| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/err.h> | 
 | #include <linux/uuid.h> | 
 | #include "ctree.h" | 
 | #include "fs.h" | 
 | #include "messages.h" | 
 | #include "transaction.h" | 
 | #include "disk-io.h" | 
 | #include "qgroup.h" | 
 | #include "space-info.h" | 
 | #include "accessors.h" | 
 | #include "root-tree.h" | 
 | #include "orphan.h" | 
 |  | 
 | /* | 
 |  * Read a root item from the tree. In case we detect a root item smaller then | 
 |  * sizeof(root_item), we know it's an old version of the root structure and | 
 |  * initialize all new fields to zero. The same happens if we detect mismatching | 
 |  * generation numbers as then we know the root was once mounted with an older | 
 |  * kernel that was not aware of the root item structure change. | 
 |  */ | 
 | static void btrfs_read_root_item(struct extent_buffer *eb, int slot, | 
 | 				struct btrfs_root_item *item) | 
 | { | 
 | 	u32 len; | 
 | 	int need_reset = 0; | 
 |  | 
 | 	len = btrfs_item_size(eb, slot); | 
 | 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), | 
 | 			   min_t(u32, len, sizeof(*item))); | 
 | 	if (len < sizeof(*item)) | 
 | 		need_reset = 1; | 
 | 	if (!need_reset && btrfs_root_generation(item) | 
 | 		!= btrfs_root_generation_v2(item)) { | 
 | 		if (btrfs_root_generation_v2(item) != 0) { | 
 | 			btrfs_warn(eb->fs_info, | 
 | 					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); | 
 | 		} | 
 | 		need_reset = 1; | 
 | 	} | 
 | 	if (need_reset) { | 
 | 		/* Clear all members from generation_v2 onwards. */ | 
 | 		memset_startat(item, 0, generation_v2); | 
 | 		generate_random_guid(item->uuid); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Lookup the root by the key. | 
 |  * | 
 |  * root: the root of the root tree | 
 |  * search_key: the key to search | 
 |  * path: the path we search | 
 |  * root_item: the root item of the tree we look for | 
 |  * root_key: the root key of the tree we look for | 
 |  * | 
 |  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset | 
 |  * of the search key, just lookup the root with the highest offset for a | 
 |  * given objectid. | 
 |  * | 
 |  * If we find something return 0, otherwise > 0, < 0 on error. | 
 |  */ | 
 | int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, | 
 | 		    struct btrfs_path *path, struct btrfs_root_item *root_item, | 
 | 		    struct btrfs_key *root_key) | 
 | { | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *l; | 
 | 	int ret; | 
 | 	int slot; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (search_key->offset != -1ULL) {	/* the search key is exact */ | 
 | 		if (ret > 0) | 
 | 			goto out; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Key with offset -1 found, there would have to exist a root | 
 | 		 * with such id, but this is out of the valid range. | 
 | 		 */ | 
 | 		if (ret == 0) { | 
 | 			ret = -EUCLEAN; | 
 | 			goto out; | 
 | 		} | 
 | 		if (path->slots[0] == 0) | 
 | 			goto out; | 
 | 		path->slots[0]--; | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	l = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 |  | 
 | 	btrfs_item_key_to_cpu(l, &found_key, slot); | 
 | 	if (found_key.objectid != search_key->objectid || | 
 | 	    found_key.type != BTRFS_ROOT_ITEM_KEY) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (root_item) | 
 | 		btrfs_read_root_item(l, slot, root_item); | 
 | 	if (root_key) | 
 | 		memcpy(root_key, &found_key, sizeof(found_key)); | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_set_root_node(struct btrfs_root_item *item, | 
 | 			 struct extent_buffer *node) | 
 | { | 
 | 	btrfs_set_root_bytenr(item, node->start); | 
 | 	btrfs_set_root_level(item, btrfs_header_level(node)); | 
 | 	btrfs_set_root_generation(item, btrfs_header_generation(node)); | 
 | } | 
 |  | 
 | /* | 
 |  * copy the data in 'item' into the btree | 
 |  */ | 
 | int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root | 
 | 		      *root, struct btrfs_key *key, struct btrfs_root_item | 
 | 		      *item) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *l; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	unsigned long ptr; | 
 | 	u32 old_len; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, key, path, 0, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret > 0) { | 
 | 		btrfs_crit(fs_info, | 
 | 			"unable to find root key (%llu %u %llu) in tree %llu", | 
 | 			key->objectid, key->type, key->offset, btrfs_root_id(root)); | 
 | 		ret = -EUCLEAN; | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	l = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	ptr = btrfs_item_ptr_offset(l, slot); | 
 | 	old_len = btrfs_item_size(l, slot); | 
 |  | 
 | 	/* | 
 | 	 * If this is the first time we update the root item which originated | 
 | 	 * from an older kernel, we need to enlarge the item size to make room | 
 | 	 * for the added fields. | 
 | 	 */ | 
 | 	if (old_len < sizeof(*item)) { | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_search_slot(trans, root, key, path, | 
 | 				-1, 1); | 
 | 		if (ret < 0) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_del_item(trans, root, path); | 
 | 		if (ret < 0) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto out; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_insert_empty_item(trans, root, path, | 
 | 				key, sizeof(*item)); | 
 | 		if (ret < 0) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto out; | 
 | 		} | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		ptr = btrfs_item_ptr_offset(l, slot); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update generation_v2 so at the next mount we know the new root | 
 | 	 * fields are valid. | 
 | 	 */ | 
 | 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); | 
 |  | 
 | 	write_extent_buffer(l, item, ptr, sizeof(*item)); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		      const struct btrfs_key *key, struct btrfs_root_item *item) | 
 | { | 
 | 	/* | 
 | 	 * Make sure generation v1 and v2 match. See update_root for details. | 
 | 	 */ | 
 | 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); | 
 | 	return btrfs_insert_item(trans, root, key, item, sizeof(*item)); | 
 | } | 
 |  | 
 | int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root; | 
 | 	int err = 0; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = BTRFS_ORPHAN_OBJECTID; | 
 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	while (1) { | 
 | 		u64 root_objectid; | 
 |  | 
 | 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(tree_root, path); | 
 | 			if (ret < 0) | 
 | 				err = ret; | 
 | 			if (ret != 0) | 
 | 				break; | 
 | 			leaf = path->nodes[0]; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		if (key.objectid != BTRFS_ORPHAN_OBJECTID || | 
 | 		    key.type != BTRFS_ORPHAN_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		root_objectid = key.offset; | 
 | 		key.offset++; | 
 |  | 
 | 		root = btrfs_get_fs_root(fs_info, root_objectid, false); | 
 | 		err = PTR_ERR_OR_ZERO(root); | 
 | 		if (err && err != -ENOENT) { | 
 | 			break; | 
 | 		} else if (err == -ENOENT) { | 
 | 			struct btrfs_trans_handle *trans; | 
 |  | 
 | 			btrfs_release_path(path); | 
 |  | 
 | 			trans = btrfs_join_transaction(tree_root); | 
 | 			if (IS_ERR(trans)) { | 
 | 				err = PTR_ERR(trans); | 
 | 				btrfs_handle_fs_error(fs_info, err, | 
 | 					    "Failed to start trans to delete orphan item"); | 
 | 				break; | 
 | 			} | 
 | 			err = btrfs_del_orphan_item(trans, tree_root, | 
 | 						    root_objectid); | 
 | 			btrfs_end_transaction(trans); | 
 | 			if (err) { | 
 | 				btrfs_handle_fs_error(fs_info, err, | 
 | 					    "Failed to delete root orphan item"); | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); | 
 | 		if (btrfs_root_refs(&root->root_item) == 0) { | 
 | 			struct btrfs_key drop_key; | 
 |  | 
 | 			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress); | 
 | 			/* | 
 | 			 * If we have a non-zero drop_progress then we know we | 
 | 			 * made it partly through deleting this snapshot, and | 
 | 			 * thus we need to make sure we block any balance from | 
 | 			 * happening until this snapshot is completely dropped. | 
 | 			 */ | 
 | 			if (drop_key.objectid != 0 || drop_key.type != 0 || | 
 | 			    drop_key.offset != 0) { | 
 | 				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); | 
 | 				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); | 
 | 			} | 
 |  | 
 | 			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); | 
 | 			btrfs_add_dead_root(root); | 
 | 		} | 
 | 		btrfs_put_root(root); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* drop the root item for 'key' from the tree root */ | 
 | int btrfs_del_root(struct btrfs_trans_handle *trans, | 
 | 		   const struct btrfs_key *key) | 
 | { | 
 | 	struct btrfs_root *root = trans->fs_info->tree_root; | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	ret = btrfs_search_slot(trans, root, key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret != 0) { | 
 | 		/* The root must exist but we did not find it by the key. */ | 
 | 		ret = -EUCLEAN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, | 
 | 		       u64 ref_id, u64 dirid, u64 *sequence, | 
 | 		       const struct fscrypt_str *name) | 
 | { | 
 | 	struct btrfs_root *tree_root = trans->fs_info->tree_root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root_ref *ref; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	unsigned long ptr; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = root_id; | 
 | 	key.type = BTRFS_ROOT_BACKREF_KEY; | 
 | 	key.offset = ref_id; | 
 | again: | 
 | 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); | 
 | 	if (ret < 0) { | 
 | 		goto out; | 
 | 	} else if (ret == 0) { | 
 | 		leaf = path->nodes[0]; | 
 | 		ref = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				     struct btrfs_root_ref); | 
 | 		ptr = (unsigned long)(ref + 1); | 
 | 		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || | 
 | 		    (btrfs_root_ref_name_len(leaf, ref) != name->len) || | 
 | 		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) { | 
 | 			ret = -ENOENT; | 
 | 			goto out; | 
 | 		} | 
 | 		*sequence = btrfs_root_ref_sequence(leaf, ref); | 
 |  | 
 | 		ret = btrfs_del_item(trans, tree_root, path); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} else { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (key.type == BTRFS_ROOT_BACKREF_KEY) { | 
 | 		btrfs_release_path(path); | 
 | 		key.objectid = ref_id; | 
 | 		key.type = BTRFS_ROOT_REF_KEY; | 
 | 		key.offset = root_id; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY | 
 |  * or BTRFS_ROOT_BACKREF_KEY. | 
 |  * | 
 |  * The dirid, sequence, name and name_len refer to the directory entry | 
 |  * that is referencing the root. | 
 |  * | 
 |  * For a forward ref, the root_id is the id of the tree referencing | 
 |  * the root and ref_id is the id of the subvol  or snapshot. | 
 |  * | 
 |  * For a back ref the root_id is the id of the subvol or snapshot and | 
 |  * ref_id is the id of the tree referencing it. | 
 |  * | 
 |  * Will return 0, -ENOMEM, or anything from the CoW path | 
 |  */ | 
 | int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, | 
 | 		       u64 ref_id, u64 dirid, u64 sequence, | 
 | 		       const struct fscrypt_str *name) | 
 | { | 
 | 	struct btrfs_root *tree_root = trans->fs_info->tree_root; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root_ref *ref; | 
 | 	struct extent_buffer *leaf; | 
 | 	unsigned long ptr; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = root_id; | 
 | 	key.type = BTRFS_ROOT_BACKREF_KEY; | 
 | 	key.offset = ref_id; | 
 | again: | 
 | 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key, | 
 | 				      sizeof(*ref) + name->len); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		btrfs_free_path(path); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); | 
 | 	btrfs_set_root_ref_dirid(leaf, ref, dirid); | 
 | 	btrfs_set_root_ref_sequence(leaf, ref, sequence); | 
 | 	btrfs_set_root_ref_name_len(leaf, ref, name->len); | 
 | 	ptr = (unsigned long)(ref + 1); | 
 | 	write_extent_buffer(leaf, name->name, ptr, name->len); | 
 |  | 
 | 	if (key.type == BTRFS_ROOT_BACKREF_KEY) { | 
 | 		btrfs_release_path(path); | 
 | 		key.objectid = ref_id; | 
 | 		key.type = BTRFS_ROOT_REF_KEY; | 
 | 		key.offset = root_id; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Old btrfs forgets to init root_item->flags and root_item->byte_limit | 
 |  * for subvolumes. To work around this problem, we steal a bit from | 
 |  * root_item->inode_item->flags, and use it to indicate if those fields | 
 |  * have been properly initialized. | 
 |  */ | 
 | void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) | 
 | { | 
 | 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); | 
 |  | 
 | 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { | 
 | 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; | 
 | 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); | 
 | 		btrfs_set_root_flags(root_item, 0); | 
 | 		btrfs_set_root_limit(root_item, 0); | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_update_root_times(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_root_item *item = &root->root_item; | 
 | 	struct timespec64 ct; | 
 |  | 
 | 	ktime_get_real_ts64(&ct); | 
 | 	spin_lock(&root->root_item_lock); | 
 | 	btrfs_set_root_ctransid(item, trans->transid); | 
 | 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); | 
 | 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); | 
 | 	spin_unlock(&root->root_item_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Reserve space for subvolume operation. | 
 |  * | 
 |  * root: the root of the parent directory | 
 |  * rsv: block reservation | 
 |  * items: the number of items that we need do reservation | 
 |  * use_global_rsv: allow fallback to the global block reservation | 
 |  * | 
 |  * This function is used to reserve the space for snapshot/subvolume | 
 |  * creation and deletion. Those operations are different with the | 
 |  * common file/directory operations, they change two fs/file trees | 
 |  * and root tree, the number of items that the qgroup reserves is | 
 |  * different with the free space reservation. So we can not use | 
 |  * the space reservation mechanism in start_transaction(). | 
 |  */ | 
 | int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, | 
 | 				     struct btrfs_block_rsv *rsv, int items, | 
 | 				     bool use_global_rsv) | 
 | { | 
 | 	u64 qgroup_num_bytes = 0; | 
 | 	u64 num_bytes; | 
 | 	int ret; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
 |  | 
 | 	if (btrfs_qgroup_enabled(fs_info)) { | 
 | 		/* One for parent inode, two for dir entries */ | 
 | 		qgroup_num_bytes = 3 * fs_info->nodesize; | 
 | 		ret = btrfs_qgroup_reserve_meta_prealloc(root, | 
 | 							 qgroup_num_bytes, true, | 
 | 							 false); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); | 
 | 	rsv->space_info = btrfs_find_space_info(fs_info, | 
 | 					    BTRFS_BLOCK_GROUP_METADATA); | 
 | 	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, | 
 | 				  BTRFS_RESERVE_FLUSH_ALL); | 
 |  | 
 | 	if (ret == -ENOSPC && use_global_rsv) | 
 | 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); | 
 |  | 
 | 	if (ret && qgroup_num_bytes) | 
 | 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); | 
 |  | 
 | 	if (!ret) { | 
 | 		spin_lock(&rsv->lock); | 
 | 		rsv->qgroup_rsv_reserved += qgroup_num_bytes; | 
 | 		spin_unlock(&rsv->lock); | 
 | 	} | 
 | 	return ret; | 
 | } |