|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * This is for all the tests relating directly to heap memory, including | 
|  | * page allocation and slab allocations. | 
|  | */ | 
|  | #include "lkdtm.h" | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | static struct kmem_cache *double_free_cache; | 
|  | static struct kmem_cache *a_cache; | 
|  | static struct kmem_cache *b_cache; | 
|  |  | 
|  | /* | 
|  | * Using volatile here means the compiler cannot ever make assumptions | 
|  | * about this value. This means compile-time length checks involving | 
|  | * this variable cannot be performed; only run-time checks. | 
|  | */ | 
|  | static volatile int __offset = 1; | 
|  |  | 
|  | /* | 
|  | * If there aren't guard pages, it's likely that a consecutive allocation will | 
|  | * let us overflow into the second allocation without overwriting something real. | 
|  | */ | 
|  | void lkdtm_VMALLOC_LINEAR_OVERFLOW(void) | 
|  | { | 
|  | char *one, *two; | 
|  |  | 
|  | one = vzalloc(PAGE_SIZE); | 
|  | two = vzalloc(PAGE_SIZE); | 
|  |  | 
|  | pr_info("Attempting vmalloc linear overflow ...\n"); | 
|  | memset(one, 0xAA, PAGE_SIZE + __offset); | 
|  |  | 
|  | vfree(two); | 
|  | vfree(one); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This tries to stay within the next largest power-of-2 kmalloc cache | 
|  | * to avoid actually overwriting anything important if it's not detected | 
|  | * correctly. | 
|  | */ | 
|  | void lkdtm_SLAB_LINEAR_OVERFLOW(void) | 
|  | { | 
|  | size_t len = 1020; | 
|  | u32 *data = kmalloc(len, GFP_KERNEL); | 
|  | if (!data) | 
|  | return; | 
|  |  | 
|  | pr_info("Attempting slab linear overflow ...\n"); | 
|  | data[1024 / sizeof(u32)] = 0x12345678; | 
|  | kfree(data); | 
|  | } | 
|  |  | 
|  | void lkdtm_WRITE_AFTER_FREE(void) | 
|  | { | 
|  | int *base, *again; | 
|  | size_t len = 1024; | 
|  | /* | 
|  | * The slub allocator uses the first word to store the free | 
|  | * pointer in some configurations. Use the middle of the | 
|  | * allocation to avoid running into the freelist | 
|  | */ | 
|  | size_t offset = (len / sizeof(*base)) / 2; | 
|  |  | 
|  | base = kmalloc(len, GFP_KERNEL); | 
|  | if (!base) | 
|  | return; | 
|  | pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]); | 
|  | pr_info("Attempting bad write to freed memory at %p\n", | 
|  | &base[offset]); | 
|  | kfree(base); | 
|  | base[offset] = 0x0abcdef0; | 
|  | /* Attempt to notice the overwrite. */ | 
|  | again = kmalloc(len, GFP_KERNEL); | 
|  | kfree(again); | 
|  | if (again != base) | 
|  | pr_info("Hmm, didn't get the same memory range.\n"); | 
|  | } | 
|  |  | 
|  | void lkdtm_READ_AFTER_FREE(void) | 
|  | { | 
|  | int *base, *val, saw; | 
|  | size_t len = 1024; | 
|  | /* | 
|  | * The slub allocator will use the either the first word or | 
|  | * the middle of the allocation to store the free pointer, | 
|  | * depending on configurations. Store in the second word to | 
|  | * avoid running into the freelist. | 
|  | */ | 
|  | size_t offset = sizeof(*base); | 
|  |  | 
|  | base = kmalloc(len, GFP_KERNEL); | 
|  | if (!base) { | 
|  | pr_info("Unable to allocate base memory.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | val = kmalloc(len, GFP_KERNEL); | 
|  | if (!val) { | 
|  | pr_info("Unable to allocate val memory.\n"); | 
|  | kfree(base); | 
|  | return; | 
|  | } | 
|  |  | 
|  | *val = 0x12345678; | 
|  | base[offset] = *val; | 
|  | pr_info("Value in memory before free: %x\n", base[offset]); | 
|  |  | 
|  | kfree(base); | 
|  |  | 
|  | pr_info("Attempting bad read from freed memory\n"); | 
|  | saw = base[offset]; | 
|  | if (saw != *val) { | 
|  | /* Good! Poisoning happened, so declare a win. */ | 
|  | pr_info("Memory correctly poisoned (%x)\n", saw); | 
|  | } else { | 
|  | pr_err("FAIL: Memory was not poisoned!\n"); | 
|  | pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); | 
|  | } | 
|  |  | 
|  | kfree(val); | 
|  | } | 
|  |  | 
|  | void lkdtm_WRITE_BUDDY_AFTER_FREE(void) | 
|  | { | 
|  | unsigned long p = __get_free_page(GFP_KERNEL); | 
|  | if (!p) { | 
|  | pr_info("Unable to allocate free page\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_info("Writing to the buddy page before free\n"); | 
|  | memset((void *)p, 0x3, PAGE_SIZE); | 
|  | free_page(p); | 
|  | schedule(); | 
|  | pr_info("Attempting bad write to the buddy page after free\n"); | 
|  | memset((void *)p, 0x78, PAGE_SIZE); | 
|  | /* Attempt to notice the overwrite. */ | 
|  | p = __get_free_page(GFP_KERNEL); | 
|  | free_page(p); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | void lkdtm_READ_BUDDY_AFTER_FREE(void) | 
|  | { | 
|  | unsigned long p = __get_free_page(GFP_KERNEL); | 
|  | int saw, *val; | 
|  | int *base; | 
|  |  | 
|  | if (!p) { | 
|  | pr_info("Unable to allocate free page\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | val = kmalloc(1024, GFP_KERNEL); | 
|  | if (!val) { | 
|  | pr_info("Unable to allocate val memory.\n"); | 
|  | free_page(p); | 
|  | return; | 
|  | } | 
|  |  | 
|  | base = (int *)p; | 
|  |  | 
|  | *val = 0x12345678; | 
|  | base[0] = *val; | 
|  | pr_info("Value in memory before free: %x\n", base[0]); | 
|  | free_page(p); | 
|  | pr_info("Attempting to read from freed memory\n"); | 
|  | saw = base[0]; | 
|  | if (saw != *val) { | 
|  | /* Good! Poisoning happened, so declare a win. */ | 
|  | pr_info("Memory correctly poisoned (%x)\n", saw); | 
|  | } else { | 
|  | pr_err("FAIL: Buddy page was not poisoned!\n"); | 
|  | pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); | 
|  | } | 
|  |  | 
|  | kfree(val); | 
|  | } | 
|  |  | 
|  | void lkdtm_SLAB_INIT_ON_ALLOC(void) | 
|  | { | 
|  | u8 *first; | 
|  | u8 *val; | 
|  |  | 
|  | first = kmalloc(512, GFP_KERNEL); | 
|  | if (!first) { | 
|  | pr_info("Unable to allocate 512 bytes the first time.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memset(first, 0xAB, 512); | 
|  | kfree(first); | 
|  |  | 
|  | val = kmalloc(512, GFP_KERNEL); | 
|  | if (!val) { | 
|  | pr_info("Unable to allocate 512 bytes the second time.\n"); | 
|  | return; | 
|  | } | 
|  | if (val != first) { | 
|  | pr_warn("Reallocation missed clobbered memory.\n"); | 
|  | } | 
|  |  | 
|  | if (memchr(val, 0xAB, 512) == NULL) { | 
|  | pr_info("Memory appears initialized (%x, no earlier values)\n", *val); | 
|  | } else { | 
|  | pr_err("FAIL: Slab was not initialized\n"); | 
|  | pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); | 
|  | } | 
|  | kfree(val); | 
|  | } | 
|  |  | 
|  | void lkdtm_BUDDY_INIT_ON_ALLOC(void) | 
|  | { | 
|  | u8 *first; | 
|  | u8 *val; | 
|  |  | 
|  | first = (u8 *)__get_free_page(GFP_KERNEL); | 
|  | if (!first) { | 
|  | pr_info("Unable to allocate first free page\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memset(first, 0xAB, PAGE_SIZE); | 
|  | free_page((unsigned long)first); | 
|  |  | 
|  | val = (u8 *)__get_free_page(GFP_KERNEL); | 
|  | if (!val) { | 
|  | pr_info("Unable to allocate second free page\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (val != first) { | 
|  | pr_warn("Reallocation missed clobbered memory.\n"); | 
|  | } | 
|  |  | 
|  | if (memchr(val, 0xAB, PAGE_SIZE) == NULL) { | 
|  | pr_info("Memory appears initialized (%x, no earlier values)\n", *val); | 
|  | } else { | 
|  | pr_err("FAIL: Slab was not initialized\n"); | 
|  | pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); | 
|  | } | 
|  | free_page((unsigned long)val); | 
|  | } | 
|  |  | 
|  | void lkdtm_SLAB_FREE_DOUBLE(void) | 
|  | { | 
|  | int *val; | 
|  |  | 
|  | val = kmem_cache_alloc(double_free_cache, GFP_KERNEL); | 
|  | if (!val) { | 
|  | pr_info("Unable to allocate double_free_cache memory.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Just make sure we got real memory. */ | 
|  | *val = 0x12345678; | 
|  | pr_info("Attempting double slab free ...\n"); | 
|  | kmem_cache_free(double_free_cache, val); | 
|  | kmem_cache_free(double_free_cache, val); | 
|  | } | 
|  |  | 
|  | void lkdtm_SLAB_FREE_CROSS(void) | 
|  | { | 
|  | int *val; | 
|  |  | 
|  | val = kmem_cache_alloc(a_cache, GFP_KERNEL); | 
|  | if (!val) { | 
|  | pr_info("Unable to allocate a_cache memory.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Just make sure we got real memory. */ | 
|  | *val = 0x12345679; | 
|  | pr_info("Attempting cross-cache slab free ...\n"); | 
|  | kmem_cache_free(b_cache, val); | 
|  | } | 
|  |  | 
|  | void lkdtm_SLAB_FREE_PAGE(void) | 
|  | { | 
|  | unsigned long p = __get_free_page(GFP_KERNEL); | 
|  |  | 
|  | pr_info("Attempting non-Slab slab free ...\n"); | 
|  | kmem_cache_free(NULL, (void *)p); | 
|  | free_page(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have constructors to keep the caches distinctly separated without | 
|  | * needing to boot with "slab_nomerge". | 
|  | */ | 
|  | static void ctor_double_free(void *region) | 
|  | { } | 
|  | static void ctor_a(void *region) | 
|  | { } | 
|  | static void ctor_b(void *region) | 
|  | { } | 
|  |  | 
|  | void __init lkdtm_heap_init(void) | 
|  | { | 
|  | double_free_cache = kmem_cache_create("lkdtm-heap-double_free", | 
|  | 64, 0, 0, ctor_double_free); | 
|  | a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a); | 
|  | b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b); | 
|  | } | 
|  |  | 
|  | void __exit lkdtm_heap_exit(void) | 
|  | { | 
|  | kmem_cache_destroy(double_free_cache); | 
|  | kmem_cache_destroy(a_cache); | 
|  | kmem_cache_destroy(b_cache); | 
|  | } |