| /* | 
 |  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. | 
 |  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. | 
 |  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. | 
 |  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. | 
 |  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. | 
 |  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  */ | 
 |  | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/module.h> | 
 | #include <crypto/aead.h> | 
 |  | 
 | #include <net/strparser.h> | 
 | #include <net/tls.h> | 
 |  | 
 | static int __skb_nsg(struct sk_buff *skb, int offset, int len, | 
 |                      unsigned int recursion_level) | 
 | { | 
 |         int start = skb_headlen(skb); | 
 |         int i, chunk = start - offset; | 
 |         struct sk_buff *frag_iter; | 
 |         int elt = 0; | 
 |  | 
 |         if (unlikely(recursion_level >= 24)) | 
 |                 return -EMSGSIZE; | 
 |  | 
 |         if (chunk > 0) { | 
 |                 if (chunk > len) | 
 |                         chunk = len; | 
 |                 elt++; | 
 |                 len -= chunk; | 
 |                 if (len == 0) | 
 |                         return elt; | 
 |                 offset += chunk; | 
 |         } | 
 |  | 
 |         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
 |                 int end; | 
 |  | 
 |                 WARN_ON(start > offset + len); | 
 |  | 
 |                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
 |                 chunk = end - offset; | 
 |                 if (chunk > 0) { | 
 |                         if (chunk > len) | 
 |                                 chunk = len; | 
 |                         elt++; | 
 |                         len -= chunk; | 
 |                         if (len == 0) | 
 |                                 return elt; | 
 |                         offset += chunk; | 
 |                 } | 
 |                 start = end; | 
 |         } | 
 |  | 
 |         if (unlikely(skb_has_frag_list(skb))) { | 
 |                 skb_walk_frags(skb, frag_iter) { | 
 |                         int end, ret; | 
 |  | 
 |                         WARN_ON(start > offset + len); | 
 |  | 
 |                         end = start + frag_iter->len; | 
 |                         chunk = end - offset; | 
 |                         if (chunk > 0) { | 
 |                                 if (chunk > len) | 
 |                                         chunk = len; | 
 |                                 ret = __skb_nsg(frag_iter, offset - start, chunk, | 
 |                                                 recursion_level + 1); | 
 |                                 if (unlikely(ret < 0)) | 
 |                                         return ret; | 
 |                                 elt += ret; | 
 |                                 len -= chunk; | 
 |                                 if (len == 0) | 
 |                                         return elt; | 
 |                                 offset += chunk; | 
 |                         } | 
 |                         start = end; | 
 |                 } | 
 |         } | 
 |         BUG_ON(len); | 
 |         return elt; | 
 | } | 
 |  | 
 | /* Return the number of scatterlist elements required to completely map the | 
 |  * skb, or -EMSGSIZE if the recursion depth is exceeded. | 
 |  */ | 
 | static int skb_nsg(struct sk_buff *skb, int offset, int len) | 
 | { | 
 |         return __skb_nsg(skb, offset, len, 0); | 
 | } | 
 |  | 
 | static int padding_length(struct tls_sw_context_rx *ctx, | 
 | 			  struct tls_prot_info *prot, struct sk_buff *skb) | 
 | { | 
 | 	struct strp_msg *rxm = strp_msg(skb); | 
 | 	int sub = 0; | 
 |  | 
 | 	/* Determine zero-padding length */ | 
 | 	if (prot->version == TLS_1_3_VERSION) { | 
 | 		char content_type = 0; | 
 | 		int err; | 
 | 		int back = 17; | 
 |  | 
 | 		while (content_type == 0) { | 
 | 			if (back > rxm->full_len - prot->prepend_size) | 
 | 				return -EBADMSG; | 
 | 			err = skb_copy_bits(skb, | 
 | 					    rxm->offset + rxm->full_len - back, | 
 | 					    &content_type, 1); | 
 | 			if (err) | 
 | 				return err; | 
 | 			if (content_type) | 
 | 				break; | 
 | 			sub++; | 
 | 			back++; | 
 | 		} | 
 | 		ctx->control = content_type; | 
 | 	} | 
 | 	return sub; | 
 | } | 
 |  | 
 | static void tls_decrypt_done(struct crypto_async_request *req, int err) | 
 | { | 
 | 	struct aead_request *aead_req = (struct aead_request *)req; | 
 | 	struct scatterlist *sgout = aead_req->dst; | 
 | 	struct scatterlist *sgin = aead_req->src; | 
 | 	struct tls_sw_context_rx *ctx; | 
 | 	struct tls_context *tls_ctx; | 
 | 	struct tls_prot_info *prot; | 
 | 	struct scatterlist *sg; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int pages; | 
 | 	int pending; | 
 |  | 
 | 	skb = (struct sk_buff *)req->data; | 
 | 	tls_ctx = tls_get_ctx(skb->sk); | 
 | 	ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	prot = &tls_ctx->prot_info; | 
 |  | 
 | 	/* Propagate if there was an err */ | 
 | 	if (err) { | 
 | 		if (err == -EBADMSG) | 
 | 			TLS_INC_STATS(sock_net(skb->sk), | 
 | 				      LINUX_MIB_TLSDECRYPTERROR); | 
 | 		ctx->async_wait.err = err; | 
 | 		tls_err_abort(skb->sk, err); | 
 | 	} else { | 
 | 		struct strp_msg *rxm = strp_msg(skb); | 
 | 		int pad; | 
 |  | 
 | 		pad = padding_length(ctx, prot, skb); | 
 | 		if (pad < 0) { | 
 | 			ctx->async_wait.err = pad; | 
 | 			tls_err_abort(skb->sk, pad); | 
 | 		} else { | 
 | 			rxm->full_len -= pad; | 
 | 			rxm->offset += prot->prepend_size; | 
 | 			rxm->full_len -= prot->overhead_size; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* After using skb->sk to propagate sk through crypto async callback | 
 | 	 * we need to NULL it again. | 
 | 	 */ | 
 | 	skb->sk = NULL; | 
 |  | 
 |  | 
 | 	/* Free the destination pages if skb was not decrypted inplace */ | 
 | 	if (sgout != sgin) { | 
 | 		/* Skip the first S/G entry as it points to AAD */ | 
 | 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { | 
 | 			if (!sg) | 
 | 				break; | 
 | 			put_page(sg_page(sg)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kfree(aead_req); | 
 |  | 
 | 	spin_lock_bh(&ctx->decrypt_compl_lock); | 
 | 	pending = atomic_dec_return(&ctx->decrypt_pending); | 
 |  | 
 | 	if (!pending && ctx->async_notify) | 
 | 		complete(&ctx->async_wait.completion); | 
 | 	spin_unlock_bh(&ctx->decrypt_compl_lock); | 
 | } | 
 |  | 
 | static int tls_do_decryption(struct sock *sk, | 
 | 			     struct sk_buff *skb, | 
 | 			     struct scatterlist *sgin, | 
 | 			     struct scatterlist *sgout, | 
 | 			     char *iv_recv, | 
 | 			     size_t data_len, | 
 | 			     struct aead_request *aead_req, | 
 | 			     bool async) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	int ret; | 
 |  | 
 | 	aead_request_set_tfm(aead_req, ctx->aead_recv); | 
 | 	aead_request_set_ad(aead_req, prot->aad_size); | 
 | 	aead_request_set_crypt(aead_req, sgin, sgout, | 
 | 			       data_len + prot->tag_size, | 
 | 			       (u8 *)iv_recv); | 
 |  | 
 | 	if (async) { | 
 | 		/* Using skb->sk to push sk through to crypto async callback | 
 | 		 * handler. This allows propagating errors up to the socket | 
 | 		 * if needed. It _must_ be cleared in the async handler | 
 | 		 * before consume_skb is called. We _know_ skb->sk is NULL | 
 | 		 * because it is a clone from strparser. | 
 | 		 */ | 
 | 		skb->sk = sk; | 
 | 		aead_request_set_callback(aead_req, | 
 | 					  CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 					  tls_decrypt_done, skb); | 
 | 		atomic_inc(&ctx->decrypt_pending); | 
 | 	} else { | 
 | 		aead_request_set_callback(aead_req, | 
 | 					  CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 					  crypto_req_done, &ctx->async_wait); | 
 | 	} | 
 |  | 
 | 	ret = crypto_aead_decrypt(aead_req); | 
 | 	if (ret == -EINPROGRESS) { | 
 | 		if (async) | 
 | 			return ret; | 
 |  | 
 | 		ret = crypto_wait_req(ret, &ctx->async_wait); | 
 | 	} | 
 |  | 
 | 	if (async) | 
 | 		atomic_dec(&ctx->decrypt_pending); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void tls_trim_both_msgs(struct sock *sk, int target_size) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 |  | 
 | 	sk_msg_trim(sk, &rec->msg_plaintext, target_size); | 
 | 	if (target_size > 0) | 
 | 		target_size += prot->overhead_size; | 
 | 	sk_msg_trim(sk, &rec->msg_encrypted, target_size); | 
 | } | 
 |  | 
 | static int tls_alloc_encrypted_msg(struct sock *sk, int len) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 | 	struct sk_msg *msg_en = &rec->msg_encrypted; | 
 |  | 
 | 	return sk_msg_alloc(sk, msg_en, len, 0); | 
 | } | 
 |  | 
 | static int tls_clone_plaintext_msg(struct sock *sk, int required) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 | 	struct sk_msg *msg_pl = &rec->msg_plaintext; | 
 | 	struct sk_msg *msg_en = &rec->msg_encrypted; | 
 | 	int skip, len; | 
 |  | 
 | 	/* We add page references worth len bytes from encrypted sg | 
 | 	 * at the end of plaintext sg. It is guaranteed that msg_en | 
 | 	 * has enough required room (ensured by caller). | 
 | 	 */ | 
 | 	len = required - msg_pl->sg.size; | 
 |  | 
 | 	/* Skip initial bytes in msg_en's data to be able to use | 
 | 	 * same offset of both plain and encrypted data. | 
 | 	 */ | 
 | 	skip = prot->prepend_size + msg_pl->sg.size; | 
 |  | 
 | 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len); | 
 | } | 
 |  | 
 | static struct tls_rec *tls_get_rec(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct sk_msg *msg_pl, *msg_en; | 
 | 	struct tls_rec *rec; | 
 | 	int mem_size; | 
 |  | 
 | 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); | 
 |  | 
 | 	rec = kzalloc(mem_size, sk->sk_allocation); | 
 | 	if (!rec) | 
 | 		return NULL; | 
 |  | 
 | 	msg_pl = &rec->msg_plaintext; | 
 | 	msg_en = &rec->msg_encrypted; | 
 |  | 
 | 	sk_msg_init(msg_pl); | 
 | 	sk_msg_init(msg_en); | 
 |  | 
 | 	sg_init_table(rec->sg_aead_in, 2); | 
 | 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); | 
 | 	sg_unmark_end(&rec->sg_aead_in[1]); | 
 |  | 
 | 	sg_init_table(rec->sg_aead_out, 2); | 
 | 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); | 
 | 	sg_unmark_end(&rec->sg_aead_out[1]); | 
 |  | 
 | 	return rec; | 
 | } | 
 |  | 
 | static void tls_free_rec(struct sock *sk, struct tls_rec *rec) | 
 | { | 
 | 	sk_msg_free(sk, &rec->msg_encrypted); | 
 | 	sk_msg_free(sk, &rec->msg_plaintext); | 
 | 	kfree(rec); | 
 | } | 
 |  | 
 | static void tls_free_open_rec(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 |  | 
 | 	if (rec) { | 
 | 		tls_free_rec(sk, rec); | 
 | 		ctx->open_rec = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | int tls_tx_records(struct sock *sk, int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec, *tmp; | 
 | 	struct sk_msg *msg_en; | 
 | 	int tx_flags, rc = 0; | 
 |  | 
 | 	if (tls_is_partially_sent_record(tls_ctx)) { | 
 | 		rec = list_first_entry(&ctx->tx_list, | 
 | 				       struct tls_rec, list); | 
 |  | 
 | 		if (flags == -1) | 
 | 			tx_flags = rec->tx_flags; | 
 | 		else | 
 | 			tx_flags = flags; | 
 |  | 
 | 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags); | 
 | 		if (rc) | 
 | 			goto tx_err; | 
 |  | 
 | 		/* Full record has been transmitted. | 
 | 		 * Remove the head of tx_list | 
 | 		 */ | 
 | 		list_del(&rec->list); | 
 | 		sk_msg_free(sk, &rec->msg_plaintext); | 
 | 		kfree(rec); | 
 | 	} | 
 |  | 
 | 	/* Tx all ready records */ | 
 | 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { | 
 | 		if (READ_ONCE(rec->tx_ready)) { | 
 | 			if (flags == -1) | 
 | 				tx_flags = rec->tx_flags; | 
 | 			else | 
 | 				tx_flags = flags; | 
 |  | 
 | 			msg_en = &rec->msg_encrypted; | 
 | 			rc = tls_push_sg(sk, tls_ctx, | 
 | 					 &msg_en->sg.data[msg_en->sg.curr], | 
 | 					 0, tx_flags); | 
 | 			if (rc) | 
 | 				goto tx_err; | 
 |  | 
 | 			list_del(&rec->list); | 
 | 			sk_msg_free(sk, &rec->msg_plaintext); | 
 | 			kfree(rec); | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | tx_err: | 
 | 	if (rc < 0 && rc != -EAGAIN) | 
 | 		tls_err_abort(sk, EBADMSG); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void tls_encrypt_done(struct crypto_async_request *req, int err) | 
 | { | 
 | 	struct aead_request *aead_req = (struct aead_request *)req; | 
 | 	struct sock *sk = req->data; | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct scatterlist *sge; | 
 | 	struct sk_msg *msg_en; | 
 | 	struct tls_rec *rec; | 
 | 	bool ready = false; | 
 | 	int pending; | 
 |  | 
 | 	rec = container_of(aead_req, struct tls_rec, aead_req); | 
 | 	msg_en = &rec->msg_encrypted; | 
 |  | 
 | 	sge = sk_msg_elem(msg_en, msg_en->sg.curr); | 
 | 	sge->offset -= prot->prepend_size; | 
 | 	sge->length += prot->prepend_size; | 
 |  | 
 | 	/* Check if error is previously set on socket */ | 
 | 	if (err || sk->sk_err) { | 
 | 		rec = NULL; | 
 |  | 
 | 		/* If err is already set on socket, return the same code */ | 
 | 		if (sk->sk_err) { | 
 | 			ctx->async_wait.err = sk->sk_err; | 
 | 		} else { | 
 | 			ctx->async_wait.err = err; | 
 | 			tls_err_abort(sk, err); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rec) { | 
 | 		struct tls_rec *first_rec; | 
 |  | 
 | 		/* Mark the record as ready for transmission */ | 
 | 		smp_store_mb(rec->tx_ready, true); | 
 |  | 
 | 		/* If received record is at head of tx_list, schedule tx */ | 
 | 		first_rec = list_first_entry(&ctx->tx_list, | 
 | 					     struct tls_rec, list); | 
 | 		if (rec == first_rec) | 
 | 			ready = true; | 
 | 	} | 
 |  | 
 | 	spin_lock_bh(&ctx->encrypt_compl_lock); | 
 | 	pending = atomic_dec_return(&ctx->encrypt_pending); | 
 |  | 
 | 	if (!pending && ctx->async_notify) | 
 | 		complete(&ctx->async_wait.completion); | 
 | 	spin_unlock_bh(&ctx->encrypt_compl_lock); | 
 |  | 
 | 	if (!ready) | 
 | 		return; | 
 |  | 
 | 	/* Schedule the transmission */ | 
 | 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) | 
 | 		schedule_delayed_work(&ctx->tx_work.work, 1); | 
 | } | 
 |  | 
 | static int tls_do_encryption(struct sock *sk, | 
 | 			     struct tls_context *tls_ctx, | 
 | 			     struct tls_sw_context_tx *ctx, | 
 | 			     struct aead_request *aead_req, | 
 | 			     size_t data_len, u32 start) | 
 | { | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 | 	struct sk_msg *msg_en = &rec->msg_encrypted; | 
 | 	struct scatterlist *sge = sk_msg_elem(msg_en, start); | 
 | 	int rc, iv_offset = 0; | 
 |  | 
 | 	/* For CCM based ciphers, first byte of IV is a constant */ | 
 | 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { | 
 | 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; | 
 | 		iv_offset = 1; | 
 | 	} | 
 |  | 
 | 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, | 
 | 	       prot->iv_size + prot->salt_size); | 
 |  | 
 | 	xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq); | 
 |  | 
 | 	sge->offset += prot->prepend_size; | 
 | 	sge->length -= prot->prepend_size; | 
 |  | 
 | 	msg_en->sg.curr = start; | 
 |  | 
 | 	aead_request_set_tfm(aead_req, ctx->aead_send); | 
 | 	aead_request_set_ad(aead_req, prot->aad_size); | 
 | 	aead_request_set_crypt(aead_req, rec->sg_aead_in, | 
 | 			       rec->sg_aead_out, | 
 | 			       data_len, rec->iv_data); | 
 |  | 
 | 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 				  tls_encrypt_done, sk); | 
 |  | 
 | 	/* Add the record in tx_list */ | 
 | 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); | 
 | 	atomic_inc(&ctx->encrypt_pending); | 
 |  | 
 | 	rc = crypto_aead_encrypt(aead_req); | 
 | 	if (!rc || rc != -EINPROGRESS) { | 
 | 		atomic_dec(&ctx->encrypt_pending); | 
 | 		sge->offset -= prot->prepend_size; | 
 | 		sge->length += prot->prepend_size; | 
 | 	} | 
 |  | 
 | 	if (!rc) { | 
 | 		WRITE_ONCE(rec->tx_ready, true); | 
 | 	} else if (rc != -EINPROGRESS) { | 
 | 		list_del(&rec->list); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	/* Unhook the record from context if encryption is not failure */ | 
 | 	ctx->open_rec = NULL; | 
 | 	tls_advance_record_sn(sk, prot, &tls_ctx->tx); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int tls_split_open_record(struct sock *sk, struct tls_rec *from, | 
 | 				 struct tls_rec **to, struct sk_msg *msg_opl, | 
 | 				 struct sk_msg *msg_oen, u32 split_point, | 
 | 				 u32 tx_overhead_size, u32 *orig_end) | 
 | { | 
 | 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; | 
 | 	struct scatterlist *sge, *osge, *nsge; | 
 | 	u32 orig_size = msg_opl->sg.size; | 
 | 	struct scatterlist tmp = { }; | 
 | 	struct sk_msg *msg_npl; | 
 | 	struct tls_rec *new; | 
 | 	int ret; | 
 |  | 
 | 	new = tls_get_rec(sk); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 | 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + | 
 | 			   tx_overhead_size, 0); | 
 | 	if (ret < 0) { | 
 | 		tls_free_rec(sk, new); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	*orig_end = msg_opl->sg.end; | 
 | 	i = msg_opl->sg.start; | 
 | 	sge = sk_msg_elem(msg_opl, i); | 
 | 	while (apply && sge->length) { | 
 | 		if (sge->length > apply) { | 
 | 			u32 len = sge->length - apply; | 
 |  | 
 | 			get_page(sg_page(sge)); | 
 | 			sg_set_page(&tmp, sg_page(sge), len, | 
 | 				    sge->offset + apply); | 
 | 			sge->length = apply; | 
 | 			bytes += apply; | 
 | 			apply = 0; | 
 | 		} else { | 
 | 			apply -= sge->length; | 
 | 			bytes += sge->length; | 
 | 		} | 
 |  | 
 | 		sk_msg_iter_var_next(i); | 
 | 		if (i == msg_opl->sg.end) | 
 | 			break; | 
 | 		sge = sk_msg_elem(msg_opl, i); | 
 | 	} | 
 |  | 
 | 	msg_opl->sg.end = i; | 
 | 	msg_opl->sg.curr = i; | 
 | 	msg_opl->sg.copybreak = 0; | 
 | 	msg_opl->apply_bytes = 0; | 
 | 	msg_opl->sg.size = bytes; | 
 |  | 
 | 	msg_npl = &new->msg_plaintext; | 
 | 	msg_npl->apply_bytes = apply; | 
 | 	msg_npl->sg.size = orig_size - bytes; | 
 |  | 
 | 	j = msg_npl->sg.start; | 
 | 	nsge = sk_msg_elem(msg_npl, j); | 
 | 	if (tmp.length) { | 
 | 		memcpy(nsge, &tmp, sizeof(*nsge)); | 
 | 		sk_msg_iter_var_next(j); | 
 | 		nsge = sk_msg_elem(msg_npl, j); | 
 | 	} | 
 |  | 
 | 	osge = sk_msg_elem(msg_opl, i); | 
 | 	while (osge->length) { | 
 | 		memcpy(nsge, osge, sizeof(*nsge)); | 
 | 		sg_unmark_end(nsge); | 
 | 		sk_msg_iter_var_next(i); | 
 | 		sk_msg_iter_var_next(j); | 
 | 		if (i == *orig_end) | 
 | 			break; | 
 | 		osge = sk_msg_elem(msg_opl, i); | 
 | 		nsge = sk_msg_elem(msg_npl, j); | 
 | 	} | 
 |  | 
 | 	msg_npl->sg.end = j; | 
 | 	msg_npl->sg.curr = j; | 
 | 	msg_npl->sg.copybreak = 0; | 
 |  | 
 | 	*to = new; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, | 
 | 				  struct tls_rec *from, u32 orig_end) | 
 | { | 
 | 	struct sk_msg *msg_npl = &from->msg_plaintext; | 
 | 	struct sk_msg *msg_opl = &to->msg_plaintext; | 
 | 	struct scatterlist *osge, *nsge; | 
 | 	u32 i, j; | 
 |  | 
 | 	i = msg_opl->sg.end; | 
 | 	sk_msg_iter_var_prev(i); | 
 | 	j = msg_npl->sg.start; | 
 |  | 
 | 	osge = sk_msg_elem(msg_opl, i); | 
 | 	nsge = sk_msg_elem(msg_npl, j); | 
 |  | 
 | 	if (sg_page(osge) == sg_page(nsge) && | 
 | 	    osge->offset + osge->length == nsge->offset) { | 
 | 		osge->length += nsge->length; | 
 | 		put_page(sg_page(nsge)); | 
 | 	} | 
 |  | 
 | 	msg_opl->sg.end = orig_end; | 
 | 	msg_opl->sg.curr = orig_end; | 
 | 	msg_opl->sg.copybreak = 0; | 
 | 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; | 
 | 	msg_opl->sg.size += msg_npl->sg.size; | 
 |  | 
 | 	sk_msg_free(sk, &to->msg_encrypted); | 
 | 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); | 
 |  | 
 | 	kfree(from); | 
 | } | 
 |  | 
 | static int tls_push_record(struct sock *sk, int flags, | 
 | 			   unsigned char record_type) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL; | 
 | 	u32 i, split_point, orig_end; | 
 | 	struct sk_msg *msg_pl, *msg_en; | 
 | 	struct aead_request *req; | 
 | 	bool split; | 
 | 	int rc; | 
 |  | 
 | 	if (!rec) | 
 | 		return 0; | 
 |  | 
 | 	msg_pl = &rec->msg_plaintext; | 
 | 	msg_en = &rec->msg_encrypted; | 
 |  | 
 | 	split_point = msg_pl->apply_bytes; | 
 | 	split = split_point && split_point < msg_pl->sg.size; | 
 | 	if (unlikely((!split && | 
 | 		      msg_pl->sg.size + | 
 | 		      prot->overhead_size > msg_en->sg.size) || | 
 | 		     (split && | 
 | 		      split_point + | 
 | 		      prot->overhead_size > msg_en->sg.size))) { | 
 | 		split = true; | 
 | 		split_point = msg_en->sg.size; | 
 | 	} | 
 | 	if (split) { | 
 | 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, | 
 | 					   split_point, prot->overhead_size, | 
 | 					   &orig_end); | 
 | 		if (rc < 0) | 
 | 			return rc; | 
 | 		/* This can happen if above tls_split_open_record allocates | 
 | 		 * a single large encryption buffer instead of two smaller | 
 | 		 * ones. In this case adjust pointers and continue without | 
 | 		 * split. | 
 | 		 */ | 
 | 		if (!msg_pl->sg.size) { | 
 | 			tls_merge_open_record(sk, rec, tmp, orig_end); | 
 | 			msg_pl = &rec->msg_plaintext; | 
 | 			msg_en = &rec->msg_encrypted; | 
 | 			split = false; | 
 | 		} | 
 | 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + | 
 | 			    prot->overhead_size); | 
 | 	} | 
 |  | 
 | 	rec->tx_flags = flags; | 
 | 	req = &rec->aead_req; | 
 |  | 
 | 	i = msg_pl->sg.end; | 
 | 	sk_msg_iter_var_prev(i); | 
 |  | 
 | 	rec->content_type = record_type; | 
 | 	if (prot->version == TLS_1_3_VERSION) { | 
 | 		/* Add content type to end of message.  No padding added */ | 
 | 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); | 
 | 		sg_mark_end(&rec->sg_content_type); | 
 | 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, | 
 | 			 &rec->sg_content_type); | 
 | 	} else { | 
 | 		sg_mark_end(sk_msg_elem(msg_pl, i)); | 
 | 	} | 
 |  | 
 | 	if (msg_pl->sg.end < msg_pl->sg.start) { | 
 | 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start], | 
 | 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1, | 
 | 			 msg_pl->sg.data); | 
 | 	} | 
 |  | 
 | 	i = msg_pl->sg.start; | 
 | 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); | 
 |  | 
 | 	i = msg_en->sg.end; | 
 | 	sk_msg_iter_var_prev(i); | 
 | 	sg_mark_end(sk_msg_elem(msg_en, i)); | 
 |  | 
 | 	i = msg_en->sg.start; | 
 | 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); | 
 |  | 
 | 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, | 
 | 		     tls_ctx->tx.rec_seq, record_type, prot); | 
 |  | 
 | 	tls_fill_prepend(tls_ctx, | 
 | 			 page_address(sg_page(&msg_en->sg.data[i])) + | 
 | 			 msg_en->sg.data[i].offset, | 
 | 			 msg_pl->sg.size + prot->tail_size, | 
 | 			 record_type); | 
 |  | 
 | 	tls_ctx->pending_open_record_frags = false; | 
 |  | 
 | 	rc = tls_do_encryption(sk, tls_ctx, ctx, req, | 
 | 			       msg_pl->sg.size + prot->tail_size, i); | 
 | 	if (rc < 0) { | 
 | 		if (rc != -EINPROGRESS) { | 
 | 			tls_err_abort(sk, EBADMSG); | 
 | 			if (split) { | 
 | 				tls_ctx->pending_open_record_frags = true; | 
 | 				tls_merge_open_record(sk, rec, tmp, orig_end); | 
 | 			} | 
 | 		} | 
 | 		ctx->async_capable = 1; | 
 | 		return rc; | 
 | 	} else if (split) { | 
 | 		msg_pl = &tmp->msg_plaintext; | 
 | 		msg_en = &tmp->msg_encrypted; | 
 | 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); | 
 | 		tls_ctx->pending_open_record_frags = true; | 
 | 		ctx->open_rec = tmp; | 
 | 	} | 
 |  | 
 | 	return tls_tx_records(sk, flags); | 
 | } | 
 |  | 
 | static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, | 
 | 			       bool full_record, u8 record_type, | 
 | 			       ssize_t *copied, int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct sk_msg msg_redir = { }; | 
 | 	struct sk_psock *psock; | 
 | 	struct sock *sk_redir; | 
 | 	struct tls_rec *rec; | 
 | 	bool enospc, policy; | 
 | 	int err = 0, send; | 
 | 	u32 delta = 0; | 
 |  | 
 | 	policy = !(flags & MSG_SENDPAGE_NOPOLICY); | 
 | 	psock = sk_psock_get(sk); | 
 | 	if (!psock || !policy) { | 
 | 		err = tls_push_record(sk, flags, record_type); | 
 | 		if (err && sk->sk_err == EBADMSG) { | 
 | 			*copied -= sk_msg_free(sk, msg); | 
 | 			tls_free_open_rec(sk); | 
 | 			err = -sk->sk_err; | 
 | 		} | 
 | 		if (psock) | 
 | 			sk_psock_put(sk, psock); | 
 | 		return err; | 
 | 	} | 
 | more_data: | 
 | 	enospc = sk_msg_full(msg); | 
 | 	if (psock->eval == __SK_NONE) { | 
 | 		delta = msg->sg.size; | 
 | 		psock->eval = sk_psock_msg_verdict(sk, psock, msg); | 
 | 		delta -= msg->sg.size; | 
 | 	} | 
 | 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && | 
 | 	    !enospc && !full_record) { | 
 | 		err = -ENOSPC; | 
 | 		goto out_err; | 
 | 	} | 
 | 	msg->cork_bytes = 0; | 
 | 	send = msg->sg.size; | 
 | 	if (msg->apply_bytes && msg->apply_bytes < send) | 
 | 		send = msg->apply_bytes; | 
 |  | 
 | 	switch (psock->eval) { | 
 | 	case __SK_PASS: | 
 | 		err = tls_push_record(sk, flags, record_type); | 
 | 		if (err && sk->sk_err == EBADMSG) { | 
 | 			*copied -= sk_msg_free(sk, msg); | 
 | 			tls_free_open_rec(sk); | 
 | 			err = -sk->sk_err; | 
 | 			goto out_err; | 
 | 		} | 
 | 		break; | 
 | 	case __SK_REDIRECT: | 
 | 		sk_redir = psock->sk_redir; | 
 | 		memcpy(&msg_redir, msg, sizeof(*msg)); | 
 | 		if (msg->apply_bytes < send) | 
 | 			msg->apply_bytes = 0; | 
 | 		else | 
 | 			msg->apply_bytes -= send; | 
 | 		sk_msg_return_zero(sk, msg, send); | 
 | 		msg->sg.size -= send; | 
 | 		release_sock(sk); | 
 | 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); | 
 | 		lock_sock(sk); | 
 | 		if (err < 0) { | 
 | 			*copied -= sk_msg_free_nocharge(sk, &msg_redir); | 
 | 			msg->sg.size = 0; | 
 | 		} | 
 | 		if (msg->sg.size == 0) | 
 | 			tls_free_open_rec(sk); | 
 | 		break; | 
 | 	case __SK_DROP: | 
 | 	default: | 
 | 		sk_msg_free_partial(sk, msg, send); | 
 | 		if (msg->apply_bytes < send) | 
 | 			msg->apply_bytes = 0; | 
 | 		else | 
 | 			msg->apply_bytes -= send; | 
 | 		if (msg->sg.size == 0) | 
 | 			tls_free_open_rec(sk); | 
 | 		*copied -= (send + delta); | 
 | 		err = -EACCES; | 
 | 	} | 
 |  | 
 | 	if (likely(!err)) { | 
 | 		bool reset_eval = !ctx->open_rec; | 
 |  | 
 | 		rec = ctx->open_rec; | 
 | 		if (rec) { | 
 | 			msg = &rec->msg_plaintext; | 
 | 			if (!msg->apply_bytes) | 
 | 				reset_eval = true; | 
 | 		} | 
 | 		if (reset_eval) { | 
 | 			psock->eval = __SK_NONE; | 
 | 			if (psock->sk_redir) { | 
 | 				sock_put(psock->sk_redir); | 
 | 				psock->sk_redir = NULL; | 
 | 			} | 
 | 		} | 
 | 		if (rec) | 
 | 			goto more_data; | 
 | 	} | 
 |  out_err: | 
 | 	sk_psock_put(sk, psock); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int tls_sw_push_pending_record(struct sock *sk, int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 | 	struct sk_msg *msg_pl; | 
 | 	size_t copied; | 
 |  | 
 | 	if (!rec) | 
 | 		return 0; | 
 |  | 
 | 	msg_pl = &rec->msg_plaintext; | 
 | 	copied = msg_pl->sg.size; | 
 | 	if (!copied) | 
 | 		return 0; | 
 |  | 
 | 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, | 
 | 				   &copied, flags); | 
 | } | 
 |  | 
 | int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) | 
 | { | 
 | 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	bool async_capable = ctx->async_capable; | 
 | 	unsigned char record_type = TLS_RECORD_TYPE_DATA; | 
 | 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); | 
 | 	bool eor = !(msg->msg_flags & MSG_MORE); | 
 | 	size_t try_to_copy; | 
 | 	ssize_t copied = 0; | 
 | 	struct sk_msg *msg_pl, *msg_en; | 
 | 	struct tls_rec *rec; | 
 | 	int required_size; | 
 | 	int num_async = 0; | 
 | 	bool full_record; | 
 | 	int record_room; | 
 | 	int num_zc = 0; | 
 | 	int orig_size; | 
 | 	int ret = 0; | 
 | 	int pending; | 
 |  | 
 | 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | | 
 | 			       MSG_CMSG_COMPAT)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	mutex_lock(&tls_ctx->tx_lock); | 
 | 	lock_sock(sk); | 
 |  | 
 | 	if (unlikely(msg->msg_controllen)) { | 
 | 		ret = tls_proccess_cmsg(sk, msg, &record_type); | 
 | 		if (ret) { | 
 | 			if (ret == -EINPROGRESS) | 
 | 				num_async++; | 
 | 			else if (ret != -EAGAIN) | 
 | 				goto send_end; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (msg_data_left(msg)) { | 
 | 		if (sk->sk_err) { | 
 | 			ret = -sk->sk_err; | 
 | 			goto send_end; | 
 | 		} | 
 |  | 
 | 		if (ctx->open_rec) | 
 | 			rec = ctx->open_rec; | 
 | 		else | 
 | 			rec = ctx->open_rec = tls_get_rec(sk); | 
 | 		if (!rec) { | 
 | 			ret = -ENOMEM; | 
 | 			goto send_end; | 
 | 		} | 
 |  | 
 | 		msg_pl = &rec->msg_plaintext; | 
 | 		msg_en = &rec->msg_encrypted; | 
 |  | 
 | 		orig_size = msg_pl->sg.size; | 
 | 		full_record = false; | 
 | 		try_to_copy = msg_data_left(msg); | 
 | 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; | 
 | 		if (try_to_copy >= record_room) { | 
 | 			try_to_copy = record_room; | 
 | 			full_record = true; | 
 | 		} | 
 |  | 
 | 		required_size = msg_pl->sg.size + try_to_copy + | 
 | 				prot->overhead_size; | 
 |  | 
 | 		if (!sk_stream_memory_free(sk)) | 
 | 			goto wait_for_sndbuf; | 
 |  | 
 | alloc_encrypted: | 
 | 		ret = tls_alloc_encrypted_msg(sk, required_size); | 
 | 		if (ret) { | 
 | 			if (ret != -ENOSPC) | 
 | 				goto wait_for_memory; | 
 |  | 
 | 			/* Adjust try_to_copy according to the amount that was | 
 | 			 * actually allocated. The difference is due | 
 | 			 * to max sg elements limit | 
 | 			 */ | 
 | 			try_to_copy -= required_size - msg_en->sg.size; | 
 | 			full_record = true; | 
 | 		} | 
 |  | 
 | 		if (!is_kvec && (full_record || eor) && !async_capable) { | 
 | 			u32 first = msg_pl->sg.end; | 
 |  | 
 | 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, | 
 | 							msg_pl, try_to_copy); | 
 | 			if (ret) | 
 | 				goto fallback_to_reg_send; | 
 |  | 
 | 			num_zc++; | 
 | 			copied += try_to_copy; | 
 |  | 
 | 			sk_msg_sg_copy_set(msg_pl, first); | 
 | 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, | 
 | 						  record_type, &copied, | 
 | 						  msg->msg_flags); | 
 | 			if (ret) { | 
 | 				if (ret == -EINPROGRESS) | 
 | 					num_async++; | 
 | 				else if (ret == -ENOMEM) | 
 | 					goto wait_for_memory; | 
 | 				else if (ctx->open_rec && ret == -ENOSPC) | 
 | 					goto rollback_iter; | 
 | 				else if (ret != -EAGAIN) | 
 | 					goto send_end; | 
 | 			} | 
 | 			continue; | 
 | rollback_iter: | 
 | 			copied -= try_to_copy; | 
 | 			sk_msg_sg_copy_clear(msg_pl, first); | 
 | 			iov_iter_revert(&msg->msg_iter, | 
 | 					msg_pl->sg.size - orig_size); | 
 | fallback_to_reg_send: | 
 | 			sk_msg_trim(sk, msg_pl, orig_size); | 
 | 		} | 
 |  | 
 | 		required_size = msg_pl->sg.size + try_to_copy; | 
 |  | 
 | 		ret = tls_clone_plaintext_msg(sk, required_size); | 
 | 		if (ret) { | 
 | 			if (ret != -ENOSPC) | 
 | 				goto send_end; | 
 |  | 
 | 			/* Adjust try_to_copy according to the amount that was | 
 | 			 * actually allocated. The difference is due | 
 | 			 * to max sg elements limit | 
 | 			 */ | 
 | 			try_to_copy -= required_size - msg_pl->sg.size; | 
 | 			full_record = true; | 
 | 			sk_msg_trim(sk, msg_en, | 
 | 				    msg_pl->sg.size + prot->overhead_size); | 
 | 		} | 
 |  | 
 | 		if (try_to_copy) { | 
 | 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, | 
 | 						       msg_pl, try_to_copy); | 
 | 			if (ret < 0) | 
 | 				goto trim_sgl; | 
 | 		} | 
 |  | 
 | 		/* Open records defined only if successfully copied, otherwise | 
 | 		 * we would trim the sg but not reset the open record frags. | 
 | 		 */ | 
 | 		tls_ctx->pending_open_record_frags = true; | 
 | 		copied += try_to_copy; | 
 | 		if (full_record || eor) { | 
 | 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, | 
 | 						  record_type, &copied, | 
 | 						  msg->msg_flags); | 
 | 			if (ret) { | 
 | 				if (ret == -EINPROGRESS) | 
 | 					num_async++; | 
 | 				else if (ret == -ENOMEM) | 
 | 					goto wait_for_memory; | 
 | 				else if (ret != -EAGAIN) { | 
 | 					if (ret == -ENOSPC) | 
 | 						ret = 0; | 
 | 					goto send_end; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		continue; | 
 |  | 
 | wait_for_sndbuf: | 
 | 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); | 
 | wait_for_memory: | 
 | 		ret = sk_stream_wait_memory(sk, &timeo); | 
 | 		if (ret) { | 
 | trim_sgl: | 
 | 			if (ctx->open_rec) | 
 | 				tls_trim_both_msgs(sk, orig_size); | 
 | 			goto send_end; | 
 | 		} | 
 |  | 
 | 		if (ctx->open_rec && msg_en->sg.size < required_size) | 
 | 			goto alloc_encrypted; | 
 | 	} | 
 |  | 
 | 	if (!num_async) { | 
 | 		goto send_end; | 
 | 	} else if (num_zc) { | 
 | 		/* Wait for pending encryptions to get completed */ | 
 | 		spin_lock_bh(&ctx->encrypt_compl_lock); | 
 | 		ctx->async_notify = true; | 
 |  | 
 | 		pending = atomic_read(&ctx->encrypt_pending); | 
 | 		spin_unlock_bh(&ctx->encrypt_compl_lock); | 
 | 		if (pending) | 
 | 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait); | 
 | 		else | 
 | 			reinit_completion(&ctx->async_wait.completion); | 
 |  | 
 | 		/* There can be no concurrent accesses, since we have no | 
 | 		 * pending encrypt operations | 
 | 		 */ | 
 | 		WRITE_ONCE(ctx->async_notify, false); | 
 |  | 
 | 		if (ctx->async_wait.err) { | 
 | 			ret = ctx->async_wait.err; | 
 | 			copied = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Transmit if any encryptions have completed */ | 
 | 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { | 
 | 		cancel_delayed_work(&ctx->tx_work.work); | 
 | 		tls_tx_records(sk, msg->msg_flags); | 
 | 	} | 
 |  | 
 | send_end: | 
 | 	ret = sk_stream_error(sk, msg->msg_flags, ret); | 
 |  | 
 | 	release_sock(sk); | 
 | 	mutex_unlock(&tls_ctx->tx_lock); | 
 | 	return copied > 0 ? copied : ret; | 
 | } | 
 |  | 
 | static int tls_sw_do_sendpage(struct sock *sk, struct page *page, | 
 | 			      int offset, size_t size, int flags) | 
 | { | 
 | 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	unsigned char record_type = TLS_RECORD_TYPE_DATA; | 
 | 	struct sk_msg *msg_pl; | 
 | 	struct tls_rec *rec; | 
 | 	int num_async = 0; | 
 | 	ssize_t copied = 0; | 
 | 	bool full_record; | 
 | 	int record_room; | 
 | 	int ret = 0; | 
 | 	bool eor; | 
 |  | 
 | 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); | 
 | 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); | 
 |  | 
 | 	/* Call the sk_stream functions to manage the sndbuf mem. */ | 
 | 	while (size > 0) { | 
 | 		size_t copy, required_size; | 
 |  | 
 | 		if (sk->sk_err) { | 
 | 			ret = -sk->sk_err; | 
 | 			goto sendpage_end; | 
 | 		} | 
 |  | 
 | 		if (ctx->open_rec) | 
 | 			rec = ctx->open_rec; | 
 | 		else | 
 | 			rec = ctx->open_rec = tls_get_rec(sk); | 
 | 		if (!rec) { | 
 | 			ret = -ENOMEM; | 
 | 			goto sendpage_end; | 
 | 		} | 
 |  | 
 | 		msg_pl = &rec->msg_plaintext; | 
 |  | 
 | 		full_record = false; | 
 | 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; | 
 | 		copy = size; | 
 | 		if (copy >= record_room) { | 
 | 			copy = record_room; | 
 | 			full_record = true; | 
 | 		} | 
 |  | 
 | 		required_size = msg_pl->sg.size + copy + prot->overhead_size; | 
 |  | 
 | 		if (!sk_stream_memory_free(sk)) | 
 | 			goto wait_for_sndbuf; | 
 | alloc_payload: | 
 | 		ret = tls_alloc_encrypted_msg(sk, required_size); | 
 | 		if (ret) { | 
 | 			if (ret != -ENOSPC) | 
 | 				goto wait_for_memory; | 
 |  | 
 | 			/* Adjust copy according to the amount that was | 
 | 			 * actually allocated. The difference is due | 
 | 			 * to max sg elements limit | 
 | 			 */ | 
 | 			copy -= required_size - msg_pl->sg.size; | 
 | 			full_record = true; | 
 | 		} | 
 |  | 
 | 		sk_msg_page_add(msg_pl, page, copy, offset); | 
 | 		sk_mem_charge(sk, copy); | 
 |  | 
 | 		offset += copy; | 
 | 		size -= copy; | 
 | 		copied += copy; | 
 |  | 
 | 		tls_ctx->pending_open_record_frags = true; | 
 | 		if (full_record || eor || sk_msg_full(msg_pl)) { | 
 | 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, | 
 | 						  record_type, &copied, flags); | 
 | 			if (ret) { | 
 | 				if (ret == -EINPROGRESS) | 
 | 					num_async++; | 
 | 				else if (ret == -ENOMEM) | 
 | 					goto wait_for_memory; | 
 | 				else if (ret != -EAGAIN) { | 
 | 					if (ret == -ENOSPC) | 
 | 						ret = 0; | 
 | 					goto sendpage_end; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		continue; | 
 | wait_for_sndbuf: | 
 | 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); | 
 | wait_for_memory: | 
 | 		ret = sk_stream_wait_memory(sk, &timeo); | 
 | 		if (ret) { | 
 | 			if (ctx->open_rec) | 
 | 				tls_trim_both_msgs(sk, msg_pl->sg.size); | 
 | 			goto sendpage_end; | 
 | 		} | 
 |  | 
 | 		if (ctx->open_rec) | 
 | 			goto alloc_payload; | 
 | 	} | 
 |  | 
 | 	if (num_async) { | 
 | 		/* Transmit if any encryptions have completed */ | 
 | 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { | 
 | 			cancel_delayed_work(&ctx->tx_work.work); | 
 | 			tls_tx_records(sk, flags); | 
 | 		} | 
 | 	} | 
 | sendpage_end: | 
 | 	ret = sk_stream_error(sk, flags, ret); | 
 | 	return copied > 0 ? copied : ret; | 
 | } | 
 |  | 
 | int tls_sw_sendpage_locked(struct sock *sk, struct page *page, | 
 | 			   int offset, size_t size, int flags) | 
 | { | 
 | 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | | 
 | 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | | 
 | 		      MSG_NO_SHARED_FRAGS)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	return tls_sw_do_sendpage(sk, page, offset, size, flags); | 
 | } | 
 |  | 
 | int tls_sw_sendpage(struct sock *sk, struct page *page, | 
 | 		    int offset, size_t size, int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	int ret; | 
 |  | 
 | 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | | 
 | 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	mutex_lock(&tls_ctx->tx_lock); | 
 | 	lock_sock(sk); | 
 | 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags); | 
 | 	release_sock(sk); | 
 | 	mutex_unlock(&tls_ctx->tx_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, | 
 | 				     int flags, long timeo, int *err) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct sk_buff *skb; | 
 | 	DEFINE_WAIT_FUNC(wait, woken_wake_function); | 
 |  | 
 | 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { | 
 | 		if (sk->sk_err) { | 
 | 			*err = sock_error(sk); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		if (!skb_queue_empty(&sk->sk_receive_queue)) { | 
 | 			__strp_unpause(&ctx->strp); | 
 | 			if (ctx->recv_pkt) | 
 | 				return ctx->recv_pkt; | 
 | 		} | 
 |  | 
 | 		if (sk->sk_shutdown & RCV_SHUTDOWN) | 
 | 			return NULL; | 
 |  | 
 | 		if (sock_flag(sk, SOCK_DONE)) | 
 | 			return NULL; | 
 |  | 
 | 		if ((flags & MSG_DONTWAIT) || !timeo) { | 
 | 			*err = -EAGAIN; | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		add_wait_queue(sk_sleep(sk), &wait); | 
 | 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); | 
 | 		sk_wait_event(sk, &timeo, | 
 | 			      ctx->recv_pkt != skb || | 
 | 			      !sk_psock_queue_empty(psock), | 
 | 			      &wait); | 
 | 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); | 
 | 		remove_wait_queue(sk_sleep(sk), &wait); | 
 |  | 
 | 		/* Handle signals */ | 
 | 		if (signal_pending(current)) { | 
 | 			*err = sock_intr_errno(timeo); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, | 
 | 			       int length, int *pages_used, | 
 | 			       unsigned int *size_used, | 
 | 			       struct scatterlist *to, | 
 | 			       int to_max_pages) | 
 | { | 
 | 	int rc = 0, i = 0, num_elem = *pages_used, maxpages; | 
 | 	struct page *pages[MAX_SKB_FRAGS]; | 
 | 	unsigned int size = *size_used; | 
 | 	ssize_t copied, use; | 
 | 	size_t offset; | 
 |  | 
 | 	while (length > 0) { | 
 | 		i = 0; | 
 | 		maxpages = to_max_pages - num_elem; | 
 | 		if (maxpages == 0) { | 
 | 			rc = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 		copied = iov_iter_get_pages(from, pages, | 
 | 					    length, | 
 | 					    maxpages, &offset); | 
 | 		if (copied <= 0) { | 
 | 			rc = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		iov_iter_advance(from, copied); | 
 |  | 
 | 		length -= copied; | 
 | 		size += copied; | 
 | 		while (copied) { | 
 | 			use = min_t(int, copied, PAGE_SIZE - offset); | 
 |  | 
 | 			sg_set_page(&to[num_elem], | 
 | 				    pages[i], use, offset); | 
 | 			sg_unmark_end(&to[num_elem]); | 
 | 			/* We do not uncharge memory from this API */ | 
 |  | 
 | 			offset = 0; | 
 | 			copied -= use; | 
 |  | 
 | 			i++; | 
 | 			num_elem++; | 
 | 		} | 
 | 	} | 
 | 	/* Mark the end in the last sg entry if newly added */ | 
 | 	if (num_elem > *pages_used) | 
 | 		sg_mark_end(&to[num_elem - 1]); | 
 | out: | 
 | 	if (rc) | 
 | 		iov_iter_revert(from, size - *size_used); | 
 | 	*size_used = size; | 
 | 	*pages_used = num_elem; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* This function decrypts the input skb into either out_iov or in out_sg | 
 |  * or in skb buffers itself. The input parameter 'zc' indicates if | 
 |  * zero-copy mode needs to be tried or not. With zero-copy mode, either | 
 |  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are | 
 |  * NULL, then the decryption happens inside skb buffers itself, i.e. | 
 |  * zero-copy gets disabled and 'zc' is updated. | 
 |  */ | 
 |  | 
 | static int decrypt_internal(struct sock *sk, struct sk_buff *skb, | 
 | 			    struct iov_iter *out_iov, | 
 | 			    struct scatterlist *out_sg, | 
 | 			    int *chunk, bool *zc, bool async) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct strp_msg *rxm = strp_msg(skb); | 
 | 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; | 
 | 	struct aead_request *aead_req; | 
 | 	struct sk_buff *unused; | 
 | 	u8 *aad, *iv, *mem = NULL; | 
 | 	struct scatterlist *sgin = NULL; | 
 | 	struct scatterlist *sgout = NULL; | 
 | 	const int data_len = rxm->full_len - prot->overhead_size + | 
 | 			     prot->tail_size; | 
 | 	int iv_offset = 0; | 
 |  | 
 | 	if (*zc && (out_iov || out_sg)) { | 
 | 		if (out_iov) | 
 | 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; | 
 | 		else | 
 | 			n_sgout = sg_nents(out_sg); | 
 | 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, | 
 | 				 rxm->full_len - prot->prepend_size); | 
 | 	} else { | 
 | 		n_sgout = 0; | 
 | 		*zc = false; | 
 | 		n_sgin = skb_cow_data(skb, 0, &unused); | 
 | 	} | 
 |  | 
 | 	if (n_sgin < 1) | 
 | 		return -EBADMSG; | 
 |  | 
 | 	/* Increment to accommodate AAD */ | 
 | 	n_sgin = n_sgin + 1; | 
 |  | 
 | 	nsg = n_sgin + n_sgout; | 
 |  | 
 | 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); | 
 | 	mem_size = aead_size + (nsg * sizeof(struct scatterlist)); | 
 | 	mem_size = mem_size + prot->aad_size; | 
 | 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); | 
 |  | 
 | 	/* Allocate a single block of memory which contains | 
 | 	 * aead_req || sgin[] || sgout[] || aad || iv. | 
 | 	 * This order achieves correct alignment for aead_req, sgin, sgout. | 
 | 	 */ | 
 | 	mem = kmalloc(mem_size, sk->sk_allocation); | 
 | 	if (!mem) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Segment the allocated memory */ | 
 | 	aead_req = (struct aead_request *)mem; | 
 | 	sgin = (struct scatterlist *)(mem + aead_size); | 
 | 	sgout = sgin + n_sgin; | 
 | 	aad = (u8 *)(sgout + n_sgout); | 
 | 	iv = aad + prot->aad_size; | 
 |  | 
 | 	/* For CCM based ciphers, first byte of nonce+iv is always '2' */ | 
 | 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { | 
 | 		iv[0] = 2; | 
 | 		iv_offset = 1; | 
 | 	} | 
 |  | 
 | 	/* Prepare IV */ | 
 | 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, | 
 | 			    iv + iv_offset + prot->salt_size, | 
 | 			    prot->iv_size); | 
 | 	if (err < 0) { | 
 | 		kfree(mem); | 
 | 		return err; | 
 | 	} | 
 | 	if (prot->version == TLS_1_3_VERSION || | 
 | 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) | 
 | 		memcpy(iv + iv_offset, tls_ctx->rx.iv, | 
 | 		       crypto_aead_ivsize(ctx->aead_recv)); | 
 | 	else | 
 | 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); | 
 |  | 
 | 	xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq); | 
 |  | 
 | 	/* Prepare AAD */ | 
 | 	tls_make_aad(aad, rxm->full_len - prot->overhead_size + | 
 | 		     prot->tail_size, | 
 | 		     tls_ctx->rx.rec_seq, ctx->control, prot); | 
 |  | 
 | 	/* Prepare sgin */ | 
 | 	sg_init_table(sgin, n_sgin); | 
 | 	sg_set_buf(&sgin[0], aad, prot->aad_size); | 
 | 	err = skb_to_sgvec(skb, &sgin[1], | 
 | 			   rxm->offset + prot->prepend_size, | 
 | 			   rxm->full_len - prot->prepend_size); | 
 | 	if (err < 0) { | 
 | 		kfree(mem); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (n_sgout) { | 
 | 		if (out_iov) { | 
 | 			sg_init_table(sgout, n_sgout); | 
 | 			sg_set_buf(&sgout[0], aad, prot->aad_size); | 
 |  | 
 | 			*chunk = 0; | 
 | 			err = tls_setup_from_iter(sk, out_iov, data_len, | 
 | 						  &pages, chunk, &sgout[1], | 
 | 						  (n_sgout - 1)); | 
 | 			if (err < 0) | 
 | 				goto fallback_to_reg_recv; | 
 | 		} else if (out_sg) { | 
 | 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); | 
 | 		} else { | 
 | 			goto fallback_to_reg_recv; | 
 | 		} | 
 | 	} else { | 
 | fallback_to_reg_recv: | 
 | 		sgout = sgin; | 
 | 		pages = 0; | 
 | 		*chunk = data_len; | 
 | 		*zc = false; | 
 | 	} | 
 |  | 
 | 	/* Prepare and submit AEAD request */ | 
 | 	err = tls_do_decryption(sk, skb, sgin, sgout, iv, | 
 | 				data_len, aead_req, async); | 
 | 	if (err == -EINPROGRESS) | 
 | 		return err; | 
 |  | 
 | 	/* Release the pages in case iov was mapped to pages */ | 
 | 	for (; pages > 0; pages--) | 
 | 		put_page(sg_page(&sgout[pages])); | 
 |  | 
 | 	kfree(mem); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, | 
 | 			      struct iov_iter *dest, int *chunk, bool *zc, | 
 | 			      bool async) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct strp_msg *rxm = strp_msg(skb); | 
 | 	int pad, err = 0; | 
 |  | 
 | 	if (!ctx->decrypted) { | 
 | 		if (tls_ctx->rx_conf == TLS_HW) { | 
 | 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		/* Still not decrypted after tls_device */ | 
 | 		if (!ctx->decrypted) { | 
 | 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, | 
 | 					       async); | 
 | 			if (err < 0) { | 
 | 				if (err == -EINPROGRESS) | 
 | 					tls_advance_record_sn(sk, prot, | 
 | 							      &tls_ctx->rx); | 
 | 				else if (err == -EBADMSG) | 
 | 					TLS_INC_STATS(sock_net(sk), | 
 | 						      LINUX_MIB_TLSDECRYPTERROR); | 
 | 				return err; | 
 | 			} | 
 | 		} else { | 
 | 			*zc = false; | 
 | 		} | 
 |  | 
 | 		pad = padding_length(ctx, prot, skb); | 
 | 		if (pad < 0) | 
 | 			return pad; | 
 |  | 
 | 		rxm->full_len -= pad; | 
 | 		rxm->offset += prot->prepend_size; | 
 | 		rxm->full_len -= prot->overhead_size; | 
 | 		tls_advance_record_sn(sk, prot, &tls_ctx->rx); | 
 | 		ctx->decrypted = 1; | 
 | 		ctx->saved_data_ready(sk); | 
 | 	} else { | 
 | 		*zc = false; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int decrypt_skb(struct sock *sk, struct sk_buff *skb, | 
 | 		struct scatterlist *sgout) | 
 | { | 
 | 	bool zc = true; | 
 | 	int chunk; | 
 |  | 
 | 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); | 
 | } | 
 |  | 
 | static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, | 
 | 			       unsigned int len) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	if (skb) { | 
 | 		struct strp_msg *rxm = strp_msg(skb); | 
 |  | 
 | 		if (len < rxm->full_len) { | 
 | 			rxm->offset += len; | 
 | 			rxm->full_len -= len; | 
 | 			return false; | 
 | 		} | 
 | 		consume_skb(skb); | 
 | 	} | 
 |  | 
 | 	/* Finished with message */ | 
 | 	ctx->recv_pkt = NULL; | 
 | 	__strp_unpause(&ctx->strp); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* This function traverses the rx_list in tls receive context to copies the | 
 |  * decrypted records into the buffer provided by caller zero copy is not | 
 |  * true. Further, the records are removed from the rx_list if it is not a peek | 
 |  * case and the record has been consumed completely. | 
 |  */ | 
 | static int process_rx_list(struct tls_sw_context_rx *ctx, | 
 | 			   struct msghdr *msg, | 
 | 			   u8 *control, | 
 | 			   bool *cmsg, | 
 | 			   size_t skip, | 
 | 			   size_t len, | 
 | 			   bool zc, | 
 | 			   bool is_peek) | 
 | { | 
 | 	struct sk_buff *skb = skb_peek(&ctx->rx_list); | 
 | 	u8 ctrl = *control; | 
 | 	u8 msgc = *cmsg; | 
 | 	struct tls_msg *tlm; | 
 | 	ssize_t copied = 0; | 
 |  | 
 | 	/* Set the record type in 'control' if caller didn't pass it */ | 
 | 	if (!ctrl && skb) { | 
 | 		tlm = tls_msg(skb); | 
 | 		ctrl = tlm->control; | 
 | 	} | 
 |  | 
 | 	while (skip && skb) { | 
 | 		struct strp_msg *rxm = strp_msg(skb); | 
 | 		tlm = tls_msg(skb); | 
 |  | 
 | 		/* Cannot process a record of different type */ | 
 | 		if (ctrl != tlm->control) | 
 | 			return 0; | 
 |  | 
 | 		if (skip < rxm->full_len) | 
 | 			break; | 
 |  | 
 | 		skip = skip - rxm->full_len; | 
 | 		skb = skb_peek_next(skb, &ctx->rx_list); | 
 | 	} | 
 |  | 
 | 	while (len && skb) { | 
 | 		struct sk_buff *next_skb; | 
 | 		struct strp_msg *rxm = strp_msg(skb); | 
 | 		int chunk = min_t(unsigned int, rxm->full_len - skip, len); | 
 |  | 
 | 		tlm = tls_msg(skb); | 
 |  | 
 | 		/* Cannot process a record of different type */ | 
 | 		if (ctrl != tlm->control) | 
 | 			return 0; | 
 |  | 
 | 		/* Set record type if not already done. For a non-data record, | 
 | 		 * do not proceed if record type could not be copied. | 
 | 		 */ | 
 | 		if (!msgc) { | 
 | 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, | 
 | 					    sizeof(ctrl), &ctrl); | 
 | 			msgc = true; | 
 | 			if (ctrl != TLS_RECORD_TYPE_DATA) { | 
 | 				if (cerr || msg->msg_flags & MSG_CTRUNC) | 
 | 					return -EIO; | 
 |  | 
 | 				*cmsg = msgc; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!zc || (rxm->full_len - skip) > len) { | 
 | 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip, | 
 | 						    msg, chunk); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		len = len - chunk; | 
 | 		copied = copied + chunk; | 
 |  | 
 | 		/* Consume the data from record if it is non-peek case*/ | 
 | 		if (!is_peek) { | 
 | 			rxm->offset = rxm->offset + chunk; | 
 | 			rxm->full_len = rxm->full_len - chunk; | 
 |  | 
 | 			/* Return if there is unconsumed data in the record */ | 
 | 			if (rxm->full_len - skip) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* The remaining skip-bytes must lie in 1st record in rx_list. | 
 | 		 * So from the 2nd record, 'skip' should be 0. | 
 | 		 */ | 
 | 		skip = 0; | 
 |  | 
 | 		if (msg) | 
 | 			msg->msg_flags |= MSG_EOR; | 
 |  | 
 | 		next_skb = skb_peek_next(skb, &ctx->rx_list); | 
 |  | 
 | 		if (!is_peek) { | 
 | 			skb_unlink(skb, &ctx->rx_list); | 
 | 			consume_skb(skb); | 
 | 		} | 
 |  | 
 | 		skb = next_skb; | 
 | 	} | 
 |  | 
 | 	*control = ctrl; | 
 | 	return copied; | 
 | } | 
 |  | 
 | int tls_sw_recvmsg(struct sock *sk, | 
 | 		   struct msghdr *msg, | 
 | 		   size_t len, | 
 | 		   int nonblock, | 
 | 		   int flags, | 
 | 		   int *addr_len) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct sk_psock *psock; | 
 | 	unsigned char control = 0; | 
 | 	ssize_t decrypted = 0; | 
 | 	struct strp_msg *rxm; | 
 | 	struct tls_msg *tlm; | 
 | 	struct sk_buff *skb; | 
 | 	ssize_t copied = 0; | 
 | 	bool cmsg = false; | 
 | 	int target, err = 0; | 
 | 	long timeo; | 
 | 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); | 
 | 	bool is_peek = flags & MSG_PEEK; | 
 | 	bool bpf_strp_enabled; | 
 | 	int num_async = 0; | 
 | 	int pending; | 
 |  | 
 | 	flags |= nonblock; | 
 |  | 
 | 	if (unlikely(flags & MSG_ERRQUEUE)) | 
 | 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); | 
 |  | 
 | 	psock = sk_psock_get(sk); | 
 | 	lock_sock(sk); | 
 | 	bpf_strp_enabled = sk_psock_strp_enabled(psock); | 
 |  | 
 | 	/* Process pending decrypted records. It must be non-zero-copy */ | 
 | 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, | 
 | 			      is_peek); | 
 | 	if (err < 0) { | 
 | 		tls_err_abort(sk, err); | 
 | 		goto end; | 
 | 	} else { | 
 | 		copied = err; | 
 | 	} | 
 |  | 
 | 	if (len <= copied) | 
 | 		goto recv_end; | 
 |  | 
 | 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); | 
 | 	len = len - copied; | 
 | 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); | 
 |  | 
 | 	while (len && (decrypted + copied < target || ctx->recv_pkt)) { | 
 | 		bool retain_skb = false; | 
 | 		bool zc = false; | 
 | 		int to_decrypt; | 
 | 		int chunk = 0; | 
 | 		bool async_capable; | 
 | 		bool async = false; | 
 |  | 
 | 		skb = tls_wait_data(sk, psock, flags, timeo, &err); | 
 | 		if (!skb) { | 
 | 			if (psock) { | 
 | 				int ret = sk_msg_recvmsg(sk, psock, msg, len, | 
 | 							 flags); | 
 |  | 
 | 				if (ret > 0) { | 
 | 					decrypted += ret; | 
 | 					len -= ret; | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 | 			goto recv_end; | 
 | 		} else { | 
 | 			tlm = tls_msg(skb); | 
 | 			if (prot->version == TLS_1_3_VERSION) | 
 | 				tlm->control = 0; | 
 | 			else | 
 | 				tlm->control = ctx->control; | 
 | 		} | 
 |  | 
 | 		rxm = strp_msg(skb); | 
 |  | 
 | 		to_decrypt = rxm->full_len - prot->overhead_size; | 
 |  | 
 | 		if (to_decrypt <= len && !is_kvec && !is_peek && | 
 | 		    ctx->control == TLS_RECORD_TYPE_DATA && | 
 | 		    prot->version != TLS_1_3_VERSION && | 
 | 		    !bpf_strp_enabled) | 
 | 			zc = true; | 
 |  | 
 | 		/* Do not use async mode if record is non-data */ | 
 | 		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) | 
 | 			async_capable = ctx->async_capable; | 
 | 		else | 
 | 			async_capable = false; | 
 |  | 
 | 		err = decrypt_skb_update(sk, skb, &msg->msg_iter, | 
 | 					 &chunk, &zc, async_capable); | 
 | 		if (err < 0 && err != -EINPROGRESS) { | 
 | 			tls_err_abort(sk, EBADMSG); | 
 | 			goto recv_end; | 
 | 		} | 
 |  | 
 | 		if (err == -EINPROGRESS) { | 
 | 			async = true; | 
 | 			num_async++; | 
 | 		} else if (prot->version == TLS_1_3_VERSION) { | 
 | 			tlm->control = ctx->control; | 
 | 		} | 
 |  | 
 | 		/* If the type of records being processed is not known yet, | 
 | 		 * set it to record type just dequeued. If it is already known, | 
 | 		 * but does not match the record type just dequeued, go to end. | 
 | 		 * We always get record type here since for tls1.2, record type | 
 | 		 * is known just after record is dequeued from stream parser. | 
 | 		 * For tls1.3, we disable async. | 
 | 		 */ | 
 |  | 
 | 		if (!control) | 
 | 			control = tlm->control; | 
 | 		else if (control != tlm->control) | 
 | 			goto recv_end; | 
 |  | 
 | 		if (!cmsg) { | 
 | 			int cerr; | 
 |  | 
 | 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, | 
 | 					sizeof(control), &control); | 
 | 			cmsg = true; | 
 | 			if (control != TLS_RECORD_TYPE_DATA) { | 
 | 				if (cerr || msg->msg_flags & MSG_CTRUNC) { | 
 | 					err = -EIO; | 
 | 					goto recv_end; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (async) | 
 | 			goto pick_next_record; | 
 |  | 
 | 		if (!zc) { | 
 | 			if (bpf_strp_enabled) { | 
 | 				err = sk_psock_tls_strp_read(psock, skb); | 
 | 				if (err != __SK_PASS) { | 
 | 					rxm->offset = rxm->offset + rxm->full_len; | 
 | 					rxm->full_len = 0; | 
 | 					if (err == __SK_DROP) | 
 | 						consume_skb(skb); | 
 | 					ctx->recv_pkt = NULL; | 
 | 					__strp_unpause(&ctx->strp); | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (rxm->full_len > len) { | 
 | 				retain_skb = true; | 
 | 				chunk = len; | 
 | 			} else { | 
 | 				chunk = rxm->full_len; | 
 | 			} | 
 |  | 
 | 			err = skb_copy_datagram_msg(skb, rxm->offset, | 
 | 						    msg, chunk); | 
 | 			if (err < 0) | 
 | 				goto recv_end; | 
 |  | 
 | 			if (!is_peek) { | 
 | 				rxm->offset = rxm->offset + chunk; | 
 | 				rxm->full_len = rxm->full_len - chunk; | 
 | 			} | 
 | 		} | 
 |  | 
 | pick_next_record: | 
 | 		if (chunk > len) | 
 | 			chunk = len; | 
 |  | 
 | 		decrypted += chunk; | 
 | 		len -= chunk; | 
 |  | 
 | 		/* For async or peek case, queue the current skb */ | 
 | 		if (async || is_peek || retain_skb) { | 
 | 			skb_queue_tail(&ctx->rx_list, skb); | 
 | 			skb = NULL; | 
 | 		} | 
 |  | 
 | 		if (tls_sw_advance_skb(sk, skb, chunk)) { | 
 | 			/* Return full control message to | 
 | 			 * userspace before trying to parse | 
 | 			 * another message type | 
 | 			 */ | 
 | 			msg->msg_flags |= MSG_EOR; | 
 | 			if (control != TLS_RECORD_TYPE_DATA) | 
 | 				goto recv_end; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | recv_end: | 
 | 	if (num_async) { | 
 | 		/* Wait for all previously submitted records to be decrypted */ | 
 | 		spin_lock_bh(&ctx->decrypt_compl_lock); | 
 | 		ctx->async_notify = true; | 
 | 		pending = atomic_read(&ctx->decrypt_pending); | 
 | 		spin_unlock_bh(&ctx->decrypt_compl_lock); | 
 | 		if (pending) { | 
 | 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); | 
 | 			if (err) { | 
 | 				/* one of async decrypt failed */ | 
 | 				tls_err_abort(sk, err); | 
 | 				copied = 0; | 
 | 				decrypted = 0; | 
 | 				goto end; | 
 | 			} | 
 | 		} else { | 
 | 			reinit_completion(&ctx->async_wait.completion); | 
 | 		} | 
 |  | 
 | 		/* There can be no concurrent accesses, since we have no | 
 | 		 * pending decrypt operations | 
 | 		 */ | 
 | 		WRITE_ONCE(ctx->async_notify, false); | 
 |  | 
 | 		/* Drain records from the rx_list & copy if required */ | 
 | 		if (is_peek || is_kvec) | 
 | 			err = process_rx_list(ctx, msg, &control, &cmsg, copied, | 
 | 					      decrypted, false, is_peek); | 
 | 		else | 
 | 			err = process_rx_list(ctx, msg, &control, &cmsg, 0, | 
 | 					      decrypted, true, is_peek); | 
 | 		if (err < 0) { | 
 | 			tls_err_abort(sk, err); | 
 | 			copied = 0; | 
 | 			goto end; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	copied += decrypted; | 
 |  | 
 | end: | 
 | 	release_sock(sk); | 
 | 	if (psock) | 
 | 		sk_psock_put(sk, psock); | 
 | 	return copied ? : err; | 
 | } | 
 |  | 
 | ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos, | 
 | 			   struct pipe_inode_info *pipe, | 
 | 			   size_t len, unsigned int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct strp_msg *rxm = NULL; | 
 | 	struct sock *sk = sock->sk; | 
 | 	struct sk_buff *skb; | 
 | 	ssize_t copied = 0; | 
 | 	int err = 0; | 
 | 	long timeo; | 
 | 	int chunk; | 
 | 	bool zc = false; | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); | 
 |  | 
 | 	skb = tls_wait_data(sk, NULL, flags, timeo, &err); | 
 | 	if (!skb) | 
 | 		goto splice_read_end; | 
 |  | 
 | 	if (!ctx->decrypted) { | 
 | 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); | 
 |  | 
 | 		/* splice does not support reading control messages */ | 
 | 		if (ctx->control != TLS_RECORD_TYPE_DATA) { | 
 | 			err = -EINVAL; | 
 | 			goto splice_read_end; | 
 | 		} | 
 |  | 
 | 		if (err < 0) { | 
 | 			tls_err_abort(sk, EBADMSG); | 
 | 			goto splice_read_end; | 
 | 		} | 
 | 		ctx->decrypted = 1; | 
 | 	} | 
 | 	rxm = strp_msg(skb); | 
 |  | 
 | 	chunk = min_t(unsigned int, rxm->full_len, len); | 
 | 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); | 
 | 	if (copied < 0) | 
 | 		goto splice_read_end; | 
 |  | 
 | 	if (likely(!(flags & MSG_PEEK))) | 
 | 		tls_sw_advance_skb(sk, skb, copied); | 
 |  | 
 | splice_read_end: | 
 | 	release_sock(sk); | 
 | 	return copied ? : err; | 
 | } | 
 |  | 
 | bool tls_sw_stream_read(const struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	bool ingress_empty = true; | 
 | 	struct sk_psock *psock; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	psock = sk_psock(sk); | 
 | 	if (psock) | 
 | 		ingress_empty = list_empty(&psock->ingress_msg); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return !ingress_empty || ctx->recv_pkt || | 
 | 		!skb_queue_empty(&ctx->rx_list); | 
 | } | 
 |  | 
 | static int tls_read_size(struct strparser *strp, struct sk_buff *skb) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; | 
 | 	struct strp_msg *rxm = strp_msg(skb); | 
 | 	size_t cipher_overhead; | 
 | 	size_t data_len = 0; | 
 | 	int ret; | 
 |  | 
 | 	/* Verify that we have a full TLS header, or wait for more data */ | 
 | 	if (rxm->offset + prot->prepend_size > skb->len) | 
 | 		return 0; | 
 |  | 
 | 	/* Sanity-check size of on-stack buffer. */ | 
 | 	if (WARN_ON(prot->prepend_size > sizeof(header))) { | 
 | 		ret = -EINVAL; | 
 | 		goto read_failure; | 
 | 	} | 
 |  | 
 | 	/* Linearize header to local buffer */ | 
 | 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); | 
 |  | 
 | 	if (ret < 0) | 
 | 		goto read_failure; | 
 |  | 
 | 	ctx->control = header[0]; | 
 |  | 
 | 	data_len = ((header[4] & 0xFF) | (header[3] << 8)); | 
 |  | 
 | 	cipher_overhead = prot->tag_size; | 
 | 	if (prot->version != TLS_1_3_VERSION && | 
 | 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) | 
 | 		cipher_overhead += prot->iv_size; | 
 |  | 
 | 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + | 
 | 	    prot->tail_size) { | 
 | 		ret = -EMSGSIZE; | 
 | 		goto read_failure; | 
 | 	} | 
 | 	if (data_len < cipher_overhead) { | 
 | 		ret = -EBADMSG; | 
 | 		goto read_failure; | 
 | 	} | 
 |  | 
 | 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ | 
 | 	if (header[1] != TLS_1_2_VERSION_MINOR || | 
 | 	    header[2] != TLS_1_2_VERSION_MAJOR) { | 
 | 		ret = -EINVAL; | 
 | 		goto read_failure; | 
 | 	} | 
 |  | 
 | 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, | 
 | 				     TCP_SKB_CB(skb)->seq + rxm->offset); | 
 | 	return data_len + TLS_HEADER_SIZE; | 
 |  | 
 | read_failure: | 
 | 	tls_err_abort(strp->sk, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void tls_queue(struct strparser *strp, struct sk_buff *skb) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	ctx->decrypted = 0; | 
 |  | 
 | 	ctx->recv_pkt = skb; | 
 | 	strp_pause(strp); | 
 |  | 
 | 	ctx->saved_data_ready(strp->sk); | 
 | } | 
 |  | 
 | static void tls_data_ready(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct sk_psock *psock; | 
 |  | 
 | 	strp_data_ready(&ctx->strp); | 
 |  | 
 | 	psock = sk_psock_get(sk); | 
 | 	if (psock) { | 
 | 		if (!list_empty(&psock->ingress_msg)) | 
 | 			ctx->saved_data_ready(sk); | 
 | 		sk_psock_put(sk, psock); | 
 | 	} | 
 | } | 
 |  | 
 | void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 |  | 
 | 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); | 
 | 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); | 
 | 	cancel_delayed_work_sync(&ctx->tx_work.work); | 
 | } | 
 |  | 
 | void tls_sw_release_resources_tx(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec, *tmp; | 
 | 	int pending; | 
 |  | 
 | 	/* Wait for any pending async encryptions to complete */ | 
 | 	spin_lock_bh(&ctx->encrypt_compl_lock); | 
 | 	ctx->async_notify = true; | 
 | 	pending = atomic_read(&ctx->encrypt_pending); | 
 | 	spin_unlock_bh(&ctx->encrypt_compl_lock); | 
 |  | 
 | 	if (pending) | 
 | 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait); | 
 |  | 
 | 	tls_tx_records(sk, -1); | 
 |  | 
 | 	/* Free up un-sent records in tx_list. First, free | 
 | 	 * the partially sent record if any at head of tx_list. | 
 | 	 */ | 
 | 	if (tls_ctx->partially_sent_record) { | 
 | 		tls_free_partial_record(sk, tls_ctx); | 
 | 		rec = list_first_entry(&ctx->tx_list, | 
 | 				       struct tls_rec, list); | 
 | 		list_del(&rec->list); | 
 | 		sk_msg_free(sk, &rec->msg_plaintext); | 
 | 		kfree(rec); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { | 
 | 		list_del(&rec->list); | 
 | 		sk_msg_free(sk, &rec->msg_encrypted); | 
 | 		sk_msg_free(sk, &rec->msg_plaintext); | 
 | 		kfree(rec); | 
 | 	} | 
 |  | 
 | 	crypto_free_aead(ctx->aead_send); | 
 | 	tls_free_open_rec(sk); | 
 | } | 
 |  | 
 | void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 |  | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | void tls_sw_release_resources_rx(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	kfree(tls_ctx->rx.rec_seq); | 
 | 	kfree(tls_ctx->rx.iv); | 
 |  | 
 | 	if (ctx->aead_recv) { | 
 | 		kfree_skb(ctx->recv_pkt); | 
 | 		ctx->recv_pkt = NULL; | 
 | 		skb_queue_purge(&ctx->rx_list); | 
 | 		crypto_free_aead(ctx->aead_recv); | 
 | 		strp_stop(&ctx->strp); | 
 | 		/* If tls_sw_strparser_arm() was not called (cleanup paths) | 
 | 		 * we still want to strp_stop(), but sk->sk_data_ready was | 
 | 		 * never swapped. | 
 | 		 */ | 
 | 		if (ctx->saved_data_ready) { | 
 | 			write_lock_bh(&sk->sk_callback_lock); | 
 | 			sk->sk_data_ready = ctx->saved_data_ready; | 
 | 			write_unlock_bh(&sk->sk_callback_lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void tls_sw_strparser_done(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	strp_done(&ctx->strp); | 
 | } | 
 |  | 
 | void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | void tls_sw_free_resources_rx(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 |  | 
 | 	tls_sw_release_resources_rx(sk); | 
 | 	tls_sw_free_ctx_rx(tls_ctx); | 
 | } | 
 |  | 
 | /* The work handler to transmitt the encrypted records in tx_list */ | 
 | static void tx_work_handler(struct work_struct *work) | 
 | { | 
 | 	struct delayed_work *delayed_work = to_delayed_work(work); | 
 | 	struct tx_work *tx_work = container_of(delayed_work, | 
 | 					       struct tx_work, work); | 
 | 	struct sock *sk = tx_work->sk; | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx; | 
 |  | 
 | 	if (unlikely(!tls_ctx)) | 
 | 		return; | 
 |  | 
 | 	ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) | 
 | 		return; | 
 |  | 
 | 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) | 
 | 		return; | 
 | 	mutex_lock(&tls_ctx->tx_lock); | 
 | 	lock_sock(sk); | 
 | 	tls_tx_records(sk, -1); | 
 | 	release_sock(sk); | 
 | 	mutex_unlock(&tls_ctx->tx_lock); | 
 | } | 
 |  | 
 | void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) | 
 | { | 
 | 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); | 
 |  | 
 | 	/* Schedule the transmission if tx list is ready */ | 
 | 	if (is_tx_ready(tx_ctx) && | 
 | 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) | 
 | 		schedule_delayed_work(&tx_ctx->tx_work.work, 0); | 
 | } | 
 |  | 
 | void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	write_lock_bh(&sk->sk_callback_lock); | 
 | 	rx_ctx->saved_data_ready = sk->sk_data_ready; | 
 | 	sk->sk_data_ready = tls_data_ready; | 
 | 	write_unlock_bh(&sk->sk_callback_lock); | 
 |  | 
 | 	strp_check_rcv(&rx_ctx->strp); | 
 | } | 
 |  | 
 | int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_crypto_info *crypto_info; | 
 | 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; | 
 | 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; | 
 | 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; | 
 | 	struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; | 
 | 	struct tls_sw_context_tx *sw_ctx_tx = NULL; | 
 | 	struct tls_sw_context_rx *sw_ctx_rx = NULL; | 
 | 	struct cipher_context *cctx; | 
 | 	struct crypto_aead **aead; | 
 | 	struct strp_callbacks cb; | 
 | 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; | 
 | 	struct crypto_tfm *tfm; | 
 | 	char *iv, *rec_seq, *key, *salt, *cipher_name; | 
 | 	size_t keysize; | 
 | 	int rc = 0; | 
 |  | 
 | 	if (!ctx) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (tx) { | 
 | 		if (!ctx->priv_ctx_tx) { | 
 | 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); | 
 | 			if (!sw_ctx_tx) { | 
 | 				rc = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			ctx->priv_ctx_tx = sw_ctx_tx; | 
 | 		} else { | 
 | 			sw_ctx_tx = | 
 | 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx; | 
 | 		} | 
 | 	} else { | 
 | 		if (!ctx->priv_ctx_rx) { | 
 | 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); | 
 | 			if (!sw_ctx_rx) { | 
 | 				rc = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			ctx->priv_ctx_rx = sw_ctx_rx; | 
 | 		} else { | 
 | 			sw_ctx_rx = | 
 | 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tx) { | 
 | 		crypto_init_wait(&sw_ctx_tx->async_wait); | 
 | 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); | 
 | 		crypto_info = &ctx->crypto_send.info; | 
 | 		cctx = &ctx->tx; | 
 | 		aead = &sw_ctx_tx->aead_send; | 
 | 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list); | 
 | 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); | 
 | 		sw_ctx_tx->tx_work.sk = sk; | 
 | 	} else { | 
 | 		crypto_init_wait(&sw_ctx_rx->async_wait); | 
 | 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); | 
 | 		crypto_info = &ctx->crypto_recv.info; | 
 | 		cctx = &ctx->rx; | 
 | 		skb_queue_head_init(&sw_ctx_rx->rx_list); | 
 | 		aead = &sw_ctx_rx->aead_recv; | 
 | 	} | 
 |  | 
 | 	switch (crypto_info->cipher_type) { | 
 | 	case TLS_CIPHER_AES_GCM_128: { | 
 | 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; | 
 | 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; | 
 | 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; | 
 | 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; | 
 | 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; | 
 | 		rec_seq = | 
 | 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; | 
 | 		gcm_128_info = | 
 | 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info; | 
 | 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; | 
 | 		key = gcm_128_info->key; | 
 | 		salt = gcm_128_info->salt; | 
 | 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; | 
 | 		cipher_name = "gcm(aes)"; | 
 | 		break; | 
 | 	} | 
 | 	case TLS_CIPHER_AES_GCM_256: { | 
 | 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; | 
 | 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; | 
 | 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; | 
 | 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; | 
 | 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; | 
 | 		rec_seq = | 
 | 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; | 
 | 		gcm_256_info = | 
 | 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info; | 
 | 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; | 
 | 		key = gcm_256_info->key; | 
 | 		salt = gcm_256_info->salt; | 
 | 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; | 
 | 		cipher_name = "gcm(aes)"; | 
 | 		break; | 
 | 	} | 
 | 	case TLS_CIPHER_AES_CCM_128: { | 
 | 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; | 
 | 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; | 
 | 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; | 
 | 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; | 
 | 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; | 
 | 		rec_seq = | 
 | 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; | 
 | 		ccm_128_info = | 
 | 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info; | 
 | 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; | 
 | 		key = ccm_128_info->key; | 
 | 		salt = ccm_128_info->salt; | 
 | 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; | 
 | 		cipher_name = "ccm(aes)"; | 
 | 		break; | 
 | 	} | 
 | 	case TLS_CIPHER_CHACHA20_POLY1305: { | 
 | 		chacha20_poly1305_info = (void *)crypto_info; | 
 | 		nonce_size = 0; | 
 | 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; | 
 | 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; | 
 | 		iv = chacha20_poly1305_info->iv; | 
 | 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; | 
 | 		rec_seq = chacha20_poly1305_info->rec_seq; | 
 | 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; | 
 | 		key = chacha20_poly1305_info->key; | 
 | 		salt = chacha20_poly1305_info->salt; | 
 | 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; | 
 | 		cipher_name = "rfc7539(chacha20,poly1305)"; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		rc = -EINVAL; | 
 | 		goto free_priv; | 
 | 	} | 
 |  | 
 | 	/* Sanity-check the sizes for stack allocations. */ | 
 | 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || | 
 | 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { | 
 | 		rc = -EINVAL; | 
 | 		goto free_priv; | 
 | 	} | 
 |  | 
 | 	if (crypto_info->version == TLS_1_3_VERSION) { | 
 | 		nonce_size = 0; | 
 | 		prot->aad_size = TLS_HEADER_SIZE; | 
 | 		prot->tail_size = 1; | 
 | 	} else { | 
 | 		prot->aad_size = TLS_AAD_SPACE_SIZE; | 
 | 		prot->tail_size = 0; | 
 | 	} | 
 |  | 
 | 	prot->version = crypto_info->version; | 
 | 	prot->cipher_type = crypto_info->cipher_type; | 
 | 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size; | 
 | 	prot->tag_size = tag_size; | 
 | 	prot->overhead_size = prot->prepend_size + | 
 | 			      prot->tag_size + prot->tail_size; | 
 | 	prot->iv_size = iv_size; | 
 | 	prot->salt_size = salt_size; | 
 | 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); | 
 | 	if (!cctx->iv) { | 
 | 		rc = -ENOMEM; | 
 | 		goto free_priv; | 
 | 	} | 
 | 	/* Note: 128 & 256 bit salt are the same size */ | 
 | 	prot->rec_seq_size = rec_seq_size; | 
 | 	memcpy(cctx->iv, salt, salt_size); | 
 | 	memcpy(cctx->iv + salt_size, iv, iv_size); | 
 | 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); | 
 | 	if (!cctx->rec_seq) { | 
 | 		rc = -ENOMEM; | 
 | 		goto free_iv; | 
 | 	} | 
 |  | 
 | 	if (!*aead) { | 
 | 		*aead = crypto_alloc_aead(cipher_name, 0, 0); | 
 | 		if (IS_ERR(*aead)) { | 
 | 			rc = PTR_ERR(*aead); | 
 | 			*aead = NULL; | 
 | 			goto free_rec_seq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ctx->push_pending_record = tls_sw_push_pending_record; | 
 |  | 
 | 	rc = crypto_aead_setkey(*aead, key, keysize); | 
 |  | 
 | 	if (rc) | 
 | 		goto free_aead; | 
 |  | 
 | 	rc = crypto_aead_setauthsize(*aead, prot->tag_size); | 
 | 	if (rc) | 
 | 		goto free_aead; | 
 |  | 
 | 	if (sw_ctx_rx) { | 
 | 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); | 
 |  | 
 | 		if (crypto_info->version == TLS_1_3_VERSION) | 
 | 			sw_ctx_rx->async_capable = 0; | 
 | 		else | 
 | 			sw_ctx_rx->async_capable = | 
 | 				!!(tfm->__crt_alg->cra_flags & | 
 | 				   CRYPTO_ALG_ASYNC); | 
 |  | 
 | 		/* Set up strparser */ | 
 | 		memset(&cb, 0, sizeof(cb)); | 
 | 		cb.rcv_msg = tls_queue; | 
 | 		cb.parse_msg = tls_read_size; | 
 |  | 
 | 		strp_init(&sw_ctx_rx->strp, sk, &cb); | 
 | 	} | 
 |  | 
 | 	goto out; | 
 |  | 
 | free_aead: | 
 | 	crypto_free_aead(*aead); | 
 | 	*aead = NULL; | 
 | free_rec_seq: | 
 | 	kfree(cctx->rec_seq); | 
 | 	cctx->rec_seq = NULL; | 
 | free_iv: | 
 | 	kfree(cctx->iv); | 
 | 	cctx->iv = NULL; | 
 | free_priv: | 
 | 	if (tx) { | 
 | 		kfree(ctx->priv_ctx_tx); | 
 | 		ctx->priv_ctx_tx = NULL; | 
 | 	} else { | 
 | 		kfree(ctx->priv_ctx_rx); | 
 | 		ctx->priv_ctx_rx = NULL; | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } |