|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Shared application/kernel submission and completion ring pairs, for | 
|  | * supporting fast/efficient IO. | 
|  | * | 
|  | * A note on the read/write ordering memory barriers that are matched between | 
|  | * the application and kernel side. | 
|  | * | 
|  | * After the application reads the CQ ring tail, it must use an | 
|  | * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses | 
|  | * before writing the tail (using smp_load_acquire to read the tail will | 
|  | * do). It also needs a smp_mb() before updating CQ head (ordering the | 
|  | * entry load(s) with the head store), pairing with an implicit barrier | 
|  | * through a control-dependency in io_get_cqe (smp_store_release to | 
|  | * store head will do). Failure to do so could lead to reading invalid | 
|  | * CQ entries. | 
|  | * | 
|  | * Likewise, the application must use an appropriate smp_wmb() before | 
|  | * writing the SQ tail (ordering SQ entry stores with the tail store), | 
|  | * which pairs with smp_load_acquire in io_get_sqring (smp_store_release | 
|  | * to store the tail will do). And it needs a barrier ordering the SQ | 
|  | * head load before writing new SQ entries (smp_load_acquire to read | 
|  | * head will do). | 
|  | * | 
|  | * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application | 
|  | * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* | 
|  | * updating the SQ tail; a full memory barrier smp_mb() is needed | 
|  | * between. | 
|  | * | 
|  | * Also see the examples in the liburing library: | 
|  | * | 
|  | *	git://git.kernel.dk/liburing | 
|  | * | 
|  | * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens | 
|  | * from data shared between the kernel and application. This is done both | 
|  | * for ordering purposes, but also to ensure that once a value is loaded from | 
|  | * data that the application could potentially modify, it remains stable. | 
|  | * | 
|  | * Copyright (C) 2018-2019 Jens Axboe | 
|  | * Copyright (c) 2018-2019 Christoph Hellwig | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <net/compat.h> | 
|  | #include <linux/refcount.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/bits.h> | 
|  |  | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bvec.h> | 
|  | #include <linux/net.h> | 
|  | #include <net/sock.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/nospec.h> | 
|  | #include <linux/fsnotify.h> | 
|  | #include <linux/fadvise.h> | 
|  | #include <linux/task_work.h> | 
|  | #include <linux/io_uring.h> | 
|  | #include <linux/io_uring/cmd.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/security.h> | 
|  | #include <asm/shmparam.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/io_uring.h> | 
|  |  | 
|  | #include <uapi/linux/io_uring.h> | 
|  |  | 
|  | #include "io-wq.h" | 
|  |  | 
|  | #include "io_uring.h" | 
|  | #include "opdef.h" | 
|  | #include "refs.h" | 
|  | #include "tctx.h" | 
|  | #include "register.h" | 
|  | #include "sqpoll.h" | 
|  | #include "fdinfo.h" | 
|  | #include "kbuf.h" | 
|  | #include "rsrc.h" | 
|  | #include "cancel.h" | 
|  | #include "net.h" | 
|  | #include "notif.h" | 
|  | #include "waitid.h" | 
|  | #include "futex.h" | 
|  | #include "napi.h" | 
|  | #include "uring_cmd.h" | 
|  | #include "msg_ring.h" | 
|  | #include "memmap.h" | 
|  |  | 
|  | #include "timeout.h" | 
|  | #include "poll.h" | 
|  | #include "rw.h" | 
|  | #include "alloc_cache.h" | 
|  | #include "eventfd.h" | 
|  |  | 
|  | #define IORING_MAX_ENTRIES	32768 | 
|  | #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES) | 
|  |  | 
|  | #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ | 
|  | IOSQE_IO_HARDLINK | IOSQE_ASYNC) | 
|  |  | 
|  | #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ | 
|  | IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) | 
|  |  | 
|  | #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ | 
|  | REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ | 
|  | REQ_F_ASYNC_DATA) | 
|  |  | 
|  | #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ | 
|  | IO_REQ_CLEAN_FLAGS) | 
|  |  | 
|  | #define IO_TCTX_REFS_CACHE_NR	(1U << 10) | 
|  |  | 
|  | #define IO_COMPL_BATCH			32 | 
|  | #define IO_REQ_ALLOC_BATCH		8 | 
|  |  | 
|  | struct io_defer_entry { | 
|  | struct list_head	list; | 
|  | struct io_kiocb		*req; | 
|  | u32			seq; | 
|  | }; | 
|  |  | 
|  | /* requests with any of those set should undergo io_disarm_next() */ | 
|  | #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) | 
|  | #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) | 
|  |  | 
|  | /* | 
|  | * No waiters. It's larger than any valid value of the tw counter | 
|  | * so that tests against ->cq_wait_nr would fail and skip wake_up(). | 
|  | */ | 
|  | #define IO_CQ_WAKE_INIT		(-1U) | 
|  | /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ | 
|  | #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1) | 
|  |  | 
|  | static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, | 
|  | struct task_struct *task, | 
|  | bool cancel_all); | 
|  |  | 
|  | static void io_queue_sqe(struct io_kiocb *req); | 
|  |  | 
|  | struct kmem_cache *req_cachep; | 
|  | static struct workqueue_struct *iou_wq __ro_after_init; | 
|  |  | 
|  | static int __read_mostly sysctl_io_uring_disabled; | 
|  | static int __read_mostly sysctl_io_uring_group = -1; | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static struct ctl_table kernel_io_uring_disabled_table[] = { | 
|  | { | 
|  | .procname	= "io_uring_disabled", | 
|  | .data		= &sysctl_io_uring_disabled, | 
|  | .maxlen		= sizeof(sysctl_io_uring_disabled), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_TWO, | 
|  | }, | 
|  | { | 
|  | .procname	= "io_uring_group", | 
|  | .data		= &sysctl_io_uring_group, | 
|  | .maxlen		= sizeof(gid_t), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec, | 
|  | }, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) | 
|  | { | 
|  | return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); | 
|  | } | 
|  |  | 
|  | static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) | 
|  | { | 
|  | return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); | 
|  | } | 
|  |  | 
|  | static bool io_match_linked(struct io_kiocb *head) | 
|  | { | 
|  | struct io_kiocb *req; | 
|  |  | 
|  | io_for_each_link(req, head) { | 
|  | if (req->flags & REQ_F_INFLIGHT) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As io_match_task() but protected against racing with linked timeouts. | 
|  | * User must not hold timeout_lock. | 
|  | */ | 
|  | bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, | 
|  | bool cancel_all) | 
|  | { | 
|  | bool matched; | 
|  |  | 
|  | if (task && head->task != task) | 
|  | return false; | 
|  | if (cancel_all) | 
|  | return true; | 
|  |  | 
|  | if (head->flags & REQ_F_LINK_TIMEOUT) { | 
|  | struct io_ring_ctx *ctx = head->ctx; | 
|  |  | 
|  | /* protect against races with linked timeouts */ | 
|  | spin_lock_irq(&ctx->timeout_lock); | 
|  | matched = io_match_linked(head); | 
|  | spin_unlock_irq(&ctx->timeout_lock); | 
|  | } else { | 
|  | matched = io_match_linked(head); | 
|  | } | 
|  | return matched; | 
|  | } | 
|  |  | 
|  | static inline void req_fail_link_node(struct io_kiocb *req, int res) | 
|  | { | 
|  | req_set_fail(req); | 
|  | io_req_set_res(req, res, 0); | 
|  | } | 
|  |  | 
|  | static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) | 
|  | { | 
|  | wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); | 
|  | } | 
|  |  | 
|  | static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) | 
|  | { | 
|  | struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); | 
|  |  | 
|  | complete(&ctx->ref_comp); | 
|  | } | 
|  |  | 
|  | static __cold void io_fallback_req_func(struct work_struct *work) | 
|  | { | 
|  | struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, | 
|  | fallback_work.work); | 
|  | struct llist_node *node = llist_del_all(&ctx->fallback_llist); | 
|  | struct io_kiocb *req, *tmp; | 
|  | struct io_tw_state ts = {}; | 
|  |  | 
|  | percpu_ref_get(&ctx->refs); | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | llist_for_each_entry_safe(req, tmp, node, io_task_work.node) | 
|  | req->io_task_work.func(req, &ts); | 
|  | io_submit_flush_completions(ctx); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | percpu_ref_put(&ctx->refs); | 
|  | } | 
|  |  | 
|  | static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) | 
|  | { | 
|  | unsigned hash_buckets = 1U << bits; | 
|  | size_t hash_size = hash_buckets * sizeof(table->hbs[0]); | 
|  |  | 
|  | table->hbs = kmalloc(hash_size, GFP_KERNEL); | 
|  | if (!table->hbs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | table->hash_bits = bits; | 
|  | init_hash_table(table, hash_buckets); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) | 
|  | { | 
|  | struct io_ring_ctx *ctx; | 
|  | int hash_bits; | 
|  | bool ret; | 
|  |  | 
|  | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return NULL; | 
|  |  | 
|  | xa_init(&ctx->io_bl_xa); | 
|  |  | 
|  | /* | 
|  | * Use 5 bits less than the max cq entries, that should give us around | 
|  | * 32 entries per hash list if totally full and uniformly spread, but | 
|  | * don't keep too many buckets to not overconsume memory. | 
|  | */ | 
|  | hash_bits = ilog2(p->cq_entries) - 5; | 
|  | hash_bits = clamp(hash_bits, 1, 8); | 
|  | if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) | 
|  | goto err; | 
|  | if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) | 
|  | goto err; | 
|  | if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, | 
|  | 0, GFP_KERNEL)) | 
|  | goto err; | 
|  |  | 
|  | ctx->flags = p->flags; | 
|  | atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); | 
|  | init_waitqueue_head(&ctx->sqo_sq_wait); | 
|  | INIT_LIST_HEAD(&ctx->sqd_list); | 
|  | INIT_LIST_HEAD(&ctx->cq_overflow_list); | 
|  | INIT_LIST_HEAD(&ctx->io_buffers_cache); | 
|  | ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, | 
|  | sizeof(struct io_rsrc_node)); | 
|  | ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, | 
|  | sizeof(struct async_poll)); | 
|  | ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, | 
|  | sizeof(struct io_async_msghdr)); | 
|  | ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, | 
|  | sizeof(struct io_async_rw)); | 
|  | ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, | 
|  | sizeof(struct uring_cache)); | 
|  | spin_lock_init(&ctx->msg_lock); | 
|  | ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, | 
|  | sizeof(struct io_kiocb)); | 
|  | ret |= io_futex_cache_init(ctx); | 
|  | if (ret) | 
|  | goto err; | 
|  | init_completion(&ctx->ref_comp); | 
|  | xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); | 
|  | mutex_init(&ctx->uring_lock); | 
|  | init_waitqueue_head(&ctx->cq_wait); | 
|  | init_waitqueue_head(&ctx->poll_wq); | 
|  | init_waitqueue_head(&ctx->rsrc_quiesce_wq); | 
|  | spin_lock_init(&ctx->completion_lock); | 
|  | spin_lock_init(&ctx->timeout_lock); | 
|  | INIT_WQ_LIST(&ctx->iopoll_list); | 
|  | INIT_LIST_HEAD(&ctx->io_buffers_comp); | 
|  | INIT_LIST_HEAD(&ctx->defer_list); | 
|  | INIT_LIST_HEAD(&ctx->timeout_list); | 
|  | INIT_LIST_HEAD(&ctx->ltimeout_list); | 
|  | INIT_LIST_HEAD(&ctx->rsrc_ref_list); | 
|  | init_llist_head(&ctx->work_llist); | 
|  | INIT_LIST_HEAD(&ctx->tctx_list); | 
|  | ctx->submit_state.free_list.next = NULL; | 
|  | INIT_HLIST_HEAD(&ctx->waitid_list); | 
|  | #ifdef CONFIG_FUTEX | 
|  | INIT_HLIST_HEAD(&ctx->futex_list); | 
|  | #endif | 
|  | INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); | 
|  | INIT_WQ_LIST(&ctx->submit_state.compl_reqs); | 
|  | INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); | 
|  | io_napi_init(ctx); | 
|  |  | 
|  | return ctx; | 
|  | err: | 
|  | io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); | 
|  | io_alloc_cache_free(&ctx->apoll_cache, kfree); | 
|  | io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); | 
|  | io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); | 
|  | io_alloc_cache_free(&ctx->uring_cache, kfree); | 
|  | io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); | 
|  | io_futex_cache_free(ctx); | 
|  | kfree(ctx->cancel_table.hbs); | 
|  | kfree(ctx->cancel_table_locked.hbs); | 
|  | xa_destroy(&ctx->io_bl_xa); | 
|  | kfree(ctx); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void io_account_cq_overflow(struct io_ring_ctx *ctx) | 
|  | { | 
|  | struct io_rings *r = ctx->rings; | 
|  |  | 
|  | WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); | 
|  | ctx->cq_extra--; | 
|  | } | 
|  |  | 
|  | static bool req_need_defer(struct io_kiocb *req, u32 seq) | 
|  | { | 
|  | if (unlikely(req->flags & REQ_F_IO_DRAIN)) { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  |  | 
|  | return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void io_clean_op(struct io_kiocb *req) | 
|  | { | 
|  | if (req->flags & REQ_F_BUFFER_SELECTED) { | 
|  | spin_lock(&req->ctx->completion_lock); | 
|  | io_kbuf_drop(req); | 
|  | spin_unlock(&req->ctx->completion_lock); | 
|  | } | 
|  |  | 
|  | if (req->flags & REQ_F_NEED_CLEANUP) { | 
|  | const struct io_cold_def *def = &io_cold_defs[req->opcode]; | 
|  |  | 
|  | if (def->cleanup) | 
|  | def->cleanup(req); | 
|  | } | 
|  | if ((req->flags & REQ_F_POLLED) && req->apoll) { | 
|  | kfree(req->apoll->double_poll); | 
|  | kfree(req->apoll); | 
|  | req->apoll = NULL; | 
|  | } | 
|  | if (req->flags & REQ_F_INFLIGHT) { | 
|  | struct io_uring_task *tctx = req->task->io_uring; | 
|  |  | 
|  | atomic_dec(&tctx->inflight_tracked); | 
|  | } | 
|  | if (req->flags & REQ_F_CREDS) | 
|  | put_cred(req->creds); | 
|  | if (req->flags & REQ_F_ASYNC_DATA) { | 
|  | kfree(req->async_data); | 
|  | req->async_data = NULL; | 
|  | } | 
|  | req->flags &= ~IO_REQ_CLEAN_FLAGS; | 
|  | } | 
|  |  | 
|  | static inline void io_req_track_inflight(struct io_kiocb *req) | 
|  | { | 
|  | if (!(req->flags & REQ_F_INFLIGHT)) { | 
|  | req->flags |= REQ_F_INFLIGHT; | 
|  | atomic_inc(&req->task->io_uring->inflight_tracked); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) | 
|  | { | 
|  | if (WARN_ON_ONCE(!req->link)) | 
|  | return NULL; | 
|  |  | 
|  | req->flags &= ~REQ_F_ARM_LTIMEOUT; | 
|  | req->flags |= REQ_F_LINK_TIMEOUT; | 
|  |  | 
|  | /* linked timeouts should have two refs once prep'ed */ | 
|  | io_req_set_refcount(req); | 
|  | __io_req_set_refcount(req->link, 2); | 
|  | return req->link; | 
|  | } | 
|  |  | 
|  | static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) | 
|  | { | 
|  | if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) | 
|  | return NULL; | 
|  | return __io_prep_linked_timeout(req); | 
|  | } | 
|  |  | 
|  | static noinline void __io_arm_ltimeout(struct io_kiocb *req) | 
|  | { | 
|  | io_queue_linked_timeout(__io_prep_linked_timeout(req)); | 
|  | } | 
|  |  | 
|  | static inline void io_arm_ltimeout(struct io_kiocb *req) | 
|  | { | 
|  | if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) | 
|  | __io_arm_ltimeout(req); | 
|  | } | 
|  |  | 
|  | static void io_prep_async_work(struct io_kiocb *req) | 
|  | { | 
|  | const struct io_issue_def *def = &io_issue_defs[req->opcode]; | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  |  | 
|  | if (!(req->flags & REQ_F_CREDS)) { | 
|  | req->flags |= REQ_F_CREDS; | 
|  | req->creds = get_current_cred(); | 
|  | } | 
|  |  | 
|  | req->work.list.next = NULL; | 
|  | atomic_set(&req->work.flags, 0); | 
|  | if (req->flags & REQ_F_FORCE_ASYNC) | 
|  | atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); | 
|  |  | 
|  | if (req->file && !(req->flags & REQ_F_FIXED_FILE)) | 
|  | req->flags |= io_file_get_flags(req->file); | 
|  |  | 
|  | if (req->file && (req->flags & REQ_F_ISREG)) { | 
|  | bool should_hash = def->hash_reg_file; | 
|  |  | 
|  | /* don't serialize this request if the fs doesn't need it */ | 
|  | if (should_hash && (req->file->f_flags & O_DIRECT) && | 
|  | (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) | 
|  | should_hash = false; | 
|  | if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) | 
|  | io_wq_hash_work(&req->work, file_inode(req->file)); | 
|  | } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { | 
|  | if (def->unbound_nonreg_file) | 
|  | atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void io_prep_async_link(struct io_kiocb *req) | 
|  | { | 
|  | struct io_kiocb *cur; | 
|  |  | 
|  | if (req->flags & REQ_F_LINK_TIMEOUT) { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  |  | 
|  | spin_lock_irq(&ctx->timeout_lock); | 
|  | io_for_each_link(cur, req) | 
|  | io_prep_async_work(cur); | 
|  | spin_unlock_irq(&ctx->timeout_lock); | 
|  | } else { | 
|  | io_for_each_link(cur, req) | 
|  | io_prep_async_work(cur); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void io_queue_iowq(struct io_kiocb *req) | 
|  | { | 
|  | struct io_kiocb *link = io_prep_linked_timeout(req); | 
|  | struct io_uring_task *tctx = req->task->io_uring; | 
|  |  | 
|  | BUG_ON(!tctx); | 
|  | BUG_ON(!tctx->io_wq); | 
|  |  | 
|  | /* init ->work of the whole link before punting */ | 
|  | io_prep_async_link(req); | 
|  |  | 
|  | /* | 
|  | * Not expected to happen, but if we do have a bug where this _can_ | 
|  | * happen, catch it here and ensure the request is marked as | 
|  | * canceled. That will make io-wq go through the usual work cancel | 
|  | * procedure rather than attempt to run this request (or create a new | 
|  | * worker for it). | 
|  | */ | 
|  | if (WARN_ON_ONCE(!same_thread_group(req->task, current))) | 
|  | atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); | 
|  |  | 
|  | trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); | 
|  | io_wq_enqueue(tctx->io_wq, &req->work); | 
|  | if (link) | 
|  | io_queue_linked_timeout(link); | 
|  | } | 
|  |  | 
|  | static __cold void io_queue_deferred(struct io_ring_ctx *ctx) | 
|  | { | 
|  | while (!list_empty(&ctx->defer_list)) { | 
|  | struct io_defer_entry *de = list_first_entry(&ctx->defer_list, | 
|  | struct io_defer_entry, list); | 
|  |  | 
|  | if (req_need_defer(de->req, de->seq)) | 
|  | break; | 
|  | list_del_init(&de->list); | 
|  | io_req_task_queue(de->req); | 
|  | kfree(de); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __io_commit_cqring_flush(struct io_ring_ctx *ctx) | 
|  | { | 
|  | if (ctx->poll_activated) | 
|  | io_poll_wq_wake(ctx); | 
|  | if (ctx->off_timeout_used) | 
|  | io_flush_timeouts(ctx); | 
|  | if (ctx->drain_active) { | 
|  | spin_lock(&ctx->completion_lock); | 
|  | io_queue_deferred(ctx); | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | } | 
|  | if (ctx->has_evfd) | 
|  | io_eventfd_flush_signal(ctx); | 
|  | } | 
|  |  | 
|  | static inline void __io_cq_lock(struct io_ring_ctx *ctx) | 
|  | { | 
|  | if (!ctx->lockless_cq) | 
|  | spin_lock(&ctx->completion_lock); | 
|  | } | 
|  |  | 
|  | static inline void io_cq_lock(struct io_ring_ctx *ctx) | 
|  | __acquires(ctx->completion_lock) | 
|  | { | 
|  | spin_lock(&ctx->completion_lock); | 
|  | } | 
|  |  | 
|  | static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) | 
|  | { | 
|  | io_commit_cqring(ctx); | 
|  | if (!ctx->task_complete) { | 
|  | if (!ctx->lockless_cq) | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | /* IOPOLL rings only need to wake up if it's also SQPOLL */ | 
|  | if (!ctx->syscall_iopoll) | 
|  | io_cqring_wake(ctx); | 
|  | } | 
|  | io_commit_cqring_flush(ctx); | 
|  | } | 
|  |  | 
|  | static void io_cq_unlock_post(struct io_ring_ctx *ctx) | 
|  | __releases(ctx->completion_lock) | 
|  | { | 
|  | io_commit_cqring(ctx); | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | io_cqring_wake(ctx); | 
|  | io_commit_cqring_flush(ctx); | 
|  | } | 
|  |  | 
|  | static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) | 
|  | { | 
|  | size_t cqe_size = sizeof(struct io_uring_cqe); | 
|  |  | 
|  | lockdep_assert_held(&ctx->uring_lock); | 
|  |  | 
|  | /* don't abort if we're dying, entries must get freed */ | 
|  | if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) | 
|  | return; | 
|  |  | 
|  | if (ctx->flags & IORING_SETUP_CQE32) | 
|  | cqe_size <<= 1; | 
|  |  | 
|  | io_cq_lock(ctx); | 
|  | while (!list_empty(&ctx->cq_overflow_list)) { | 
|  | struct io_uring_cqe *cqe; | 
|  | struct io_overflow_cqe *ocqe; | 
|  |  | 
|  | ocqe = list_first_entry(&ctx->cq_overflow_list, | 
|  | struct io_overflow_cqe, list); | 
|  |  | 
|  | if (!dying) { | 
|  | if (!io_get_cqe_overflow(ctx, &cqe, true)) | 
|  | break; | 
|  | memcpy(cqe, &ocqe->cqe, cqe_size); | 
|  | } | 
|  | list_del(&ocqe->list); | 
|  | kfree(ocqe); | 
|  | } | 
|  |  | 
|  | if (list_empty(&ctx->cq_overflow_list)) { | 
|  | clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); | 
|  | atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); | 
|  | } | 
|  | io_cq_unlock_post(ctx); | 
|  | } | 
|  |  | 
|  | static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) | 
|  | { | 
|  | if (ctx->rings) | 
|  | __io_cqring_overflow_flush(ctx, true); | 
|  | } | 
|  |  | 
|  | static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) | 
|  | { | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | __io_cqring_overflow_flush(ctx, false); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | } | 
|  |  | 
|  | /* can be called by any task */ | 
|  | static void io_put_task_remote(struct task_struct *task) | 
|  | { | 
|  | struct io_uring_task *tctx = task->io_uring; | 
|  |  | 
|  | percpu_counter_sub(&tctx->inflight, 1); | 
|  | if (unlikely(atomic_read(&tctx->in_cancel))) | 
|  | wake_up(&tctx->wait); | 
|  | put_task_struct(task); | 
|  | } | 
|  |  | 
|  | /* used by a task to put its own references */ | 
|  | static void io_put_task_local(struct task_struct *task) | 
|  | { | 
|  | task->io_uring->cached_refs++; | 
|  | } | 
|  |  | 
|  | /* must to be called somewhat shortly after putting a request */ | 
|  | static inline void io_put_task(struct task_struct *task) | 
|  | { | 
|  | if (likely(task == current)) | 
|  | io_put_task_local(task); | 
|  | else | 
|  | io_put_task_remote(task); | 
|  | } | 
|  |  | 
|  | void io_task_refs_refill(struct io_uring_task *tctx) | 
|  | { | 
|  | unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; | 
|  |  | 
|  | percpu_counter_add(&tctx->inflight, refill); | 
|  | refcount_add(refill, ¤t->usage); | 
|  | tctx->cached_refs += refill; | 
|  | } | 
|  |  | 
|  | static __cold void io_uring_drop_tctx_refs(struct task_struct *task) | 
|  | { | 
|  | struct io_uring_task *tctx = task->io_uring; | 
|  | unsigned int refs = tctx->cached_refs; | 
|  |  | 
|  | if (refs) { | 
|  | tctx->cached_refs = 0; | 
|  | percpu_counter_sub(&tctx->inflight, refs); | 
|  | put_task_struct_many(task, refs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, | 
|  | s32 res, u32 cflags, u64 extra1, u64 extra2) | 
|  | { | 
|  | struct io_overflow_cqe *ocqe; | 
|  | size_t ocq_size = sizeof(struct io_overflow_cqe); | 
|  | bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); | 
|  |  | 
|  | lockdep_assert_held(&ctx->completion_lock); | 
|  |  | 
|  | if (is_cqe32) | 
|  | ocq_size += sizeof(struct io_uring_cqe); | 
|  |  | 
|  | ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); | 
|  | trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); | 
|  | if (!ocqe) { | 
|  | /* | 
|  | * If we're in ring overflow flush mode, or in task cancel mode, | 
|  | * or cannot allocate an overflow entry, then we need to drop it | 
|  | * on the floor. | 
|  | */ | 
|  | io_account_cq_overflow(ctx); | 
|  | set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); | 
|  | return false; | 
|  | } | 
|  | if (list_empty(&ctx->cq_overflow_list)) { | 
|  | set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); | 
|  | atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); | 
|  |  | 
|  | } | 
|  | ocqe->cqe.user_data = user_data; | 
|  | ocqe->cqe.res = res; | 
|  | ocqe->cqe.flags = cflags; | 
|  | if (is_cqe32) { | 
|  | ocqe->cqe.big_cqe[0] = extra1; | 
|  | ocqe->cqe.big_cqe[1] = extra2; | 
|  | } | 
|  | list_add_tail(&ocqe->list, &ctx->cq_overflow_list); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void io_req_cqe_overflow(struct io_kiocb *req) | 
|  | { | 
|  | io_cqring_event_overflow(req->ctx, req->cqe.user_data, | 
|  | req->cqe.res, req->cqe.flags, | 
|  | req->big_cqe.extra1, req->big_cqe.extra2); | 
|  | memset(&req->big_cqe, 0, sizeof(req->big_cqe)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * writes to the cq entry need to come after reading head; the | 
|  | * control dependency is enough as we're using WRITE_ONCE to | 
|  | * fill the cq entry | 
|  | */ | 
|  | bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) | 
|  | { | 
|  | struct io_rings *rings = ctx->rings; | 
|  | unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); | 
|  | unsigned int free, queued, len; | 
|  |  | 
|  | /* | 
|  | * Posting into the CQ when there are pending overflowed CQEs may break | 
|  | * ordering guarantees, which will affect links, F_MORE users and more. | 
|  | * Force overflow the completion. | 
|  | */ | 
|  | if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) | 
|  | return false; | 
|  |  | 
|  | /* userspace may cheat modifying the tail, be safe and do min */ | 
|  | queued = min(__io_cqring_events(ctx), ctx->cq_entries); | 
|  | free = ctx->cq_entries - queued; | 
|  | /* we need a contiguous range, limit based on the current array offset */ | 
|  | len = min(free, ctx->cq_entries - off); | 
|  | if (!len) | 
|  | return false; | 
|  |  | 
|  | if (ctx->flags & IORING_SETUP_CQE32) { | 
|  | off <<= 1; | 
|  | len <<= 1; | 
|  | } | 
|  |  | 
|  | ctx->cqe_cached = &rings->cqes[off]; | 
|  | ctx->cqe_sentinel = ctx->cqe_cached + len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, | 
|  | u32 cflags) | 
|  | { | 
|  | struct io_uring_cqe *cqe; | 
|  |  | 
|  | ctx->cq_extra++; | 
|  |  | 
|  | /* | 
|  | * If we can't get a cq entry, userspace overflowed the | 
|  | * submission (by quite a lot). Increment the overflow count in | 
|  | * the ring. | 
|  | */ | 
|  | if (likely(io_get_cqe(ctx, &cqe))) { | 
|  | trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); | 
|  |  | 
|  | WRITE_ONCE(cqe->user_data, user_data); | 
|  | WRITE_ONCE(cqe->res, res); | 
|  | WRITE_ONCE(cqe->flags, cflags); | 
|  |  | 
|  | if (ctx->flags & IORING_SETUP_CQE32) { | 
|  | WRITE_ONCE(cqe->big_cqe[0], 0); | 
|  | WRITE_ONCE(cqe->big_cqe[1], 0); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, | 
|  | u32 cflags) | 
|  | { | 
|  | bool filled; | 
|  |  | 
|  | filled = io_fill_cqe_aux(ctx, user_data, res, cflags); | 
|  | if (!filled) | 
|  | filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); | 
|  |  | 
|  | return filled; | 
|  | } | 
|  |  | 
|  | bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) | 
|  | { | 
|  | bool filled; | 
|  |  | 
|  | io_cq_lock(ctx); | 
|  | filled = __io_post_aux_cqe(ctx, user_data, res, cflags); | 
|  | io_cq_unlock_post(ctx); | 
|  | return filled; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called from inline task_work so we now a flush will happen later, | 
|  | * and obviously with ctx->uring_lock held (tw always has that). | 
|  | */ | 
|  | void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) | 
|  | { | 
|  | if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { | 
|  | spin_lock(&ctx->completion_lock); | 
|  | io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | } | 
|  | ctx->submit_state.cq_flush = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A helper for multishot requests posting additional CQEs. | 
|  | * Should only be used from a task_work including IO_URING_F_MULTISHOT. | 
|  | */ | 
|  | bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) | 
|  | { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  | bool posted; | 
|  |  | 
|  | lockdep_assert(!io_wq_current_is_worker()); | 
|  | lockdep_assert_held(&ctx->uring_lock); | 
|  |  | 
|  | __io_cq_lock(ctx); | 
|  | posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); | 
|  | ctx->submit_state.cq_flush = true; | 
|  | __io_cq_unlock_post(ctx); | 
|  | return posted; | 
|  | } | 
|  |  | 
|  | static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) | 
|  | { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  |  | 
|  | /* | 
|  | * All execution paths but io-wq use the deferred completions by | 
|  | * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires | 
|  | * the submitter task context, IOPOLL protects with uring_lock. | 
|  | */ | 
|  | if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { | 
|  | req->io_task_work.func = io_req_task_complete; | 
|  | io_req_task_work_add(req); | 
|  | return; | 
|  | } | 
|  |  | 
|  | io_cq_lock(ctx); | 
|  | if (!(req->flags & REQ_F_CQE_SKIP)) { | 
|  | if (!io_fill_cqe_req(ctx, req)) | 
|  | io_req_cqe_overflow(req); | 
|  | } | 
|  | io_cq_unlock_post(ctx); | 
|  |  | 
|  | /* | 
|  | * We don't free the request here because we know it's called from | 
|  | * io-wq only, which holds a reference, so it cannot be the last put. | 
|  | */ | 
|  | req_ref_put(req); | 
|  | } | 
|  |  | 
|  | void io_req_defer_failed(struct io_kiocb *req, s32 res) | 
|  | __must_hold(&ctx->uring_lock) | 
|  | { | 
|  | const struct io_cold_def *def = &io_cold_defs[req->opcode]; | 
|  |  | 
|  | lockdep_assert_held(&req->ctx->uring_lock); | 
|  |  | 
|  | req_set_fail(req); | 
|  | io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); | 
|  | if (def->fail) | 
|  | def->fail(req); | 
|  | io_req_complete_defer(req); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't initialise the fields below on every allocation, but do that in | 
|  | * advance and keep them valid across allocations. | 
|  | */ | 
|  | static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) | 
|  | { | 
|  | req->ctx = ctx; | 
|  | req->link = NULL; | 
|  | req->async_data = NULL; | 
|  | /* not necessary, but safer to zero */ | 
|  | memset(&req->cqe, 0, sizeof(req->cqe)); | 
|  | memset(&req->big_cqe, 0, sizeof(req->big_cqe)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A request might get retired back into the request caches even before opcode | 
|  | * handlers and io_issue_sqe() are done with it, e.g. inline completion path. | 
|  | * Because of that, io_alloc_req() should be called only under ->uring_lock | 
|  | * and with extra caution to not get a request that is still worked on. | 
|  | */ | 
|  | __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) | 
|  | __must_hold(&ctx->uring_lock) | 
|  | { | 
|  | gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; | 
|  | void *reqs[IO_REQ_ALLOC_BATCH]; | 
|  | int ret; | 
|  |  | 
|  | ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); | 
|  |  | 
|  | /* | 
|  | * Bulk alloc is all-or-nothing. If we fail to get a batch, | 
|  | * retry single alloc to be on the safe side. | 
|  | */ | 
|  | if (unlikely(ret <= 0)) { | 
|  | reqs[0] = kmem_cache_alloc(req_cachep, gfp); | 
|  | if (!reqs[0]) | 
|  | return false; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | percpu_ref_get_many(&ctx->refs, ret); | 
|  | while (ret--) { | 
|  | struct io_kiocb *req = reqs[ret]; | 
|  |  | 
|  | io_preinit_req(req, ctx); | 
|  | io_req_add_to_cache(req, ctx); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | __cold void io_free_req(struct io_kiocb *req) | 
|  | { | 
|  | /* refs were already put, restore them for io_req_task_complete() */ | 
|  | req->flags &= ~REQ_F_REFCOUNT; | 
|  | /* we only want to free it, don't post CQEs */ | 
|  | req->flags |= REQ_F_CQE_SKIP; | 
|  | req->io_task_work.func = io_req_task_complete; | 
|  | io_req_task_work_add(req); | 
|  | } | 
|  |  | 
|  | static void __io_req_find_next_prep(struct io_kiocb *req) | 
|  | { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  |  | 
|  | spin_lock(&ctx->completion_lock); | 
|  | io_disarm_next(req); | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | } | 
|  |  | 
|  | static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) | 
|  | { | 
|  | struct io_kiocb *nxt; | 
|  |  | 
|  | /* | 
|  | * If LINK is set, we have dependent requests in this chain. If we | 
|  | * didn't fail this request, queue the first one up, moving any other | 
|  | * dependencies to the next request. In case of failure, fail the rest | 
|  | * of the chain. | 
|  | */ | 
|  | if (unlikely(req->flags & IO_DISARM_MASK)) | 
|  | __io_req_find_next_prep(req); | 
|  | nxt = req->link; | 
|  | req->link = NULL; | 
|  | return nxt; | 
|  | } | 
|  |  | 
|  | static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) | 
|  | { | 
|  | if (!ctx) | 
|  | return; | 
|  | if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
|  | atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
|  |  | 
|  | io_submit_flush_completions(ctx); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | percpu_ref_put(&ctx->refs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run queued task_work, returning the number of entries processed in *count. | 
|  | * If more entries than max_entries are available, stop processing once this | 
|  | * is reached and return the rest of the list. | 
|  | */ | 
|  | struct llist_node *io_handle_tw_list(struct llist_node *node, | 
|  | unsigned int *count, | 
|  | unsigned int max_entries) | 
|  | { | 
|  | struct io_ring_ctx *ctx = NULL; | 
|  | struct io_tw_state ts = { }; | 
|  |  | 
|  | do { | 
|  | struct llist_node *next = node->next; | 
|  | struct io_kiocb *req = container_of(node, struct io_kiocb, | 
|  | io_task_work.node); | 
|  |  | 
|  | if (req->ctx != ctx) { | 
|  | ctx_flush_and_put(ctx, &ts); | 
|  | ctx = req->ctx; | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | percpu_ref_get(&ctx->refs); | 
|  | } | 
|  | INDIRECT_CALL_2(req->io_task_work.func, | 
|  | io_poll_task_func, io_req_rw_complete, | 
|  | req, &ts); | 
|  | node = next; | 
|  | (*count)++; | 
|  | if (unlikely(need_resched())) { | 
|  | ctx_flush_and_put(ctx, &ts); | 
|  | ctx = NULL; | 
|  | cond_resched(); | 
|  | } | 
|  | } while (node && *count < max_entries); | 
|  |  | 
|  | ctx_flush_and_put(ctx, &ts); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * io_llist_xchg - swap all entries in a lock-less list | 
|  | * @head:	the head of lock-less list to delete all entries | 
|  | * @new:	new entry as the head of the list | 
|  | * | 
|  | * If list is empty, return NULL, otherwise, return the pointer to the first entry. | 
|  | * The order of entries returned is from the newest to the oldest added one. | 
|  | */ | 
|  | static inline struct llist_node *io_llist_xchg(struct llist_head *head, | 
|  | struct llist_node *new) | 
|  | { | 
|  | return xchg(&head->first, new); | 
|  | } | 
|  |  | 
|  | static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) | 
|  | { | 
|  | struct llist_node *node = llist_del_all(&tctx->task_list); | 
|  | struct io_ring_ctx *last_ctx = NULL; | 
|  | struct io_kiocb *req; | 
|  |  | 
|  | while (node) { | 
|  | req = container_of(node, struct io_kiocb, io_task_work.node); | 
|  | node = node->next; | 
|  | if (sync && last_ctx != req->ctx) { | 
|  | if (last_ctx) { | 
|  | flush_delayed_work(&last_ctx->fallback_work); | 
|  | percpu_ref_put(&last_ctx->refs); | 
|  | } | 
|  | last_ctx = req->ctx; | 
|  | percpu_ref_get(&last_ctx->refs); | 
|  | } | 
|  | if (llist_add(&req->io_task_work.node, | 
|  | &req->ctx->fallback_llist)) | 
|  | schedule_delayed_work(&req->ctx->fallback_work, 1); | 
|  | } | 
|  |  | 
|  | if (last_ctx) { | 
|  | flush_delayed_work(&last_ctx->fallback_work); | 
|  | percpu_ref_put(&last_ctx->refs); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, | 
|  | unsigned int max_entries, | 
|  | unsigned int *count) | 
|  | { | 
|  | struct llist_node *node; | 
|  |  | 
|  | if (unlikely(current->flags & PF_EXITING)) { | 
|  | io_fallback_tw(tctx, true); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | node = llist_del_all(&tctx->task_list); | 
|  | if (node) { | 
|  | node = llist_reverse_order(node); | 
|  | node = io_handle_tw_list(node, count, max_entries); | 
|  | } | 
|  |  | 
|  | /* relaxed read is enough as only the task itself sets ->in_cancel */ | 
|  | if (unlikely(atomic_read(&tctx->in_cancel))) | 
|  | io_uring_drop_tctx_refs(current); | 
|  |  | 
|  | trace_io_uring_task_work_run(tctx, *count); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | void tctx_task_work(struct callback_head *cb) | 
|  | { | 
|  | struct io_uring_task *tctx; | 
|  | struct llist_node *ret; | 
|  | unsigned int count = 0; | 
|  |  | 
|  | tctx = container_of(cb, struct io_uring_task, task_work); | 
|  | ret = tctx_task_work_run(tctx, UINT_MAX, &count); | 
|  | /* can't happen */ | 
|  | WARN_ON_ONCE(ret); | 
|  | } | 
|  |  | 
|  | static inline void io_req_local_work_add(struct io_kiocb *req, | 
|  | struct io_ring_ctx *ctx, | 
|  | unsigned flags) | 
|  | { | 
|  | unsigned nr_wait, nr_tw, nr_tw_prev; | 
|  | struct llist_node *head; | 
|  |  | 
|  | /* See comment above IO_CQ_WAKE_INIT */ | 
|  | BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); | 
|  |  | 
|  | /* | 
|  | * We don't know how many reuqests is there in the link and whether | 
|  | * they can even be queued lazily, fall back to non-lazy. | 
|  | */ | 
|  | if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) | 
|  | flags &= ~IOU_F_TWQ_LAZY_WAKE; | 
|  |  | 
|  | guard(rcu)(); | 
|  |  | 
|  | head = READ_ONCE(ctx->work_llist.first); | 
|  | do { | 
|  | nr_tw_prev = 0; | 
|  | if (head) { | 
|  | struct io_kiocb *first_req = container_of(head, | 
|  | struct io_kiocb, | 
|  | io_task_work.node); | 
|  | /* | 
|  | * Might be executed at any moment, rely on | 
|  | * SLAB_TYPESAFE_BY_RCU to keep it alive. | 
|  | */ | 
|  | nr_tw_prev = READ_ONCE(first_req->nr_tw); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Theoretically, it can overflow, but that's fine as one of | 
|  | * previous adds should've tried to wake the task. | 
|  | */ | 
|  | nr_tw = nr_tw_prev + 1; | 
|  | if (!(flags & IOU_F_TWQ_LAZY_WAKE)) | 
|  | nr_tw = IO_CQ_WAKE_FORCE; | 
|  |  | 
|  | req->nr_tw = nr_tw; | 
|  | req->io_task_work.node.next = head; | 
|  | } while (!try_cmpxchg(&ctx->work_llist.first, &head, | 
|  | &req->io_task_work.node)); | 
|  |  | 
|  | /* | 
|  | * cmpxchg implies a full barrier, which pairs with the barrier | 
|  | * in set_current_state() on the io_cqring_wait() side. It's used | 
|  | * to ensure that either we see updated ->cq_wait_nr, or waiters | 
|  | * going to sleep will observe the work added to the list, which | 
|  | * is similar to the wait/wawke task state sync. | 
|  | */ | 
|  |  | 
|  | if (!head) { | 
|  | if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
|  | atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
|  | if (ctx->has_evfd) | 
|  | io_eventfd_signal(ctx); | 
|  | } | 
|  |  | 
|  | nr_wait = atomic_read(&ctx->cq_wait_nr); | 
|  | /* not enough or no one is waiting */ | 
|  | if (nr_tw < nr_wait) | 
|  | return; | 
|  | /* the previous add has already woken it up */ | 
|  | if (nr_tw_prev >= nr_wait) | 
|  | return; | 
|  | wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); | 
|  | } | 
|  |  | 
|  | static void io_req_normal_work_add(struct io_kiocb *req) | 
|  | { | 
|  | struct io_uring_task *tctx = req->task->io_uring; | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  |  | 
|  | /* task_work already pending, we're done */ | 
|  | if (!llist_add(&req->io_task_work.node, &tctx->task_list)) | 
|  | return; | 
|  |  | 
|  | if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
|  | atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
|  |  | 
|  | /* SQPOLL doesn't need the task_work added, it'll run it itself */ | 
|  | if (ctx->flags & IORING_SETUP_SQPOLL) { | 
|  | struct io_sq_data *sqd = ctx->sq_data; | 
|  |  | 
|  | if (sqd->thread) | 
|  | __set_notify_signal(sqd->thread); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) | 
|  | return; | 
|  |  | 
|  | io_fallback_tw(tctx, false); | 
|  | } | 
|  |  | 
|  | void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) | 
|  | { | 
|  | if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) | 
|  | io_req_local_work_add(req, req->ctx, flags); | 
|  | else | 
|  | io_req_normal_work_add(req); | 
|  | } | 
|  |  | 
|  | void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, | 
|  | unsigned flags) | 
|  | { | 
|  | if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) | 
|  | return; | 
|  | io_req_local_work_add(req, ctx, flags); | 
|  | } | 
|  |  | 
|  | static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) | 
|  | { | 
|  | struct llist_node *node; | 
|  |  | 
|  | node = llist_del_all(&ctx->work_llist); | 
|  | while (node) { | 
|  | struct io_kiocb *req = container_of(node, struct io_kiocb, | 
|  | io_task_work.node); | 
|  |  | 
|  | node = node->next; | 
|  | io_req_normal_work_add(req); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, | 
|  | int min_events) | 
|  | { | 
|  | if (llist_empty(&ctx->work_llist)) | 
|  | return false; | 
|  | if (events < min_events) | 
|  | return true; | 
|  | if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
|  | atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, | 
|  | int min_events) | 
|  | { | 
|  | struct llist_node *node; | 
|  | unsigned int loops = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (WARN_ON_ONCE(ctx->submitter_task != current)) | 
|  | return -EEXIST; | 
|  | if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
|  | atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
|  | again: | 
|  | /* | 
|  | * llists are in reverse order, flip it back the right way before | 
|  | * running the pending items. | 
|  | */ | 
|  | node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); | 
|  | while (node) { | 
|  | struct llist_node *next = node->next; | 
|  | struct io_kiocb *req = container_of(node, struct io_kiocb, | 
|  | io_task_work.node); | 
|  | INDIRECT_CALL_2(req->io_task_work.func, | 
|  | io_poll_task_func, io_req_rw_complete, | 
|  | req, ts); | 
|  | ret++; | 
|  | node = next; | 
|  | } | 
|  | loops++; | 
|  |  | 
|  | if (io_run_local_work_continue(ctx, ret, min_events)) | 
|  | goto again; | 
|  | io_submit_flush_completions(ctx); | 
|  | if (io_run_local_work_continue(ctx, ret, min_events)) | 
|  | goto again; | 
|  |  | 
|  | trace_io_uring_local_work_run(ctx, ret, loops); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, | 
|  | int min_events) | 
|  | { | 
|  | struct io_tw_state ts = {}; | 
|  |  | 
|  | if (llist_empty(&ctx->work_llist)) | 
|  | return 0; | 
|  | return __io_run_local_work(ctx, &ts, min_events); | 
|  | } | 
|  |  | 
|  | static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) | 
|  | { | 
|  | struct io_tw_state ts = {}; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | ret = __io_run_local_work(ctx, &ts, min_events); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) | 
|  | { | 
|  | io_tw_lock(req->ctx, ts); | 
|  | io_req_defer_failed(req, req->cqe.res); | 
|  | } | 
|  |  | 
|  | void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) | 
|  | { | 
|  | io_tw_lock(req->ctx, ts); | 
|  | /* req->task == current here, checking PF_EXITING is safe */ | 
|  | if (unlikely(req->task->flags & PF_EXITING)) | 
|  | io_req_defer_failed(req, -EFAULT); | 
|  | else if (req->flags & REQ_F_FORCE_ASYNC) | 
|  | io_queue_iowq(req); | 
|  | else | 
|  | io_queue_sqe(req); | 
|  | } | 
|  |  | 
|  | void io_req_task_queue_fail(struct io_kiocb *req, int ret) | 
|  | { | 
|  | io_req_set_res(req, ret, 0); | 
|  | req->io_task_work.func = io_req_task_cancel; | 
|  | io_req_task_work_add(req); | 
|  | } | 
|  |  | 
|  | void io_req_task_queue(struct io_kiocb *req) | 
|  | { | 
|  | req->io_task_work.func = io_req_task_submit; | 
|  | io_req_task_work_add(req); | 
|  | } | 
|  |  | 
|  | void io_queue_next(struct io_kiocb *req) | 
|  | { | 
|  | struct io_kiocb *nxt = io_req_find_next(req); | 
|  |  | 
|  | if (nxt) | 
|  | io_req_task_queue(nxt); | 
|  | } | 
|  |  | 
|  | static void io_free_batch_list(struct io_ring_ctx *ctx, | 
|  | struct io_wq_work_node *node) | 
|  | __must_hold(&ctx->uring_lock) | 
|  | { | 
|  | do { | 
|  | struct io_kiocb *req = container_of(node, struct io_kiocb, | 
|  | comp_list); | 
|  |  | 
|  | if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { | 
|  | if (req->flags & REQ_F_REFCOUNT) { | 
|  | node = req->comp_list.next; | 
|  | if (!req_ref_put_and_test(req)) | 
|  | continue; | 
|  | } | 
|  | if ((req->flags & REQ_F_POLLED) && req->apoll) { | 
|  | struct async_poll *apoll = req->apoll; | 
|  |  | 
|  | if (apoll->double_poll) | 
|  | kfree(apoll->double_poll); | 
|  | if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) | 
|  | kfree(apoll); | 
|  | req->flags &= ~REQ_F_POLLED; | 
|  | } | 
|  | if (req->flags & IO_REQ_LINK_FLAGS) | 
|  | io_queue_next(req); | 
|  | if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) | 
|  | io_clean_op(req); | 
|  | } | 
|  | io_put_file(req); | 
|  | io_put_rsrc_node(ctx, req->rsrc_node); | 
|  | io_put_task(req->task); | 
|  |  | 
|  | node = req->comp_list.next; | 
|  | io_req_add_to_cache(req, ctx); | 
|  | } while (node); | 
|  | } | 
|  |  | 
|  | void __io_submit_flush_completions(struct io_ring_ctx *ctx) | 
|  | __must_hold(&ctx->uring_lock) | 
|  | { | 
|  | struct io_submit_state *state = &ctx->submit_state; | 
|  | struct io_wq_work_node *node; | 
|  |  | 
|  | __io_cq_lock(ctx); | 
|  | __wq_list_for_each(node, &state->compl_reqs) { | 
|  | struct io_kiocb *req = container_of(node, struct io_kiocb, | 
|  | comp_list); | 
|  |  | 
|  | if (!(req->flags & REQ_F_CQE_SKIP) && | 
|  | unlikely(!io_fill_cqe_req(ctx, req))) { | 
|  | if (ctx->lockless_cq) { | 
|  | spin_lock(&ctx->completion_lock); | 
|  | io_req_cqe_overflow(req); | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | } else { | 
|  | io_req_cqe_overflow(req); | 
|  | } | 
|  | } | 
|  | } | 
|  | __io_cq_unlock_post(ctx); | 
|  |  | 
|  | if (!wq_list_empty(&state->compl_reqs)) { | 
|  | io_free_batch_list(ctx, state->compl_reqs.first); | 
|  | INIT_WQ_LIST(&state->compl_reqs); | 
|  | } | 
|  | ctx->submit_state.cq_flush = false; | 
|  | } | 
|  |  | 
|  | static unsigned io_cqring_events(struct io_ring_ctx *ctx) | 
|  | { | 
|  | /* See comment at the top of this file */ | 
|  | smp_rmb(); | 
|  | return __io_cqring_events(ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't just wait for polled events to come to us, we have to actively | 
|  | * find and complete them. | 
|  | */ | 
|  | static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) | 
|  | { | 
|  | if (!(ctx->flags & IORING_SETUP_IOPOLL)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | while (!wq_list_empty(&ctx->iopoll_list)) { | 
|  | /* let it sleep and repeat later if can't complete a request */ | 
|  | if (io_do_iopoll(ctx, true) == 0) | 
|  | break; | 
|  | /* | 
|  | * Ensure we allow local-to-the-cpu processing to take place, | 
|  | * in this case we need to ensure that we reap all events. | 
|  | * Also let task_work, etc. to progress by releasing the mutex | 
|  | */ | 
|  | if (need_resched()) { | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | cond_resched(); | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | } | 
|  |  | 
|  | static int io_iopoll_check(struct io_ring_ctx *ctx, long min) | 
|  | { | 
|  | unsigned int nr_events = 0; | 
|  | unsigned long check_cq; | 
|  |  | 
|  | lockdep_assert_held(&ctx->uring_lock); | 
|  |  | 
|  | if (!io_allowed_run_tw(ctx)) | 
|  | return -EEXIST; | 
|  |  | 
|  | check_cq = READ_ONCE(ctx->check_cq); | 
|  | if (unlikely(check_cq)) { | 
|  | if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) | 
|  | __io_cqring_overflow_flush(ctx, false); | 
|  | /* | 
|  | * Similarly do not spin if we have not informed the user of any | 
|  | * dropped CQE. | 
|  | */ | 
|  | if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) | 
|  | return -EBADR; | 
|  | } | 
|  | /* | 
|  | * Don't enter poll loop if we already have events pending. | 
|  | * If we do, we can potentially be spinning for commands that | 
|  | * already triggered a CQE (eg in error). | 
|  | */ | 
|  | if (io_cqring_events(ctx)) | 
|  | return 0; | 
|  |  | 
|  | do { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If a submit got punted to a workqueue, we can have the | 
|  | * application entering polling for a command before it gets | 
|  | * issued. That app will hold the uring_lock for the duration | 
|  | * of the poll right here, so we need to take a breather every | 
|  | * now and then to ensure that the issue has a chance to add | 
|  | * the poll to the issued list. Otherwise we can spin here | 
|  | * forever, while the workqueue is stuck trying to acquire the | 
|  | * very same mutex. | 
|  | */ | 
|  | if (wq_list_empty(&ctx->iopoll_list) || | 
|  | io_task_work_pending(ctx)) { | 
|  | u32 tail = ctx->cached_cq_tail; | 
|  |  | 
|  | (void) io_run_local_work_locked(ctx, min); | 
|  |  | 
|  | if (task_work_pending(current) || | 
|  | wq_list_empty(&ctx->iopoll_list)) { | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | io_run_task_work(); | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | } | 
|  | /* some requests don't go through iopoll_list */ | 
|  | if (tail != ctx->cached_cq_tail || | 
|  | wq_list_empty(&ctx->iopoll_list)) | 
|  | break; | 
|  | } | 
|  | ret = io_do_iopoll(ctx, !min); | 
|  | if (unlikely(ret < 0)) | 
|  | return ret; | 
|  |  | 
|  | if (task_sigpending(current)) | 
|  | return -EINTR; | 
|  | if (need_resched()) | 
|  | break; | 
|  |  | 
|  | nr_events += ret; | 
|  | } while (nr_events < min); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) | 
|  | { | 
|  | io_req_complete_defer(req); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After the iocb has been issued, it's safe to be found on the poll list. | 
|  | * Adding the kiocb to the list AFTER submission ensures that we don't | 
|  | * find it from a io_do_iopoll() thread before the issuer is done | 
|  | * accessing the kiocb cookie. | 
|  | */ | 
|  | static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) | 
|  | { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  | const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; | 
|  |  | 
|  | /* workqueue context doesn't hold uring_lock, grab it now */ | 
|  | if (unlikely(needs_lock)) | 
|  | mutex_lock(&ctx->uring_lock); | 
|  |  | 
|  | /* | 
|  | * Track whether we have multiple files in our lists. This will impact | 
|  | * how we do polling eventually, not spinning if we're on potentially | 
|  | * different devices. | 
|  | */ | 
|  | if (wq_list_empty(&ctx->iopoll_list)) { | 
|  | ctx->poll_multi_queue = false; | 
|  | } else if (!ctx->poll_multi_queue) { | 
|  | struct io_kiocb *list_req; | 
|  |  | 
|  | list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, | 
|  | comp_list); | 
|  | if (list_req->file != req->file) | 
|  | ctx->poll_multi_queue = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For fast devices, IO may have already completed. If it has, add | 
|  | * it to the front so we find it first. | 
|  | */ | 
|  | if (READ_ONCE(req->iopoll_completed)) | 
|  | wq_list_add_head(&req->comp_list, &ctx->iopoll_list); | 
|  | else | 
|  | wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); | 
|  |  | 
|  | if (unlikely(needs_lock)) { | 
|  | /* | 
|  | * If IORING_SETUP_SQPOLL is enabled, sqes are either handle | 
|  | * in sq thread task context or in io worker task context. If | 
|  | * current task context is sq thread, we don't need to check | 
|  | * whether should wake up sq thread. | 
|  | */ | 
|  | if ((ctx->flags & IORING_SETUP_SQPOLL) && | 
|  | wq_has_sleeper(&ctx->sq_data->wait)) | 
|  | wake_up(&ctx->sq_data->wait); | 
|  |  | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | io_req_flags_t io_file_get_flags(struct file *file) | 
|  | { | 
|  | io_req_flags_t res = 0; | 
|  |  | 
|  | if (S_ISREG(file_inode(file)->i_mode)) | 
|  | res |= REQ_F_ISREG; | 
|  | if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) | 
|  | res |= REQ_F_SUPPORT_NOWAIT; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | bool io_alloc_async_data(struct io_kiocb *req) | 
|  | { | 
|  | const struct io_issue_def *def = &io_issue_defs[req->opcode]; | 
|  |  | 
|  | WARN_ON_ONCE(!def->async_size); | 
|  | req->async_data = kmalloc(def->async_size, GFP_KERNEL); | 
|  | if (req->async_data) { | 
|  | req->flags |= REQ_F_ASYNC_DATA; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static u32 io_get_sequence(struct io_kiocb *req) | 
|  | { | 
|  | u32 seq = req->ctx->cached_sq_head; | 
|  | struct io_kiocb *cur; | 
|  |  | 
|  | /* need original cached_sq_head, but it was increased for each req */ | 
|  | io_for_each_link(cur, req) | 
|  | seq--; | 
|  | return seq; | 
|  | } | 
|  |  | 
|  | static __cold void io_drain_req(struct io_kiocb *req) | 
|  | __must_hold(&ctx->uring_lock) | 
|  | { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  | struct io_defer_entry *de; | 
|  | int ret; | 
|  | u32 seq = io_get_sequence(req); | 
|  |  | 
|  | /* Still need defer if there is pending req in defer list. */ | 
|  | spin_lock(&ctx->completion_lock); | 
|  | if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | queue: | 
|  | ctx->drain_active = false; | 
|  | io_req_task_queue(req); | 
|  | return; | 
|  | } | 
|  | spin_unlock(&ctx->completion_lock); | 
|  |  | 
|  | io_prep_async_link(req); | 
|  | de = kmalloc(sizeof(*de), GFP_KERNEL); | 
|  | if (!de) { | 
|  | ret = -ENOMEM; | 
|  | io_req_defer_failed(req, ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&ctx->completion_lock); | 
|  | if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | kfree(de); | 
|  | goto queue; | 
|  | } | 
|  |  | 
|  | trace_io_uring_defer(req); | 
|  | de->req = req; | 
|  | de->seq = seq; | 
|  | list_add_tail(&de->list, &ctx->defer_list); | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | } | 
|  |  | 
|  | static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, | 
|  | unsigned int issue_flags) | 
|  | { | 
|  | if (req->file || !def->needs_file) | 
|  | return true; | 
|  |  | 
|  | if (req->flags & REQ_F_FIXED_FILE) | 
|  | req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); | 
|  | else | 
|  | req->file = io_file_get_normal(req, req->cqe.fd); | 
|  |  | 
|  | return !!req->file; | 
|  | } | 
|  |  | 
|  | static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) | 
|  | { | 
|  | const struct io_issue_def *def = &io_issue_defs[req->opcode]; | 
|  | const struct cred *creds = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(!io_assign_file(req, def, issue_flags))) | 
|  | return -EBADF; | 
|  |  | 
|  | if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) | 
|  | creds = override_creds(req->creds); | 
|  |  | 
|  | if (!def->audit_skip) | 
|  | audit_uring_entry(req->opcode); | 
|  |  | 
|  | ret = def->issue(req, issue_flags); | 
|  |  | 
|  | if (!def->audit_skip) | 
|  | audit_uring_exit(!ret, ret); | 
|  |  | 
|  | if (creds) | 
|  | revert_creds(creds); | 
|  |  | 
|  | if (ret == IOU_OK) { | 
|  | if (issue_flags & IO_URING_F_COMPLETE_DEFER) | 
|  | io_req_complete_defer(req); | 
|  | else | 
|  | io_req_complete_post(req, issue_flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ret == IOU_ISSUE_SKIP_COMPLETE) { | 
|  | ret = 0; | 
|  | io_arm_ltimeout(req); | 
|  |  | 
|  | /* If the op doesn't have a file, we're not polling for it */ | 
|  | if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) | 
|  | io_iopoll_req_issued(req, issue_flags); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) | 
|  | { | 
|  | io_tw_lock(req->ctx, ts); | 
|  | return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| | 
|  | IO_URING_F_COMPLETE_DEFER); | 
|  | } | 
|  |  | 
|  | struct io_wq_work *io_wq_free_work(struct io_wq_work *work) | 
|  | { | 
|  | struct io_kiocb *req = container_of(work, struct io_kiocb, work); | 
|  | struct io_kiocb *nxt = NULL; | 
|  |  | 
|  | if (req_ref_put_and_test(req)) { | 
|  | if (req->flags & IO_REQ_LINK_FLAGS) | 
|  | nxt = io_req_find_next(req); | 
|  | io_free_req(req); | 
|  | } | 
|  | return nxt ? &nxt->work : NULL; | 
|  | } | 
|  |  | 
|  | void io_wq_submit_work(struct io_wq_work *work) | 
|  | { | 
|  | struct io_kiocb *req = container_of(work, struct io_kiocb, work); | 
|  | const struct io_issue_def *def = &io_issue_defs[req->opcode]; | 
|  | unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; | 
|  | bool needs_poll = false; | 
|  | int ret = 0, err = -ECANCELED; | 
|  |  | 
|  | /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ | 
|  | if (!(req->flags & REQ_F_REFCOUNT)) | 
|  | __io_req_set_refcount(req, 2); | 
|  | else | 
|  | req_ref_get(req); | 
|  |  | 
|  | io_arm_ltimeout(req); | 
|  |  | 
|  | /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ | 
|  | if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { | 
|  | fail: | 
|  | io_req_task_queue_fail(req, err); | 
|  | return; | 
|  | } | 
|  | if (!io_assign_file(req, def, issue_flags)) { | 
|  | err = -EBADF; | 
|  | atomic_or(IO_WQ_WORK_CANCEL, &work->flags); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the | 
|  | * submitter task context. Final request completions are handed to the | 
|  | * right context, however this is not the case of auxiliary CQEs, | 
|  | * which is the main mean of operation for multishot requests. | 
|  | * Don't allow any multishot execution from io-wq. It's more restrictive | 
|  | * than necessary and also cleaner. | 
|  | */ | 
|  | if (req->flags & REQ_F_APOLL_MULTISHOT) { | 
|  | err = -EBADFD; | 
|  | if (!io_file_can_poll(req)) | 
|  | goto fail; | 
|  | if (req->file->f_flags & O_NONBLOCK || | 
|  | req->file->f_mode & FMODE_NOWAIT) { | 
|  | err = -ECANCELED; | 
|  | if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) | 
|  | goto fail; | 
|  | return; | 
|  | } else { | 
|  | req->flags &= ~REQ_F_APOLL_MULTISHOT; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (req->flags & REQ_F_FORCE_ASYNC) { | 
|  | bool opcode_poll = def->pollin || def->pollout; | 
|  |  | 
|  | if (opcode_poll && io_file_can_poll(req)) { | 
|  | needs_poll = true; | 
|  | issue_flags |= IO_URING_F_NONBLOCK; | 
|  | } | 
|  | } | 
|  |  | 
|  | do { | 
|  | ret = io_issue_sqe(req, issue_flags); | 
|  | if (ret != -EAGAIN) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If REQ_F_NOWAIT is set, then don't wait or retry with | 
|  | * poll. -EAGAIN is final for that case. | 
|  | */ | 
|  | if (req->flags & REQ_F_NOWAIT) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We can get EAGAIN for iopolled IO even though we're | 
|  | * forcing a sync submission from here, since we can't | 
|  | * wait for request slots on the block side. | 
|  | */ | 
|  | if (!needs_poll) { | 
|  | if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) | 
|  | break; | 
|  | if (io_wq_worker_stopped()) | 
|  | break; | 
|  | cond_resched(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) | 
|  | return; | 
|  | /* aborted or ready, in either case retry blocking */ | 
|  | needs_poll = false; | 
|  | issue_flags &= ~IO_URING_F_NONBLOCK; | 
|  | } while (1); | 
|  |  | 
|  | /* avoid locking problems by failing it from a clean context */ | 
|  | if (ret) | 
|  | io_req_task_queue_fail(req, ret); | 
|  | } | 
|  |  | 
|  | inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, | 
|  | unsigned int issue_flags) | 
|  | { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  | struct io_fixed_file *slot; | 
|  | struct file *file = NULL; | 
|  |  | 
|  | io_ring_submit_lock(ctx, issue_flags); | 
|  |  | 
|  | if (unlikely((unsigned int)fd >= ctx->nr_user_files)) | 
|  | goto out; | 
|  | fd = array_index_nospec(fd, ctx->nr_user_files); | 
|  | slot = io_fixed_file_slot(&ctx->file_table, fd); | 
|  | if (!req->rsrc_node) | 
|  | __io_req_set_rsrc_node(req, ctx); | 
|  | req->flags |= io_slot_flags(slot); | 
|  | file = io_slot_file(slot); | 
|  | out: | 
|  | io_ring_submit_unlock(ctx, issue_flags); | 
|  | return file; | 
|  | } | 
|  |  | 
|  | struct file *io_file_get_normal(struct io_kiocb *req, int fd) | 
|  | { | 
|  | struct file *file = fget(fd); | 
|  |  | 
|  | trace_io_uring_file_get(req, fd); | 
|  |  | 
|  | /* we don't allow fixed io_uring files */ | 
|  | if (file && io_is_uring_fops(file)) | 
|  | io_req_track_inflight(req); | 
|  | return file; | 
|  | } | 
|  |  | 
|  | static void io_queue_async(struct io_kiocb *req, int ret) | 
|  | __must_hold(&req->ctx->uring_lock) | 
|  | { | 
|  | struct io_kiocb *linked_timeout; | 
|  |  | 
|  | if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { | 
|  | io_req_defer_failed(req, ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | linked_timeout = io_prep_linked_timeout(req); | 
|  |  | 
|  | switch (io_arm_poll_handler(req, 0)) { | 
|  | case IO_APOLL_READY: | 
|  | io_kbuf_recycle(req, 0); | 
|  | io_req_task_queue(req); | 
|  | break; | 
|  | case IO_APOLL_ABORTED: | 
|  | io_kbuf_recycle(req, 0); | 
|  | io_queue_iowq(req); | 
|  | break; | 
|  | case IO_APOLL_OK: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (linked_timeout) | 
|  | io_queue_linked_timeout(linked_timeout); | 
|  | } | 
|  |  | 
|  | static inline void io_queue_sqe(struct io_kiocb *req) | 
|  | __must_hold(&req->ctx->uring_lock) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); | 
|  |  | 
|  | /* | 
|  | * We async punt it if the file wasn't marked NOWAIT, or if the file | 
|  | * doesn't support non-blocking read/write attempts | 
|  | */ | 
|  | if (unlikely(ret)) | 
|  | io_queue_async(req, ret); | 
|  | } | 
|  |  | 
|  | static void io_queue_sqe_fallback(struct io_kiocb *req) | 
|  | __must_hold(&req->ctx->uring_lock) | 
|  | { | 
|  | if (unlikely(req->flags & REQ_F_FAIL)) { | 
|  | /* | 
|  | * We don't submit, fail them all, for that replace hardlinks | 
|  | * with normal links. Extra REQ_F_LINK is tolerated. | 
|  | */ | 
|  | req->flags &= ~REQ_F_HARDLINK; | 
|  | req->flags |= REQ_F_LINK; | 
|  | io_req_defer_failed(req, req->cqe.res); | 
|  | } else { | 
|  | if (unlikely(req->ctx->drain_active)) | 
|  | io_drain_req(req); | 
|  | else | 
|  | io_queue_iowq(req); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check SQE restrictions (opcode and flags). | 
|  | * | 
|  | * Returns 'true' if SQE is allowed, 'false' otherwise. | 
|  | */ | 
|  | static inline bool io_check_restriction(struct io_ring_ctx *ctx, | 
|  | struct io_kiocb *req, | 
|  | unsigned int sqe_flags) | 
|  | { | 
|  | if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) | 
|  | return false; | 
|  |  | 
|  | if ((sqe_flags & ctx->restrictions.sqe_flags_required) != | 
|  | ctx->restrictions.sqe_flags_required) | 
|  | return false; | 
|  |  | 
|  | if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | | 
|  | ctx->restrictions.sqe_flags_required)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void io_init_req_drain(struct io_kiocb *req) | 
|  | { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  | struct io_kiocb *head = ctx->submit_state.link.head; | 
|  |  | 
|  | ctx->drain_active = true; | 
|  | if (head) { | 
|  | /* | 
|  | * If we need to drain a request in the middle of a link, drain | 
|  | * the head request and the next request/link after the current | 
|  | * link. Considering sequential execution of links, | 
|  | * REQ_F_IO_DRAIN will be maintained for every request of our | 
|  | * link. | 
|  | */ | 
|  | head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; | 
|  | ctx->drain_next = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static __cold int io_init_fail_req(struct io_kiocb *req, int err) | 
|  | { | 
|  | /* ensure per-opcode data is cleared if we fail before prep */ | 
|  | memset(&req->cmd.data, 0, sizeof(req->cmd.data)); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, | 
|  | const struct io_uring_sqe *sqe) | 
|  | __must_hold(&ctx->uring_lock) | 
|  | { | 
|  | const struct io_issue_def *def; | 
|  | unsigned int sqe_flags; | 
|  | int personality; | 
|  | u8 opcode; | 
|  |  | 
|  | /* req is partially pre-initialised, see io_preinit_req() */ | 
|  | req->opcode = opcode = READ_ONCE(sqe->opcode); | 
|  | /* same numerical values with corresponding REQ_F_*, safe to copy */ | 
|  | sqe_flags = READ_ONCE(sqe->flags); | 
|  | req->flags = (io_req_flags_t) sqe_flags; | 
|  | req->cqe.user_data = READ_ONCE(sqe->user_data); | 
|  | req->file = NULL; | 
|  | req->rsrc_node = NULL; | 
|  | req->task = current; | 
|  | req->cancel_seq_set = false; | 
|  |  | 
|  | if (unlikely(opcode >= IORING_OP_LAST)) { | 
|  | req->opcode = 0; | 
|  | return io_init_fail_req(req, -EINVAL); | 
|  | } | 
|  | def = &io_issue_defs[opcode]; | 
|  | if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { | 
|  | /* enforce forwards compatibility on users */ | 
|  | if (sqe_flags & ~SQE_VALID_FLAGS) | 
|  | return io_init_fail_req(req, -EINVAL); | 
|  | if (sqe_flags & IOSQE_BUFFER_SELECT) { | 
|  | if (!def->buffer_select) | 
|  | return io_init_fail_req(req, -EOPNOTSUPP); | 
|  | req->buf_index = READ_ONCE(sqe->buf_group); | 
|  | } | 
|  | if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) | 
|  | ctx->drain_disabled = true; | 
|  | if (sqe_flags & IOSQE_IO_DRAIN) { | 
|  | if (ctx->drain_disabled) | 
|  | return io_init_fail_req(req, -EOPNOTSUPP); | 
|  | io_init_req_drain(req); | 
|  | } | 
|  | } | 
|  | if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { | 
|  | if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) | 
|  | return io_init_fail_req(req, -EACCES); | 
|  | /* knock it to the slow queue path, will be drained there */ | 
|  | if (ctx->drain_active) | 
|  | req->flags |= REQ_F_FORCE_ASYNC; | 
|  | /* if there is no link, we're at "next" request and need to drain */ | 
|  | if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { | 
|  | ctx->drain_next = false; | 
|  | ctx->drain_active = true; | 
|  | req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!def->ioprio && sqe->ioprio) | 
|  | return io_init_fail_req(req, -EINVAL); | 
|  | if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) | 
|  | return io_init_fail_req(req, -EINVAL); | 
|  |  | 
|  | if (def->needs_file) { | 
|  | struct io_submit_state *state = &ctx->submit_state; | 
|  |  | 
|  | req->cqe.fd = READ_ONCE(sqe->fd); | 
|  |  | 
|  | /* | 
|  | * Plug now if we have more than 2 IO left after this, and the | 
|  | * target is potentially a read/write to block based storage. | 
|  | */ | 
|  | if (state->need_plug && def->plug) { | 
|  | state->plug_started = true; | 
|  | state->need_plug = false; | 
|  | blk_start_plug_nr_ios(&state->plug, state->submit_nr); | 
|  | } | 
|  | } | 
|  |  | 
|  | personality = READ_ONCE(sqe->personality); | 
|  | if (personality) { | 
|  | int ret; | 
|  |  | 
|  | req->creds = xa_load(&ctx->personalities, personality); | 
|  | if (!req->creds) | 
|  | return io_init_fail_req(req, -EINVAL); | 
|  | get_cred(req->creds); | 
|  | ret = security_uring_override_creds(req->creds); | 
|  | if (ret) { | 
|  | put_cred(req->creds); | 
|  | return io_init_fail_req(req, ret); | 
|  | } | 
|  | req->flags |= REQ_F_CREDS; | 
|  | } | 
|  |  | 
|  | return def->prep(req, sqe); | 
|  | } | 
|  |  | 
|  | static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, | 
|  | struct io_kiocb *req, int ret) | 
|  | { | 
|  | struct io_ring_ctx *ctx = req->ctx; | 
|  | struct io_submit_link *link = &ctx->submit_state.link; | 
|  | struct io_kiocb *head = link->head; | 
|  |  | 
|  | trace_io_uring_req_failed(sqe, req, ret); | 
|  |  | 
|  | /* | 
|  | * Avoid breaking links in the middle as it renders links with SQPOLL | 
|  | * unusable. Instead of failing eagerly, continue assembling the link if | 
|  | * applicable and mark the head with REQ_F_FAIL. The link flushing code | 
|  | * should find the flag and handle the rest. | 
|  | */ | 
|  | req_fail_link_node(req, ret); | 
|  | if (head && !(head->flags & REQ_F_FAIL)) | 
|  | req_fail_link_node(head, -ECANCELED); | 
|  |  | 
|  | if (!(req->flags & IO_REQ_LINK_FLAGS)) { | 
|  | if (head) { | 
|  | link->last->link = req; | 
|  | link->head = NULL; | 
|  | req = head; | 
|  | } | 
|  | io_queue_sqe_fallback(req); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (head) | 
|  | link->last->link = req; | 
|  | else | 
|  | link->head = req; | 
|  | link->last = req; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, | 
|  | const struct io_uring_sqe *sqe) | 
|  | __must_hold(&ctx->uring_lock) | 
|  | { | 
|  | struct io_submit_link *link = &ctx->submit_state.link; | 
|  | int ret; | 
|  |  | 
|  | ret = io_init_req(ctx, req, sqe); | 
|  | if (unlikely(ret)) | 
|  | return io_submit_fail_init(sqe, req, ret); | 
|  |  | 
|  | trace_io_uring_submit_req(req); | 
|  |  | 
|  | /* | 
|  | * If we already have a head request, queue this one for async | 
|  | * submittal once the head completes. If we don't have a head but | 
|  | * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be | 
|  | * submitted sync once the chain is complete. If none of those | 
|  | * conditions are true (normal request), then just queue it. | 
|  | */ | 
|  | if (unlikely(link->head)) { | 
|  | trace_io_uring_link(req, link->head); | 
|  | link->last->link = req; | 
|  | link->last = req; | 
|  |  | 
|  | if (req->flags & IO_REQ_LINK_FLAGS) | 
|  | return 0; | 
|  | /* last request of the link, flush it */ | 
|  | req = link->head; | 
|  | link->head = NULL; | 
|  | if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) | 
|  | goto fallback; | 
|  |  | 
|  | } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | | 
|  | REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { | 
|  | if (req->flags & IO_REQ_LINK_FLAGS) { | 
|  | link->head = req; | 
|  | link->last = req; | 
|  | } else { | 
|  | fallback: | 
|  | io_queue_sqe_fallback(req); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | io_queue_sqe(req); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Batched submission is done, ensure local IO is flushed out. | 
|  | */ | 
|  | static void io_submit_state_end(struct io_ring_ctx *ctx) | 
|  | { | 
|  | struct io_submit_state *state = &ctx->submit_state; | 
|  |  | 
|  | if (unlikely(state->link.head)) | 
|  | io_queue_sqe_fallback(state->link.head); | 
|  | /* flush only after queuing links as they can generate completions */ | 
|  | io_submit_flush_completions(ctx); | 
|  | if (state->plug_started) | 
|  | blk_finish_plug(&state->plug); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start submission side cache. | 
|  | */ | 
|  | static void io_submit_state_start(struct io_submit_state *state, | 
|  | unsigned int max_ios) | 
|  | { | 
|  | state->plug_started = false; | 
|  | state->need_plug = max_ios > 2; | 
|  | state->submit_nr = max_ios; | 
|  | /* set only head, no need to init link_last in advance */ | 
|  | state->link.head = NULL; | 
|  | } | 
|  |  | 
|  | static void io_commit_sqring(struct io_ring_ctx *ctx) | 
|  | { | 
|  | struct io_rings *rings = ctx->rings; | 
|  |  | 
|  | /* | 
|  | * Ensure any loads from the SQEs are done at this point, | 
|  | * since once we write the new head, the application could | 
|  | * write new data to them. | 
|  | */ | 
|  | smp_store_release(&rings->sq.head, ctx->cached_sq_head); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch an sqe, if one is available. Note this returns a pointer to memory | 
|  | * that is mapped by userspace. This means that care needs to be taken to | 
|  | * ensure that reads are stable, as we cannot rely on userspace always | 
|  | * being a good citizen. If members of the sqe are validated and then later | 
|  | * used, it's important that those reads are done through READ_ONCE() to | 
|  | * prevent a re-load down the line. | 
|  | */ | 
|  | static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) | 
|  | { | 
|  | unsigned mask = ctx->sq_entries - 1; | 
|  | unsigned head = ctx->cached_sq_head++ & mask; | 
|  |  | 
|  | if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { | 
|  | head = READ_ONCE(ctx->sq_array[head]); | 
|  | if (unlikely(head >= ctx->sq_entries)) { | 
|  | /* drop invalid entries */ | 
|  | spin_lock(&ctx->completion_lock); | 
|  | ctx->cq_extra--; | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | WRITE_ONCE(ctx->rings->sq_dropped, | 
|  | READ_ONCE(ctx->rings->sq_dropped) + 1); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The cached sq head (or cq tail) serves two purposes: | 
|  | * | 
|  | * 1) allows us to batch the cost of updating the user visible | 
|  | *    head updates. | 
|  | * 2) allows the kernel side to track the head on its own, even | 
|  | *    though the application is the one updating it. | 
|  | */ | 
|  |  | 
|  | /* double index for 128-byte SQEs, twice as long */ | 
|  | if (ctx->flags & IORING_SETUP_SQE128) | 
|  | head <<= 1; | 
|  | *sqe = &ctx->sq_sqes[head]; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) | 
|  | __must_hold(&ctx->uring_lock) | 
|  | { | 
|  | unsigned int entries = io_sqring_entries(ctx); | 
|  | unsigned int left; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(!entries)) | 
|  | return 0; | 
|  | /* make sure SQ entry isn't read before tail */ | 
|  | ret = left = min(nr, entries); | 
|  | io_get_task_refs(left); | 
|  | io_submit_state_start(&ctx->submit_state, left); | 
|  |  | 
|  | do { | 
|  | const struct io_uring_sqe *sqe; | 
|  | struct io_kiocb *req; | 
|  |  | 
|  | if (unlikely(!io_alloc_req(ctx, &req))) | 
|  | break; | 
|  | if (unlikely(!io_get_sqe(ctx, &sqe))) { | 
|  | io_req_add_to_cache(req, ctx); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Continue submitting even for sqe failure if the | 
|  | * ring was setup with IORING_SETUP_SUBMIT_ALL | 
|  | */ | 
|  | if (unlikely(io_submit_sqe(ctx, req, sqe)) && | 
|  | !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { | 
|  | left--; | 
|  | break; | 
|  | } | 
|  | } while (--left); | 
|  |  | 
|  | if (unlikely(left)) { | 
|  | ret -= left; | 
|  | /* try again if it submitted nothing and can't allocate a req */ | 
|  | if (!ret && io_req_cache_empty(ctx)) | 
|  | ret = -EAGAIN; | 
|  | current->io_uring->cached_refs += left; | 
|  | } | 
|  |  | 
|  | io_submit_state_end(ctx); | 
|  | /* Commit SQ ring head once we've consumed and submitted all SQEs */ | 
|  | io_commit_sqring(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, | 
|  | int wake_flags, void *key) | 
|  | { | 
|  | struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); | 
|  |  | 
|  | /* | 
|  | * Cannot safely flush overflowed CQEs from here, ensure we wake up | 
|  | * the task, and the next invocation will do it. | 
|  | */ | 
|  | if (io_should_wake(iowq) || io_has_work(iowq->ctx)) | 
|  | return autoremove_wake_function(curr, mode, wake_flags, key); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int io_run_task_work_sig(struct io_ring_ctx *ctx) | 
|  | { | 
|  | if (!llist_empty(&ctx->work_llist)) { | 
|  | __set_current_state(TASK_RUNNING); | 
|  | if (io_run_local_work(ctx, INT_MAX) > 0) | 
|  | return 0; | 
|  | } | 
|  | if (io_run_task_work() > 0) | 
|  | return 0; | 
|  | if (task_sigpending(current)) | 
|  | return -EINTR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool current_pending_io(void) | 
|  | { | 
|  | struct io_uring_task *tctx = current->io_uring; | 
|  |  | 
|  | if (!tctx) | 
|  | return false; | 
|  | return percpu_counter_read_positive(&tctx->inflight); | 
|  | } | 
|  |  | 
|  | /* when returns >0, the caller should retry */ | 
|  | static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, | 
|  | struct io_wait_queue *iowq) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(READ_ONCE(ctx->check_cq))) | 
|  | return 1; | 
|  | if (unlikely(!llist_empty(&ctx->work_llist))) | 
|  | return 1; | 
|  | if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) | 
|  | return 1; | 
|  | if (unlikely(task_sigpending(current))) | 
|  | return -EINTR; | 
|  | if (unlikely(io_should_wake(iowq))) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Mark us as being in io_wait if we have pending requests, so cpufreq | 
|  | * can take into account that the task is waiting for IO - turns out | 
|  | * to be important for low QD IO. | 
|  | */ | 
|  | if (current_pending_io()) | 
|  | current->in_iowait = 1; | 
|  | ret = 0; | 
|  | if (iowq->timeout == KTIME_MAX) | 
|  | schedule(); | 
|  | else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) | 
|  | ret = -ETIME; | 
|  | current->in_iowait = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait until events become available, if we don't already have some. The | 
|  | * application must reap them itself, as they reside on the shared cq ring. | 
|  | */ | 
|  | static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, | 
|  | const sigset_t __user *sig, size_t sigsz, | 
|  | struct __kernel_timespec __user *uts) | 
|  | { | 
|  | struct io_wait_queue iowq; | 
|  | struct io_rings *rings = ctx->rings; | 
|  | int ret; | 
|  |  | 
|  | if (!io_allowed_run_tw(ctx)) | 
|  | return -EEXIST; | 
|  | if (!llist_empty(&ctx->work_llist)) | 
|  | io_run_local_work(ctx, min_events); | 
|  | io_run_task_work(); | 
|  |  | 
|  | if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) | 
|  | io_cqring_do_overflow_flush(ctx); | 
|  | if (__io_cqring_events_user(ctx) >= min_events) | 
|  | return 0; | 
|  |  | 
|  | init_waitqueue_func_entry(&iowq.wq, io_wake_function); | 
|  | iowq.wq.private = current; | 
|  | INIT_LIST_HEAD(&iowq.wq.entry); | 
|  | iowq.ctx = ctx; | 
|  | iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); | 
|  | iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; | 
|  | iowq.timeout = KTIME_MAX; | 
|  |  | 
|  | if (uts) { | 
|  | struct timespec64 ts; | 
|  | ktime_t dt; | 
|  |  | 
|  | if (get_timespec64(&ts, uts)) | 
|  | return -EFAULT; | 
|  |  | 
|  | dt = timespec64_to_ktime(ts); | 
|  | iowq.timeout = ktime_add(dt, ktime_get()); | 
|  | io_napi_adjust_timeout(ctx, &iowq, dt); | 
|  | } | 
|  |  | 
|  | if (sig) { | 
|  | #ifdef CONFIG_COMPAT | 
|  | if (in_compat_syscall()) | 
|  | ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, | 
|  | sigsz); | 
|  | else | 
|  | #endif | 
|  | ret = set_user_sigmask(sig, sigsz); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | io_napi_busy_loop(ctx, &iowq); | 
|  |  | 
|  | trace_io_uring_cqring_wait(ctx, min_events); | 
|  | do { | 
|  | int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); | 
|  | unsigned long check_cq; | 
|  |  | 
|  | if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { | 
|  | atomic_set(&ctx->cq_wait_nr, nr_wait); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | } else { | 
|  | prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, | 
|  | TASK_INTERRUPTIBLE); | 
|  | } | 
|  |  | 
|  | ret = io_cqring_wait_schedule(ctx, &iowq); | 
|  | __set_current_state(TASK_RUNNING); | 
|  | atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); | 
|  |  | 
|  | /* | 
|  | * Run task_work after scheduling and before io_should_wake(). | 
|  | * If we got woken because of task_work being processed, run it | 
|  | * now rather than let the caller do another wait loop. | 
|  | */ | 
|  | io_run_task_work(); | 
|  | if (!llist_empty(&ctx->work_llist)) | 
|  | io_run_local_work(ctx, nr_wait); | 
|  |  | 
|  | /* | 
|  | * Non-local task_work will be run on exit to userspace, but | 
|  | * if we're using DEFER_TASKRUN, then we could have waited | 
|  | * with a timeout for a number of requests. If the timeout | 
|  | * hits, we could have some requests ready to process. Ensure | 
|  | * this break is _after_ we have run task_work, to avoid | 
|  | * deferring running potentially pending requests until the | 
|  | * next time we wait for events. | 
|  | */ | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | check_cq = READ_ONCE(ctx->check_cq); | 
|  | if (unlikely(check_cq)) { | 
|  | /* let the caller flush overflows, retry */ | 
|  | if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) | 
|  | io_cqring_do_overflow_flush(ctx); | 
|  | if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { | 
|  | ret = -EBADR; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (io_should_wake(&iowq)) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | cond_resched(); | 
|  | } while (1); | 
|  |  | 
|  | if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) | 
|  | finish_wait(&ctx->cq_wait, &iowq.wq); | 
|  | restore_saved_sigmask_unless(ret == -EINTR); | 
|  |  | 
|  | return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; | 
|  | } | 
|  |  | 
|  | static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, | 
|  | size_t size) | 
|  | { | 
|  | return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, | 
|  | size); | 
|  | } | 
|  |  | 
|  | static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, | 
|  | size_t size) | 
|  | { | 
|  | return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, | 
|  | size); | 
|  | } | 
|  |  | 
|  | static void io_rings_free(struct io_ring_ctx *ctx) | 
|  | { | 
|  | if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { | 
|  | io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages, | 
|  | true); | 
|  | io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages, | 
|  | true); | 
|  | } else { | 
|  | io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); | 
|  | ctx->n_ring_pages = 0; | 
|  | io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); | 
|  | ctx->n_sqe_pages = 0; | 
|  | vunmap(ctx->rings); | 
|  | vunmap(ctx->sq_sqes); | 
|  | } | 
|  |  | 
|  | ctx->rings = NULL; | 
|  | ctx->sq_sqes = NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, | 
|  | unsigned int cq_entries, size_t *sq_offset) | 
|  | { | 
|  | struct io_rings *rings; | 
|  | size_t off, sq_array_size; | 
|  |  | 
|  | off = struct_size(rings, cqes, cq_entries); | 
|  | if (off == SIZE_MAX) | 
|  | return SIZE_MAX; | 
|  | if (ctx->flags & IORING_SETUP_CQE32) { | 
|  | if (check_shl_overflow(off, 1, &off)) | 
|  | return SIZE_MAX; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | off = ALIGN(off, SMP_CACHE_BYTES); | 
|  | if (off == 0) | 
|  | return SIZE_MAX; | 
|  | #endif | 
|  |  | 
|  | if (ctx->flags & IORING_SETUP_NO_SQARRAY) { | 
|  | *sq_offset = SIZE_MAX; | 
|  | return off; | 
|  | } | 
|  |  | 
|  | *sq_offset = off; | 
|  |  | 
|  | sq_array_size = array_size(sizeof(u32), sq_entries); | 
|  | if (sq_array_size == SIZE_MAX) | 
|  | return SIZE_MAX; | 
|  |  | 
|  | if (check_add_overflow(off, sq_array_size, &off)) | 
|  | return SIZE_MAX; | 
|  |  | 
|  | return off; | 
|  | } | 
|  |  | 
|  | static void io_req_caches_free(struct io_ring_ctx *ctx) | 
|  | { | 
|  | struct io_kiocb *req; | 
|  | int nr = 0; | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  |  | 
|  | while (!io_req_cache_empty(ctx)) { | 
|  | req = io_extract_req(ctx); | 
|  | kmem_cache_free(req_cachep, req); | 
|  | nr++; | 
|  | } | 
|  | if (nr) | 
|  | percpu_ref_put_many(&ctx->refs, nr); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | } | 
|  |  | 
|  | static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) | 
|  | { | 
|  | io_sq_thread_finish(ctx); | 
|  | /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ | 
|  | if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | if (ctx->buf_data) | 
|  | __io_sqe_buffers_unregister(ctx); | 
|  | if (ctx->file_data) | 
|  | __io_sqe_files_unregister(ctx); | 
|  | io_cqring_overflow_kill(ctx); | 
|  | io_eventfd_unregister(ctx); | 
|  | io_alloc_cache_free(&ctx->apoll_cache, kfree); | 
|  | io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); | 
|  | io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); | 
|  | io_alloc_cache_free(&ctx->uring_cache, kfree); | 
|  | io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); | 
|  | io_futex_cache_free(ctx); | 
|  | io_destroy_buffers(ctx); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | if (ctx->sq_creds) | 
|  | put_cred(ctx->sq_creds); | 
|  | if (ctx->submitter_task) | 
|  | put_task_struct(ctx->submitter_task); | 
|  |  | 
|  | /* there are no registered resources left, nobody uses it */ | 
|  | if (ctx->rsrc_node) | 
|  | io_rsrc_node_destroy(ctx, ctx->rsrc_node); | 
|  |  | 
|  | WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); | 
|  | WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); | 
|  |  | 
|  | io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); | 
|  | if (ctx->mm_account) { | 
|  | mmdrop(ctx->mm_account); | 
|  | ctx->mm_account = NULL; | 
|  | } | 
|  | io_rings_free(ctx); | 
|  |  | 
|  | percpu_ref_exit(&ctx->refs); | 
|  | free_uid(ctx->user); | 
|  | io_req_caches_free(ctx); | 
|  | if (ctx->hash_map) | 
|  | io_wq_put_hash(ctx->hash_map); | 
|  | io_napi_free(ctx); | 
|  | kfree(ctx->cancel_table.hbs); | 
|  | kfree(ctx->cancel_table_locked.hbs); | 
|  | xa_destroy(&ctx->io_bl_xa); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | static __cold void io_activate_pollwq_cb(struct callback_head *cb) | 
|  | { | 
|  | struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, | 
|  | poll_wq_task_work); | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | ctx->poll_activated = true; | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  |  | 
|  | /* | 
|  | * Wake ups for some events between start of polling and activation | 
|  | * might've been lost due to loose synchronisation. | 
|  | */ | 
|  | wake_up_all(&ctx->poll_wq); | 
|  | percpu_ref_put(&ctx->refs); | 
|  | } | 
|  |  | 
|  | __cold void io_activate_pollwq(struct io_ring_ctx *ctx) | 
|  | { | 
|  | spin_lock(&ctx->completion_lock); | 
|  | /* already activated or in progress */ | 
|  | if (ctx->poll_activated || ctx->poll_wq_task_work.func) | 
|  | goto out; | 
|  | if (WARN_ON_ONCE(!ctx->task_complete)) | 
|  | goto out; | 
|  | if (!ctx->submitter_task) | 
|  | goto out; | 
|  | /* | 
|  | * with ->submitter_task only the submitter task completes requests, we | 
|  | * only need to sync with it, which is done by injecting a tw | 
|  | */ | 
|  | init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); | 
|  | percpu_ref_get(&ctx->refs); | 
|  | if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) | 
|  | percpu_ref_put(&ctx->refs); | 
|  | out: | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | } | 
|  |  | 
|  | static __poll_t io_uring_poll(struct file *file, poll_table *wait) | 
|  | { | 
|  | struct io_ring_ctx *ctx = file->private_data; | 
|  | __poll_t mask = 0; | 
|  |  | 
|  | if (unlikely(!ctx->poll_activated)) | 
|  | io_activate_pollwq(ctx); | 
|  |  | 
|  | poll_wait(file, &ctx->poll_wq, wait); | 
|  | /* | 
|  | * synchronizes with barrier from wq_has_sleeper call in | 
|  | * io_commit_cqring | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (!io_sqring_full(ctx)) | 
|  | mask |= EPOLLOUT | EPOLLWRNORM; | 
|  |  | 
|  | /* | 
|  | * Don't flush cqring overflow list here, just do a simple check. | 
|  | * Otherwise there could possible be ABBA deadlock: | 
|  | *      CPU0                    CPU1 | 
|  | *      ----                    ---- | 
|  | * lock(&ctx->uring_lock); | 
|  | *                              lock(&ep->mtx); | 
|  | *                              lock(&ctx->uring_lock); | 
|  | * lock(&ep->mtx); | 
|  | * | 
|  | * Users may get EPOLLIN meanwhile seeing nothing in cqring, this | 
|  | * pushes them to do the flush. | 
|  | */ | 
|  |  | 
|  | if (__io_cqring_events_user(ctx) || io_has_work(ctx)) | 
|  | mask |= EPOLLIN | EPOLLRDNORM; | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | struct io_tctx_exit { | 
|  | struct callback_head		task_work; | 
|  | struct completion		completion; | 
|  | struct io_ring_ctx		*ctx; | 
|  | }; | 
|  |  | 
|  | static __cold void io_tctx_exit_cb(struct callback_head *cb) | 
|  | { | 
|  | struct io_uring_task *tctx = current->io_uring; | 
|  | struct io_tctx_exit *work; | 
|  |  | 
|  | work = container_of(cb, struct io_tctx_exit, task_work); | 
|  | /* | 
|  | * When @in_cancel, we're in cancellation and it's racy to remove the | 
|  | * node. It'll be removed by the end of cancellation, just ignore it. | 
|  | * tctx can be NULL if the queueing of this task_work raced with | 
|  | * work cancelation off the exec path. | 
|  | */ | 
|  | if (tctx && !atomic_read(&tctx->in_cancel)) | 
|  | io_uring_del_tctx_node((unsigned long)work->ctx); | 
|  | complete(&work->completion); | 
|  | } | 
|  |  | 
|  | static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) | 
|  | { | 
|  | struct io_kiocb *req = container_of(work, struct io_kiocb, work); | 
|  |  | 
|  | return req->ctx == data; | 
|  | } | 
|  |  | 
|  | static __cold void io_ring_exit_work(struct work_struct *work) | 
|  | { | 
|  | struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); | 
|  | unsigned long timeout = jiffies + HZ * 60 * 5; | 
|  | unsigned long interval = HZ / 20; | 
|  | struct io_tctx_exit exit; | 
|  | struct io_tctx_node *node; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If we're doing polled IO and end up having requests being | 
|  | * submitted async (out-of-line), then completions can come in while | 
|  | * we're waiting for refs to drop. We need to reap these manually, | 
|  | * as nobody else will be looking for them. | 
|  | */ | 
|  | do { | 
|  | if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | io_cqring_overflow_kill(ctx); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | } | 
|  |  | 
|  | if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) | 
|  | io_move_task_work_from_local(ctx); | 
|  |  | 
|  | while (io_uring_try_cancel_requests(ctx, NULL, true)) | 
|  | cond_resched(); | 
|  |  | 
|  | if (ctx->sq_data) { | 
|  | struct io_sq_data *sqd = ctx->sq_data; | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | io_sq_thread_park(sqd); | 
|  | tsk = sqd->thread; | 
|  | if (tsk && tsk->io_uring && tsk->io_uring->io_wq) | 
|  | io_wq_cancel_cb(tsk->io_uring->io_wq, | 
|  | io_cancel_ctx_cb, ctx, true); | 
|  | io_sq_thread_unpark(sqd); | 
|  | } | 
|  |  | 
|  | io_req_caches_free(ctx); | 
|  |  | 
|  | if (WARN_ON_ONCE(time_after(jiffies, timeout))) { | 
|  | /* there is little hope left, don't run it too often */ | 
|  | interval = HZ * 60; | 
|  | } | 
|  | /* | 
|  | * This is really an uninterruptible wait, as it has to be | 
|  | * complete. But it's also run from a kworker, which doesn't | 
|  | * take signals, so it's fine to make it interruptible. This | 
|  | * avoids scenarios where we knowingly can wait much longer | 
|  | * on completions, for example if someone does a SIGSTOP on | 
|  | * a task that needs to finish task_work to make this loop | 
|  | * complete. That's a synthetic situation that should not | 
|  | * cause a stuck task backtrace, and hence a potential panic | 
|  | * on stuck tasks if that is enabled. | 
|  | */ | 
|  | } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); | 
|  |  | 
|  | init_completion(&exit.completion); | 
|  | init_task_work(&exit.task_work, io_tctx_exit_cb); | 
|  | exit.ctx = ctx; | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | while (!list_empty(&ctx->tctx_list)) { | 
|  | WARN_ON_ONCE(time_after(jiffies, timeout)); | 
|  |  | 
|  | node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, | 
|  | ctx_node); | 
|  | /* don't spin on a single task if cancellation failed */ | 
|  | list_rotate_left(&ctx->tctx_list); | 
|  | ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); | 
|  | if (WARN_ON_ONCE(ret)) | 
|  | continue; | 
|  |  | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | /* | 
|  | * See comment above for | 
|  | * wait_for_completion_interruptible_timeout() on why this | 
|  | * wait is marked as interruptible. | 
|  | */ | 
|  | wait_for_completion_interruptible(&exit.completion); | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | } | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | spin_lock(&ctx->completion_lock); | 
|  | spin_unlock(&ctx->completion_lock); | 
|  |  | 
|  | /* pairs with RCU read section in io_req_local_work_add() */ | 
|  | if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) | 
|  | synchronize_rcu(); | 
|  |  | 
|  | io_ring_ctx_free(ctx); | 
|  | } | 
|  |  | 
|  | static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) | 
|  | { | 
|  | unsigned long index; | 
|  | struct creds *creds; | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | percpu_ref_kill(&ctx->refs); | 
|  | xa_for_each(&ctx->personalities, index, creds) | 
|  | io_unregister_personality(ctx, index); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  |  | 
|  | flush_delayed_work(&ctx->fallback_work); | 
|  |  | 
|  | INIT_WORK(&ctx->exit_work, io_ring_exit_work); | 
|  | /* | 
|  | * Use system_unbound_wq to avoid spawning tons of event kworkers | 
|  | * if we're exiting a ton of rings at the same time. It just adds | 
|  | * noise and overhead, there's no discernable change in runtime | 
|  | * over using system_wq. | 
|  | */ | 
|  | queue_work(iou_wq, &ctx->exit_work); | 
|  | } | 
|  |  | 
|  | static int io_uring_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct io_ring_ctx *ctx = file->private_data; | 
|  |  | 
|  | file->private_data = NULL; | 
|  | io_ring_ctx_wait_and_kill(ctx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct io_task_cancel { | 
|  | struct task_struct *task; | 
|  | bool all; | 
|  | }; | 
|  |  | 
|  | static bool io_cancel_task_cb(struct io_wq_work *work, void *data) | 
|  | { | 
|  | struct io_kiocb *req = container_of(work, struct io_kiocb, work); | 
|  | struct io_task_cancel *cancel = data; | 
|  |  | 
|  | return io_match_task_safe(req, cancel->task, cancel->all); | 
|  | } | 
|  |  | 
|  | static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, | 
|  | struct task_struct *task, | 
|  | bool cancel_all) | 
|  | { | 
|  | struct io_defer_entry *de; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | spin_lock(&ctx->completion_lock); | 
|  | list_for_each_entry_reverse(de, &ctx->defer_list, list) { | 
|  | if (io_match_task_safe(de->req, task, cancel_all)) { | 
|  | list_cut_position(&list, &ctx->defer_list, &de->list); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&ctx->completion_lock); | 
|  | if (list_empty(&list)) | 
|  | return false; | 
|  |  | 
|  | while (!list_empty(&list)) { | 
|  | de = list_first_entry(&list, struct io_defer_entry, list); | 
|  | list_del_init(&de->list); | 
|  | io_req_task_queue_fail(de->req, -ECANCELED); | 
|  | kfree(de); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) | 
|  | { | 
|  | struct io_tctx_node *node; | 
|  | enum io_wq_cancel cret; | 
|  | bool ret = false; | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | list_for_each_entry(node, &ctx->tctx_list, ctx_node) { | 
|  | struct io_uring_task *tctx = node->task->io_uring; | 
|  |  | 
|  | /* | 
|  | * io_wq will stay alive while we hold uring_lock, because it's | 
|  | * killed after ctx nodes, which requires to take the lock. | 
|  | */ | 
|  | if (!tctx || !tctx->io_wq) | 
|  | continue; | 
|  | cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); | 
|  | ret |= (cret != IO_WQ_CANCEL_NOTFOUND); | 
|  | } | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, | 
|  | struct task_struct *task, | 
|  | bool cancel_all) | 
|  | { | 
|  | struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; | 
|  | struct io_uring_task *tctx = task ? task->io_uring : NULL; | 
|  | enum io_wq_cancel cret; | 
|  | bool ret = false; | 
|  |  | 
|  | /* set it so io_req_local_work_add() would wake us up */ | 
|  | if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { | 
|  | atomic_set(&ctx->cq_wait_nr, 1); | 
|  | smp_mb(); | 
|  | } | 
|  |  | 
|  | /* failed during ring init, it couldn't have issued any requests */ | 
|  | if (!ctx->rings) | 
|  | return false; | 
|  |  | 
|  | if (!task) { | 
|  | ret |= io_uring_try_cancel_iowq(ctx); | 
|  | } else if (tctx && tctx->io_wq) { | 
|  | /* | 
|  | * Cancels requests of all rings, not only @ctx, but | 
|  | * it's fine as the task is in exit/exec. | 
|  | */ | 
|  | cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, | 
|  | &cancel, true); | 
|  | ret |= (cret != IO_WQ_CANCEL_NOTFOUND); | 
|  | } | 
|  |  | 
|  | /* SQPOLL thread does its own polling */ | 
|  | if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || | 
|  | (ctx->sq_data && ctx->sq_data->thread == current)) { | 
|  | while (!wq_list_empty(&ctx->iopoll_list)) { | 
|  | io_iopoll_try_reap_events(ctx); | 
|  | ret = true; | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && | 
|  | io_allowed_defer_tw_run(ctx)) | 
|  | ret |= io_run_local_work(ctx, INT_MAX) > 0; | 
|  | ret |= io_cancel_defer_files(ctx, task, cancel_all); | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | ret |= io_poll_remove_all(ctx, task, cancel_all); | 
|  | ret |= io_waitid_remove_all(ctx, task, cancel_all); | 
|  | ret |= io_futex_remove_all(ctx, task, cancel_all); | 
|  | ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | ret |= io_kill_timeouts(ctx, task, cancel_all); | 
|  | if (task) | 
|  | ret |= io_run_task_work() > 0; | 
|  | else | 
|  | ret |= flush_delayed_work(&ctx->fallback_work); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) | 
|  | { | 
|  | if (tracked) | 
|  | return atomic_read(&tctx->inflight_tracked); | 
|  | return percpu_counter_sum(&tctx->inflight); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find any io_uring ctx that this task has registered or done IO on, and cancel | 
|  | * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. | 
|  | */ | 
|  | __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) | 
|  | { | 
|  | struct io_uring_task *tctx = current->io_uring; | 
|  | struct io_ring_ctx *ctx; | 
|  | struct io_tctx_node *node; | 
|  | unsigned long index; | 
|  | s64 inflight; | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | WARN_ON_ONCE(sqd && sqd->thread != current); | 
|  |  | 
|  | if (!current->io_uring) | 
|  | return; | 
|  | if (tctx->io_wq) | 
|  | io_wq_exit_start(tctx->io_wq); | 
|  |  | 
|  | atomic_inc(&tctx->in_cancel); | 
|  | do { | 
|  | bool loop = false; | 
|  |  | 
|  | io_uring_drop_tctx_refs(current); | 
|  | if (!tctx_inflight(tctx, !cancel_all)) | 
|  | break; | 
|  |  | 
|  | /* read completions before cancelations */ | 
|  | inflight = tctx_inflight(tctx, false); | 
|  | if (!inflight) | 
|  | break; | 
|  |  | 
|  | if (!sqd) { | 
|  | xa_for_each(&tctx->xa, index, node) { | 
|  | /* sqpoll task will cancel all its requests */ | 
|  | if (node->ctx->sq_data) | 
|  | continue; | 
|  | loop |= io_uring_try_cancel_requests(node->ctx, | 
|  | current, cancel_all); | 
|  | } | 
|  | } else { | 
|  | list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) | 
|  | loop |= io_uring_try_cancel_requests(ctx, | 
|  | current, | 
|  | cancel_all); | 
|  | } | 
|  |  | 
|  | if (loop) { | 
|  | cond_resched(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); | 
|  | io_run_task_work(); | 
|  | io_uring_drop_tctx_refs(current); | 
|  | xa_for_each(&tctx->xa, index, node) { | 
|  | if (!llist_empty(&node->ctx->work_llist)) { | 
|  | WARN_ON_ONCE(node->ctx->submitter_task && | 
|  | node->ctx->submitter_task != current); | 
|  | goto end_wait; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If we've seen completions, retry without waiting. This | 
|  | * avoids a race where a completion comes in before we did | 
|  | * prepare_to_wait(). | 
|  | */ | 
|  | if (inflight == tctx_inflight(tctx, !cancel_all)) | 
|  | schedule(); | 
|  | end_wait: | 
|  | finish_wait(&tctx->wait, &wait); | 
|  | } while (1); | 
|  |  | 
|  | io_uring_clean_tctx(tctx); | 
|  | if (cancel_all) { | 
|  | /* | 
|  | * We shouldn't run task_works after cancel, so just leave | 
|  | * ->in_cancel set for normal exit. | 
|  | */ | 
|  | atomic_dec(&tctx->in_cancel); | 
|  | /* for exec all current's requests should be gone, kill tctx */ | 
|  | __io_uring_free(current); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __io_uring_cancel(bool cancel_all) | 
|  | { | 
|  | io_uring_cancel_generic(cancel_all, NULL); | 
|  | } | 
|  |  | 
|  | static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) | 
|  | { | 
|  | if (flags & IORING_ENTER_EXT_ARG) { | 
|  | struct io_uring_getevents_arg arg; | 
|  |  | 
|  | if (argsz != sizeof(arg)) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&arg, argp, sizeof(arg))) | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, | 
|  | struct __kernel_timespec __user **ts, | 
|  | const sigset_t __user **sig) | 
|  | { | 
|  | struct io_uring_getevents_arg arg; | 
|  |  | 
|  | /* | 
|  | * If EXT_ARG isn't set, then we have no timespec and the argp pointer | 
|  | * is just a pointer to the sigset_t. | 
|  | */ | 
|  | if (!(flags & IORING_ENTER_EXT_ARG)) { | 
|  | *sig = (const sigset_t __user *) argp; | 
|  | *ts = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * EXT_ARG is set - ensure we agree on the size of it and copy in our | 
|  | * timespec and sigset_t pointers if good. | 
|  | */ | 
|  | if (*argsz != sizeof(arg)) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&arg, argp, sizeof(arg))) | 
|  | return -EFAULT; | 
|  | if (arg.pad) | 
|  | return -EINVAL; | 
|  | *sig = u64_to_user_ptr(arg.sigmask); | 
|  | *argsz = arg.sigmask_sz; | 
|  | *ts = u64_to_user_ptr(arg.ts); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, | 
|  | u32, min_complete, u32, flags, const void __user *, argp, | 
|  | size_t, argsz) | 
|  | { | 
|  | struct io_ring_ctx *ctx; | 
|  | struct file *file; | 
|  | long ret; | 
|  |  | 
|  | if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | | 
|  | IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | | 
|  | IORING_ENTER_REGISTERED_RING))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Ring fd has been registered via IORING_REGISTER_RING_FDS, we | 
|  | * need only dereference our task private array to find it. | 
|  | */ | 
|  | if (flags & IORING_ENTER_REGISTERED_RING) { | 
|  | struct io_uring_task *tctx = current->io_uring; | 
|  |  | 
|  | if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) | 
|  | return -EINVAL; | 
|  | fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); | 
|  | file = tctx->registered_rings[fd]; | 
|  | if (unlikely(!file)) | 
|  | return -EBADF; | 
|  | } else { | 
|  | file = fget(fd); | 
|  | if (unlikely(!file)) | 
|  | return -EBADF; | 
|  | ret = -EOPNOTSUPP; | 
|  | if (unlikely(!io_is_uring_fops(file))) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ctx = file->private_data; | 
|  | ret = -EBADFD; | 
|  | if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * For SQ polling, the thread will do all submissions and completions. | 
|  | * Just return the requested submit count, and wake the thread if | 
|  | * we were asked to. | 
|  | */ | 
|  | ret = 0; | 
|  | if (ctx->flags & IORING_SETUP_SQPOLL) { | 
|  | if (unlikely(ctx->sq_data->thread == NULL)) { | 
|  | ret = -EOWNERDEAD; | 
|  | goto out; | 
|  | } | 
|  | if (flags & IORING_ENTER_SQ_WAKEUP) | 
|  | wake_up(&ctx->sq_data->wait); | 
|  | if (flags & IORING_ENTER_SQ_WAIT) | 
|  | io_sqpoll_wait_sq(ctx); | 
|  |  | 
|  | ret = to_submit; | 
|  | } else if (to_submit) { | 
|  | ret = io_uring_add_tctx_node(ctx); | 
|  | if (unlikely(ret)) | 
|  | goto out; | 
|  |  | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | ret = io_submit_sqes(ctx, to_submit); | 
|  | if (ret != to_submit) { | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | goto out; | 
|  | } | 
|  | if (flags & IORING_ENTER_GETEVENTS) { | 
|  | if (ctx->syscall_iopoll) | 
|  | goto iopoll_locked; | 
|  | /* | 
|  | * Ignore errors, we'll soon call io_cqring_wait() and | 
|  | * it should handle ownership problems if any. | 
|  | */ | 
|  | if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) | 
|  | (void)io_run_local_work_locked(ctx, min_complete); | 
|  | } | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | } | 
|  |  | 
|  | if (flags & IORING_ENTER_GETEVENTS) { | 
|  | int ret2; | 
|  |  | 
|  | if (ctx->syscall_iopoll) { | 
|  | /* | 
|  | * We disallow the app entering submit/complete with | 
|  | * polling, but we still need to lock the ring to | 
|  | * prevent racing with polled issue that got punted to | 
|  | * a workqueue. | 
|  | */ | 
|  | mutex_lock(&ctx->uring_lock); | 
|  | iopoll_locked: | 
|  | ret2 = io_validate_ext_arg(flags, argp, argsz); | 
|  | if (likely(!ret2)) { | 
|  | min_complete = min(min_complete, | 
|  | ctx->cq_entries); | 
|  | ret2 = io_iopoll_check(ctx, min_complete); | 
|  | } | 
|  | mutex_unlock(&ctx->uring_lock); | 
|  | } else { | 
|  | const sigset_t __user *sig; | 
|  | struct __kernel_timespec __user *ts; | 
|  |  | 
|  | ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); | 
|  | if (likely(!ret2)) { | 
|  | min_complete = min(min_complete, | 
|  | ctx->cq_entries); | 
|  | ret2 = io_cqring_wait(ctx, min_complete, sig, | 
|  | argsz, ts); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | ret = ret2; | 
|  |  | 
|  | /* | 
|  | * EBADR indicates that one or more CQE were dropped. | 
|  | * Once the user has been informed we can clear the bit | 
|  | * as they are obviously ok with those drops. | 
|  | */ | 
|  | if (unlikely(ret2 == -EBADR)) | 
|  | clear_bit(IO_CHECK_CQ_DROPPED_BIT, | 
|  | &ctx->check_cq); | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (!(flags & IORING_ENTER_REGISTERED_RING)) | 
|  | fput(file); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct file_operations io_uring_fops = { | 
|  | .release	= io_uring_release, | 
|  | .mmap		= io_uring_mmap, | 
|  | .get_unmapped_area = io_uring_get_unmapped_area, | 
|  | #ifndef CONFIG_MMU | 
|  | .mmap_capabilities = io_uring_nommu_mmap_capabilities, | 
|  | #endif | 
|  | .poll		= io_uring_poll, | 
|  | #ifdef CONFIG_PROC_FS | 
|  | .show_fdinfo	= io_uring_show_fdinfo, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | bool io_is_uring_fops(struct file *file) | 
|  | { | 
|  | return file->f_op == &io_uring_fops; | 
|  | } | 
|  |  | 
|  | static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, | 
|  | struct io_uring_params *p) | 
|  | { | 
|  | struct io_rings *rings; | 
|  | size_t size, sq_array_offset; | 
|  | void *ptr; | 
|  |  | 
|  | /* make sure these are sane, as we already accounted them */ | 
|  | ctx->sq_entries = p->sq_entries; | 
|  | ctx->cq_entries = p->cq_entries; | 
|  |  | 
|  | size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); | 
|  | if (size == SIZE_MAX) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | if (!(ctx->flags & IORING_SETUP_NO_MMAP)) | 
|  | rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size); | 
|  | else | 
|  | rings = io_rings_map(ctx, p->cq_off.user_addr, size); | 
|  |  | 
|  | if (IS_ERR(rings)) | 
|  | return PTR_ERR(rings); | 
|  |  | 
|  | ctx->rings = rings; | 
|  | if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) | 
|  | ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); | 
|  | rings->sq_ring_mask = p->sq_entries - 1; | 
|  | rings->cq_ring_mask = p->cq_entries - 1; | 
|  | rings->sq_ring_entries = p->sq_entries; | 
|  | rings->cq_ring_entries = p->cq_entries; | 
|  |  | 
|  | if (p->flags & IORING_SETUP_SQE128) | 
|  | size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); | 
|  | else | 
|  | size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); | 
|  | if (size == SIZE_MAX) { | 
|  | io_rings_free(ctx); | 
|  | return -EOVERFLOW; | 
|  | } | 
|  |  | 
|  | if (!(ctx->flags & IORING_SETUP_NO_MMAP)) | 
|  | ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size); | 
|  | else | 
|  | ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); | 
|  |  | 
|  | if (IS_ERR(ptr)) { | 
|  | io_rings_free(ctx); | 
|  | return PTR_ERR(ptr); | 
|  | } | 
|  |  | 
|  | ctx->sq_sqes = ptr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int io_uring_install_fd(struct file *file) | 
|  | { | 
|  | int fd; | 
|  |  | 
|  | fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); | 
|  | if (fd < 0) | 
|  | return fd; | 
|  | fd_install(fd, file); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate an anonymous fd, this is what constitutes the application | 
|  | * visible backing of an io_uring instance. The application mmaps this | 
|  | * fd to gain access to the SQ/CQ ring details. | 
|  | */ | 
|  | static struct file *io_uring_get_file(struct io_ring_ctx *ctx) | 
|  | { | 
|  | /* Create a new inode so that the LSM can block the creation.  */ | 
|  | return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, | 
|  | O_RDWR | O_CLOEXEC, NULL); | 
|  | } | 
|  |  | 
|  | static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, | 
|  | struct io_uring_params __user *params) | 
|  | { | 
|  | struct io_ring_ctx *ctx; | 
|  | struct io_uring_task *tctx; | 
|  | struct file *file; | 
|  | int ret; | 
|  |  | 
|  | if (!entries) | 
|  | return -EINVAL; | 
|  | if (entries > IORING_MAX_ENTRIES) { | 
|  | if (!(p->flags & IORING_SETUP_CLAMP)) | 
|  | return -EINVAL; | 
|  | entries = IORING_MAX_ENTRIES; | 
|  | } | 
|  |  | 
|  | if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) | 
|  | && !(p->flags & IORING_SETUP_NO_MMAP)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Use twice as many entries for the CQ ring. It's possible for the | 
|  | * application to drive a higher depth than the size of the SQ ring, | 
|  | * since the sqes are only used at submission time. This allows for | 
|  | * some flexibility in overcommitting a bit. If the application has | 
|  | * set IORING_SETUP_CQSIZE, it will have passed in the desired number | 
|  | * of CQ ring entries manually. | 
|  | */ | 
|  | p->sq_entries = roundup_pow_of_two(entries); | 
|  | if (p->flags & IORING_SETUP_CQSIZE) { | 
|  | /* | 
|  | * If IORING_SETUP_CQSIZE is set, we do the same roundup | 
|  | * to a power-of-two, if it isn't already. We do NOT impose | 
|  | * any cq vs sq ring sizing. | 
|  | */ | 
|  | if (!p->cq_entries) | 
|  | return -EINVAL; | 
|  | if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { | 
|  | if (!(p->flags & IORING_SETUP_CLAMP)) | 
|  | return -EINVAL; | 
|  | p->cq_entries = IORING_MAX_CQ_ENTRIES; | 
|  | } | 
|  | p->cq_entries = roundup_pow_of_two(p->cq_entries); | 
|  | if (p->cq_entries < p->sq_entries) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | p->cq_entries = 2 * p->sq_entries; | 
|  | } | 
|  |  | 
|  | ctx = io_ring_ctx_alloc(p); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && | 
|  | !(ctx->flags & IORING_SETUP_IOPOLL) && | 
|  | !(ctx->flags & IORING_SETUP_SQPOLL)) | 
|  | ctx->task_complete = true; | 
|  |  | 
|  | if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) | 
|  | ctx->lockless_cq = true; | 
|  |  | 
|  | /* | 
|  | * lazy poll_wq activation relies on ->task_complete for synchronisation | 
|  | * purposes, see io_activate_pollwq() | 
|  | */ | 
|  | if (!ctx->task_complete) | 
|  | ctx->poll_activated = true; | 
|  |  | 
|  | /* | 
|  | * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user | 
|  | * space applications don't need to do io completion events | 
|  | * polling again, they can rely on io_sq_thread to do polling | 
|  | * work, which can reduce cpu usage and uring_lock contention. | 
|  | */ | 
|  | if (ctx->flags & IORING_SETUP_IOPOLL && | 
|  | !(ctx->flags & IORING_SETUP_SQPOLL)) | 
|  | ctx->syscall_iopoll = 1; | 
|  |  | 
|  | ctx->compat = in_compat_syscall(); | 
|  | if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) | 
|  | ctx->user = get_uid(current_user()); | 
|  |  | 
|  | /* | 
|  | * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if | 
|  | * COOP_TASKRUN is set, then IPIs are never needed by the app. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | if (ctx->flags & IORING_SETUP_SQPOLL) { | 
|  | /* IPI related flags don't make sense with SQPOLL */ | 
|  | if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | | 
|  | IORING_SETUP_TASKRUN_FLAG | | 
|  | IORING_SETUP_DEFER_TASKRUN)) | 
|  | goto err; | 
|  | ctx->notify_method = TWA_SIGNAL_NO_IPI; | 
|  | } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { | 
|  | ctx->notify_method = TWA_SIGNAL_NO_IPI; | 
|  | } else { | 
|  | if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && | 
|  | !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) | 
|  | goto err; | 
|  | ctx->notify_method = TWA_SIGNAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For DEFER_TASKRUN we require the completion task to be the same as the | 
|  | * submission task. This implies that there is only one submitter, so enforce | 
|  | * that. | 
|  | */ | 
|  | if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && | 
|  | !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is just grabbed for accounting purposes. When a process exits, | 
|  | * the mm is exited and dropped before the files, hence we need to hang | 
|  | * on to this mm purely for the purposes of being able to unaccount | 
|  | * memory (locked/pinned vm). It's not used for anything else. | 
|  | */ | 
|  | mmgrab(current->mm); | 
|  | ctx->mm_account = current->mm; | 
|  |  | 
|  | ret = io_allocate_scq_urings(ctx, p); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = io_sq_offload_create(ctx, p); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = io_rsrc_init(ctx); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | p->sq_off.head = offsetof(struct io_rings, sq.head); | 
|  | p->sq_off.tail = offsetof(struct io_rings, sq.tail); | 
|  | p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); | 
|  | p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); | 
|  | p->sq_off.flags = offsetof(struct io_rings, sq_flags); | 
|  | p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); | 
|  | if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) | 
|  | p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; | 
|  | p->sq_off.resv1 = 0; | 
|  | if (!(ctx->flags & IORING_SETUP_NO_MMAP)) | 
|  | p->sq_off.user_addr = 0; | 
|  |  | 
|  | p->cq_off.head = offsetof(struct io_rings, cq.head); | 
|  | p->cq_off.tail = offsetof(struct io_rings, cq.tail); | 
|  | p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); | 
|  | p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); | 
|  | p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); | 
|  | p->cq_off.cqes = offsetof(struct io_rings, cqes); | 
|  | p->cq_off.flags = offsetof(struct io_rings, cq_flags); | 
|  | p->cq_off.resv1 = 0; | 
|  | if (!(ctx->flags & IORING_SETUP_NO_MMAP)) | 
|  | p->cq_off.user_addr = 0; | 
|  |  | 
|  | p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | | 
|  | IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | | 
|  | IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | | 
|  | IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | | 
|  | IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | | 
|  | IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | | 
|  | IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | | 
|  | IORING_FEAT_RECVSEND_BUNDLE; | 
|  |  | 
|  | if (copy_to_user(params, p, sizeof(*p))) { | 
|  | ret = -EFAULT; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (ctx->flags & IORING_SETUP_SINGLE_ISSUER | 
|  | && !(ctx->flags & IORING_SETUP_R_DISABLED)) | 
|  | WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); | 
|  |  | 
|  | file = io_uring_get_file(ctx); | 
|  | if (IS_ERR(file)) { | 
|  | ret = PTR_ERR(file); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = __io_uring_add_tctx_node(ctx); | 
|  | if (ret) | 
|  | goto err_fput; | 
|  | tctx = current->io_uring; | 
|  |  | 
|  | /* | 
|  | * Install ring fd as the very last thing, so we don't risk someone | 
|  | * having closed it before we finish setup | 
|  | */ | 
|  | if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) | 
|  | ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); | 
|  | else | 
|  | ret = io_uring_install_fd(file); | 
|  | if (ret < 0) | 
|  | goto err_fput; | 
|  |  | 
|  | trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); | 
|  | return ret; | 
|  | err: | 
|  | io_ring_ctx_wait_and_kill(ctx); | 
|  | return ret; | 
|  | err_fput: | 
|  | fput(file); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up an aio uring context, and returns the fd. Applications asks for a | 
|  | * ring size, we return the actual sq/cq ring sizes (among other things) in the | 
|  | * params structure passed in. | 
|  | */ | 
|  | static long io_uring_setup(u32 entries, struct io_uring_params __user *params) | 
|  | { | 
|  | struct io_uring_params p; | 
|  | int i; | 
|  |  | 
|  | if (copy_from_user(&p, params, sizeof(p))) | 
|  | return -EFAULT; | 
|  | for (i = 0; i < ARRAY_SIZE(p.resv); i++) { | 
|  | if (p.resv[i]) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | | 
|  | IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | | 
|  | IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | | 
|  | IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | | 
|  | IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | | 
|  | IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | | 
|  | IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | | 
|  | IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | | 
|  | IORING_SETUP_NO_SQARRAY)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return io_uring_create(entries, &p, params); | 
|  | } | 
|  |  | 
|  | static inline bool io_uring_allowed(void) | 
|  | { | 
|  | int disabled = READ_ONCE(sysctl_io_uring_disabled); | 
|  | kgid_t io_uring_group; | 
|  |  | 
|  | if (disabled == 2) | 
|  | return false; | 
|  |  | 
|  | if (disabled == 0 || capable(CAP_SYS_ADMIN)) | 
|  | return true; | 
|  |  | 
|  | io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); | 
|  | if (!gid_valid(io_uring_group)) | 
|  | return false; | 
|  |  | 
|  | return in_group_p(io_uring_group); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(io_uring_setup, u32, entries, | 
|  | struct io_uring_params __user *, params) | 
|  | { | 
|  | if (!io_uring_allowed()) | 
|  | return -EPERM; | 
|  |  | 
|  | return io_uring_setup(entries, params); | 
|  | } | 
|  |  | 
|  | static int __init io_uring_init(void) | 
|  | { | 
|  | #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ | 
|  | BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ | 
|  | BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ | 
|  | } while (0) | 
|  |  | 
|  | #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ | 
|  | __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) | 
|  | #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ | 
|  | __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) | 
|  | BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); | 
|  | BUILD_BUG_SQE_ELEM(0,  __u8,   opcode); | 
|  | BUILD_BUG_SQE_ELEM(1,  __u8,   flags); | 
|  | BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio); | 
|  | BUILD_BUG_SQE_ELEM(4,  __s32,  fd); | 
|  | BUILD_BUG_SQE_ELEM(8,  __u64,  off); | 
|  | BUILD_BUG_SQE_ELEM(8,  __u64,  addr2); | 
|  | BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op); | 
|  | BUILD_BUG_SQE_ELEM(12, __u32, __pad1); | 
|  | BUILD_BUG_SQE_ELEM(16, __u64,  addr); | 
|  | BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in); | 
|  | BUILD_BUG_SQE_ELEM(24, __u32,  len); | 
|  | BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  open_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags); | 
|  | BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags); | 
|  | BUILD_BUG_SQE_ELEM(32, __u64,  user_data); | 
|  | BUILD_BUG_SQE_ELEM(40, __u16,  buf_index); | 
|  | BUILD_BUG_SQE_ELEM(40, __u16,  buf_group); | 
|  | BUILD_BUG_SQE_ELEM(42, __u16,  personality); | 
|  | BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in); | 
|  | BUILD_BUG_SQE_ELEM(44, __u32,  file_index); | 
|  | BUILD_BUG_SQE_ELEM(44, __u16,  addr_len); | 
|  | BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]); | 
|  | BUILD_BUG_SQE_ELEM(48, __u64,  addr3); | 
|  | BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); | 
|  | BUILD_BUG_SQE_ELEM(56, __u64,  __pad2); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct io_uring_files_update) != | 
|  | sizeof(struct io_uring_rsrc_update)); | 
|  | BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > | 
|  | sizeof(struct io_uring_rsrc_update2)); | 
|  |  | 
|  | /* ->buf_index is u16 */ | 
|  | BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); | 
|  | BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != | 
|  | offsetof(struct io_uring_buf_ring, tail)); | 
|  |  | 
|  | /* should fit into one byte */ | 
|  | BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); | 
|  | BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); | 
|  | BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); | 
|  |  | 
|  | BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); | 
|  |  | 
|  | /* top 8bits are for internal use */ | 
|  | BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); | 
|  |  | 
|  | io_uring_optable_init(); | 
|  |  | 
|  | /* | 
|  | * Allow user copy in the per-command field, which starts after the | 
|  | * file in io_kiocb and until the opcode field. The openat2 handling | 
|  | * requires copying in user memory into the io_kiocb object in that | 
|  | * range, and HARDENED_USERCOPY will complain if we haven't | 
|  | * correctly annotated this range. | 
|  | */ | 
|  | req_cachep = kmem_cache_create_usercopy("io_kiocb", | 
|  | sizeof(struct io_kiocb), 0, | 
|  | SLAB_HWCACHE_ALIGN | SLAB_PANIC | | 
|  | SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, | 
|  | offsetof(struct io_kiocb, cmd.data), | 
|  | sizeof_field(struct io_kiocb, cmd.data), NULL); | 
|  | io_buf_cachep = KMEM_CACHE(io_buffer, | 
|  | SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); | 
|  |  | 
|  | iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | register_sysctl_init("kernel", kernel_io_uring_disabled_table); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | }; | 
|  | __initcall(io_uring_init); |