|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* mpihelp-div.c  -  MPI helper functions | 
|  | *	Copyright (C) 1994, 1996 Free Software Foundation, Inc. | 
|  | *	Copyright (C) 1998, 1999 Free Software Foundation, Inc. | 
|  | * | 
|  | * This file is part of GnuPG. | 
|  | * | 
|  | * Note: This code is heavily based on the GNU MP Library. | 
|  | *	 Actually it's the same code with only minor changes in the | 
|  | *	 way the data is stored; this is to support the abstraction | 
|  | *	 of an optional secure memory allocation which may be used | 
|  | *	 to avoid revealing of sensitive data due to paging etc. | 
|  | *	 The GNU MP Library itself is published under the LGPL; | 
|  | *	 however I decided to publish this code under the plain GPL. | 
|  | */ | 
|  |  | 
|  | #include "mpi-internal.h" | 
|  | #include "longlong.h" | 
|  |  | 
|  | #ifndef UMUL_TIME | 
|  | #define UMUL_TIME 1 | 
|  | #endif | 
|  | #ifndef UDIV_TIME | 
|  | #define UDIV_TIME UMUL_TIME | 
|  | #endif | 
|  |  | 
|  |  | 
|  | mpi_limb_t | 
|  | mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, | 
|  | mpi_limb_t divisor_limb) | 
|  | { | 
|  | mpi_size_t i; | 
|  | mpi_limb_t n1, n0, r; | 
|  | mpi_limb_t dummy __maybe_unused; | 
|  |  | 
|  | /* Botch: Should this be handled at all?  Rely on callers?	*/ | 
|  | if (!dividend_size) | 
|  | return 0; | 
|  |  | 
|  | /* If multiplication is much faster than division, and the | 
|  | * dividend is large, pre-invert the divisor, and use | 
|  | * only multiplications in the inner loop. | 
|  | * | 
|  | * This test should be read: | 
|  | *	 Does it ever help to use udiv_qrnnd_preinv? | 
|  | *	   && Does what we save compensate for the inversion overhead? | 
|  | */ | 
|  | if (UDIV_TIME > (2 * UMUL_TIME + 6) | 
|  | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { | 
|  | int normalization_steps; | 
|  |  | 
|  | normalization_steps = count_leading_zeros(divisor_limb); | 
|  | if (normalization_steps) { | 
|  | mpi_limb_t divisor_limb_inverted; | 
|  |  | 
|  | divisor_limb <<= normalization_steps; | 
|  |  | 
|  | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|  | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|  | * most significant bit (with weight 2**N) implicit. | 
|  | * | 
|  | * Special case for DIVISOR_LIMB == 100...000. | 
|  | */ | 
|  | if (!(divisor_limb << 1)) | 
|  | divisor_limb_inverted = ~(mpi_limb_t)0; | 
|  | else | 
|  | udiv_qrnnd(divisor_limb_inverted, dummy, | 
|  | -divisor_limb, 0, divisor_limb); | 
|  |  | 
|  | n1 = dividend_ptr[dividend_size - 1]; | 
|  | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
|  |  | 
|  | /* Possible optimization: | 
|  | * if (r == 0 | 
|  | * && divisor_limb > ((n1 << normalization_steps) | 
|  | *		       | (dividend_ptr[dividend_size - 2] >> ...))) | 
|  | * ...one division less... | 
|  | */ | 
|  | for (i = dividend_size - 2; i >= 0; i--) { | 
|  | n0 = dividend_ptr[i]; | 
|  | UDIV_QRNND_PREINV(dummy, r, r, | 
|  | ((n1 << normalization_steps) | 
|  | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), | 
|  | divisor_limb, divisor_limb_inverted); | 
|  | n1 = n0; | 
|  | } | 
|  | UDIV_QRNND_PREINV(dummy, r, r, | 
|  | n1 << normalization_steps, | 
|  | divisor_limb, divisor_limb_inverted); | 
|  | return r >> normalization_steps; | 
|  | } else { | 
|  | mpi_limb_t divisor_limb_inverted; | 
|  |  | 
|  | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|  | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|  | * most significant bit (with weight 2**N) implicit. | 
|  | * | 
|  | * Special case for DIVISOR_LIMB == 100...000. | 
|  | */ | 
|  | if (!(divisor_limb << 1)) | 
|  | divisor_limb_inverted = ~(mpi_limb_t)0; | 
|  | else | 
|  | udiv_qrnnd(divisor_limb_inverted, dummy, | 
|  | -divisor_limb, 0, divisor_limb); | 
|  |  | 
|  | i = dividend_size - 1; | 
|  | r = dividend_ptr[i]; | 
|  |  | 
|  | if (r >= divisor_limb) | 
|  | r = 0; | 
|  | else | 
|  | i--; | 
|  |  | 
|  | for ( ; i >= 0; i--) { | 
|  | n0 = dividend_ptr[i]; | 
|  | UDIV_QRNND_PREINV(dummy, r, r, | 
|  | n0, divisor_limb, divisor_limb_inverted); | 
|  | } | 
|  | return r; | 
|  | } | 
|  | } else { | 
|  | if (UDIV_NEEDS_NORMALIZATION) { | 
|  | int normalization_steps; | 
|  |  | 
|  | normalization_steps = count_leading_zeros(divisor_limb); | 
|  | if (normalization_steps) { | 
|  | divisor_limb <<= normalization_steps; | 
|  |  | 
|  | n1 = dividend_ptr[dividend_size - 1]; | 
|  | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
|  |  | 
|  | /* Possible optimization: | 
|  | * if (r == 0 | 
|  | * && divisor_limb > ((n1 << normalization_steps) | 
|  | *		   | (dividend_ptr[dividend_size - 2] >> ...))) | 
|  | * ...one division less... | 
|  | */ | 
|  | for (i = dividend_size - 2; i >= 0; i--) { | 
|  | n0 = dividend_ptr[i]; | 
|  | udiv_qrnnd(dummy, r, r, | 
|  | ((n1 << normalization_steps) | 
|  | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), | 
|  | divisor_limb); | 
|  | n1 = n0; | 
|  | } | 
|  | udiv_qrnnd(dummy, r, r, | 
|  | n1 << normalization_steps, | 
|  | divisor_limb); | 
|  | return r >> normalization_steps; | 
|  | } | 
|  | } | 
|  | /* No normalization needed, either because udiv_qrnnd doesn't require | 
|  | * it, or because DIVISOR_LIMB is already normalized. | 
|  | */ | 
|  | i = dividend_size - 1; | 
|  | r = dividend_ptr[i]; | 
|  |  | 
|  | if (r >= divisor_limb) | 
|  | r = 0; | 
|  | else | 
|  | i--; | 
|  |  | 
|  | for (; i >= 0; i--) { | 
|  | n0 = dividend_ptr[i]; | 
|  | udiv_qrnnd(dummy, r, r, n0, divisor_limb); | 
|  | } | 
|  | return r; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write | 
|  | * the NSIZE-DSIZE least significant quotient limbs at QP | 
|  | * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is | 
|  | * non-zero, generate that many fraction bits and append them after the | 
|  | * other quotient limbs. | 
|  | * Return the most significant limb of the quotient, this is always 0 or 1. | 
|  | * | 
|  | * Preconditions: | 
|  | * 0. NSIZE >= DSIZE. | 
|  | * 1. The most significant bit of the divisor must be set. | 
|  | * 2. QP must either not overlap with the input operands at all, or | 
|  | *    QP + DSIZE >= NP must hold true.	(This means that it's | 
|  | *    possible to put the quotient in the high part of NUM, right after the | 
|  | *    remainder in NUM. | 
|  | * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. | 
|  | */ | 
|  |  | 
|  | mpi_limb_t | 
|  | mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs, | 
|  | mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize) | 
|  | { | 
|  | mpi_limb_t most_significant_q_limb = 0; | 
|  |  | 
|  | switch (dsize) { | 
|  | case 0: | 
|  | /* We are asked to divide by zero, so go ahead and do it!  (To make | 
|  | the compiler not remove this statement, return the value.)  */ | 
|  | /* | 
|  | * existing clients of this function have been modified | 
|  | * not to call it with dsize == 0, so this should not happen | 
|  | */ | 
|  | return 1 / dsize; | 
|  |  | 
|  | case 1: | 
|  | { | 
|  | mpi_size_t i; | 
|  | mpi_limb_t n1; | 
|  | mpi_limb_t d; | 
|  |  | 
|  | d = dp[0]; | 
|  | n1 = np[nsize - 1]; | 
|  |  | 
|  | if (n1 >= d) { | 
|  | n1 -= d; | 
|  | most_significant_q_limb = 1; | 
|  | } | 
|  |  | 
|  | qp += qextra_limbs; | 
|  | for (i = nsize - 2; i >= 0; i--) | 
|  | udiv_qrnnd(qp[i], n1, n1, np[i], d); | 
|  | qp -= qextra_limbs; | 
|  |  | 
|  | for (i = qextra_limbs - 1; i >= 0; i--) | 
|  | udiv_qrnnd(qp[i], n1, n1, 0, d); | 
|  |  | 
|  | np[0] = n1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | { | 
|  | mpi_size_t i; | 
|  | mpi_limb_t n1, n0, n2; | 
|  | mpi_limb_t d1, d0; | 
|  |  | 
|  | np += nsize - 2; | 
|  | d1 = dp[1]; | 
|  | d0 = dp[0]; | 
|  | n1 = np[1]; | 
|  | n0 = np[0]; | 
|  |  | 
|  | if (n1 >= d1 && (n1 > d1 || n0 >= d0)) { | 
|  | sub_ddmmss(n1, n0, n1, n0, d1, d0); | 
|  | most_significant_q_limb = 1; | 
|  | } | 
|  |  | 
|  | for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) { | 
|  | mpi_limb_t q; | 
|  | mpi_limb_t r; | 
|  |  | 
|  | if (i >= qextra_limbs) | 
|  | np--; | 
|  | else | 
|  | np[0] = 0; | 
|  |  | 
|  | if (n1 == d1) { | 
|  | /* Q should be either 111..111 or 111..110.  Need special | 
|  | * treatment of this rare case as normal division would | 
|  | * give overflow.  */ | 
|  | q = ~(mpi_limb_t) 0; | 
|  |  | 
|  | r = n0 + d1; | 
|  | if (r < d1) {	/* Carry in the addition? */ | 
|  | add_ssaaaa(n1, n0, r - d0, | 
|  | np[0], 0, d0); | 
|  | qp[i] = q; | 
|  | continue; | 
|  | } | 
|  | n1 = d0 - (d0 != 0 ? 1 : 0); | 
|  | n0 = -d0; | 
|  | } else { | 
|  | udiv_qrnnd(q, r, n1, n0, d1); | 
|  | umul_ppmm(n1, n0, d0, q); | 
|  | } | 
|  |  | 
|  | n2 = np[0]; | 
|  | q_test: | 
|  | if (n1 > r || (n1 == r && n0 > n2)) { | 
|  | /* The estimated Q was too large.  */ | 
|  | q--; | 
|  | sub_ddmmss(n1, n0, n1, n0, 0, d0); | 
|  | r += d1; | 
|  | if (r >= d1)	/* If not carry, test Q again.  */ | 
|  | goto q_test; | 
|  | } | 
|  |  | 
|  | qp[i] = q; | 
|  | sub_ddmmss(n1, n0, r, n2, n1, n0); | 
|  | } | 
|  | np[1] = n1; | 
|  | np[0] = n0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | { | 
|  | mpi_size_t i; | 
|  | mpi_limb_t dX, d1, n0; | 
|  |  | 
|  | np += nsize - dsize; | 
|  | dX = dp[dsize - 1]; | 
|  | d1 = dp[dsize - 2]; | 
|  | n0 = np[dsize - 1]; | 
|  |  | 
|  | if (n0 >= dX) { | 
|  | if (n0 > dX | 
|  | || mpihelp_cmp(np, dp, dsize - 1) >= 0) { | 
|  | mpihelp_sub_n(np, np, dp, dsize); | 
|  | n0 = np[dsize - 1]; | 
|  | most_significant_q_limb = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) { | 
|  | mpi_limb_t q; | 
|  | mpi_limb_t n1, n2; | 
|  | mpi_limb_t cy_limb; | 
|  |  | 
|  | if (i >= qextra_limbs) { | 
|  | np--; | 
|  | n2 = np[dsize]; | 
|  | } else { | 
|  | n2 = np[dsize - 1]; | 
|  | MPN_COPY_DECR(np + 1, np, dsize - 1); | 
|  | np[0] = 0; | 
|  | } | 
|  |  | 
|  | if (n0 == dX) { | 
|  | /* This might over-estimate q, but it's probably not worth | 
|  | * the extra code here to find out.  */ | 
|  | q = ~(mpi_limb_t) 0; | 
|  | } else { | 
|  | mpi_limb_t r; | 
|  |  | 
|  | udiv_qrnnd(q, r, n0, np[dsize - 1], dX); | 
|  | umul_ppmm(n1, n0, d1, q); | 
|  |  | 
|  | while (n1 > r | 
|  | || (n1 == r | 
|  | && n0 > np[dsize - 2])) { | 
|  | q--; | 
|  | r += dX; | 
|  | if (r < dX)	/* I.e. "carry in previous addition?" */ | 
|  | break; | 
|  | n1 -= n0 < d1; | 
|  | n0 -= d1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Possible optimization: We already have (q * n0) and (1 * n1) | 
|  | * after the calculation of q.  Taking advantage of that, we | 
|  | * could make this loop make two iterations less.  */ | 
|  | cy_limb = mpihelp_submul_1(np, dp, dsize, q); | 
|  |  | 
|  | if (n2 != cy_limb) { | 
|  | mpihelp_add_n(np, np, dp, dsize); | 
|  | q--; | 
|  | } | 
|  |  | 
|  | qp[i] = q; | 
|  | n0 = np[dsize - 1]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return most_significant_q_limb; | 
|  | } | 
|  |  | 
|  | /**************** | 
|  | * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. | 
|  | * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. | 
|  | * Return the single-limb remainder. | 
|  | * There are no constraints on the value of the divisor. | 
|  | * | 
|  | * QUOT_PTR and DIVIDEND_PTR might point to the same limb. | 
|  | */ | 
|  |  | 
|  | mpi_limb_t | 
|  | mpihelp_divmod_1(mpi_ptr_t quot_ptr, | 
|  | mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, | 
|  | mpi_limb_t divisor_limb) | 
|  | { | 
|  | mpi_size_t i; | 
|  | mpi_limb_t n1, n0, r; | 
|  | mpi_limb_t dummy __maybe_unused; | 
|  |  | 
|  | if (!dividend_size) | 
|  | return 0; | 
|  |  | 
|  | /* If multiplication is much faster than division, and the | 
|  | * dividend is large, pre-invert the divisor, and use | 
|  | * only multiplications in the inner loop. | 
|  | * | 
|  | * This test should be read: | 
|  | * Does it ever help to use udiv_qrnnd_preinv? | 
|  | * && Does what we save compensate for the inversion overhead? | 
|  | */ | 
|  | if (UDIV_TIME > (2 * UMUL_TIME + 6) | 
|  | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { | 
|  | int normalization_steps; | 
|  |  | 
|  | normalization_steps = count_leading_zeros(divisor_limb); | 
|  | if (normalization_steps) { | 
|  | mpi_limb_t divisor_limb_inverted; | 
|  |  | 
|  | divisor_limb <<= normalization_steps; | 
|  |  | 
|  | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|  | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|  | * most significant bit (with weight 2**N) implicit. | 
|  | */ | 
|  | /* Special case for DIVISOR_LIMB == 100...000.  */ | 
|  | if (!(divisor_limb << 1)) | 
|  | divisor_limb_inverted = ~(mpi_limb_t)0; | 
|  | else | 
|  | udiv_qrnnd(divisor_limb_inverted, dummy, | 
|  | -divisor_limb, 0, divisor_limb); | 
|  |  | 
|  | n1 = dividend_ptr[dividend_size - 1]; | 
|  | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
|  |  | 
|  | /* Possible optimization: | 
|  | * if (r == 0 | 
|  | * && divisor_limb > ((n1 << normalization_steps) | 
|  | *		       | (dividend_ptr[dividend_size - 2] >> ...))) | 
|  | * ...one division less... | 
|  | */ | 
|  | for (i = dividend_size - 2; i >= 0; i--) { | 
|  | n0 = dividend_ptr[i]; | 
|  | UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r, | 
|  | ((n1 << normalization_steps) | 
|  | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), | 
|  | divisor_limb, divisor_limb_inverted); | 
|  | n1 = n0; | 
|  | } | 
|  | UDIV_QRNND_PREINV(quot_ptr[0], r, r, | 
|  | n1 << normalization_steps, | 
|  | divisor_limb, divisor_limb_inverted); | 
|  | return r >> normalization_steps; | 
|  | } else { | 
|  | mpi_limb_t divisor_limb_inverted; | 
|  |  | 
|  | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
|  | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
|  | * most significant bit (with weight 2**N) implicit. | 
|  | */ | 
|  | /* Special case for DIVISOR_LIMB == 100...000.  */ | 
|  | if (!(divisor_limb << 1)) | 
|  | divisor_limb_inverted = ~(mpi_limb_t) 0; | 
|  | else | 
|  | udiv_qrnnd(divisor_limb_inverted, dummy, | 
|  | -divisor_limb, 0, divisor_limb); | 
|  |  | 
|  | i = dividend_size - 1; | 
|  | r = dividend_ptr[i]; | 
|  |  | 
|  | if (r >= divisor_limb) | 
|  | r = 0; | 
|  | else | 
|  | quot_ptr[i--] = 0; | 
|  |  | 
|  | for ( ; i >= 0; i--) { | 
|  | n0 = dividend_ptr[i]; | 
|  | UDIV_QRNND_PREINV(quot_ptr[i], r, r, | 
|  | n0, divisor_limb, divisor_limb_inverted); | 
|  | } | 
|  | return r; | 
|  | } | 
|  | } else { | 
|  | if (UDIV_NEEDS_NORMALIZATION) { | 
|  | int normalization_steps; | 
|  |  | 
|  | normalization_steps = count_leading_zeros(divisor_limb); | 
|  | if (normalization_steps) { | 
|  | divisor_limb <<= normalization_steps; | 
|  |  | 
|  | n1 = dividend_ptr[dividend_size - 1]; | 
|  | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); | 
|  |  | 
|  | /* Possible optimization: | 
|  | * if (r == 0 | 
|  | * && divisor_limb > ((n1 << normalization_steps) | 
|  | *		   | (dividend_ptr[dividend_size - 2] >> ...))) | 
|  | * ...one division less... | 
|  | */ | 
|  | for (i = dividend_size - 2; i >= 0; i--) { | 
|  | n0 = dividend_ptr[i]; | 
|  | udiv_qrnnd(quot_ptr[i + 1], r, r, | 
|  | ((n1 << normalization_steps) | 
|  | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), | 
|  | divisor_limb); | 
|  | n1 = n0; | 
|  | } | 
|  | udiv_qrnnd(quot_ptr[0], r, r, | 
|  | n1 << normalization_steps, | 
|  | divisor_limb); | 
|  | return r >> normalization_steps; | 
|  | } | 
|  | } | 
|  | /* No normalization needed, either because udiv_qrnnd doesn't require | 
|  | * it, or because DIVISOR_LIMB is already normalized. | 
|  | */ | 
|  | i = dividend_size - 1; | 
|  | r = dividend_ptr[i]; | 
|  |  | 
|  | if (r >= divisor_limb) | 
|  | r = 0; | 
|  | else | 
|  | quot_ptr[i--] = 0; | 
|  |  | 
|  | for (; i >= 0; i--) { | 
|  | n0 = dividend_ptr[i]; | 
|  | udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb); | 
|  | } | 
|  | return r; | 
|  | } | 
|  | } |