blob: abddf5830ad5550ee2c72875b209d9546afec579 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H
#define _ASM_POWERPC_NOHASH_64_PGTABLE_H
/*
* This file contains the functions and defines necessary to modify and use
* the ppc64 hashed page table.
*/
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/nohash/64/pgtable-64k.h>
#else
#include <asm/nohash/64/pgtable-4k.h>
#endif
#include <asm/barrier.h>
#define FIRST_USER_ADDRESS 0UL
/*
* Size of EA range mapped by our pagetables.
*/
#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1)
#else
#define PMD_CACHE_INDEX PMD_INDEX_SIZE
#endif
/*
* Define the address range of the kernel non-linear virtual area
*/
#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
#define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
/*
* The vmalloc space starts at the beginning of that region, and
* occupies half of it on hash CPUs and a quarter of it on Book3E
* (we keep a quarter for the virtual memmap)
*/
#define VMALLOC_START KERN_VIRT_START
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
/*
* The second half of the kernel virtual space is used for IO mappings,
* it's itself carved into the PIO region (ISA and PHB IO space) and
* the ioremap space
*
* ISA_IO_BASE = KERN_IO_START, 64K reserved area
* PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
* IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
*/
#define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
#define FULL_IO_SIZE 0x80000000ul
#define ISA_IO_BASE (KERN_IO_START)
#define ISA_IO_END (KERN_IO_START + 0x10000ul)
#define PHB_IO_BASE (ISA_IO_END)
#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
#define IOREMAP_BASE (PHB_IO_END)
#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
/*
* Region IDs
*/
#define REGION_SHIFT 60UL
#define REGION_MASK (0xfUL << REGION_SHIFT)
#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
#define VMEMMAP_REGION_ID (0xfUL) /* Server only */
#define USER_REGION_ID (0UL)
/*
* Defines the address of the vmemap area, in its own region on
* hash table CPUs and after the vmalloc space on Book3E
*/
#define VMEMMAP_BASE VMALLOC_END
#define VMEMMAP_END KERN_IO_START
#define vmemmap ((struct page *)VMEMMAP_BASE)
/*
* Include the PTE bits definitions
*/
#include <asm/nohash/pte-book3e.h>
#include <asm/pte-common.h>
#ifndef __ASSEMBLY__
/* pte_clear moved to later in this file */
#define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
#define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
static inline void pmd_set(pmd_t *pmdp, unsigned long val)
{
*pmdp = __pmd(val);
}
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
|| (pmd_val(pmd) & PMD_BAD_BITS))
#define pmd_present(pmd) (!pmd_none(pmd))
#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
extern struct page *pmd_page(pmd_t pmd);
static inline void pud_set(pud_t *pudp, unsigned long val)
{
*pudp = __pud(val);
}
static inline void pud_clear(pud_t *pudp)
{
*pudp = __pud(0);
}
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
|| (pud_val(pud) & PUD_BAD_BITS))
#define pud_present(pud) (pud_val(pud) != 0)
#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
extern struct page *pud_page(pud_t pud);
static inline pte_t pud_pte(pud_t pud)
{
return __pte(pud_val(pud));
}
static inline pud_t pte_pud(pte_t pte)
{
return __pud(pte_val(pte));
}
#define pud_write(pud) pte_write(pud_pte(pud))
#define pgd_write(pgd) pte_write(pgd_pte(pgd))
static inline void pgd_set(pgd_t *pgdp, unsigned long val)
{
*pgdp = __pgd(val);
}
/*
* Find an entry in a page-table-directory. We combine the address region
* (the high order N bits) and the pgd portion of the address.
*/
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pmd_offset(pudp,addr) \
(((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
#define pte_offset_kernel(dir,addr) \
(((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_unmap(pte) do { } while(0)
/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long pte, int huge);
/* Atomic PTE updates */
static inline unsigned long pte_update(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, unsigned long clr,
unsigned long set,
int huge)
{
#ifdef PTE_ATOMIC_UPDATES
unsigned long old, tmp;
__asm__ __volatile__(
"1: ldarx %0,0,%3 # pte_update\n\
andi. %1,%0,%6\n\
bne- 1b \n\
andc %1,%0,%4 \n\
or %1,%1,%7\n\
stdcx. %1,0,%3 \n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
: "cc" );
#else
unsigned long old = pte_val(*ptep);
*ptep = __pte((old & ~clr) | set);
#endif
/* huge pages use the old page table lock */
if (!huge)
assert_pte_locked(mm, addr);
#ifdef CONFIG_PPC_BOOK3S_64
if (old & _PAGE_HASHPTE)
hpte_need_flush(mm, addr, ptep, old, huge);
#endif
return old;
}
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
return 0;
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
({ \
int __r; \
__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
__r; \
})
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
if ((pte_val(*ptep) & _PAGE_RW) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
}
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
if ((pte_val(*ptep) & _PAGE_RW) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
}
/*
* We currently remove entries from the hashtable regardless of whether
* the entry was young or dirty. The generic routines only flush if the
* entry was young or dirty which is not good enough.
*
* We should be more intelligent about this but for the moment we override
* these functions and force a tlb flush unconditionally
*/
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young(__vma, __address, __ptep) \
({ \
int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
__ptep); \
__young; \
})
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
return __pte(old);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t * ptep)
{
pte_update(mm, addr, ptep, ~0UL, 0, 0);
}
/* Set the dirty and/or accessed bits atomically in a linux PTE, this
* function doesn't need to flush the hash entry
*/
static inline void __ptep_set_access_flags(struct mm_struct *mm,
pte_t *ptep, pte_t entry,
unsigned long address)
{
unsigned long bits = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
#ifdef PTE_ATOMIC_UPDATES
unsigned long old, tmp;
__asm__ __volatile__(
"1: ldarx %0,0,%4\n\
andi. %1,%0,%6\n\
bne- 1b \n\
or %0,%3,%0\n\
stdcx. %0,0,%4\n\
bne- 1b"
:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
:"cc");
#else
unsigned long old = pte_val(*ptep);
*ptep = __pte(old | bits);
#endif
}
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/* Encode and de-code a swap entry */
#define MAX_SWAPFILES_CHECK() do { \
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
/* \
* Don't have overlapping bits with _PAGE_HPTEFLAGS \
* We filter HPTEFLAGS on set_pte. \
*/ \
BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
} while (0)
/*
* on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
*/
#define SWP_TYPE_BITS 5
#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
& ((1UL << SWP_TYPE_BITS) - 1))
#define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) { \
((type) << _PAGE_BIT_SWAP_TYPE) \
| ((offset) << PTE_RPN_SHIFT) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) })
#define __swp_entry_to_pte(x) __pte((x).val)
extern int map_kernel_page(unsigned long ea, unsigned long pa,
unsigned long flags);
extern int __meminit vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys);
extern void vmemmap_remove_mapping(unsigned long start,
unsigned long page_size);
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */