|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Driver for Allwinner sun4i Pulse Width Modulation Controller | 
|  | * | 
|  | * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com> | 
|  | * | 
|  | * Limitations: | 
|  | * - When outputing the source clock directly, the PWM logic will be bypassed | 
|  | *   and the currently running period is not guaranteed to be completed | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pwm.h> | 
|  | #include <linux/reset.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/time.h> | 
|  |  | 
|  | #define PWM_CTRL_REG		0x0 | 
|  |  | 
|  | #define PWM_CH_PRD_BASE		0x4 | 
|  | #define PWM_CH_PRD_OFFSET	0x4 | 
|  | #define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch)) | 
|  |  | 
|  | #define PWMCH_OFFSET		15 | 
|  | #define PWM_PRESCAL_MASK	GENMASK(3, 0) | 
|  | #define PWM_PRESCAL_OFF		0 | 
|  | #define PWM_EN			BIT(4) | 
|  | #define PWM_ACT_STATE		BIT(5) | 
|  | #define PWM_CLK_GATING		BIT(6) | 
|  | #define PWM_MODE		BIT(7) | 
|  | #define PWM_PULSE		BIT(8) | 
|  | #define PWM_BYPASS		BIT(9) | 
|  |  | 
|  | #define PWM_RDY_BASE		28 | 
|  | #define PWM_RDY_OFFSET		1 | 
|  | #define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch)) | 
|  |  | 
|  | #define PWM_PRD(prd)		(((prd) - 1) << 16) | 
|  | #define PWM_PRD_MASK		GENMASK(15, 0) | 
|  |  | 
|  | #define PWM_DTY_MASK		GENMASK(15, 0) | 
|  |  | 
|  | #define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1) | 
|  | #define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK) | 
|  | #define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK) | 
|  |  | 
|  | #define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET)) | 
|  |  | 
|  | static const u32 prescaler_table[] = { | 
|  | 120, | 
|  | 180, | 
|  | 240, | 
|  | 360, | 
|  | 480, | 
|  | 0, | 
|  | 0, | 
|  | 0, | 
|  | 12000, | 
|  | 24000, | 
|  | 36000, | 
|  | 48000, | 
|  | 72000, | 
|  | 0, | 
|  | 0, | 
|  | 0, /* Actually 1 but tested separately */ | 
|  | }; | 
|  |  | 
|  | struct sun4i_pwm_data { | 
|  | bool has_prescaler_bypass; | 
|  | bool has_direct_mod_clk_output; | 
|  | unsigned int npwm; | 
|  | }; | 
|  |  | 
|  | struct sun4i_pwm_chip { | 
|  | struct pwm_chip chip; | 
|  | struct clk *bus_clk; | 
|  | struct clk *clk; | 
|  | struct reset_control *rst; | 
|  | void __iomem *base; | 
|  | spinlock_t ctrl_lock; | 
|  | const struct sun4i_pwm_data *data; | 
|  | unsigned long next_period[2]; | 
|  | }; | 
|  |  | 
|  | static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip) | 
|  | { | 
|  | return container_of(chip, struct sun4i_pwm_chip, chip); | 
|  | } | 
|  |  | 
|  | static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip, | 
|  | unsigned long offset) | 
|  | { | 
|  | return readl(chip->base + offset); | 
|  | } | 
|  |  | 
|  | static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip, | 
|  | u32 val, unsigned long offset) | 
|  | { | 
|  | writel(val, chip->base + offset); | 
|  | } | 
|  |  | 
|  | static void sun4i_pwm_get_state(struct pwm_chip *chip, | 
|  | struct pwm_device *pwm, | 
|  | struct pwm_state *state) | 
|  | { | 
|  | struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); | 
|  | u64 clk_rate, tmp; | 
|  | u32 val; | 
|  | unsigned int prescaler; | 
|  |  | 
|  | clk_rate = clk_get_rate(sun4i_pwm->clk); | 
|  |  | 
|  | val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); | 
|  |  | 
|  | /* | 
|  | * PWM chapter in H6 manual has a diagram which explains that if bypass | 
|  | * bit is set, no other setting has any meaning. Even more, experiment | 
|  | * proved that also enable bit is ignored in this case. | 
|  | */ | 
|  | if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) && | 
|  | sun4i_pwm->data->has_direct_mod_clk_output) { | 
|  | state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate); | 
|  | state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2); | 
|  | state->polarity = PWM_POLARITY_NORMAL; | 
|  | state->enabled = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) && | 
|  | sun4i_pwm->data->has_prescaler_bypass) | 
|  | prescaler = 1; | 
|  | else | 
|  | prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)]; | 
|  |  | 
|  | if (prescaler == 0) | 
|  | return; | 
|  |  | 
|  | if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm)) | 
|  | state->polarity = PWM_POLARITY_NORMAL; | 
|  | else | 
|  | state->polarity = PWM_POLARITY_INVERSED; | 
|  |  | 
|  | if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) == | 
|  | BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) | 
|  | state->enabled = true; | 
|  | else | 
|  | state->enabled = false; | 
|  |  | 
|  | val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm)); | 
|  |  | 
|  | tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val); | 
|  | state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); | 
|  |  | 
|  | tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val); | 
|  | state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); | 
|  | } | 
|  |  | 
|  | static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm, | 
|  | const struct pwm_state *state, | 
|  | u32 *dty, u32 *prd, unsigned int *prsclr, | 
|  | bool *bypass) | 
|  | { | 
|  | u64 clk_rate, div = 0; | 
|  | unsigned int prescaler = 0; | 
|  |  | 
|  | clk_rate = clk_get_rate(sun4i_pwm->clk); | 
|  |  | 
|  | *bypass = sun4i_pwm->data->has_direct_mod_clk_output && | 
|  | state->enabled && | 
|  | (state->period * clk_rate >= NSEC_PER_SEC) && | 
|  | (state->period * clk_rate < 2 * NSEC_PER_SEC) && | 
|  | (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC); | 
|  |  | 
|  | /* Skip calculation of other parameters if we bypass them */ | 
|  | if (*bypass) | 
|  | return 0; | 
|  |  | 
|  | if (sun4i_pwm->data->has_prescaler_bypass) { | 
|  | /* First, test without any prescaler when available */ | 
|  | prescaler = PWM_PRESCAL_MASK; | 
|  | /* | 
|  | * When not using any prescaler, the clock period in nanoseconds | 
|  | * is not an integer so round it half up instead of | 
|  | * truncating to get less surprising values. | 
|  | */ | 
|  | div = clk_rate * state->period + NSEC_PER_SEC / 2; | 
|  | do_div(div, NSEC_PER_SEC); | 
|  | if (div - 1 > PWM_PRD_MASK) | 
|  | prescaler = 0; | 
|  | } | 
|  |  | 
|  | if (prescaler == 0) { | 
|  | /* Go up from the first divider */ | 
|  | for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) { | 
|  | unsigned int pval = prescaler_table[prescaler]; | 
|  |  | 
|  | if (!pval) | 
|  | continue; | 
|  |  | 
|  | div = clk_rate; | 
|  | do_div(div, pval); | 
|  | div = div * state->period; | 
|  | do_div(div, NSEC_PER_SEC); | 
|  | if (div - 1 <= PWM_PRD_MASK) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (div - 1 > PWM_PRD_MASK) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *prd = div; | 
|  | div *= state->duty_cycle; | 
|  | do_div(div, state->period); | 
|  | *dty = div; | 
|  | *prsclr = prescaler; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, | 
|  | const struct pwm_state *state) | 
|  | { | 
|  | struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); | 
|  | struct pwm_state cstate; | 
|  | u32 ctrl, duty = 0, period = 0, val; | 
|  | int ret; | 
|  | unsigned int delay_us, prescaler = 0; | 
|  | unsigned long now; | 
|  | bool bypass; | 
|  |  | 
|  | pwm_get_state(pwm, &cstate); | 
|  |  | 
|  | if (!cstate.enabled) { | 
|  | ret = clk_prepare_enable(sun4i_pwm->clk); | 
|  | if (ret) { | 
|  | dev_err(chip->dev, "failed to enable PWM clock\n"); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler, | 
|  | &bypass); | 
|  | if (ret) { | 
|  | dev_err(chip->dev, "period exceeds the maximum value\n"); | 
|  | if (!cstate.enabled) | 
|  | clk_disable_unprepare(sun4i_pwm->clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | spin_lock(&sun4i_pwm->ctrl_lock); | 
|  | ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); | 
|  |  | 
|  | if (sun4i_pwm->data->has_direct_mod_clk_output) { | 
|  | if (bypass) { | 
|  | ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm); | 
|  | /* We can skip other parameter */ | 
|  | sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); | 
|  | spin_unlock(&sun4i_pwm->ctrl_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm); | 
|  | } | 
|  |  | 
|  | if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) { | 
|  | /* Prescaler changed, the clock has to be gated */ | 
|  | ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); | 
|  | sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); | 
|  |  | 
|  | ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm); | 
|  | ctrl |= BIT_CH(prescaler, pwm->hwpwm); | 
|  | } | 
|  |  | 
|  | val = (duty & PWM_DTY_MASK) | PWM_PRD(period); | 
|  | sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm)); | 
|  | sun4i_pwm->next_period[pwm->hwpwm] = jiffies + | 
|  | nsecs_to_jiffies(cstate.period + 1000); | 
|  |  | 
|  | if (state->polarity != PWM_POLARITY_NORMAL) | 
|  | ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm); | 
|  | else | 
|  | ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm); | 
|  |  | 
|  | ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm); | 
|  |  | 
|  | if (state->enabled) | 
|  | ctrl |= BIT_CH(PWM_EN, pwm->hwpwm); | 
|  |  | 
|  | sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); | 
|  |  | 
|  | spin_unlock(&sun4i_pwm->ctrl_lock); | 
|  |  | 
|  | if (state->enabled) | 
|  | return 0; | 
|  |  | 
|  | /* We need a full period to elapse before disabling the channel. */ | 
|  | now = jiffies; | 
|  | if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) { | 
|  | delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] - | 
|  | now); | 
|  | if ((delay_us / 500) > MAX_UDELAY_MS) | 
|  | msleep(delay_us / 1000 + 1); | 
|  | else | 
|  | usleep_range(delay_us, delay_us * 2); | 
|  | } | 
|  |  | 
|  | spin_lock(&sun4i_pwm->ctrl_lock); | 
|  | ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); | 
|  | ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); | 
|  | ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm); | 
|  | sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); | 
|  | spin_unlock(&sun4i_pwm->ctrl_lock); | 
|  |  | 
|  | clk_disable_unprepare(sun4i_pwm->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct pwm_ops sun4i_pwm_ops = { | 
|  | .apply = sun4i_pwm_apply, | 
|  | .get_state = sun4i_pwm_get_state, | 
|  | .owner = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = { | 
|  | .has_prescaler_bypass = false, | 
|  | .npwm = 2, | 
|  | }; | 
|  |  | 
|  | static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = { | 
|  | .has_prescaler_bypass = true, | 
|  | .npwm = 2, | 
|  | }; | 
|  |  | 
|  | static const struct sun4i_pwm_data sun4i_pwm_single_bypass = { | 
|  | .has_prescaler_bypass = true, | 
|  | .npwm = 1, | 
|  | }; | 
|  |  | 
|  | static const struct sun4i_pwm_data sun50i_a64_pwm_data = { | 
|  | .has_prescaler_bypass = true, | 
|  | .has_direct_mod_clk_output = true, | 
|  | .npwm = 1, | 
|  | }; | 
|  |  | 
|  | static const struct sun4i_pwm_data sun50i_h6_pwm_data = { | 
|  | .has_prescaler_bypass = true, | 
|  | .has_direct_mod_clk_output = true, | 
|  | .npwm = 2, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id sun4i_pwm_dt_ids[] = { | 
|  | { | 
|  | .compatible = "allwinner,sun4i-a10-pwm", | 
|  | .data = &sun4i_pwm_dual_nobypass, | 
|  | }, { | 
|  | .compatible = "allwinner,sun5i-a10s-pwm", | 
|  | .data = &sun4i_pwm_dual_bypass, | 
|  | }, { | 
|  | .compatible = "allwinner,sun5i-a13-pwm", | 
|  | .data = &sun4i_pwm_single_bypass, | 
|  | }, { | 
|  | .compatible = "allwinner,sun7i-a20-pwm", | 
|  | .data = &sun4i_pwm_dual_bypass, | 
|  | }, { | 
|  | .compatible = "allwinner,sun8i-h3-pwm", | 
|  | .data = &sun4i_pwm_single_bypass, | 
|  | }, { | 
|  | .compatible = "allwinner,sun50i-a64-pwm", | 
|  | .data = &sun50i_a64_pwm_data, | 
|  | }, { | 
|  | .compatible = "allwinner,sun50i-h6-pwm", | 
|  | .data = &sun50i_h6_pwm_data, | 
|  | }, { | 
|  | /* sentinel */ | 
|  | }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids); | 
|  |  | 
|  | static int sun4i_pwm_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct sun4i_pwm_chip *pwm; | 
|  | int ret; | 
|  |  | 
|  | pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL); | 
|  | if (!pwm) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pwm->data = of_device_get_match_data(&pdev->dev); | 
|  | if (!pwm->data) | 
|  | return -ENODEV; | 
|  |  | 
|  | pwm->base = devm_platform_ioremap_resource(pdev, 0); | 
|  | if (IS_ERR(pwm->base)) | 
|  | return PTR_ERR(pwm->base); | 
|  |  | 
|  | /* | 
|  | * All hardware variants need a source clock that is divided and | 
|  | * then feeds the counter that defines the output wave form. In the | 
|  | * device tree this clock is either unnamed or called "mod". | 
|  | * Some variants (e.g. H6) need another clock to access the | 
|  | * hardware registers; this is called "bus". | 
|  | * So we request "mod" first (and ignore the corner case that a | 
|  | * parent provides a "mod" clock while the right one would be the | 
|  | * unnamed one of the PWM device) and if this is not found we fall | 
|  | * back to the first clock of the PWM. | 
|  | */ | 
|  | pwm->clk = devm_clk_get_optional(&pdev->dev, "mod"); | 
|  | if (IS_ERR(pwm->clk)) | 
|  | return dev_err_probe(&pdev->dev, PTR_ERR(pwm->clk), | 
|  | "get mod clock failed\n"); | 
|  |  | 
|  | if (!pwm->clk) { | 
|  | pwm->clk = devm_clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(pwm->clk)) | 
|  | return dev_err_probe(&pdev->dev, PTR_ERR(pwm->clk), | 
|  | "get unnamed clock failed\n"); | 
|  | } | 
|  |  | 
|  | pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus"); | 
|  | if (IS_ERR(pwm->bus_clk)) | 
|  | return dev_err_probe(&pdev->dev, PTR_ERR(pwm->bus_clk), | 
|  | "get bus clock failed\n"); | 
|  |  | 
|  | pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL); | 
|  | if (IS_ERR(pwm->rst)) | 
|  | return dev_err_probe(&pdev->dev, PTR_ERR(pwm->rst), | 
|  | "get reset failed\n"); | 
|  |  | 
|  | /* Deassert reset */ | 
|  | ret = reset_control_deassert(pwm->rst); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "cannot deassert reset control: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're keeping the bus clock on for the sake of simplicity. | 
|  | * Actually it only needs to be on for hardware register accesses. | 
|  | */ | 
|  | ret = clk_prepare_enable(pwm->bus_clk); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | goto err_bus; | 
|  | } | 
|  |  | 
|  | pwm->chip.dev = &pdev->dev; | 
|  | pwm->chip.ops = &sun4i_pwm_ops; | 
|  | pwm->chip.npwm = pwm->data->npwm; | 
|  |  | 
|  | spin_lock_init(&pwm->ctrl_lock); | 
|  |  | 
|  | ret = pwmchip_add(&pwm->chip); | 
|  | if (ret < 0) { | 
|  | dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); | 
|  | goto err_pwm_add; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, pwm); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_pwm_add: | 
|  | clk_disable_unprepare(pwm->bus_clk); | 
|  | err_bus: | 
|  | reset_control_assert(pwm->rst); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sun4i_pwm_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev); | 
|  |  | 
|  | pwmchip_remove(&pwm->chip); | 
|  |  | 
|  | clk_disable_unprepare(pwm->bus_clk); | 
|  | reset_control_assert(pwm->rst); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver sun4i_pwm_driver = { | 
|  | .driver = { | 
|  | .name = "sun4i-pwm", | 
|  | .of_match_table = sun4i_pwm_dt_ids, | 
|  | }, | 
|  | .probe = sun4i_pwm_probe, | 
|  | .remove = sun4i_pwm_remove, | 
|  | }; | 
|  | module_platform_driver(sun4i_pwm_driver); | 
|  |  | 
|  | MODULE_ALIAS("platform:sun4i-pwm"); | 
|  | MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>"); | 
|  | MODULE_DESCRIPTION("Allwinner sun4i PWM driver"); | 
|  | MODULE_LICENSE("GPL v2"); |