 
|  | * reducing the DMA done to fetch each command.  Encoded into | 
|  | * each command's tag are 3 bits which communicate to the controller | 
|  | * which of the eight sizes that command fits within.  The size of | 
|  | * each command depends on how many scatter gather entries there are. | 
|  | * Each SG entry requires 16 bytes.  The eight registers are programmed | 
|  | * with the number of 16-byte blocks a command of that size requires. | 
|  | * The smallest command possible requires 5 such 16 byte blocks. | 
|  | * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte | 
|  | * blocks.  Note, this only extends to the SG entries contained | 
|  | * within the command block, and does not extend to chained blocks | 
|  | * of SG elements.   bft[] contains the eight values we write to | 
|  | * the registers.  They are not evenly distributed, but have more | 
|  | * sizes for small commands, and fewer sizes for larger commands. | 
|  | */ | 
|  | int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; | 
|  | #define MIN_IOACCEL2_BFT_ENTRY 5 | 
|  | #define HPSA_IOACCEL2_HEADER_SZ 4 | 
|  | int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, | 
|  | 13, 14, 15, 16, 17, 18, 19, | 
|  | HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; | 
|  | BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); | 
|  | BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); | 
|  | BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > | 
|  | 16 * MIN_IOACCEL2_BFT_ENTRY); | 
|  | BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); | 
|  | BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); | 
|  | /*  5 = 1 s/g entry or 4k | 
|  | *  6 = 2 s/g entry or 8k | 
|  | *  8 = 4 s/g entry or 16k | 
|  | * 10 = 6 s/g entry or 24k | 
|  | */ | 
|  |  | 
|  | /* If the controller supports either ioaccel method then | 
|  | * we can also use the RAID stack submit path that does not | 
|  | * perform the superfluous readl() after each command submission. | 
|  | */ | 
|  | if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) | 
|  | access = SA5_performant_access_no_read; | 
|  |  | 
|  | /* Controller spec: zero out this buffer. */ | 
|  | for (i = 0; i < h->nreply_queues; i++) | 
|  | memset(h->reply_queue[i].head, 0, h->reply_queue_size); | 
|  |  | 
|  | bft[7] = SG_ENTRIES_IN_CMD + 4; | 
|  | calc_bucket_map(bft, ARRAY_SIZE(bft), | 
|  | SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); | 
|  | for (i = 0; i < 8; i++) | 
|  | writel(bft[i], &h->transtable->BlockFetch[i]); | 
|  |  | 
|  | /* size of controller ring buffer */ | 
|  | writel(h->max_commands, &h->transtable->RepQSize); | 
|  | writel(h->nreply_queues, &h->transtable->RepQCount); | 
|  | writel(0, &h->transtable->RepQCtrAddrLow32); | 
|  | writel(0, &h->transtable->RepQCtrAddrHigh32); | 
|  |  | 
|  | for (i = 0; i < h->nreply_queues; i++) { | 
|  | writel(0, &h->transtable->RepQAddr[i].upper); | 
|  | writel(h->reply_queue[i].busaddr, | 
|  | &h->transtable->RepQAddr[i].lower); | 
|  | } | 
|  |  | 
|  | writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); | 
|  | writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); | 
|  | /* | 
|  | * enable outbound interrupt coalescing in accelerator mode; | 
|  | */ | 
|  | if (trans_support & CFGTBL_Trans_io_accel1) { | 
|  | access = SA5_ioaccel_mode1_access; | 
|  | writel(10, &h->cfgtable->HostWrite.CoalIntDelay); | 
|  | writel(4, &h->cfgtable->HostWrite.CoalIntCount); | 
|  | } else | 
|  | if (trans_support & CFGTBL_Trans_io_accel2) | 
|  | access = SA5_ioaccel_mode2_access; | 
|  | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
|  | if (hpsa_wait_for_mode_change_ack(h)) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "performant mode problem - doorbell timeout\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | register_value = readl(&(h->cfgtable->TransportActive)); | 
|  | if (!(register_value & CFGTBL_Trans_Performant)) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "performant mode problem - transport not active\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | /* Change the access methods to the performant access methods */ | 
|  | h->access = access; | 
|  | h->transMethod = transMethod; | 
|  |  | 
|  | if (!((trans_support & CFGTBL_Trans_io_accel1) || | 
|  | (trans_support & CFGTBL_Trans_io_accel2))) | 
|  | return 0; | 
|  |  | 
|  | if (trans_support & CFGTBL_Trans_io_accel1) { | 
|  | /* Set up I/O accelerator mode */ | 
|  | for (i = 0; i < h->nreply_queues; i++) { | 
|  | writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); | 
|  | h->reply_queue[i].current_entry = | 
|  | readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); | 
|  | } | 
|  | bft[7] = h->ioaccel_maxsg + 8; | 
|  | calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, | 
|  | h->ioaccel1_blockFetchTable); | 
|  |  | 
|  | /* initialize all reply queue entries to unused */ | 
|  | for (i = 0; i < h->nreply_queues; i++) | 
|  | memset(h->reply_queue[i].head, | 
|  | (u8) IOACCEL_MODE1_REPLY_UNUSED, | 
|  | h->reply_queue_size); | 
|  |  | 
|  | /* set all the constant fields in the accelerator command | 
|  | * frames once at init time to save CPU cycles later. | 
|  | */ | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; | 
|  |  | 
|  | cp->function = IOACCEL1_FUNCTION_SCSIIO; | 
|  | cp->err_info = (u32) (h->errinfo_pool_dhandle + | 
|  | (i * sizeof(struct ErrorInfo))); | 
|  | cp->err_info_len = sizeof(struct ErrorInfo); | 
|  | cp->sgl_offset = IOACCEL1_SGLOFFSET; | 
|  | cp->host_context_flags = | 
|  | cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); | 
|  | cp->timeout_sec = 0; | 
|  | cp->ReplyQueue = 0; | 
|  | cp->tag = | 
|  | cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); | 
|  | cp->host_addr = | 
|  | cpu_to_le64(h->ioaccel_cmd_pool_dhandle + | 
|  | (i * sizeof(struct io_accel1_cmd))); | 
|  | } | 
|  | } else if (trans_support & CFGTBL_Trans_io_accel2) { | 
|  | u64 cfg_offset, cfg_base_addr_index; | 
|  | u32 bft2_offset, cfg_base_addr; | 
|  | int rc; | 
|  |  | 
|  | rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, | 
|  | &cfg_base_addr_index, &cfg_offset); | 
|  | BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); | 
|  | bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; | 
|  | calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, | 
|  | 4, h->ioaccel2_blockFetchTable); | 
|  | bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); | 
|  | BUILD_BUG_ON(offsetof(struct CfgTable, | 
|  | io_accel_request_size_offset) != 0xb8); | 
|  | h->ioaccel2_bft2_regs = | 
|  | remap_pci_mem(pci_resource_start(h->pdev, | 
|  | cfg_base_addr_index) + | 
|  | cfg_offset + bft2_offset, | 
|  | ARRAY_SIZE(bft2) * | 
|  | sizeof(*h->ioaccel2_bft2_regs)); | 
|  | for (i = 0; i < ARRAY_SIZE(bft2); i++) | 
|  | writel(bft2[i], &h->ioaccel2_bft2_regs[i]); | 
|  | } | 
|  | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
|  | if (hpsa_wait_for_mode_change_ack(h)) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "performant mode problem - enabling ioaccel mode\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Free ioaccel1 mode command blocks and block fetch table */ | 
|  | static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) | 
|  | { | 
|  | if (h->ioaccel_cmd_pool) { | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), | 
|  | h->ioaccel_cmd_pool, | 
|  | h->ioaccel_cmd_pool_dhandle); | 
|  | h->ioaccel_cmd_pool = NULL; | 
|  | h->ioaccel_cmd_pool_dhandle = 0; | 
|  | } | 
|  | kfree(h->ioaccel1_blockFetchTable); | 
|  | h->ioaccel1_blockFetchTable = NULL; | 
|  | } | 
|  |  | 
|  | /* Allocate ioaccel1 mode command blocks and block fetch table */ | 
|  | static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) | 
|  | { | 
|  | h->ioaccel_maxsg = | 
|  | readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); | 
|  | if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) | 
|  | h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; | 
|  |  | 
|  | /* Command structures must be aligned on a 128-byte boundary | 
|  | * because the 7 lower bits of the address are used by the | 
|  | * hardware. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % | 
|  | IOACCEL1_COMMANDLIST_ALIGNMENT); | 
|  | h->ioaccel_cmd_pool = | 
|  | dma_alloc_coherent(&h->pdev->dev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), | 
|  | &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL); | 
|  |  | 
|  | h->ioaccel1_blockFetchTable = | 
|  | kmalloc(((h->ioaccel_maxsg + 1) * | 
|  | sizeof(u32)), GFP_KERNEL); | 
|  |  | 
|  | if ((h->ioaccel_cmd_pool == NULL) || | 
|  | (h->ioaccel1_blockFetchTable == NULL)) | 
|  | goto clean_up; | 
|  |  | 
|  | memset(h->ioaccel_cmd_pool, 0, | 
|  | h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); | 
|  | return 0; | 
|  |  | 
|  | clean_up: | 
|  | hpsa_free_ioaccel1_cmd_and_bft(h); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Free ioaccel2 mode command blocks and block fetch table */ | 
|  | static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) | 
|  | { | 
|  | hpsa_free_ioaccel2_sg_chain_blocks(h); | 
|  |  | 
|  | if (h->ioaccel2_cmd_pool) { | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), | 
|  | h->ioaccel2_cmd_pool, | 
|  | h->ioaccel2_cmd_pool_dhandle); | 
|  | h->ioaccel2_cmd_pool = NULL; | 
|  | h->ioaccel2_cmd_pool_dhandle = 0; | 
|  | } | 
|  | kfree(h->ioaccel2_blockFetchTable); | 
|  | h->ioaccel2_blockFetchTable = NULL; | 
|  | } | 
|  |  | 
|  | /* Allocate ioaccel2 mode command blocks and block fetch table */ | 
|  | static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | /* Allocate ioaccel2 mode command blocks and block fetch table */ | 
|  |  | 
|  | h->ioaccel_maxsg = | 
|  | readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); | 
|  | if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) | 
|  | h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % | 
|  | IOACCEL2_COMMANDLIST_ALIGNMENT); | 
|  | h->ioaccel2_cmd_pool = | 
|  | dma_alloc_coherent(&h->pdev->dev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), | 
|  | &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL); | 
|  |  | 
|  | h->ioaccel2_blockFetchTable = | 
|  | kmalloc(((h->ioaccel_maxsg + 1) * | 
|  | sizeof(u32)), GFP_KERNEL); | 
|  |  | 
|  | if ((h->ioaccel2_cmd_pool == NULL) || | 
|  | (h->ioaccel2_blockFetchTable == NULL)) { | 
|  | rc = -ENOMEM; | 
|  | goto clean_up; | 
|  | } | 
|  |  | 
|  | rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); | 
|  | if (rc) | 
|  | goto clean_up; | 
|  |  | 
|  | memset(h->ioaccel2_cmd_pool, 0, | 
|  | h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); | 
|  | return 0; | 
|  |  | 
|  | clean_up: | 
|  | hpsa_free_ioaccel2_cmd_and_bft(h); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ | 
|  | static void hpsa_free_performant_mode(struct ctlr_info *h) | 
|  | { | 
|  | kfree(h->blockFetchTable); | 
|  | h->blockFetchTable = NULL; | 
|  | hpsa_free_reply_queues(h); | 
|  | hpsa_free_ioaccel1_cmd_and_bft(h); | 
|  | hpsa_free_ioaccel2_cmd_and_bft(h); | 
|  | } | 
|  |  | 
|  | /* return -ENODEV on error, 0 on success (or no action) | 
|  | * allocates numerous items that must be freed later | 
|  | */ | 
|  | static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) | 
|  | { | 
|  | u32 trans_support; | 
|  | unsigned long transMethod = CFGTBL_Trans_Performant | | 
|  | CFGTBL_Trans_use_short_tags; | 
|  | int i, rc; | 
|  |  | 
|  | if (hpsa_simple_mode) | 
|  | return 0; | 
|  |  | 
|  | trans_support = readl(&(h->cfgtable->TransportSupport)); | 
|  | if (!(trans_support & PERFORMANT_MODE)) | 
|  | return 0; | 
|  |  | 
|  | /* Check for I/O accelerator mode support */ | 
|  | if (trans_support & CFGTBL_Trans_io_accel1) { | 
|  | transMethod |= CFGTBL_Trans_io_accel1 | | 
|  | CFGTBL_Trans_enable_directed_msix; | 
|  | rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); | 
|  | if (rc) | 
|  | return rc; | 
|  | } else if (trans_support & CFGTBL_Trans_io_accel2) { | 
|  | transMethod |= CFGTBL_Trans_io_accel2 | | 
|  | CFGTBL_Trans_enable_directed_msix; | 
|  | rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1; | 
|  | hpsa_get_max_perf_mode_cmds(h); | 
|  | /* Performant mode ring buffer and supporting data structures */ | 
|  | h->reply_queue_size = h->max_commands * sizeof(u64); | 
|  |  | 
|  | for (i = 0; i < h->nreply_queues; i++) { | 
|  | h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev, | 
|  | h->reply_queue_size, | 
|  | &h->reply_queue[i].busaddr, | 
|  | GFP_KERNEL); | 
|  | if (!h->reply_queue[i].head) { | 
|  | rc = -ENOMEM; | 
|  | goto clean1;	/* rq, ioaccel */ | 
|  | } | 
|  | h->reply_queue[i].size = h->max_commands; | 
|  | h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */ | 
|  | h->reply_queue[i].current_entry = 0; | 
|  | } | 
|  |  | 
|  | /* Need a block fetch table for performant mode */ | 
|  | h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * | 
|  | sizeof(u32)), GFP_KERNEL); | 
|  | if (!h->blockFetchTable) { | 
|  | rc = -ENOMEM; | 
|  | goto clean1;	/* rq, ioaccel */ | 
|  | } | 
|  |  | 
|  | rc = hpsa_enter_performant_mode(h, trans_support); | 
|  | if (rc) | 
|  | goto clean2;	/* bft, rq, ioaccel */ | 
|  | return 0; | 
|  |  | 
|  | clean2:	/* bft, rq, ioaccel */ | 
|  | kfree(h->blockFetchTable); | 
|  | h->blockFetchTable = NULL; | 
|  | clean1:	/* rq, ioaccel */ | 
|  | hpsa_free_reply_queues(h); | 
|  | hpsa_free_ioaccel1_cmd_and_bft(h); | 
|  | hpsa_free_ioaccel2_cmd_and_bft(h); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int is_accelerated_cmd(struct CommandList *c) | 
|  | { | 
|  | return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; | 
|  | } | 
|  |  | 
|  | static void hpsa_drain_accel_commands(struct ctlr_info *h) | 
|  | { | 
|  | struct CommandList *c = NULL; | 
|  | int i, accel_cmds_out; | 
|  | int refcount; | 
|  |  | 
|  | do { /* wait for all outstanding ioaccel commands to drain out */ | 
|  | accel_cmds_out = 0; | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | c = h->cmd_pool + i; | 
|  | refcount = atomic_inc_return(&c->refcount); | 
|  | if (refcount > 1) /* Command is allocated */ | 
|  | accel_cmds_out += is_accelerated_cmd(c); | 
|  | cmd_free(h, c); | 
|  | } | 
|  | if (accel_cmds_out <= 0) | 
|  | break; | 
|  | msleep(100); | 
|  | } while (1); | 
|  | } | 
|  |  | 
|  | static struct hpsa_sas_phy *hpsa_alloc_sas_phy( | 
|  | struct hpsa_sas_port *hpsa_sas_port) | 
|  | { | 
|  | struct hpsa_sas_phy *hpsa_sas_phy; | 
|  | struct sas_phy *phy; | 
|  |  | 
|  | hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); | 
|  | if (!hpsa_sas_phy) | 
|  | return NULL; | 
|  |  | 
|  | phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, | 
|  | hpsa_sas_port->next_phy_index); | 
|  | if (!phy) { | 
|  | kfree(hpsa_sas_phy); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | hpsa_sas_port->next_phy_index++; | 
|  | hpsa_sas_phy->phy = phy; | 
|  | hpsa_sas_phy->parent_port = hpsa_sas_port; | 
|  |  | 
|  | return hpsa_sas_phy; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) | 
|  | { | 
|  | struct sas_phy *phy = hpsa_sas_phy->phy; | 
|  |  | 
|  | sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); | 
|  | if (hpsa_sas_phy->added_to_port) | 
|  | list_del(&hpsa_sas_phy->phy_list_entry); | 
|  | sas_phy_delete(phy); | 
|  | kfree(hpsa_sas_phy); | 
|  | } | 
|  |  | 
|  | static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) | 
|  | { | 
|  | int rc; | 
|  | struct hpsa_sas_port *hpsa_sas_port; | 
|  | struct sas_phy *phy; | 
|  | struct sas_identify *identify; | 
|  |  | 
|  | hpsa_sas_port = hpsa_sas_phy->parent_port; | 
|  | phy = hpsa_sas_phy->phy; | 
|  |  | 
|  | identify = &phy->identify; | 
|  | memset(identify, 0, sizeof(*identify)); | 
|  | identify->sas_address = hpsa_sas_port->sas_address; | 
|  | identify->device_type = SAS_END_DEVICE; | 
|  | identify->initiator_port_protocols = SAS_PROTOCOL_STP; | 
|  | identify->target_port_protocols = SAS_PROTOCOL_STP; | 
|  | phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; | 
|  | phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; | 
|  | phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; | 
|  | phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; | 
|  | phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; | 
|  |  | 
|  | rc = sas_phy_add(hpsa_sas_phy->phy); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); | 
|  | list_add_tail(&hpsa_sas_phy->phy_list_entry, | 
|  | &hpsa_sas_port->phy_list_head); | 
|  | hpsa_sas_phy->added_to_port = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, | 
|  | struct sas_rphy *rphy) | 
|  | { | 
|  | struct sas_identify *identify; | 
|  |  | 
|  | identify = &rphy->identify; | 
|  | identify->sas_address = hpsa_sas_port->sas_address; | 
|  | identify->initiator_port_protocols = SAS_PROTOCOL_STP; | 
|  | identify->target_port_protocols = SAS_PROTOCOL_STP; | 
|  |  | 
|  | return sas_rphy_add(rphy); | 
|  | } | 
|  |  | 
|  | static struct hpsa_sas_port | 
|  | *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, | 
|  | u64 sas_address) | 
|  | { | 
|  | int rc; | 
|  | struct hpsa_sas_port *hpsa_sas_port; | 
|  | struct sas_port *port; | 
|  |  | 
|  | hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); | 
|  | if (!hpsa_sas_port) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); | 
|  | hpsa_sas_port->parent_node = hpsa_sas_node; | 
|  |  | 
|  | port = sas_port_alloc_num(hpsa_sas_node->parent_dev); | 
|  | if (!port) | 
|  | goto free_hpsa_port; | 
|  |  | 
|  | rc = sas_port_add(port); | 
|  | if (rc) | 
|  | goto free_sas_port; | 
|  |  | 
|  | hpsa_sas_port->port = port; | 
|  | hpsa_sas_port->sas_address = sas_address; | 
|  | list_add_tail(&hpsa_sas_port->port_list_entry, | 
|  | &hpsa_sas_node->port_list_head); | 
|  |  | 
|  | return hpsa_sas_port; | 
|  |  | 
|  | free_sas_port: | 
|  | sas_port_free(port); | 
|  | free_hpsa_port: | 
|  | kfree(hpsa_sas_port); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) | 
|  | { | 
|  | struct hpsa_sas_phy *hpsa_sas_phy; | 
|  | struct hpsa_sas_phy *next; | 
|  |  | 
|  | list_for_each_entry_safe(hpsa_sas_phy, next, | 
|  | &hpsa_sas_port->phy_list_head, phy_list_entry) | 
|  | hpsa_free_sas_phy(hpsa_sas_phy); | 
|  |  | 
|  | sas_port_delete(hpsa_sas_port->port); | 
|  | list_del(&hpsa_sas_port->port_list_entry); | 
|  | kfree(hpsa_sas_port); | 
|  | } | 
|  |  | 
|  | static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) | 
|  | { | 
|  | struct hpsa_sas_node *hpsa_sas_node; | 
|  |  | 
|  | hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); | 
|  | if (hpsa_sas_node) { | 
|  | hpsa_sas_node->parent_dev = parent_dev; | 
|  | INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); | 
|  | } | 
|  |  | 
|  | return hpsa_sas_node; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) | 
|  | { | 
|  | struct hpsa_sas_port *hpsa_sas_port; | 
|  | struct hpsa_sas_port *next; | 
|  |  | 
|  | if (!hpsa_sas_node) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry_safe(hpsa_sas_port, next, | 
|  | &hpsa_sas_node->port_list_head, port_list_entry) | 
|  | hpsa_free_sas_port(hpsa_sas_port); | 
|  |  | 
|  | kfree(hpsa_sas_node); | 
|  | } | 
|  |  | 
|  | static struct hpsa_scsi_dev_t | 
|  | *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, | 
|  | struct sas_rphy *rphy) | 
|  | { | 
|  | int i; | 
|  | struct hpsa_scsi_dev_t *device; | 
|  |  | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | device = h->dev[i]; | 
|  | if (!device->sas_port) | 
|  | continue; | 
|  | if (device->sas_port->rphy == rphy) | 
|  | return device; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int hpsa_add_sas_host(struct ctlr_info *h) | 
|  | { | 
|  | int rc; | 
|  | struct device *parent_dev; | 
|  | struct hpsa_sas_node *hpsa_sas_node; | 
|  | struct hpsa_sas_port *hpsa_sas_port; | 
|  | struct hpsa_sas_phy *hpsa_sas_phy; | 
|  |  | 
|  | parent_dev = &h->scsi_host->shost_dev; | 
|  |  | 
|  | hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); | 
|  | if (!hpsa_sas_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); | 
|  | if (!hpsa_sas_port) { | 
|  | rc = -ENODEV; | 
|  | goto free_sas_node; | 
|  | } | 
|  |  | 
|  | hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); | 
|  | if (!hpsa_sas_phy) { | 
|  | rc = -ENODEV; | 
|  | goto free_sas_port; | 
|  | } | 
|  |  | 
|  | rc = hpsa_sas_port_add_phy(hpsa_sas_phy); | 
|  | if (rc) | 
|  | goto free_sas_phy; | 
|  |  | 
|  | h->sas_host = hpsa_sas_node; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_sas_phy: | 
|  | hpsa_free_sas_phy(hpsa_sas_phy); | 
|  | free_sas_port: | 
|  | hpsa_free_sas_port(hpsa_sas_port); | 
|  | free_sas_node: | 
|  | hpsa_free_sas_node(hpsa_sas_node); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_delete_sas_host(struct ctlr_info *h) | 
|  | { | 
|  | hpsa_free_sas_node(h->sas_host); | 
|  | } | 
|  |  | 
|  | static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, | 
|  | struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | int rc; | 
|  | struct hpsa_sas_port *hpsa_sas_port; | 
|  | struct sas_rphy *rphy; | 
|  |  | 
|  | hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); | 
|  | if (!hpsa_sas_port) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rphy = sas_end_device_alloc(hpsa_sas_port->port); | 
|  | if (!rphy) { | 
|  | rc = -ENODEV; | 
|  | goto free_sas_port; | 
|  | } | 
|  |  | 
|  | hpsa_sas_port->rphy = rphy; | 
|  | device->sas_port = hpsa_sas_port; | 
|  |  | 
|  | rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); | 
|  | if (rc) | 
|  | goto free_sas_port; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_sas_port: | 
|  | hpsa_free_sas_port(hpsa_sas_port); | 
|  | device->sas_port = NULL; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | if (device->sas_port) { | 
|  | hpsa_free_sas_port(device->sas_port); | 
|  | device->sas_port = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | hpsa_sas_get_linkerrors(struct sas_phy *phy) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) | 
|  | { | 
|  | struct Scsi_Host *shost = phy_to_shost(rphy); | 
|  | struct ctlr_info *h; | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  |  | 
|  | if (!shost) | 
|  | return -ENXIO; | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  |  | 
|  | if (!h) | 
|  | return -ENXIO; | 
|  |  | 
|  | sd = hpsa_find_device_by_sas_rphy(h, rphy); | 
|  | if (!sd) | 
|  | return -ENXIO; | 
|  |  | 
|  | *identifier = sd->eli; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) | 
|  | { | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hpsa_sas_phy_enable(struct sas_phy *phy, int enable) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hpsa_sas_phy_setup(struct sas_phy *phy) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | hpsa_sas_phy_release(struct sas_phy *phy) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int | 
|  | hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static struct sas_function_template hpsa_sas_transport_functions = { | 
|  | .get_linkerrors = hpsa_sas_get_linkerrors, | 
|  | .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, | 
|  | .get_bay_identifier = hpsa_sas_get_bay_identifier, | 
|  | .phy_reset = hpsa_sas_phy_reset, | 
|  | .phy_enable = hpsa_sas_phy_enable, | 
|  | .phy_setup = hpsa_sas_phy_setup, | 
|  | .phy_release = hpsa_sas_phy_release, | 
|  | .set_phy_speed = hpsa_sas_phy_speed, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *  This is it.  Register the PCI driver information for the cards we control | 
|  | *  the OS will call our registered routines when it finds one of our cards. | 
|  | */ | 
|  | static int __init hpsa_init(void) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | hpsa_sas_transport_template = | 
|  | sas_attach_transport(&hpsa_sas_transport_functions); | 
|  | if (!hpsa_sas_transport_template) | 
|  | return -ENODEV; | 
|  |  | 
|  | rc = pci_register_driver(&hpsa_pci_driver); | 
|  |  | 
|  | if (rc) | 
|  | sas_release_transport(hpsa_sas_transport_template); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void __exit hpsa_cleanup(void) | 
|  | { | 
|  | pci_unregister_driver(&hpsa_pci_driver); | 
|  | sas_release_transport(hpsa_sas_transport_template); | 
|  | } | 
|  |  | 
|  | static void __attribute__((unused)) verify_offsets(void) | 
|  | { | 
|  | #define VERIFY_OFFSET(member, offset) \ | 
|  | BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) | 
|  |  | 
|  | VERIFY_OFFSET(structure_size, 0); | 
|  | VERIFY_OFFSET(volume_blk_size, 4); | 
|  | VERIFY_OFFSET(volume_blk_cnt, 8); | 
|  | VERIFY_OFFSET(phys_blk_shift, 16); | 
|  | VERIFY_OFFSET(parity_rotation_shift, 17); | 
|  | VERIFY_OFFSET(strip_size, 18); | 
|  | VERIFY_OFFSET(disk_starting_blk, 20); | 
|  | VERIFY_OFFSET(disk_blk_cnt, 28); | 
|  | VERIFY_OFFSET(data_disks_per_row, 36); | 
|  | VERIFY_OFFSET(metadata_disks_per_row, 38); | 
|  | VERIFY_OFFSET(row_cnt, 40); | 
|  | VERIFY_OFFSET(layout_map_count, 42); | 
|  | VERIFY_OFFSET(flags, 44); | 
|  | VERIFY_OFFSET(dekindex, 46); | 
|  | /* VERIFY_OFFSET(reserved, 48 */ | 
|  | VERIFY_OFFSET(data, 64); | 
|  |  | 
|  | #undef VERIFY_OFFSET | 
|  |  | 
|  | #define VERIFY_OFFSET(member, offset) \ | 
|  | BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) | 
|  |  | 
|  | VERIFY_OFFSET(IU_type, 0); | 
|  | VERIFY_OFFSET(direction, 1); | 
|  | VERIFY_OFFSET(reply_queue, 2); | 
|  | /* VERIFY_OFFSET(reserved1, 3);  */ | 
|  | VERIFY_OFFSET(scsi_nexus, 4); | 
|  | VERIFY_OFFSET(Tag, 8); | 
|  | VERIFY_OFFSET(cdb, 16); | 
|  | VERIFY_OFFSET(cciss_lun, 32); | 
|  | VERIFY_OFFSET(data_len, 40); | 
|  | VERIFY_OFFSET(cmd_priority_task_attr, 44); | 
|  | VERIFY_OFFSET(sg_count, 45); | 
|  | /* VERIFY_OFFSET(reserved3 */ | 
|  | VERIFY_OFFSET(err_ptr, 48); | 
|  | VERIFY_OFFSET(err_len, 56); | 
|  | /* VERIFY_OFFSET(reserved4  */ | 
|  | VERIFY_OFFSET(sg, 64); | 
|  |  | 
|  | #undef VERIFY_OFFSET | 
|  |  | 
|  | #define VERIFY_OFFSET(member, offset) \ | 
|  | BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) | 
|  |  | 
|  | VERIFY_OFFSET(dev_handle, 0x00); | 
|  | VERIFY_OFFSET(reserved1, 0x02); | 
|  | VERIFY_OFFSET(function, 0x03); | 
|  | VERIFY_OFFSET(reserved2, 0x04); | 
|  | VERIFY_OFFSET(err_info, 0x0C); | 
|  | VERIFY_OFFSET(reserved3, 0x10); | 
|  | VERIFY_OFFSET(err_info_len, 0x12); | 
|  | VERIFY_OFFSET(reserved4, 0x13); | 
|  | VERIFY_OFFSET(sgl_offset, 0x14); | 
|  | VERIFY_OFFSET(reserved5, 0x15); | 
|  | VERIFY_OFFSET(transfer_len, 0x1C); | 
|  | VERIFY_OFFSET(reserved6, 0x20); | 
|  | VERIFY_OFFSET(io_flags, 0x24); | 
|  | VERIFY_OFFSET(reserved7, 0x26); | 
|  | VERIFY_OFFSET(LUN, 0x34); | 
|  | VERIFY_OFFSET(control, 0x3C); | 
|  | VERIFY_OFFSET(CDB, 0x40); | 
|  | VERIFY_OFFSET(reserved8, 0x50); | 
|  | VERIFY_OFFSET(host_context_flags, 0x60); | 
|  | VERIFY_OFFSET(timeout_sec, 0x62); | 
|  | VERIFY_OFFSET(ReplyQueue, 0x64); | 
|  | VERIFY_OFFSET(reserved9, 0x65); | 
|  | VERIFY_OFFSET(tag, 0x68); | 
|  | VERIFY_OFFSET(host_addr, 0x70); | 
|  | VERIFY_OFFSET(CISS_LUN, 0x78); | 
|  | VERIFY_OFFSET(SG, 0x78 + 8); | 
|  | #undef VERIFY_OFFSET | 
|  | } | 
|  |  | 
|  | module_init(hpsa_init); | 
|  | module_exit(hpsa_cleanup); |