| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. | 
 |  * Author: Marc Zyngier <marc.zyngier@arm.com> | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt)	"GICv3: " fmt | 
 |  | 
 | #include <linux/acpi.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpu_pm.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/irqdomain.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kstrtox.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/refcount.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/iopoll.h> | 
 |  | 
 | #include <linux/irqchip.h> | 
 | #include <linux/irqchip/arm-gic-common.h> | 
 | #include <linux/irqchip/arm-gic-v3.h> | 
 | #include <linux/irqchip/arm-gic-v3-prio.h> | 
 | #include <linux/irqchip/irq-partition-percpu.h> | 
 | #include <linux/bitfield.h> | 
 | #include <linux/bits.h> | 
 | #include <linux/arm-smccc.h> | 
 |  | 
 | #include <asm/cputype.h> | 
 | #include <asm/exception.h> | 
 | #include <asm/smp_plat.h> | 
 | #include <asm/virt.h> | 
 |  | 
 | #include "irq-gic-common.h" | 
 |  | 
 | static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ; | 
 | static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI; | 
 |  | 
 | #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0) | 
 | #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1) | 
 | #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 2) | 
 | #define FLAGS_WORKAROUND_INSECURE		(1ULL << 3) | 
 |  | 
 | #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1) | 
 |  | 
 | static struct cpumask broken_rdists __read_mostly __maybe_unused; | 
 |  | 
 | struct redist_region { | 
 | 	void __iomem		*redist_base; | 
 | 	phys_addr_t		phys_base; | 
 | 	bool			single_redist; | 
 | }; | 
 |  | 
 | struct gic_chip_data { | 
 | 	struct fwnode_handle	*fwnode; | 
 | 	phys_addr_t		dist_phys_base; | 
 | 	void __iomem		*dist_base; | 
 | 	struct redist_region	*redist_regions; | 
 | 	struct rdists		rdists; | 
 | 	struct irq_domain	*domain; | 
 | 	u64			redist_stride; | 
 | 	u32			nr_redist_regions; | 
 | 	u64			flags; | 
 | 	bool			has_rss; | 
 | 	unsigned int		ppi_nr; | 
 | 	struct partition_desc	**ppi_descs; | 
 | }; | 
 |  | 
 | #define T241_CHIPS_MAX		4 | 
 | static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly; | 
 | static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum); | 
 |  | 
 | static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum); | 
 |  | 
 | static struct gic_chip_data gic_data __read_mostly; | 
 | static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); | 
 |  | 
 | #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) | 
 | #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) | 
 | #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) | 
 |  | 
 | static bool nmi_support_forbidden; | 
 |  | 
 | /* | 
 |  * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs | 
 |  * are potentially stolen by the secure side. Some code, especially code dealing | 
 |  * with hwirq IDs, is simplified by accounting for all 16. | 
 |  */ | 
 | #define SGI_NR		16 | 
 |  | 
 | /* | 
 |  * The behaviours of RPR and PMR registers differ depending on the value of | 
 |  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the | 
 |  * distributor and redistributors depends on whether security is enabled in the | 
 |  * GIC. | 
 |  * | 
 |  * When security is enabled, non-secure priority values from the (re)distributor | 
 |  * are presented to the GIC CPUIF as follow: | 
 |  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; | 
 |  * | 
 |  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure | 
 |  * EL1 are subject to a similar operation thus matching the priorities presented | 
 |  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, | 
 |  * these values are unchanged by the GIC. | 
 |  * | 
 |  * see GICv3/GICv4 Architecture Specification (IHI0069D): | 
 |  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt | 
 |  *   priorities. | 
 |  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 | 
 |  *   interrupt. | 
 |  */ | 
 | static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); | 
 |  | 
 | static u32 gic_get_pribits(void) | 
 | { | 
 | 	u32 pribits; | 
 |  | 
 | 	pribits = gic_read_ctlr(); | 
 | 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; | 
 | 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; | 
 | 	pribits++; | 
 |  | 
 | 	return pribits; | 
 | } | 
 |  | 
 | static bool gic_has_group0(void) | 
 | { | 
 | 	u32 val; | 
 | 	u32 old_pmr; | 
 |  | 
 | 	old_pmr = gic_read_pmr(); | 
 |  | 
 | 	/* | 
 | 	 * Let's find out if Group0 is under control of EL3 or not by | 
 | 	 * setting the highest possible, non-zero priority in PMR. | 
 | 	 * | 
 | 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in | 
 | 	 * order for the CPU interface to set bit 7, and keep the | 
 | 	 * actual priority in the non-secure range. In the process, it | 
 | 	 * looses the least significant bit and the actual priority | 
 | 	 * becomes 0x80. Reading it back returns 0, indicating that | 
 | 	 * we're don't have access to Group0. | 
 | 	 */ | 
 | 	gic_write_pmr(BIT(8 - gic_get_pribits())); | 
 | 	val = gic_read_pmr(); | 
 |  | 
 | 	gic_write_pmr(old_pmr); | 
 |  | 
 | 	return val != 0; | 
 | } | 
 |  | 
 | static inline bool gic_dist_security_disabled(void) | 
 | { | 
 | 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; | 
 | } | 
 |  | 
 | static bool cpus_have_security_disabled __ro_after_init; | 
 | static bool cpus_have_group0 __ro_after_init; | 
 |  | 
 | static void __init gic_prio_init(void) | 
 | { | 
 | 	bool ds; | 
 |  | 
 | 	cpus_have_group0 = gic_has_group0(); | 
 |  | 
 | 	ds = gic_dist_security_disabled(); | 
 | 	if ((gic_data.flags & FLAGS_WORKAROUND_INSECURE) && !ds) { | 
 | 		if (cpus_have_group0) { | 
 | 			u32 val; | 
 |  | 
 | 			val = readl_relaxed(gic_data.dist_base + GICD_CTLR); | 
 | 			val |= GICD_CTLR_DS; | 
 | 			writel_relaxed(val, gic_data.dist_base + GICD_CTLR); | 
 |  | 
 | 			ds = gic_dist_security_disabled(); | 
 | 			if (ds) | 
 | 				pr_warn("Broken GIC integration, security disabled\n"); | 
 | 		} else { | 
 | 			pr_warn("Broken GIC integration, pNMI forbidden\n"); | 
 | 			nmi_support_forbidden = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cpus_have_security_disabled = ds; | 
 |  | 
 | 	/* | 
 | 	 * How priority values are used by the GIC depends on two things: | 
 | 	 * the security state of the GIC (controlled by the GICD_CTLR.DS bit) | 
 | 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure | 
 | 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the | 
 | 	 * way priorities are presented in ICC_PMR_EL1 and in the distributor: | 
 | 	 * | 
 | 	 * GICD_CTLR.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor | 
 | 	 * ------------------------------------------------------- | 
 | 	 *      1       |      -      |  unchanged  |  unchanged | 
 | 	 * ------------------------------------------------------- | 
 | 	 *      0       |      1      |  non-secure |  non-secure | 
 | 	 * ------------------------------------------------------- | 
 | 	 *      0       |      0      |  unchanged  |  non-secure | 
 | 	 * | 
 | 	 * In the non-secure view reads and writes are modified: | 
 | 	 * | 
 | 	 * - A value written is right-shifted by one and the MSB is set, | 
 | 	 *   forcing the priority into the non-secure range. | 
 | 	 * | 
 | 	 * - A value read is left-shifted by one. | 
 | 	 * | 
 | 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority | 
 | 	 * are both either modified or unchanged, we can use the same set of | 
 | 	 * priorities. | 
 | 	 * | 
 | 	 * In the last case, where only the interrupt priorities are modified to | 
 | 	 * be in the non-secure range, we program the non-secure values into | 
 | 	 * the distributor to match the PMR values we want. | 
 | 	 */ | 
 | 	if (cpus_have_group0 && !cpus_have_security_disabled) { | 
 | 		dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq); | 
 | 		dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi); | 
 | 	} | 
 |  | 
 | 	pr_info("GICD_CTLR.DS=%d, SCR_EL3.FIQ=%d\n", | 
 | 		cpus_have_security_disabled, | 
 | 		!cpus_have_group0); | 
 | } | 
 |  | 
 | /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */ | 
 | static refcount_t *rdist_nmi_refs; | 
 |  | 
 | static struct gic_kvm_info gic_v3_kvm_info __initdata; | 
 | static DEFINE_PER_CPU(bool, has_rss); | 
 |  | 
 | #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4) | 
 | #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist)) | 
 | #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base) | 
 | #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K) | 
 |  | 
 | /* Our default, arbitrary priority value. Linux only uses one anyway. */ | 
 | #define DEFAULT_PMR_VALUE	0xf0 | 
 |  | 
 | enum gic_intid_range { | 
 | 	SGI_RANGE, | 
 | 	PPI_RANGE, | 
 | 	SPI_RANGE, | 
 | 	EPPI_RANGE, | 
 | 	ESPI_RANGE, | 
 | 	LPI_RANGE, | 
 | 	__INVALID_RANGE__ | 
 | }; | 
 |  | 
 | static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) | 
 | { | 
 | 	switch (hwirq) { | 
 | 	case 0 ... 15: | 
 | 		return SGI_RANGE; | 
 | 	case 16 ... 31: | 
 | 		return PPI_RANGE; | 
 | 	case 32 ... 1019: | 
 | 		return SPI_RANGE; | 
 | 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): | 
 | 		return EPPI_RANGE; | 
 | 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): | 
 | 		return ESPI_RANGE; | 
 | 	case 8192 ... GENMASK(23, 0): | 
 | 		return LPI_RANGE; | 
 | 	default: | 
 | 		return __INVALID_RANGE__; | 
 | 	} | 
 | } | 
 |  | 
 | static enum gic_intid_range get_intid_range(struct irq_data *d) | 
 | { | 
 | 	return __get_intid_range(d->hwirq); | 
 | } | 
 |  | 
 | static inline bool gic_irq_in_rdist(struct irq_data *d) | 
 | { | 
 | 	switch (get_intid_range(d)) { | 
 | 	case SGI_RANGE: | 
 | 	case PPI_RANGE: | 
 | 	case EPPI_RANGE: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void __iomem *gic_dist_base_alias(struct irq_data *d) | 
 | { | 
 | 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) { | 
 | 		irq_hw_number_t hwirq = irqd_to_hwirq(d); | 
 | 		u32 chip; | 
 |  | 
 | 		/* | 
 | 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E} | 
 | 		 * registers are directed to the chip that owns the SPI. The | 
 | 		 * the alias region can also be used for writes to the | 
 | 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support | 
 | 		 * for 320 {E}SPIs. Mappings for all 4 chips: | 
 | 		 *    Chip0 = 32-351 | 
 | 		 *    Chip1 = 352-671 | 
 | 		 *    Chip2 = 672-991 | 
 | 		 *    Chip3 = 4096-4415 | 
 | 		 */ | 
 | 		switch (__get_intid_range(hwirq)) { | 
 | 		case SPI_RANGE: | 
 | 			chip = (hwirq - 32) / 320; | 
 | 			break; | 
 | 		case ESPI_RANGE: | 
 | 			chip = 3; | 
 | 			break; | 
 | 		default: | 
 | 			unreachable(); | 
 | 		} | 
 | 		return t241_dist_base_alias[chip]; | 
 | 	} | 
 |  | 
 | 	return gic_data.dist_base; | 
 | } | 
 |  | 
 | static inline void __iomem *gic_dist_base(struct irq_data *d) | 
 | { | 
 | 	switch (get_intid_range(d)) { | 
 | 	case SGI_RANGE: | 
 | 	case PPI_RANGE: | 
 | 	case EPPI_RANGE: | 
 | 		/* SGI+PPI -> SGI_base for this CPU */ | 
 | 		return gic_data_rdist_sgi_base(); | 
 |  | 
 | 	case SPI_RANGE: | 
 | 	case ESPI_RANGE: | 
 | 		/* SPI -> dist_base */ | 
 | 		return gic_data.dist_base; | 
 |  | 
 | 	default: | 
 | 		return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) | 
 | { | 
 | 	u32 val; | 
 | 	int ret; | 
 |  | 
 | 	ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit), | 
 | 						1, USEC_PER_SEC); | 
 | 	if (ret == -ETIMEDOUT) | 
 | 		pr_err_ratelimited("RWP timeout, gone fishing\n"); | 
 | } | 
 |  | 
 | /* Wait for completion of a distributor change */ | 
 | static void gic_dist_wait_for_rwp(void) | 
 | { | 
 | 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP); | 
 | } | 
 |  | 
 | /* Wait for completion of a redistributor change */ | 
 | static void gic_redist_wait_for_rwp(void) | 
 | { | 
 | 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); | 
 | } | 
 |  | 
 | static void gic_enable_redist(bool enable) | 
 | { | 
 | 	void __iomem *rbase; | 
 | 	u32 val; | 
 | 	int ret; | 
 |  | 
 | 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) | 
 | 		return; | 
 |  | 
 | 	rbase = gic_data_rdist_rd_base(); | 
 |  | 
 | 	val = readl_relaxed(rbase + GICR_WAKER); | 
 | 	if (enable) | 
 | 		/* Wake up this CPU redistributor */ | 
 | 		val &= ~GICR_WAKER_ProcessorSleep; | 
 | 	else | 
 | 		val |= GICR_WAKER_ProcessorSleep; | 
 | 	writel_relaxed(val, rbase + GICR_WAKER); | 
 |  | 
 | 	if (!enable) {		/* Check that GICR_WAKER is writeable */ | 
 | 		val = readl_relaxed(rbase + GICR_WAKER); | 
 | 		if (!(val & GICR_WAKER_ProcessorSleep)) | 
 | 			return;	/* No PM support in this redistributor */ | 
 | 	} | 
 |  | 
 | 	ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val, | 
 | 						enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep), | 
 | 						1, USEC_PER_SEC); | 
 | 	if (ret == -ETIMEDOUT) { | 
 | 		pr_err_ratelimited("redistributor failed to %s...\n", | 
 | 				   enable ? "wakeup" : "sleep"); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Routines to disable, enable, EOI and route interrupts | 
 |  */ | 
 | static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) | 
 | { | 
 | 	switch (get_intid_range(d)) { | 
 | 	case SGI_RANGE: | 
 | 	case PPI_RANGE: | 
 | 	case SPI_RANGE: | 
 | 		*index = d->hwirq; | 
 | 		return offset; | 
 | 	case EPPI_RANGE: | 
 | 		/* | 
 | 		 * Contrary to the ESPI range, the EPPI range is contiguous | 
 | 		 * to the PPI range in the registers, so let's adjust the | 
 | 		 * displacement accordingly. Consistency is overrated. | 
 | 		 */ | 
 | 		*index = d->hwirq - EPPI_BASE_INTID + 32; | 
 | 		return offset; | 
 | 	case ESPI_RANGE: | 
 | 		*index = d->hwirq - ESPI_BASE_INTID; | 
 | 		switch (offset) { | 
 | 		case GICD_ISENABLER: | 
 | 			return GICD_ISENABLERnE; | 
 | 		case GICD_ICENABLER: | 
 | 			return GICD_ICENABLERnE; | 
 | 		case GICD_ISPENDR: | 
 | 			return GICD_ISPENDRnE; | 
 | 		case GICD_ICPENDR: | 
 | 			return GICD_ICPENDRnE; | 
 | 		case GICD_ISACTIVER: | 
 | 			return GICD_ISACTIVERnE; | 
 | 		case GICD_ICACTIVER: | 
 | 			return GICD_ICACTIVERnE; | 
 | 		case GICD_IPRIORITYR: | 
 | 			return GICD_IPRIORITYRnE; | 
 | 		case GICD_ICFGR: | 
 | 			return GICD_ICFGRnE; | 
 | 		case GICD_IROUTER: | 
 | 			return GICD_IROUTERnE; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	WARN_ON(1); | 
 | 	*index = d->hwirq; | 
 | 	return offset; | 
 | } | 
 |  | 
 | static int gic_peek_irq(struct irq_data *d, u32 offset) | 
 | { | 
 | 	void __iomem *base; | 
 | 	u32 index, mask; | 
 |  | 
 | 	offset = convert_offset_index(d, offset, &index); | 
 | 	mask = 1 << (index % 32); | 
 |  | 
 | 	if (gic_irq_in_rdist(d)) | 
 | 		base = gic_data_rdist_sgi_base(); | 
 | 	else | 
 | 		base = gic_dist_base_alias(d); | 
 |  | 
 | 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); | 
 | } | 
 |  | 
 | static void gic_poke_irq(struct irq_data *d, u32 offset) | 
 | { | 
 | 	void __iomem *base; | 
 | 	u32 index, mask; | 
 |  | 
 | 	offset = convert_offset_index(d, offset, &index); | 
 | 	mask = 1 << (index % 32); | 
 |  | 
 | 	if (gic_irq_in_rdist(d)) | 
 | 		base = gic_data_rdist_sgi_base(); | 
 | 	else | 
 | 		base = gic_data.dist_base; | 
 |  | 
 | 	writel_relaxed(mask, base + offset + (index / 32) * 4); | 
 | } | 
 |  | 
 | static void gic_mask_irq(struct irq_data *d) | 
 | { | 
 | 	gic_poke_irq(d, GICD_ICENABLER); | 
 | 	if (gic_irq_in_rdist(d)) | 
 | 		gic_redist_wait_for_rwp(); | 
 | 	else | 
 | 		gic_dist_wait_for_rwp(); | 
 | } | 
 |  | 
 | static void gic_eoimode1_mask_irq(struct irq_data *d) | 
 | { | 
 | 	gic_mask_irq(d); | 
 | 	/* | 
 | 	 * When masking a forwarded interrupt, make sure it is | 
 | 	 * deactivated as well. | 
 | 	 * | 
 | 	 * This ensures that an interrupt that is getting | 
 | 	 * disabled/masked will not get "stuck", because there is | 
 | 	 * noone to deactivate it (guest is being terminated). | 
 | 	 */ | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 		gic_poke_irq(d, GICD_ICACTIVER); | 
 | } | 
 |  | 
 | static void gic_unmask_irq(struct irq_data *d) | 
 | { | 
 | 	gic_poke_irq(d, GICD_ISENABLER); | 
 | } | 
 |  | 
 | static inline bool gic_supports_nmi(void) | 
 | { | 
 | 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && | 
 | 	       static_branch_likely(&supports_pseudo_nmis); | 
 | } | 
 |  | 
 | static int gic_irq_set_irqchip_state(struct irq_data *d, | 
 | 				     enum irqchip_irq_state which, bool val) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (which) { | 
 | 	case IRQCHIP_STATE_PENDING: | 
 | 		reg = val ? GICD_ISPENDR : GICD_ICPENDR; | 
 | 		break; | 
 |  | 
 | 	case IRQCHIP_STATE_ACTIVE: | 
 | 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; | 
 | 		break; | 
 |  | 
 | 	case IRQCHIP_STATE_MASKED: | 
 | 		if (val) { | 
 | 			gic_mask_irq(d); | 
 | 			return 0; | 
 | 		} | 
 | 		reg = GICD_ISENABLER; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	gic_poke_irq(d, reg); | 
 |  | 
 | 	/* | 
 | 	 * Force read-back to guarantee that the active state has taken | 
 | 	 * effect, and won't race with a guest-driven deactivation. | 
 | 	 */ | 
 | 	if (reg == GICD_ISACTIVER) | 
 | 		gic_peek_irq(d, reg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gic_irq_get_irqchip_state(struct irq_data *d, | 
 | 				     enum irqchip_irq_state which, bool *val) | 
 | { | 
 | 	if (d->hwirq >= 8192) /* PPI/SPI only */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (which) { | 
 | 	case IRQCHIP_STATE_PENDING: | 
 | 		*val = gic_peek_irq(d, GICD_ISPENDR); | 
 | 		break; | 
 |  | 
 | 	case IRQCHIP_STATE_ACTIVE: | 
 | 		*val = gic_peek_irq(d, GICD_ISACTIVER); | 
 | 		break; | 
 |  | 
 | 	case IRQCHIP_STATE_MASKED: | 
 | 		*val = !gic_peek_irq(d, GICD_ISENABLER); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void gic_irq_set_prio(struct irq_data *d, u8 prio) | 
 | { | 
 | 	void __iomem *base = gic_dist_base(d); | 
 | 	u32 offset, index; | 
 |  | 
 | 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index); | 
 |  | 
 | 	writeb_relaxed(prio, base + offset + index); | 
 | } | 
 |  | 
 | static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) | 
 | { | 
 | 	switch (__get_intid_range(hwirq)) { | 
 | 	case PPI_RANGE: | 
 | 		return hwirq - 16; | 
 | 	case EPPI_RANGE: | 
 | 		return hwirq - EPPI_BASE_INTID + 16; | 
 | 	default: | 
 | 		unreachable(); | 
 | 	} | 
 | } | 
 |  | 
 | static u32 __gic_get_rdist_index(irq_hw_number_t hwirq) | 
 | { | 
 | 	switch (__get_intid_range(hwirq)) { | 
 | 	case SGI_RANGE: | 
 | 	case PPI_RANGE: | 
 | 		return hwirq; | 
 | 	case EPPI_RANGE: | 
 | 		return hwirq - EPPI_BASE_INTID + 32; | 
 | 	default: | 
 | 		unreachable(); | 
 | 	} | 
 | } | 
 |  | 
 | static u32 gic_get_rdist_index(struct irq_data *d) | 
 | { | 
 | 	return __gic_get_rdist_index(d->hwirq); | 
 | } | 
 |  | 
 | static int gic_irq_nmi_setup(struct irq_data *d) | 
 | { | 
 | 	struct irq_desc *desc = irq_to_desc(d->irq); | 
 |  | 
 | 	if (!gic_supports_nmi()) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (gic_peek_irq(d, GICD_ISENABLER)) { | 
 | 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A secondary irq_chip should be in charge of LPI request, | 
 | 	 * it should not be possible to get there | 
 | 	 */ | 
 | 	if (WARN_ON(irqd_to_hwirq(d) >= 8192)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* desc lock should already be held */ | 
 | 	if (gic_irq_in_rdist(d)) { | 
 | 		u32 idx = gic_get_rdist_index(d); | 
 |  | 
 | 		/* | 
 | 		 * Setting up a percpu interrupt as NMI, only switch handler | 
 | 		 * for first NMI | 
 | 		 */ | 
 | 		if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) { | 
 | 			refcount_set(&rdist_nmi_refs[idx], 1); | 
 | 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi; | 
 | 		} | 
 | 	} else { | 
 | 		desc->handle_irq = handle_fasteoi_nmi; | 
 | 	} | 
 |  | 
 | 	gic_irq_set_prio(d, dist_prio_nmi); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void gic_irq_nmi_teardown(struct irq_data *d) | 
 | { | 
 | 	struct irq_desc *desc = irq_to_desc(d->irq); | 
 |  | 
 | 	if (WARN_ON(!gic_supports_nmi())) | 
 | 		return; | 
 |  | 
 | 	if (gic_peek_irq(d, GICD_ISENABLER)) { | 
 | 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A secondary irq_chip should be in charge of LPI request, | 
 | 	 * it should not be possible to get there | 
 | 	 */ | 
 | 	if (WARN_ON(irqd_to_hwirq(d) >= 8192)) | 
 | 		return; | 
 |  | 
 | 	/* desc lock should already be held */ | 
 | 	if (gic_irq_in_rdist(d)) { | 
 | 		u32 idx = gic_get_rdist_index(d); | 
 |  | 
 | 		/* Tearing down NMI, only switch handler for last NMI */ | 
 | 		if (refcount_dec_and_test(&rdist_nmi_refs[idx])) | 
 | 			desc->handle_irq = handle_percpu_devid_irq; | 
 | 	} else { | 
 | 		desc->handle_irq = handle_fasteoi_irq; | 
 | 	} | 
 |  | 
 | 	gic_irq_set_prio(d, dist_prio_irq); | 
 | } | 
 |  | 
 | static bool gic_arm64_erratum_2941627_needed(struct irq_data *d) | 
 | { | 
 | 	enum gic_intid_range range; | 
 |  | 
 | 	if (!static_branch_unlikely(&gic_arm64_2941627_erratum)) | 
 | 		return false; | 
 |  | 
 | 	range = get_intid_range(d); | 
 |  | 
 | 	/* | 
 | 	 * The workaround is needed if the IRQ is an SPI and | 
 | 	 * the target cpu is different from the one we are | 
 | 	 * executing on. | 
 | 	 */ | 
 | 	return (range == SPI_RANGE || range == ESPI_RANGE) && | 
 | 		!cpumask_test_cpu(raw_smp_processor_id(), | 
 | 				  irq_data_get_effective_affinity_mask(d)); | 
 | } | 
 |  | 
 | static void gic_eoi_irq(struct irq_data *d) | 
 | { | 
 | 	write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1); | 
 | 	isb(); | 
 |  | 
 | 	if (gic_arm64_erratum_2941627_needed(d)) { | 
 | 		/* | 
 | 		 * Make sure the GIC stream deactivate packet | 
 | 		 * issued by ICC_EOIR1_EL1 has completed before | 
 | 		 * deactivating through GICD_IACTIVER. | 
 | 		 */ | 
 | 		dsb(sy); | 
 | 		gic_poke_irq(d, GICD_ICACTIVER); | 
 | 	} | 
 | } | 
 |  | 
 | static void gic_eoimode1_eoi_irq(struct irq_data *d) | 
 | { | 
 | 	/* | 
 | 	 * No need to deactivate an LPI, or an interrupt that | 
 | 	 * is is getting forwarded to a vcpu. | 
 | 	 */ | 
 | 	if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) | 
 | 		return; | 
 |  | 
 | 	if (!gic_arm64_erratum_2941627_needed(d)) | 
 | 		gic_write_dir(irqd_to_hwirq(d)); | 
 | 	else | 
 | 		gic_poke_irq(d, GICD_ICACTIVER); | 
 | } | 
 |  | 
 | static int gic_set_type(struct irq_data *d, unsigned int type) | 
 | { | 
 | 	irq_hw_number_t irq = irqd_to_hwirq(d); | 
 | 	enum gic_intid_range range; | 
 | 	void __iomem *base; | 
 | 	u32 offset, index; | 
 | 	int ret; | 
 |  | 
 | 	range = get_intid_range(d); | 
 |  | 
 | 	/* Interrupt configuration for SGIs can't be changed */ | 
 | 	if (range == SGI_RANGE) | 
 | 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; | 
 |  | 
 | 	/* SPIs have restrictions on the supported types */ | 
 | 	if ((range == SPI_RANGE || range == ESPI_RANGE) && | 
 | 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (gic_irq_in_rdist(d)) | 
 | 		base = gic_data_rdist_sgi_base(); | 
 | 	else | 
 | 		base = gic_dist_base_alias(d); | 
 |  | 
 | 	offset = convert_offset_index(d, GICD_ICFGR, &index); | 
 |  | 
 | 	ret = gic_configure_irq(index, type, base + offset); | 
 | 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { | 
 | 		/* Misconfigured PPIs are usually not fatal */ | 
 | 		pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq); | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) | 
 | { | 
 | 	if (get_intid_range(d) == SGI_RANGE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (vcpu) | 
 | 		irqd_set_forwarded_to_vcpu(d); | 
 | 	else | 
 | 		irqd_clr_forwarded_to_vcpu(d); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 gic_cpu_to_affinity(int cpu) | 
 | { | 
 | 	u64 mpidr = cpu_logical_map(cpu); | 
 | 	u64 aff; | 
 |  | 
 | 	/* ASR8601 needs to have its affinities shifted down... */ | 
 | 	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001)) | 
 | 		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	| | 
 | 			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8)); | 
 |  | 
 | 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | | 
 | 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | | 
 | 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  | | 
 | 	       MPIDR_AFFINITY_LEVEL(mpidr, 0)); | 
 |  | 
 | 	return aff; | 
 | } | 
 |  | 
 | static void gic_deactivate_unhandled(u32 irqnr) | 
 | { | 
 | 	if (static_branch_likely(&supports_deactivate_key)) { | 
 | 		if (irqnr < 8192) | 
 | 			gic_write_dir(irqnr); | 
 | 	} else { | 
 | 		write_gicreg(irqnr, ICC_EOIR1_EL1); | 
 | 		isb(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Follow a read of the IAR with any HW maintenance that needs to happen prior | 
 |  * to invoking the relevant IRQ handler. We must do two things: | 
 |  * | 
 |  * (1) Ensure instruction ordering between a read of IAR and subsequent | 
 |  *     instructions in the IRQ handler using an ISB. | 
 |  * | 
 |  *     It is possible for the IAR to report an IRQ which was signalled *after* | 
 |  *     the CPU took an IRQ exception as multiple interrupts can race to be | 
 |  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or | 
 |  *     later interrupts could be prioritized by the GIC. | 
 |  * | 
 |  *     For devices which are tightly coupled to the CPU, such as PMUs, a | 
 |  *     context synchronization event is necessary to ensure that system | 
 |  *     register state is not stale, as these may have been indirectly written | 
 |  *     *after* exception entry. | 
 |  * | 
 |  * (2) Execute an interrupt priority drop when EOI mode 1 is in use. | 
 |  */ | 
 | static inline void gic_complete_ack(u32 irqnr) | 
 | { | 
 | 	if (static_branch_likely(&supports_deactivate_key)) | 
 | 		write_gicreg(irqnr, ICC_EOIR1_EL1); | 
 |  | 
 | 	isb(); | 
 | } | 
 |  | 
 | static bool gic_rpr_is_nmi_prio(void) | 
 | { | 
 | 	if (!gic_supports_nmi()) | 
 | 		return false; | 
 |  | 
 | 	return unlikely(gic_read_rpr() == GICV3_PRIO_NMI); | 
 | } | 
 |  | 
 | static bool gic_irqnr_is_special(u32 irqnr) | 
 | { | 
 | 	return irqnr >= 1020 && irqnr <= 1023; | 
 | } | 
 |  | 
 | static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) | 
 | { | 
 | 	if (gic_irqnr_is_special(irqnr)) | 
 | 		return; | 
 |  | 
 | 	gic_complete_ack(irqnr); | 
 |  | 
 | 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) { | 
 | 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr); | 
 | 		gic_deactivate_unhandled(irqnr); | 
 | 	} | 
 | } | 
 |  | 
 | static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) | 
 | { | 
 | 	if (gic_irqnr_is_special(irqnr)) | 
 | 		return; | 
 |  | 
 | 	gic_complete_ack(irqnr); | 
 |  | 
 | 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) { | 
 | 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr); | 
 | 		gic_deactivate_unhandled(irqnr); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * An exception has been taken from a context with IRQs enabled, and this could | 
 |  * be an IRQ or an NMI. | 
 |  * | 
 |  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear | 
 |  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, | 
 |  * after handling any NMI but before handling any IRQ. | 
 |  * | 
 |  * The entry code has performed IRQ entry, and if an NMI is detected we must | 
 |  * perform NMI entry/exit around invoking the handler. | 
 |  */ | 
 | static void __gic_handle_irq_from_irqson(struct pt_regs *regs) | 
 | { | 
 | 	bool is_nmi; | 
 | 	u32 irqnr; | 
 |  | 
 | 	irqnr = gic_read_iar(); | 
 |  | 
 | 	is_nmi = gic_rpr_is_nmi_prio(); | 
 |  | 
 | 	if (is_nmi) { | 
 | 		nmi_enter(); | 
 | 		__gic_handle_nmi(irqnr, regs); | 
 | 		nmi_exit(); | 
 | 	} | 
 |  | 
 | 	if (gic_prio_masking_enabled()) { | 
 | 		gic_pmr_mask_irqs(); | 
 | 		gic_arch_enable_irqs(); | 
 | 	} | 
 |  | 
 | 	if (!is_nmi) | 
 | 		__gic_handle_irq(irqnr, regs); | 
 | } | 
 |  | 
 | /* | 
 |  * An exception has been taken from a context with IRQs disabled, which can only | 
 |  * be an NMI. | 
 |  * | 
 |  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave | 
 |  * DAIF.IF (and ICC_PMR_EL1) unchanged. | 
 |  * | 
 |  * The entry code has performed NMI entry. | 
 |  */ | 
 | static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) | 
 | { | 
 | 	u64 pmr; | 
 | 	u32 irqnr; | 
 |  | 
 | 	/* | 
 | 	 * We were in a context with IRQs disabled. However, the | 
 | 	 * entry code has set PMR to a value that allows any | 
 | 	 * interrupt to be acknowledged, and not just NMIs. This can | 
 | 	 * lead to surprising effects if the NMI has been retired in | 
 | 	 * the meantime, and that there is an IRQ pending. The IRQ | 
 | 	 * would then be taken in NMI context, something that nobody | 
 | 	 * wants to debug twice. | 
 | 	 * | 
 | 	 * Until we sort this, drop PMR again to a level that will | 
 | 	 * actually only allow NMIs before reading IAR, and then | 
 | 	 * restore it to what it was. | 
 | 	 */ | 
 | 	pmr = gic_read_pmr(); | 
 | 	gic_pmr_mask_irqs(); | 
 | 	isb(); | 
 | 	irqnr = gic_read_iar(); | 
 | 	gic_write_pmr(pmr); | 
 |  | 
 | 	__gic_handle_nmi(irqnr, regs); | 
 | } | 
 |  | 
 | static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) | 
 | { | 
 | 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) | 
 | 		__gic_handle_irq_from_irqsoff(regs); | 
 | 	else | 
 | 		__gic_handle_irq_from_irqson(regs); | 
 | } | 
 |  | 
 | static void __init gic_dist_init(void) | 
 | { | 
 | 	unsigned int i; | 
 | 	u64 affinity; | 
 | 	void __iomem *base = gic_data.dist_base; | 
 | 	u32 val; | 
 |  | 
 | 	/* Disable the distributor */ | 
 | 	writel_relaxed(0, base + GICD_CTLR); | 
 | 	gic_dist_wait_for_rwp(); | 
 |  | 
 | 	/* | 
 | 	 * Configure SPIs as non-secure Group-1. This will only matter | 
 | 	 * if the GIC only has a single security state. This will not | 
 | 	 * do the right thing if the kernel is running in secure mode, | 
 | 	 * but that's not the intended use case anyway. | 
 | 	 */ | 
 | 	for (i = 32; i < GIC_LINE_NR; i += 32) | 
 | 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8); | 
 |  | 
 | 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */ | 
 | 	for (i = 0; i < GIC_ESPI_NR; i += 32) { | 
 | 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); | 
 | 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < GIC_ESPI_NR; i += 32) | 
 | 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); | 
 |  | 
 | 	for (i = 0; i < GIC_ESPI_NR; i += 16) | 
 | 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4); | 
 |  | 
 | 	for (i = 0; i < GIC_ESPI_NR; i += 4) | 
 | 		writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq), | 
 | 			       base + GICD_IPRIORITYRnE + i); | 
 |  | 
 | 	/* Now do the common stuff */ | 
 | 	gic_dist_config(base, GIC_LINE_NR, dist_prio_irq); | 
 |  | 
 | 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; | 
 | 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { | 
 | 		pr_info("Enabling SGIs without active state\n"); | 
 | 		val |= GICD_CTLR_nASSGIreq; | 
 | 	} | 
 |  | 
 | 	/* Enable distributor with ARE, Group1, and wait for it to drain */ | 
 | 	writel_relaxed(val, base + GICD_CTLR); | 
 | 	gic_dist_wait_for_rwp(); | 
 |  | 
 | 	/* | 
 | 	 * Set all global interrupts to the boot CPU only. ARE must be | 
 | 	 * enabled. | 
 | 	 */ | 
 | 	affinity = gic_cpu_to_affinity(smp_processor_id()); | 
 | 	for (i = 32; i < GIC_LINE_NR; i++) | 
 | 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); | 
 |  | 
 | 	for (i = 0; i < GIC_ESPI_NR; i++) | 
 | 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); | 
 | } | 
 |  | 
 | static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) | 
 | { | 
 | 	int ret = -ENODEV; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < gic_data.nr_redist_regions; i++) { | 
 | 		void __iomem *ptr = gic_data.redist_regions[i].redist_base; | 
 | 		u64 typer; | 
 | 		u32 reg; | 
 |  | 
 | 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; | 
 | 		if (reg != GIC_PIDR2_ARCH_GICv3 && | 
 | 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ | 
 | 			pr_warn("No redistributor present @%p\n", ptr); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		do { | 
 | 			typer = gic_read_typer(ptr + GICR_TYPER); | 
 | 			ret = fn(gic_data.redist_regions + i, ptr); | 
 | 			if (!ret) | 
 | 				return 0; | 
 |  | 
 | 			if (gic_data.redist_regions[i].single_redist) | 
 | 				break; | 
 |  | 
 | 			if (gic_data.redist_stride) { | 
 | 				ptr += gic_data.redist_stride; | 
 | 			} else { | 
 | 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ | 
 | 				if (typer & GICR_TYPER_VLPIS) | 
 | 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ | 
 | 			} | 
 | 		} while (!(typer & GICR_TYPER_LAST)); | 
 | 	} | 
 |  | 
 | 	return ret ? -ENODEV : 0; | 
 | } | 
 |  | 
 | static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) | 
 | { | 
 | 	unsigned long mpidr; | 
 | 	u64 typer; | 
 | 	u32 aff; | 
 |  | 
 | 	/* | 
 | 	 * Convert affinity to a 32bit value that can be matched to | 
 | 	 * GICR_TYPER bits [63:32]. | 
 | 	 */ | 
 | 	mpidr = gic_cpu_to_affinity(smp_processor_id()); | 
 |  | 
 | 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | | 
 | 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | | 
 | 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | | 
 | 	       MPIDR_AFFINITY_LEVEL(mpidr, 0)); | 
 |  | 
 | 	typer = gic_read_typer(ptr + GICR_TYPER); | 
 | 	if ((typer >> 32) == aff) { | 
 | 		u64 offset = ptr - region->redist_base; | 
 | 		raw_spin_lock_init(&gic_data_rdist()->rd_lock); | 
 | 		gic_data_rdist_rd_base() = ptr; | 
 | 		gic_data_rdist()->phys_base = region->phys_base + offset; | 
 |  | 
 | 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n", | 
 | 			smp_processor_id(), mpidr, | 
 | 			(int)(region - gic_data.redist_regions), | 
 | 			&gic_data_rdist()->phys_base); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Try next one */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gic_populate_rdist(void) | 
 | { | 
 | 	if (gic_iterate_rdists(__gic_populate_rdist) == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* We couldn't even deal with ourselves... */ | 
 | 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", | 
 | 	     smp_processor_id(), | 
 | 	     (unsigned long)cpu_logical_map(smp_processor_id())); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int __gic_update_rdist_properties(struct redist_region *region, | 
 | 					 void __iomem *ptr) | 
 | { | 
 | 	u64 typer = gic_read_typer(ptr + GICR_TYPER); | 
 | 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR); | 
 |  | 
 | 	/* Boot-time cleanup */ | 
 | 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { | 
 | 		u64 val; | 
 |  | 
 | 		/* Deactivate any present vPE */ | 
 | 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); | 
 | 		if (val & GICR_VPENDBASER_Valid) | 
 | 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, | 
 | 					      ptr + SZ_128K + GICR_VPENDBASER); | 
 |  | 
 | 		/* Mark the VPE table as invalid */ | 
 | 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); | 
 | 		val &= ~GICR_VPROPBASER_4_1_VALID; | 
 | 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); | 
 | 	} | 
 |  | 
 | 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); | 
 |  | 
 | 	/* | 
 | 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the | 
 | 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI | 
 | 	 * that the ITS driver can make use of for LPIs (and not VLPIs). | 
 | 	 * | 
 | 	 * These are 3 different ways to express the same thing, depending | 
 | 	 * on the revision of the architecture and its relaxations over | 
 | 	 * time. Just group them under the 'direct_lpi' banner. | 
 | 	 */ | 
 | 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); | 
 | 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | | 
 | 					   !!(ctlr & GICR_CTLR_IR) | | 
 | 					   gic_data.rdists.has_rvpeid); | 
 | 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); | 
 |  | 
 | 	/* Detect non-sensical configurations */ | 
 | 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { | 
 | 		gic_data.rdists.has_direct_lpi = false; | 
 | 		gic_data.rdists.has_vlpis = false; | 
 | 		gic_data.rdists.has_rvpeid = false; | 
 | 	} | 
 |  | 
 | 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void gic_update_rdist_properties(void) | 
 | { | 
 | 	gic_data.ppi_nr = UINT_MAX; | 
 | 	gic_iterate_rdists(__gic_update_rdist_properties); | 
 | 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) | 
 | 		gic_data.ppi_nr = 0; | 
 | 	pr_info("GICv3 features: %d PPIs%s%s\n", | 
 | 		gic_data.ppi_nr, | 
 | 		gic_data.has_rss ? ", RSS" : "", | 
 | 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : ""); | 
 |  | 
 | 	if (gic_data.rdists.has_vlpis) | 
 | 		pr_info("GICv4 features: %s%s%s\n", | 
 | 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "", | 
 | 			gic_data.rdists.has_rvpeid ? "RVPEID " : "", | 
 | 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : ""); | 
 | } | 
 |  | 
 | static void gic_cpu_sys_reg_enable(void) | 
 | { | 
 | 	/* | 
 | 	 * Need to check that the SRE bit has actually been set. If | 
 | 	 * not, it means that SRE is disabled at EL2. We're going to | 
 | 	 * die painfully, and there is nothing we can do about it. | 
 | 	 * | 
 | 	 * Kindly inform the luser. | 
 | 	 */ | 
 | 	if (!gic_enable_sre()) | 
 | 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); | 
 |  | 
 | } | 
 |  | 
 | static void gic_cpu_sys_reg_init(void) | 
 | { | 
 | 	int i, cpu = smp_processor_id(); | 
 | 	u64 mpidr = gic_cpu_to_affinity(cpu); | 
 | 	u64 need_rss = MPIDR_RS(mpidr); | 
 | 	bool group0; | 
 | 	u32 pribits; | 
 |  | 
 | 	pribits = gic_get_pribits(); | 
 |  | 
 | 	group0 = gic_has_group0(); | 
 |  | 
 | 	/* Set priority mask register */ | 
 | 	if (!gic_prio_masking_enabled()) { | 
 | 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); | 
 | 	} else if (gic_supports_nmi()) { | 
 | 		/* | 
 | 		 * Check that all CPUs use the same priority space. | 
 | 		 * | 
 | 		 * If there's a mismatch with the boot CPU, the system is | 
 | 		 * likely to die as interrupt masking will not work properly on | 
 | 		 * all CPUs. | 
 | 		 */ | 
 | 		WARN_ON(group0 != cpus_have_group0); | 
 | 		WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some firmwares hand over to the kernel with the BPR changed from | 
 | 	 * its reset value (and with a value large enough to prevent | 
 | 	 * any pre-emptive interrupts from working at all). Writing a zero | 
 | 	 * to BPR restores is reset value. | 
 | 	 */ | 
 | 	gic_write_bpr1(0); | 
 |  | 
 | 	if (static_branch_likely(&supports_deactivate_key)) { | 
 | 		/* EOI drops priority only (mode 1) */ | 
 | 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); | 
 | 	} else { | 
 | 		/* EOI deactivates interrupt too (mode 0) */ | 
 | 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); | 
 | 	} | 
 |  | 
 | 	/* Always whack Group0 before Group1 */ | 
 | 	if (group0) { | 
 | 		switch(pribits) { | 
 | 		case 8: | 
 | 		case 7: | 
 | 			write_gicreg(0, ICC_AP0R3_EL1); | 
 | 			write_gicreg(0, ICC_AP0R2_EL1); | 
 | 			fallthrough; | 
 | 		case 6: | 
 | 			write_gicreg(0, ICC_AP0R1_EL1); | 
 | 			fallthrough; | 
 | 		case 5: | 
 | 		case 4: | 
 | 			write_gicreg(0, ICC_AP0R0_EL1); | 
 | 		} | 
 |  | 
 | 		isb(); | 
 | 	} | 
 |  | 
 | 	switch(pribits) { | 
 | 	case 8: | 
 | 	case 7: | 
 | 		write_gicreg(0, ICC_AP1R3_EL1); | 
 | 		write_gicreg(0, ICC_AP1R2_EL1); | 
 | 		fallthrough; | 
 | 	case 6: | 
 | 		write_gicreg(0, ICC_AP1R1_EL1); | 
 | 		fallthrough; | 
 | 	case 5: | 
 | 	case 4: | 
 | 		write_gicreg(0, ICC_AP1R0_EL1); | 
 | 	} | 
 |  | 
 | 	isb(); | 
 |  | 
 | 	/* ... and let's hit the road... */ | 
 | 	gic_write_grpen1(1); | 
 |  | 
 | 	/* Keep the RSS capability status in per_cpu variable */ | 
 | 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); | 
 |  | 
 | 	/* Check all the CPUs have capable of sending SGIs to other CPUs */ | 
 | 	for_each_online_cpu(i) { | 
 | 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); | 
 |  | 
 | 		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i)); | 
 | 		if (need_rss && (!have_rss)) | 
 | 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n", | 
 | 				cpu, (unsigned long)mpidr, | 
 | 				i, (unsigned long)gic_cpu_to_affinity(i)); | 
 | 	} | 
 |  | 
 | 	/** | 
 | 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, | 
 | 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED | 
 | 	 * UNPREDICTABLE choice of : | 
 | 	 *   - The write is ignored. | 
 | 	 *   - The RS field is treated as 0. | 
 | 	 */ | 
 | 	if (need_rss && (!gic_data.has_rss)) | 
 | 		pr_crit_once("RSS is required but GICD doesn't support it\n"); | 
 | } | 
 |  | 
 | static bool gicv3_nolpi; | 
 |  | 
 | static int __init gicv3_nolpi_cfg(char *buf) | 
 | { | 
 | 	return kstrtobool(buf, &gicv3_nolpi); | 
 | } | 
 | early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg); | 
 |  | 
 | static int gic_dist_supports_lpis(void) | 
 | { | 
 | 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && | 
 | 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && | 
 | 		!gicv3_nolpi); | 
 | } | 
 |  | 
 | static void gic_cpu_init(void) | 
 | { | 
 | 	void __iomem *rbase; | 
 | 	int i; | 
 |  | 
 | 	/* Register ourselves with the rest of the world */ | 
 | 	if (gic_populate_rdist()) | 
 | 		return; | 
 |  | 
 | 	gic_enable_redist(true); | 
 |  | 
 | 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && | 
 | 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), | 
 | 	     "Distributor has extended ranges, but CPU%d doesn't\n", | 
 | 	     smp_processor_id()); | 
 |  | 
 | 	rbase = gic_data_rdist_sgi_base(); | 
 |  | 
 | 	/* Configure SGIs/PPIs as non-secure Group-1 */ | 
 | 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32) | 
 | 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); | 
 |  | 
 | 	gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq); | 
 | 	gic_redist_wait_for_rwp(); | 
 |  | 
 | 	/* initialise system registers */ | 
 | 	gic_cpu_sys_reg_init(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) | 
 | #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL) | 
 |  | 
 | /* | 
 |  * gic_starting_cpu() is called after the last point where cpuhp is allowed | 
 |  * to fail. So pre check for problems earlier. | 
 |  */ | 
 | static int gic_check_rdist(unsigned int cpu) | 
 | { | 
 | 	if (cpumask_test_cpu(cpu, &broken_rdists)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gic_starting_cpu(unsigned int cpu) | 
 | { | 
 | 	gic_cpu_sys_reg_enable(); | 
 | 	gic_cpu_init(); | 
 |  | 
 | 	if (gic_dist_supports_lpis()) | 
 | 		its_cpu_init(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, | 
 | 				   unsigned long cluster_id) | 
 | { | 
 | 	int next_cpu, cpu = *base_cpu; | 
 | 	unsigned long mpidr; | 
 | 	u16 tlist = 0; | 
 |  | 
 | 	mpidr = gic_cpu_to_affinity(cpu); | 
 |  | 
 | 	while (cpu < nr_cpu_ids) { | 
 | 		tlist |= 1 << (mpidr & 0xf); | 
 |  | 
 | 		next_cpu = cpumask_next(cpu, mask); | 
 | 		if (next_cpu >= nr_cpu_ids) | 
 | 			goto out; | 
 | 		cpu = next_cpu; | 
 |  | 
 | 		mpidr = gic_cpu_to_affinity(cpu); | 
 |  | 
 | 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { | 
 | 			cpu--; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	*base_cpu = cpu; | 
 | 	return tlist; | 
 | } | 
 |  | 
 | #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ | 
 | 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \ | 
 | 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT) | 
 |  | 
 | static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) | 
 | { | 
 | 	u64 val; | 
 |  | 
 | 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	| | 
 | 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	| | 
 | 	       irq << ICC_SGI1R_SGI_ID_SHIFT		| | 
 | 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	| | 
 | 	       MPIDR_TO_SGI_RS(cluster_id)		| | 
 | 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT); | 
 |  | 
 | 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); | 
 | 	gic_write_sgi1r(val); | 
 | } | 
 |  | 
 | static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (WARN_ON(d->hwirq >= 16)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Ensure that stores to Normal memory are visible to the | 
 | 	 * other CPUs before issuing the IPI. | 
 | 	 */ | 
 | 	dsb(ishst); | 
 |  | 
 | 	for_each_cpu(cpu, mask) { | 
 | 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu)); | 
 | 		u16 tlist; | 
 |  | 
 | 		tlist = gic_compute_target_list(&cpu, mask, cluster_id); | 
 | 		gic_send_sgi(cluster_id, tlist, d->hwirq); | 
 | 	} | 
 |  | 
 | 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */ | 
 | 	isb(); | 
 | } | 
 |  | 
 | static void __init gic_smp_init(void) | 
 | { | 
 | 	struct irq_fwspec sgi_fwspec = { | 
 | 		.fwnode		= gic_data.fwnode, | 
 | 		.param_count	= 1, | 
 | 	}; | 
 | 	int base_sgi; | 
 |  | 
 | 	cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, | 
 | 				  "irqchip/arm/gicv3:checkrdist", | 
 | 				  gic_check_rdist, NULL); | 
 |  | 
 | 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, | 
 | 				  "irqchip/arm/gicv3:starting", | 
 | 				  gic_starting_cpu, NULL); | 
 |  | 
 | 	/* Register all 8 non-secure SGIs */ | 
 | 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec); | 
 | 	if (WARN_ON(base_sgi <= 0)) | 
 | 		return; | 
 |  | 
 | 	set_smp_ipi_range(base_sgi, 8); | 
 | } | 
 |  | 
 | static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, | 
 | 			    bool force) | 
 | { | 
 | 	unsigned int cpu; | 
 | 	u32 offset, index; | 
 | 	void __iomem *reg; | 
 | 	int enabled; | 
 | 	u64 val; | 
 |  | 
 | 	if (force) | 
 | 		cpu = cpumask_first(mask_val); | 
 | 	else | 
 | 		cpu = cpumask_any_and(mask_val, cpu_online_mask); | 
 |  | 
 | 	if (cpu >= nr_cpu_ids) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (gic_irq_in_rdist(d)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* If interrupt was enabled, disable it first */ | 
 | 	enabled = gic_peek_irq(d, GICD_ISENABLER); | 
 | 	if (enabled) | 
 | 		gic_mask_irq(d); | 
 |  | 
 | 	offset = convert_offset_index(d, GICD_IROUTER, &index); | 
 | 	reg = gic_dist_base(d) + offset + (index * 8); | 
 | 	val = gic_cpu_to_affinity(cpu); | 
 |  | 
 | 	gic_write_irouter(val, reg); | 
 |  | 
 | 	/* | 
 | 	 * If the interrupt was enabled, enabled it again. Otherwise, | 
 | 	 * just wait for the distributor to have digested our changes. | 
 | 	 */ | 
 | 	if (enabled) | 
 | 		gic_unmask_irq(d); | 
 |  | 
 | 	irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 |  | 
 | 	return IRQ_SET_MASK_OK_DONE; | 
 | } | 
 | #else | 
 | #define gic_set_affinity	NULL | 
 | #define gic_ipi_send_mask	NULL | 
 | #define gic_smp_init()		do { } while(0) | 
 | #endif | 
 |  | 
 | static int gic_retrigger(struct irq_data *data) | 
 | { | 
 | 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CPU_PM | 
 | static int gic_cpu_pm_notifier(struct notifier_block *self, | 
 | 			       unsigned long cmd, void *v) | 
 | { | 
 | 	if (cmd == CPU_PM_EXIT || cmd == CPU_PM_ENTER_FAILED) { | 
 | 		if (gic_dist_security_disabled()) | 
 | 			gic_enable_redist(true); | 
 | 		gic_cpu_sys_reg_enable(); | 
 | 		gic_cpu_sys_reg_init(); | 
 | 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { | 
 | 		gic_write_grpen1(0); | 
 | 		gic_enable_redist(false); | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block gic_cpu_pm_notifier_block = { | 
 | 	.notifier_call = gic_cpu_pm_notifier, | 
 | }; | 
 |  | 
 | static void gic_cpu_pm_init(void) | 
 | { | 
 | 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); | 
 | } | 
 |  | 
 | #else | 
 | static inline void gic_cpu_pm_init(void) { } | 
 | #endif /* CONFIG_CPU_PM */ | 
 |  | 
 | static struct irq_chip gic_chip = { | 
 | 	.name			= "GICv3", | 
 | 	.irq_mask		= gic_mask_irq, | 
 | 	.irq_unmask		= gic_unmask_irq, | 
 | 	.irq_eoi		= gic_eoi_irq, | 
 | 	.irq_set_type		= gic_set_type, | 
 | 	.irq_set_affinity	= gic_set_affinity, | 
 | 	.irq_retrigger          = gic_retrigger, | 
 | 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state, | 
 | 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state, | 
 | 	.irq_nmi_setup		= gic_irq_nmi_setup, | 
 | 	.irq_nmi_teardown	= gic_irq_nmi_teardown, | 
 | 	.ipi_send_mask		= gic_ipi_send_mask, | 
 | 	.flags			= IRQCHIP_SET_TYPE_MASKED | | 
 | 				  IRQCHIP_SKIP_SET_WAKE | | 
 | 				  IRQCHIP_MASK_ON_SUSPEND, | 
 | }; | 
 |  | 
 | static struct irq_chip gic_eoimode1_chip = { | 
 | 	.name			= "GICv3", | 
 | 	.irq_mask		= gic_eoimode1_mask_irq, | 
 | 	.irq_unmask		= gic_unmask_irq, | 
 | 	.irq_eoi		= gic_eoimode1_eoi_irq, | 
 | 	.irq_set_type		= gic_set_type, | 
 | 	.irq_set_affinity	= gic_set_affinity, | 
 | 	.irq_retrigger          = gic_retrigger, | 
 | 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state, | 
 | 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state, | 
 | 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity, | 
 | 	.irq_nmi_setup		= gic_irq_nmi_setup, | 
 | 	.irq_nmi_teardown	= gic_irq_nmi_teardown, | 
 | 	.ipi_send_mask		= gic_ipi_send_mask, | 
 | 	.flags			= IRQCHIP_SET_TYPE_MASKED | | 
 | 				  IRQCHIP_SKIP_SET_WAKE | | 
 | 				  IRQCHIP_MASK_ON_SUSPEND, | 
 | }; | 
 |  | 
 | static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, | 
 | 			      irq_hw_number_t hw) | 
 | { | 
 | 	struct irq_chip *chip = &gic_chip; | 
 | 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); | 
 |  | 
 | 	if (static_branch_likely(&supports_deactivate_key)) | 
 | 		chip = &gic_eoimode1_chip; | 
 |  | 
 | 	switch (__get_intid_range(hw)) { | 
 | 	case SGI_RANGE: | 
 | 	case PPI_RANGE: | 
 | 	case EPPI_RANGE: | 
 | 		irq_set_percpu_devid(irq); | 
 | 		irq_domain_set_info(d, irq, hw, chip, d->host_data, | 
 | 				    handle_percpu_devid_irq, NULL, NULL); | 
 | 		break; | 
 |  | 
 | 	case SPI_RANGE: | 
 | 	case ESPI_RANGE: | 
 | 		irq_domain_set_info(d, irq, hw, chip, d->host_data, | 
 | 				    handle_fasteoi_irq, NULL, NULL); | 
 | 		irq_set_probe(irq); | 
 | 		irqd_set_single_target(irqd); | 
 | 		break; | 
 |  | 
 | 	case LPI_RANGE: | 
 | 		if (!gic_dist_supports_lpis()) | 
 | 			return -EPERM; | 
 | 		irq_domain_set_info(d, irq, hw, chip, d->host_data, | 
 | 				    handle_fasteoi_irq, NULL, NULL); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return -EPERM; | 
 | 	} | 
 |  | 
 | 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */ | 
 | 	irqd_set_handle_enforce_irqctx(irqd); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gic_irq_domain_translate(struct irq_domain *d, | 
 | 				    struct irq_fwspec *fwspec, | 
 | 				    unsigned long *hwirq, | 
 | 				    unsigned int *type) | 
 | { | 
 | 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) { | 
 | 		*hwirq = fwspec->param[0]; | 
 | 		*type = IRQ_TYPE_EDGE_RISING; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (is_of_node(fwspec->fwnode)) { | 
 | 		if (fwspec->param_count < 3) | 
 | 			return -EINVAL; | 
 |  | 
 | 		switch (fwspec->param[0]) { | 
 | 		case 0:			/* SPI */ | 
 | 			*hwirq = fwspec->param[1] + 32; | 
 | 			break; | 
 | 		case 1:			/* PPI */ | 
 | 			*hwirq = fwspec->param[1] + 16; | 
 | 			break; | 
 | 		case 2:			/* ESPI */ | 
 | 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID; | 
 | 			break; | 
 | 		case 3:			/* EPPI */ | 
 | 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID; | 
 | 			break; | 
 | 		case GIC_IRQ_TYPE_LPI:	/* LPI */ | 
 | 			*hwirq = fwspec->param[1]; | 
 | 			break; | 
 | 		case GIC_IRQ_TYPE_PARTITION: | 
 | 			*hwirq = fwspec->param[1]; | 
 | 			if (fwspec->param[1] >= 16) | 
 | 				*hwirq += EPPI_BASE_INTID - 16; | 
 | 			else | 
 | 				*hwirq += 16; | 
 | 			break; | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; | 
 |  | 
 | 		/* | 
 | 		 * Make it clear that broken DTs are... broken. | 
 | 		 * Partitioned PPIs are an unfortunate exception. | 
 | 		 */ | 
 | 		WARN_ON(*type == IRQ_TYPE_NONE && | 
 | 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (is_fwnode_irqchip(fwspec->fwnode)) { | 
 | 		if(fwspec->param_count != 2) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (fwspec->param[0] < 16) { | 
 | 			pr_err(FW_BUG "Illegal GSI%d translation request\n", | 
 | 			       fwspec->param[0]); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		*hwirq = fwspec->param[0]; | 
 | 		*type = fwspec->param[1]; | 
 |  | 
 | 		WARN_ON(*type == IRQ_TYPE_NONE); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
 | 				unsigned int nr_irqs, void *arg) | 
 | { | 
 | 	int i, ret; | 
 | 	irq_hw_number_t hwirq; | 
 | 	unsigned int type = IRQ_TYPE_NONE; | 
 | 	struct irq_fwspec *fwspec = arg; | 
 |  | 
 | 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, | 
 | 				unsigned int nr_irqs) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); | 
 | 		irq_set_handler(virq + i, NULL); | 
 | 		irq_domain_reset_irq_data(d); | 
 | 	} | 
 | } | 
 |  | 
 | static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, | 
 | 				      irq_hw_number_t hwirq) | 
 | { | 
 | 	enum gic_intid_range range; | 
 |  | 
 | 	if (!gic_data.ppi_descs) | 
 | 		return false; | 
 |  | 
 | 	if (!is_of_node(fwspec->fwnode)) | 
 | 		return false; | 
 |  | 
 | 	if (fwspec->param_count < 4 || !fwspec->param[3]) | 
 | 		return false; | 
 |  | 
 | 	range = __get_intid_range(hwirq); | 
 | 	if (range != PPI_RANGE && range != EPPI_RANGE) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int gic_irq_domain_select(struct irq_domain *d, | 
 | 				 struct irq_fwspec *fwspec, | 
 | 				 enum irq_domain_bus_token bus_token) | 
 | { | 
 | 	unsigned int type, ret, ppi_idx; | 
 | 	irq_hw_number_t hwirq; | 
 |  | 
 | 	/* Not for us */ | 
 | 	if (fwspec->fwnode != d->fwnode) | 
 | 		return 0; | 
 |  | 
 | 	/* Handle pure domain searches */ | 
 | 	if (!fwspec->param_count) | 
 | 		return d->bus_token == bus_token; | 
 |  | 
 | 	/* If this is not DT, then we have a single domain */ | 
 | 	if (!is_of_node(fwspec->fwnode)) | 
 | 		return 1; | 
 |  | 
 | 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type); | 
 | 	if (WARN_ON_ONCE(ret)) | 
 | 		return 0; | 
 |  | 
 | 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) | 
 | 		return d == gic_data.domain; | 
 |  | 
 | 	/* | 
 | 	 * If this is a PPI and we have a 4th (non-null) parameter, | 
 | 	 * then we need to match the partition domain. | 
 | 	 */ | 
 | 	ppi_idx = __gic_get_ppi_index(hwirq); | 
 | 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]); | 
 | } | 
 |  | 
 | static const struct irq_domain_ops gic_irq_domain_ops = { | 
 | 	.translate = gic_irq_domain_translate, | 
 | 	.alloc = gic_irq_domain_alloc, | 
 | 	.free = gic_irq_domain_free, | 
 | 	.select = gic_irq_domain_select, | 
 | }; | 
 |  | 
 | static int partition_domain_translate(struct irq_domain *d, | 
 | 				      struct irq_fwspec *fwspec, | 
 | 				      unsigned long *hwirq, | 
 | 				      unsigned int *type) | 
 | { | 
 | 	unsigned long ppi_intid; | 
 | 	struct device_node *np; | 
 | 	unsigned int ppi_idx; | 
 | 	int ret; | 
 |  | 
 | 	if (!gic_data.ppi_descs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	np = of_find_node_by_phandle(fwspec->param[3]); | 
 | 	if (WARN_ON(!np)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type); | 
 | 	if (WARN_ON_ONCE(ret)) | 
 | 		return 0; | 
 |  | 
 | 	ppi_idx = __gic_get_ppi_index(ppi_intid); | 
 | 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx], | 
 | 				     of_fwnode_handle(np)); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	*hwirq = ret; | 
 | 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct irq_domain_ops partition_domain_ops = { | 
 | 	.translate = partition_domain_translate, | 
 | 	.select = gic_irq_domain_select, | 
 | }; | 
 |  | 
 | static bool gic_enable_quirk_msm8996(void *data) | 
 | { | 
 | 	struct gic_chip_data *d = data; | 
 |  | 
 | 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool gic_enable_quirk_cavium_38539(void *data) | 
 | { | 
 | 	struct gic_chip_data *d = data; | 
 |  | 
 | 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool gic_enable_quirk_hip06_07(void *data) | 
 | { | 
 | 	struct gic_chip_data *d = data; | 
 |  | 
 | 	/* | 
 | 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite | 
 | 	 * not being an actual ARM implementation). The saving grace is | 
 | 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case. | 
 | 	 * HIP07 doesn't even have a proper IIDR, and still pretends to | 
 | 	 * have ESPI. In both cases, put them right. | 
 | 	 */ | 
 | 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { | 
 | 		/* Zero both ESPI and the RES0 field next to it... */ | 
 | 		d->rdists.gicd_typer &= ~GENMASK(9, 8); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | #define T241_CHIPN_MASK		GENMASK_ULL(45, 44) | 
 | #define T241_CHIP_GICDA_OFFSET	0x1580000 | 
 | #define SMCCC_SOC_ID_T241	0x036b0241 | 
 |  | 
 | static bool gic_enable_quirk_nvidia_t241(void *data) | 
 | { | 
 | 	s32 soc_id = arm_smccc_get_soc_id_version(); | 
 | 	unsigned long chip_bmask = 0; | 
 | 	phys_addr_t phys; | 
 | 	u32 i; | 
 |  | 
 | 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */ | 
 | 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241)) | 
 | 		return false; | 
 |  | 
 | 	/* Find the chips based on GICR regions PHYS addr */ | 
 | 	for (i = 0; i < gic_data.nr_redist_regions; i++) { | 
 | 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK, | 
 | 				  (u64)gic_data.redist_regions[i].phys_base)); | 
 | 	} | 
 |  | 
 | 	if (hweight32(chip_bmask) < 3) | 
 | 		return false; | 
 |  | 
 | 	/* Setup GICD alias regions */ | 
 | 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) { | 
 | 		if (chip_bmask & BIT(i)) { | 
 | 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET; | 
 | 			phys |= FIELD_PREP(T241_CHIPN_MASK, i); | 
 | 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K); | 
 | 			WARN_ON_ONCE(!t241_dist_base_alias[i]); | 
 | 		} | 
 | 	} | 
 | 	static_branch_enable(&gic_nvidia_t241_erratum); | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool gic_enable_quirk_asr8601(void *data) | 
 | { | 
 | 	struct gic_chip_data *d = data; | 
 |  | 
 | 	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool gic_enable_quirk_arm64_2941627(void *data) | 
 | { | 
 | 	static_branch_enable(&gic_arm64_2941627_erratum); | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool gic_enable_quirk_rk3399(void *data) | 
 | { | 
 | 	struct gic_chip_data *d = data; | 
 |  | 
 | 	if (of_machine_is_compatible("rockchip,rk3399")) { | 
 | 		d->flags |= FLAGS_WORKAROUND_INSECURE; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool rd_set_non_coherent(void *data) | 
 | { | 
 | 	struct gic_chip_data *d = data; | 
 |  | 
 | 	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; | 
 | 	return true; | 
 | } | 
 |  | 
 | static const struct gic_quirk gic_quirks[] = { | 
 | 	{ | 
 | 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware", | 
 | 		.compatible = "qcom,msm8996-gic-v3", | 
 | 		.init	= gic_enable_quirk_msm8996, | 
 | 	}, | 
 | 	{ | 
 | 		.desc	= "GICv3: ASR erratum 8601001", | 
 | 		.compatible = "asr,asr8601-gic-v3", | 
 | 		.init	= gic_enable_quirk_asr8601, | 
 | 	}, | 
 | 	{ | 
 | 		.desc	= "GICv3: HIP06 erratum 161010803", | 
 | 		.iidr	= 0x0204043b, | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= gic_enable_quirk_hip06_07, | 
 | 	}, | 
 | 	{ | 
 | 		.desc	= "GICv3: HIP07 erratum 161010803", | 
 | 		.iidr	= 0x00000000, | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= gic_enable_quirk_hip06_07, | 
 | 	}, | 
 | 	{ | 
 | 		/* | 
 | 		 * Reserved register accesses generate a Synchronous | 
 | 		 * External Abort. This erratum applies to: | 
 | 		 * - ThunderX: CN88xx | 
 | 		 * - OCTEON TX: CN83xx, CN81xx | 
 | 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* | 
 | 		 */ | 
 | 		.desc	= "GICv3: Cavium erratum 38539", | 
 | 		.iidr	= 0xa000034c, | 
 | 		.mask	= 0xe8f00fff, | 
 | 		.init	= gic_enable_quirk_cavium_38539, | 
 | 	}, | 
 | 	{ | 
 | 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4", | 
 | 		.iidr	= 0x0402043b, | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= gic_enable_quirk_nvidia_t241, | 
 | 	}, | 
 | 	{ | 
 | 		/* | 
 | 		 * GIC-700: 2941627 workaround - IP variant [0,1] | 
 | 		 * | 
 | 		 */ | 
 | 		.desc	= "GICv3: ARM64 erratum 2941627", | 
 | 		.iidr	= 0x0400043b, | 
 | 		.mask	= 0xff0e0fff, | 
 | 		.init	= gic_enable_quirk_arm64_2941627, | 
 | 	}, | 
 | 	{ | 
 | 		/* | 
 | 		 * GIC-700: 2941627 workaround - IP variant [2] | 
 | 		 */ | 
 | 		.desc	= "GICv3: ARM64 erratum 2941627", | 
 | 		.iidr	= 0x0402043b, | 
 | 		.mask	= 0xff0f0fff, | 
 | 		.init	= gic_enable_quirk_arm64_2941627, | 
 | 	}, | 
 | 	{ | 
 | 		.desc   = "GICv3: non-coherent attribute", | 
 | 		.property = "dma-noncoherent", | 
 | 		.init   = rd_set_non_coherent, | 
 | 	}, | 
 | 	{ | 
 | 		.desc	= "GICv3: Insecure RK3399 integration", | 
 | 		.iidr	= 0x0000043b, | 
 | 		.mask	= 0xff000fff, | 
 | 		.init	= gic_enable_quirk_rk3399, | 
 | 	}, | 
 | 	{ | 
 | 	} | 
 | }; | 
 |  | 
 | static void gic_enable_nmi_support(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!gic_prio_masking_enabled() || nmi_support_forbidden) | 
 | 		return; | 
 |  | 
 | 	rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR, | 
 | 				 sizeof(*rdist_nmi_refs), GFP_KERNEL); | 
 | 	if (!rdist_nmi_refs) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++) | 
 | 		refcount_set(&rdist_nmi_refs[i], 0); | 
 |  | 
 | 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n", | 
 | 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced"); | 
 |  | 
 | 	static_branch_enable(&supports_pseudo_nmis); | 
 |  | 
 | 	if (static_branch_likely(&supports_deactivate_key)) | 
 | 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; | 
 | 	else | 
 | 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; | 
 | } | 
 |  | 
 | static int __init gic_init_bases(phys_addr_t dist_phys_base, | 
 | 				 void __iomem *dist_base, | 
 | 				 struct redist_region *rdist_regs, | 
 | 				 u32 nr_redist_regions, | 
 | 				 u64 redist_stride, | 
 | 				 struct fwnode_handle *handle) | 
 | { | 
 | 	u32 typer; | 
 | 	int err; | 
 |  | 
 | 	if (!is_hyp_mode_available()) | 
 | 		static_branch_disable(&supports_deactivate_key); | 
 |  | 
 | 	if (static_branch_likely(&supports_deactivate_key)) | 
 | 		pr_info("GIC: Using split EOI/Deactivate mode\n"); | 
 |  | 
 | 	gic_data.fwnode = handle; | 
 | 	gic_data.dist_phys_base = dist_phys_base; | 
 | 	gic_data.dist_base = dist_base; | 
 | 	gic_data.redist_regions = rdist_regs; | 
 | 	gic_data.nr_redist_regions = nr_redist_regions; | 
 | 	gic_data.redist_stride = redist_stride; | 
 |  | 
 | 	/* | 
 | 	 * Find out how many interrupts are supported. | 
 | 	 */ | 
 | 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); | 
 | 	gic_data.rdists.gicd_typer = typer; | 
 |  | 
 | 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), | 
 | 			  gic_quirks, &gic_data); | 
 |  | 
 | 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32); | 
 | 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR); | 
 |  | 
 | 	/* | 
 | 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the | 
 | 	 * architecture spec (which says that reserved registers are RES0). | 
 | 	 */ | 
 | 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) | 
 | 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); | 
 |  | 
 | 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, | 
 | 						 &gic_data); | 
 | 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); | 
 | 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) { | 
 | 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */ | 
 | 		gic_data.rdists.has_rvpeid = true; | 
 | 		gic_data.rdists.has_vlpis = true; | 
 | 		gic_data.rdists.has_direct_lpi = true; | 
 | 		gic_data.rdists.has_vpend_valid_dirty = true; | 
 | 	} | 
 |  | 
 | 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); | 
 |  | 
 | 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS); | 
 |  | 
 | 	if (typer & GICD_TYPER_MBIS) { | 
 | 		err = mbi_init(handle, gic_data.domain); | 
 | 		if (err) | 
 | 			pr_err("Failed to initialize MBIs\n"); | 
 | 	} | 
 |  | 
 | 	set_handle_irq(gic_handle_irq); | 
 |  | 
 | 	gic_update_rdist_properties(); | 
 |  | 
 | 	gic_cpu_sys_reg_enable(); | 
 | 	gic_prio_init(); | 
 | 	gic_dist_init(); | 
 | 	gic_cpu_init(); | 
 | 	gic_enable_nmi_support(); | 
 | 	gic_smp_init(); | 
 | 	gic_cpu_pm_init(); | 
 |  | 
 | 	if (gic_dist_supports_lpis()) { | 
 | 		its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq); | 
 | 		its_cpu_init(); | 
 | 		its_lpi_memreserve_init(); | 
 | 	} else { | 
 | 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) | 
 | 			gicv2m_init(handle, gic_data.domain); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	if (gic_data.domain) | 
 | 		irq_domain_remove(gic_data.domain); | 
 | 	free_percpu(gic_data.rdists.rdist); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __init gic_validate_dist_version(void __iomem *dist_base) | 
 | { | 
 | 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; | 
 |  | 
 | 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Create all possible partitions at boot time */ | 
 | static void __init gic_populate_ppi_partitions(struct device_node *gic_node) | 
 | { | 
 | 	struct device_node *parts_node, *child_part; | 
 | 	int part_idx = 0, i; | 
 | 	int nr_parts; | 
 | 	struct partition_affinity *parts; | 
 |  | 
 | 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); | 
 | 	if (!parts_node) | 
 | 		return; | 
 |  | 
 | 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); | 
 | 	if (!gic_data.ppi_descs) | 
 | 		goto out_put_node; | 
 |  | 
 | 	nr_parts = of_get_child_count(parts_node); | 
 |  | 
 | 	if (!nr_parts) | 
 | 		goto out_put_node; | 
 |  | 
 | 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); | 
 | 	if (WARN_ON(!parts)) | 
 | 		goto out_put_node; | 
 |  | 
 | 	for_each_child_of_node(parts_node, child_part) { | 
 | 		struct partition_affinity *part; | 
 | 		int n; | 
 |  | 
 | 		part = &parts[part_idx]; | 
 |  | 
 | 		part->partition_id = of_fwnode_handle(child_part); | 
 |  | 
 | 		pr_info("GIC: PPI partition %pOFn[%d] { ", | 
 | 			child_part, part_idx); | 
 |  | 
 | 		n = of_property_count_elems_of_size(child_part, "affinity", | 
 | 						    sizeof(u32)); | 
 | 		WARN_ON(n <= 0); | 
 |  | 
 | 		for (i = 0; i < n; i++) { | 
 | 			int err, cpu; | 
 | 			u32 cpu_phandle; | 
 | 			struct device_node *cpu_node; | 
 |  | 
 | 			err = of_property_read_u32_index(child_part, "affinity", | 
 | 							 i, &cpu_phandle); | 
 | 			if (WARN_ON(err)) | 
 | 				continue; | 
 |  | 
 | 			cpu_node = of_find_node_by_phandle(cpu_phandle); | 
 | 			if (WARN_ON(!cpu_node)) | 
 | 				continue; | 
 |  | 
 | 			cpu = of_cpu_node_to_id(cpu_node); | 
 | 			if (WARN_ON(cpu < 0)) { | 
 | 				of_node_put(cpu_node); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			pr_cont("%pOF[%d] ", cpu_node, cpu); | 
 |  | 
 | 			cpumask_set_cpu(cpu, &part->mask); | 
 | 			of_node_put(cpu_node); | 
 | 		} | 
 |  | 
 | 		pr_cont("}\n"); | 
 | 		part_idx++; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < gic_data.ppi_nr; i++) { | 
 | 		unsigned int irq; | 
 | 		struct partition_desc *desc; | 
 | 		struct irq_fwspec ppi_fwspec = { | 
 | 			.fwnode		= gic_data.fwnode, | 
 | 			.param_count	= 3, | 
 | 			.param		= { | 
 | 				[0]	= GIC_IRQ_TYPE_PARTITION, | 
 | 				[1]	= i, | 
 | 				[2]	= IRQ_TYPE_NONE, | 
 | 			}, | 
 | 		}; | 
 |  | 
 | 		irq = irq_create_fwspec_mapping(&ppi_fwspec); | 
 | 		if (WARN_ON(!irq)) | 
 | 			continue; | 
 | 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, | 
 | 					     irq, &partition_domain_ops); | 
 | 		if (WARN_ON(!desc)) | 
 | 			continue; | 
 |  | 
 | 		gic_data.ppi_descs[i] = desc; | 
 | 	} | 
 |  | 
 | out_put_node: | 
 | 	of_node_put(parts_node); | 
 | } | 
 |  | 
 | static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions) | 
 | { | 
 | 	int ret; | 
 | 	struct resource r; | 
 |  | 
 | 	gic_v3_kvm_info.type = GIC_V3; | 
 |  | 
 | 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); | 
 | 	if (!gic_v3_kvm_info.maint_irq) | 
 | 		return; | 
 |  | 
 | 	/* Also skip GICD, GICC, GICH */ | 
 | 	ret = of_address_to_resource(node, nr_redist_regions + 3, &r); | 
 | 	if (!ret) | 
 | 		gic_v3_kvm_info.vcpu = r; | 
 |  | 
 | 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; | 
 | 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; | 
 | 	vgic_set_kvm_info(&gic_v3_kvm_info); | 
 | } | 
 |  | 
 | static void gic_request_region(resource_size_t base, resource_size_t size, | 
 | 			       const char *name) | 
 | { | 
 | 	if (!request_mem_region(base, size, name)) | 
 | 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n", | 
 | 			     name, &base); | 
 | } | 
 |  | 
 | static void __iomem *gic_of_iomap(struct device_node *node, int idx, | 
 | 				  const char *name, struct resource *res) | 
 | { | 
 | 	void __iomem *base; | 
 | 	int ret; | 
 |  | 
 | 	ret = of_address_to_resource(node, idx, res); | 
 | 	if (ret) | 
 | 		return IOMEM_ERR_PTR(ret); | 
 |  | 
 | 	gic_request_region(res->start, resource_size(res), name); | 
 | 	base = of_iomap(node, idx); | 
 |  | 
 | 	return base ?: IOMEM_ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | static int __init gic_of_init(struct device_node *node, struct device_node *parent) | 
 | { | 
 | 	phys_addr_t dist_phys_base; | 
 | 	void __iomem *dist_base; | 
 | 	struct redist_region *rdist_regs; | 
 | 	struct resource res; | 
 | 	u64 redist_stride; | 
 | 	u32 nr_redist_regions; | 
 | 	int err, i; | 
 |  | 
 | 	dist_base = gic_of_iomap(node, 0, "GICD", &res); | 
 | 	if (IS_ERR(dist_base)) { | 
 | 		pr_err("%pOF: unable to map gic dist registers\n", node); | 
 | 		return PTR_ERR(dist_base); | 
 | 	} | 
 |  | 
 | 	dist_phys_base = res.start; | 
 |  | 
 | 	err = gic_validate_dist_version(dist_base); | 
 | 	if (err) { | 
 | 		pr_err("%pOF: no distributor detected, giving up\n", node); | 
 | 		goto out_unmap_dist; | 
 | 	} | 
 |  | 
 | 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) | 
 | 		nr_redist_regions = 1; | 
 |  | 
 | 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), | 
 | 			     GFP_KERNEL); | 
 | 	if (!rdist_regs) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unmap_dist; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nr_redist_regions; i++) { | 
 | 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res); | 
 | 		if (IS_ERR(rdist_regs[i].redist_base)) { | 
 | 			pr_err("%pOF: couldn't map region %d\n", node, i); | 
 | 			err = -ENODEV; | 
 | 			goto out_unmap_rdist; | 
 | 		} | 
 | 		rdist_regs[i].phys_base = res.start; | 
 | 	} | 
 |  | 
 | 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) | 
 | 		redist_stride = 0; | 
 |  | 
 | 	gic_enable_of_quirks(node, gic_quirks, &gic_data); | 
 |  | 
 | 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs, | 
 | 			     nr_redist_regions, redist_stride, &node->fwnode); | 
 | 	if (err) | 
 | 		goto out_unmap_rdist; | 
 |  | 
 | 	gic_populate_ppi_partitions(node); | 
 |  | 
 | 	if (static_branch_likely(&supports_deactivate_key)) | 
 | 		gic_of_setup_kvm_info(node, nr_redist_regions); | 
 | 	return 0; | 
 |  | 
 | out_unmap_rdist: | 
 | 	for (i = 0; i < nr_redist_regions; i++) | 
 | 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base)) | 
 | 			iounmap(rdist_regs[i].redist_base); | 
 | 	kfree(rdist_regs); | 
 | out_unmap_dist: | 
 | 	iounmap(dist_base); | 
 | 	return err; | 
 | } | 
 |  | 
 | IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | static struct | 
 | { | 
 | 	void __iomem *dist_base; | 
 | 	struct redist_region *redist_regs; | 
 | 	u32 nr_redist_regions; | 
 | 	bool single_redist; | 
 | 	int enabled_rdists; | 
 | 	u32 maint_irq; | 
 | 	int maint_irq_mode; | 
 | 	phys_addr_t vcpu_base; | 
 | } acpi_data __initdata; | 
 |  | 
 | static void __init | 
 | gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) | 
 | { | 
 | 	static int count = 0; | 
 |  | 
 | 	acpi_data.redist_regs[count].phys_base = phys_base; | 
 | 	acpi_data.redist_regs[count].redist_base = redist_base; | 
 | 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; | 
 | 	count++; | 
 | } | 
 |  | 
 | static int __init | 
 | gic_acpi_parse_madt_redist(union acpi_subtable_headers *header, | 
 | 			   const unsigned long end) | 
 | { | 
 | 	struct acpi_madt_generic_redistributor *redist = | 
 | 			(struct acpi_madt_generic_redistributor *)header; | 
 | 	void __iomem *redist_base; | 
 |  | 
 | 	redist_base = ioremap(redist->base_address, redist->length); | 
 | 	if (!redist_base) { | 
 | 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (acpi_get_madt_revision() >= 7 && | 
 | 	    (redist->flags & ACPI_MADT_GICR_NON_COHERENT)) | 
 | 		gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; | 
 |  | 
 | 	gic_request_region(redist->base_address, redist->length, "GICR"); | 
 |  | 
 | 	gic_acpi_register_redist(redist->base_address, redist_base); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init | 
 | gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header, | 
 | 			 const unsigned long end) | 
 | { | 
 | 	struct acpi_madt_generic_interrupt *gicc = | 
 | 				(struct acpi_madt_generic_interrupt *)header; | 
 | 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; | 
 | 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; | 
 | 	void __iomem *redist_base; | 
 |  | 
 | 	/* Neither enabled or online capable means it doesn't exist, skip it */ | 
 | 	if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Capable but disabled CPUs can be brought online later. What about | 
 | 	 * the redistributor? ACPI doesn't want to say! | 
 | 	 * Virtual hotplug systems can use the MADT's "always-on" GICR entries. | 
 | 	 * Otherwise, prevent such CPUs from being brought online. | 
 | 	 */ | 
 | 	if (!(gicc->flags & ACPI_MADT_ENABLED)) { | 
 | 		int cpu = get_cpu_for_acpi_id(gicc->uid); | 
 |  | 
 | 		pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu); | 
 | 		if (cpu >= 0) | 
 | 			cpumask_set_cpu(cpu, &broken_rdists); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	redist_base = ioremap(gicc->gicr_base_address, size); | 
 | 	if (!redist_base) | 
 | 		return -ENOMEM; | 
 | 	gic_request_region(gicc->gicr_base_address, size, "GICR"); | 
 |  | 
 | 	if (acpi_get_madt_revision() >= 7 && | 
 | 	    (gicc->flags & ACPI_MADT_GICC_NON_COHERENT)) | 
 | 		gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; | 
 |  | 
 | 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init gic_acpi_collect_gicr_base(void) | 
 | { | 
 | 	acpi_tbl_entry_handler redist_parser; | 
 | 	enum acpi_madt_type type; | 
 |  | 
 | 	if (acpi_data.single_redist) { | 
 | 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; | 
 | 		redist_parser = gic_acpi_parse_madt_gicc; | 
 | 	} else { | 
 | 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; | 
 | 		redist_parser = gic_acpi_parse_madt_redist; | 
 | 	} | 
 |  | 
 | 	/* Collect redistributor base addresses in GICR entries */ | 
 | 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0) | 
 | 		return 0; | 
 |  | 
 | 	pr_info("No valid GICR entries exist\n"); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header, | 
 | 				  const unsigned long end) | 
 | { | 
 | 	/* Subtable presence means that redist exists, that's it */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header, | 
 | 				      const unsigned long end) | 
 | { | 
 | 	struct acpi_madt_generic_interrupt *gicc = | 
 | 				(struct acpi_madt_generic_interrupt *)header; | 
 |  | 
 | 	/* | 
 | 	 * If GICC is enabled and has valid gicr base address, then it means | 
 | 	 * GICR base is presented via GICC. The redistributor is only known to | 
 | 	 * be accessible if the GICC is marked as enabled. If this bit is not | 
 | 	 * set, we'd need to add the redistributor at runtime, which isn't | 
 | 	 * supported. | 
 | 	 */ | 
 | 	if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address) | 
 | 		acpi_data.enabled_rdists++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init gic_acpi_count_gicr_regions(void) | 
 | { | 
 | 	int count; | 
 |  | 
 | 	/* | 
 | 	 * Count how many redistributor regions we have. It is not allowed | 
 | 	 * to mix redistributor description, GICR and GICC subtables have to be | 
 | 	 * mutually exclusive. | 
 | 	 */ | 
 | 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, | 
 | 				      gic_acpi_match_gicr, 0); | 
 | 	if (count > 0) { | 
 | 		acpi_data.single_redist = false; | 
 | 		return count; | 
 | 	} | 
 |  | 
 | 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, | 
 | 				      gic_acpi_match_gicc, 0); | 
 | 	if (count > 0) { | 
 | 		acpi_data.single_redist = true; | 
 | 		count = acpi_data.enabled_rdists; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, | 
 | 					   struct acpi_probe_entry *ape) | 
 | { | 
 | 	struct acpi_madt_generic_distributor *dist; | 
 | 	int count; | 
 |  | 
 | 	dist = (struct acpi_madt_generic_distributor *)header; | 
 | 	if (dist->version != ape->driver_data) | 
 | 		return false; | 
 |  | 
 | 	/* We need to do that exercise anyway, the sooner the better */ | 
 | 	count = gic_acpi_count_gicr_regions(); | 
 | 	if (count <= 0) | 
 | 		return false; | 
 |  | 
 | 	acpi_data.nr_redist_regions = count; | 
 | 	return true; | 
 | } | 
 |  | 
 | static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header, | 
 | 						const unsigned long end) | 
 | { | 
 | 	struct acpi_madt_generic_interrupt *gicc = | 
 | 		(struct acpi_madt_generic_interrupt *)header; | 
 | 	int maint_irq_mode; | 
 | 	static int first_madt = true; | 
 |  | 
 | 	if (!(gicc->flags & | 
 | 	      (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) | 
 | 		return 0; | 
 |  | 
 | 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? | 
 | 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; | 
 |  | 
 | 	if (first_madt) { | 
 | 		first_madt = false; | 
 |  | 
 | 		acpi_data.maint_irq = gicc->vgic_interrupt; | 
 | 		acpi_data.maint_irq_mode = maint_irq_mode; | 
 | 		acpi_data.vcpu_base = gicc->gicv_base_address; | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The maintenance interrupt and GICV should be the same for every CPU | 
 | 	 */ | 
 | 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) || | 
 | 	    (acpi_data.maint_irq_mode != maint_irq_mode) || | 
 | 	    (acpi_data.vcpu_base != gicc->gicv_base_address)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool __init gic_acpi_collect_virt_info(void) | 
 | { | 
 | 	int count; | 
 |  | 
 | 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, | 
 | 				      gic_acpi_parse_virt_madt_gicc, 0); | 
 |  | 
 | 	return (count > 0); | 
 | } | 
 |  | 
 | #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) | 
 | #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K) | 
 | #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K) | 
 |  | 
 | static void __init gic_acpi_setup_kvm_info(void) | 
 | { | 
 | 	int irq; | 
 |  | 
 | 	if (!gic_acpi_collect_virt_info()) { | 
 | 		pr_warn("Unable to get hardware information used for virtualization\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	gic_v3_kvm_info.type = GIC_V3; | 
 |  | 
 | 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq, | 
 | 				acpi_data.maint_irq_mode, | 
 | 				ACPI_ACTIVE_HIGH); | 
 | 	if (irq <= 0) | 
 | 		return; | 
 |  | 
 | 	gic_v3_kvm_info.maint_irq = irq; | 
 |  | 
 | 	if (acpi_data.vcpu_base) { | 
 | 		struct resource *vcpu = &gic_v3_kvm_info.vcpu; | 
 |  | 
 | 		vcpu->flags = IORESOURCE_MEM; | 
 | 		vcpu->start = acpi_data.vcpu_base; | 
 | 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; | 
 | 	} | 
 |  | 
 | 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; | 
 | 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; | 
 | 	vgic_set_kvm_info(&gic_v3_kvm_info); | 
 | } | 
 |  | 
 | static struct fwnode_handle *gsi_domain_handle; | 
 |  | 
 | static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi) | 
 | { | 
 | 	return gsi_domain_handle; | 
 | } | 
 |  | 
 | static int __init | 
 | gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end) | 
 | { | 
 | 	struct acpi_madt_generic_distributor *dist; | 
 | 	size_t size; | 
 | 	int i, err; | 
 |  | 
 | 	/* Get distributor base address */ | 
 | 	dist = (struct acpi_madt_generic_distributor *)header; | 
 | 	acpi_data.dist_base = ioremap(dist->base_address, | 
 | 				      ACPI_GICV3_DIST_MEM_SIZE); | 
 | 	if (!acpi_data.dist_base) { | 
 | 		pr_err("Unable to map GICD registers\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD"); | 
 |  | 
 | 	err = gic_validate_dist_version(acpi_data.dist_base); | 
 | 	if (err) { | 
 | 		pr_err("No distributor detected at @%p, giving up\n", | 
 | 		       acpi_data.dist_base); | 
 | 		goto out_dist_unmap; | 
 | 	} | 
 |  | 
 | 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; | 
 | 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); | 
 | 	if (!acpi_data.redist_regs) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_dist_unmap; | 
 | 	} | 
 |  | 
 | 	err = gic_acpi_collect_gicr_base(); | 
 | 	if (err) | 
 | 		goto out_redist_unmap; | 
 |  | 
 | 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address); | 
 | 	if (!gsi_domain_handle) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_redist_unmap; | 
 | 	} | 
 |  | 
 | 	err = gic_init_bases(dist->base_address, acpi_data.dist_base, | 
 | 			     acpi_data.redist_regs, acpi_data.nr_redist_regions, | 
 | 			     0, gsi_domain_handle); | 
 | 	if (err) | 
 | 		goto out_fwhandle_free; | 
 |  | 
 | 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id); | 
 |  | 
 | 	if (static_branch_likely(&supports_deactivate_key)) | 
 | 		gic_acpi_setup_kvm_info(); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_fwhandle_free: | 
 | 	irq_domain_free_fwnode(gsi_domain_handle); | 
 | out_redist_unmap: | 
 | 	for (i = 0; i < acpi_data.nr_redist_regions; i++) | 
 | 		if (acpi_data.redist_regs[i].redist_base) | 
 | 			iounmap(acpi_data.redist_regs[i].redist_base); | 
 | 	kfree(acpi_data.redist_regs); | 
 | out_dist_unmap: | 
 | 	iounmap(acpi_data.dist_base); | 
 | 	return err; | 
 | } | 
 | IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, | 
 | 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, | 
 | 		     gic_acpi_init); | 
 | IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, | 
 | 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, | 
 | 		     gic_acpi_init); | 
 | IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, | 
 | 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, | 
 | 		     gic_acpi_init); | 
 | #endif |