| /* | 
 |  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. | 
 |  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. | 
 |  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. | 
 |  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. | 
 |  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. | 
 |  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  */ | 
 |  | 
 | #include <linux/bug.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/splice.h> | 
 | #include <crypto/aead.h> | 
 |  | 
 | #include <net/strparser.h> | 
 | #include <net/tls.h> | 
 | #include <trace/events/sock.h> | 
 |  | 
 | #include "tls.h" | 
 |  | 
 | struct tls_decrypt_arg { | 
 | 	struct_group(inargs, | 
 | 	bool zc; | 
 | 	bool async; | 
 | 	bool async_done; | 
 | 	u8 tail; | 
 | 	); | 
 |  | 
 | 	struct sk_buff *skb; | 
 | }; | 
 |  | 
 | struct tls_decrypt_ctx { | 
 | 	struct sock *sk; | 
 | 	u8 iv[TLS_MAX_IV_SIZE]; | 
 | 	u8 aad[TLS_MAX_AAD_SIZE]; | 
 | 	u8 tail; | 
 | 	bool free_sgout; | 
 | 	struct scatterlist sg[]; | 
 | }; | 
 |  | 
 | noinline void tls_err_abort(struct sock *sk, int err) | 
 | { | 
 | 	WARN_ON_ONCE(err >= 0); | 
 | 	/* sk->sk_err should contain a positive error code. */ | 
 | 	WRITE_ONCE(sk->sk_err, -err); | 
 | 	/* Paired with smp_rmb() in tcp_poll() */ | 
 | 	smp_wmb(); | 
 | 	sk_error_report(sk); | 
 | } | 
 |  | 
 | static int __skb_nsg(struct sk_buff *skb, int offset, int len, | 
 |                      unsigned int recursion_level) | 
 | { | 
 |         int start = skb_headlen(skb); | 
 |         int i, chunk = start - offset; | 
 |         struct sk_buff *frag_iter; | 
 |         int elt = 0; | 
 |  | 
 |         if (unlikely(recursion_level >= 24)) | 
 |                 return -EMSGSIZE; | 
 |  | 
 |         if (chunk > 0) { | 
 |                 if (chunk > len) | 
 |                         chunk = len; | 
 |                 elt++; | 
 |                 len -= chunk; | 
 |                 if (len == 0) | 
 |                         return elt; | 
 |                 offset += chunk; | 
 |         } | 
 |  | 
 |         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
 |                 int end; | 
 |  | 
 |                 WARN_ON(start > offset + len); | 
 |  | 
 |                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
 |                 chunk = end - offset; | 
 |                 if (chunk > 0) { | 
 |                         if (chunk > len) | 
 |                                 chunk = len; | 
 |                         elt++; | 
 |                         len -= chunk; | 
 |                         if (len == 0) | 
 |                                 return elt; | 
 |                         offset += chunk; | 
 |                 } | 
 |                 start = end; | 
 |         } | 
 |  | 
 |         if (unlikely(skb_has_frag_list(skb))) { | 
 |                 skb_walk_frags(skb, frag_iter) { | 
 |                         int end, ret; | 
 |  | 
 |                         WARN_ON(start > offset + len); | 
 |  | 
 |                         end = start + frag_iter->len; | 
 |                         chunk = end - offset; | 
 |                         if (chunk > 0) { | 
 |                                 if (chunk > len) | 
 |                                         chunk = len; | 
 |                                 ret = __skb_nsg(frag_iter, offset - start, chunk, | 
 |                                                 recursion_level + 1); | 
 |                                 if (unlikely(ret < 0)) | 
 |                                         return ret; | 
 |                                 elt += ret; | 
 |                                 len -= chunk; | 
 |                                 if (len == 0) | 
 |                                         return elt; | 
 |                                 offset += chunk; | 
 |                         } | 
 |                         start = end; | 
 |                 } | 
 |         } | 
 |         BUG_ON(len); | 
 |         return elt; | 
 | } | 
 |  | 
 | /* Return the number of scatterlist elements required to completely map the | 
 |  * skb, or -EMSGSIZE if the recursion depth is exceeded. | 
 |  */ | 
 | static int skb_nsg(struct sk_buff *skb, int offset, int len) | 
 | { | 
 |         return __skb_nsg(skb, offset, len, 0); | 
 | } | 
 |  | 
 | static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, | 
 | 			      struct tls_decrypt_arg *darg) | 
 | { | 
 | 	struct strp_msg *rxm = strp_msg(skb); | 
 | 	struct tls_msg *tlm = tls_msg(skb); | 
 | 	int sub = 0; | 
 |  | 
 | 	/* Determine zero-padding length */ | 
 | 	if (prot->version == TLS_1_3_VERSION) { | 
 | 		int offset = rxm->full_len - TLS_TAG_SIZE - 1; | 
 | 		char content_type = darg->zc ? darg->tail : 0; | 
 | 		int err; | 
 |  | 
 | 		while (content_type == 0) { | 
 | 			if (offset < prot->prepend_size) | 
 | 				return -EBADMSG; | 
 | 			err = skb_copy_bits(skb, rxm->offset + offset, | 
 | 					    &content_type, 1); | 
 | 			if (err) | 
 | 				return err; | 
 | 			if (content_type) | 
 | 				break; | 
 | 			sub++; | 
 | 			offset--; | 
 | 		} | 
 | 		tlm->control = content_type; | 
 | 	} | 
 | 	return sub; | 
 | } | 
 |  | 
 | static void tls_decrypt_done(void *data, int err) | 
 | { | 
 | 	struct aead_request *aead_req = data; | 
 | 	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); | 
 | 	struct scatterlist *sgout = aead_req->dst; | 
 | 	struct tls_sw_context_rx *ctx; | 
 | 	struct tls_decrypt_ctx *dctx; | 
 | 	struct tls_context *tls_ctx; | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int pages; | 
 | 	struct sock *sk; | 
 | 	int aead_size; | 
 |  | 
 | 	/* If requests get too backlogged crypto API returns -EBUSY and calls | 
 | 	 * ->complete(-EINPROGRESS) immediately followed by ->complete(0) | 
 | 	 * to make waiting for backlog to flush with crypto_wait_req() easier. | 
 | 	 * First wait converts -EBUSY -> -EINPROGRESS, and the second one | 
 | 	 * -EINPROGRESS -> 0. | 
 | 	 * We have a single struct crypto_async_request per direction, this | 
 | 	 * scheme doesn't help us, so just ignore the first ->complete(). | 
 | 	 */ | 
 | 	if (err == -EINPROGRESS) | 
 | 		return; | 
 |  | 
 | 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); | 
 | 	aead_size = ALIGN(aead_size, __alignof__(*dctx)); | 
 | 	dctx = (void *)((u8 *)aead_req + aead_size); | 
 |  | 
 | 	sk = dctx->sk; | 
 | 	tls_ctx = tls_get_ctx(sk); | 
 | 	ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	/* Propagate if there was an err */ | 
 | 	if (err) { | 
 | 		if (err == -EBADMSG) | 
 | 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); | 
 | 		ctx->async_wait.err = err; | 
 | 		tls_err_abort(sk, err); | 
 | 	} | 
 |  | 
 | 	/* Free the destination pages if skb was not decrypted inplace */ | 
 | 	if (dctx->free_sgout) { | 
 | 		/* Skip the first S/G entry as it points to AAD */ | 
 | 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { | 
 | 			if (!sg) | 
 | 				break; | 
 | 			put_page(sg_page(sg)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kfree(aead_req); | 
 |  | 
 | 	if (atomic_dec_and_test(&ctx->decrypt_pending)) | 
 | 		complete(&ctx->async_wait.completion); | 
 | } | 
 |  | 
 | static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) | 
 | { | 
 | 	if (!atomic_dec_and_test(&ctx->decrypt_pending)) | 
 | 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait); | 
 | 	atomic_inc(&ctx->decrypt_pending); | 
 |  | 
 | 	return ctx->async_wait.err; | 
 | } | 
 |  | 
 | static int tls_do_decryption(struct sock *sk, | 
 | 			     struct scatterlist *sgin, | 
 | 			     struct scatterlist *sgout, | 
 | 			     char *iv_recv, | 
 | 			     size_t data_len, | 
 | 			     struct aead_request *aead_req, | 
 | 			     struct tls_decrypt_arg *darg) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	int ret; | 
 |  | 
 | 	aead_request_set_tfm(aead_req, ctx->aead_recv); | 
 | 	aead_request_set_ad(aead_req, prot->aad_size); | 
 | 	aead_request_set_crypt(aead_req, sgin, sgout, | 
 | 			       data_len + prot->tag_size, | 
 | 			       (u8 *)iv_recv); | 
 |  | 
 | 	if (darg->async) { | 
 | 		aead_request_set_callback(aead_req, | 
 | 					  CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 					  tls_decrypt_done, aead_req); | 
 | 		DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); | 
 | 		atomic_inc(&ctx->decrypt_pending); | 
 | 	} else { | 
 | 		DECLARE_CRYPTO_WAIT(wait); | 
 |  | 
 | 		aead_request_set_callback(aead_req, | 
 | 					  CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 					  crypto_req_done, &wait); | 
 | 		ret = crypto_aead_decrypt(aead_req); | 
 | 		if (ret == -EINPROGRESS || ret == -EBUSY) | 
 | 			ret = crypto_wait_req(ret, &wait); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = crypto_aead_decrypt(aead_req); | 
 | 	if (ret == -EINPROGRESS) | 
 | 		return 0; | 
 |  | 
 | 	if (ret == -EBUSY) { | 
 | 		ret = tls_decrypt_async_wait(ctx); | 
 | 		darg->async_done = true; | 
 | 		/* all completions have run, we're not doing async anymore */ | 
 | 		darg->async = false; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	atomic_dec(&ctx->decrypt_pending); | 
 | 	darg->async = false; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void tls_trim_both_msgs(struct sock *sk, int target_size) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 |  | 
 | 	sk_msg_trim(sk, &rec->msg_plaintext, target_size); | 
 | 	if (target_size > 0) | 
 | 		target_size += prot->overhead_size; | 
 | 	sk_msg_trim(sk, &rec->msg_encrypted, target_size); | 
 | } | 
 |  | 
 | static int tls_alloc_encrypted_msg(struct sock *sk, int len) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 | 	struct sk_msg *msg_en = &rec->msg_encrypted; | 
 |  | 
 | 	return sk_msg_alloc(sk, msg_en, len, 0); | 
 | } | 
 |  | 
 | static int tls_clone_plaintext_msg(struct sock *sk, int required) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 | 	struct sk_msg *msg_pl = &rec->msg_plaintext; | 
 | 	struct sk_msg *msg_en = &rec->msg_encrypted; | 
 | 	int skip, len; | 
 |  | 
 | 	/* We add page references worth len bytes from encrypted sg | 
 | 	 * at the end of plaintext sg. It is guaranteed that msg_en | 
 | 	 * has enough required room (ensured by caller). | 
 | 	 */ | 
 | 	len = required - msg_pl->sg.size; | 
 |  | 
 | 	/* Skip initial bytes in msg_en's data to be able to use | 
 | 	 * same offset of both plain and encrypted data. | 
 | 	 */ | 
 | 	skip = prot->prepend_size + msg_pl->sg.size; | 
 |  | 
 | 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len); | 
 | } | 
 |  | 
 | static struct tls_rec *tls_get_rec(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct sk_msg *msg_pl, *msg_en; | 
 | 	struct tls_rec *rec; | 
 | 	int mem_size; | 
 |  | 
 | 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); | 
 |  | 
 | 	rec = kzalloc(mem_size, sk->sk_allocation); | 
 | 	if (!rec) | 
 | 		return NULL; | 
 |  | 
 | 	msg_pl = &rec->msg_plaintext; | 
 | 	msg_en = &rec->msg_encrypted; | 
 |  | 
 | 	sk_msg_init(msg_pl); | 
 | 	sk_msg_init(msg_en); | 
 |  | 
 | 	sg_init_table(rec->sg_aead_in, 2); | 
 | 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); | 
 | 	sg_unmark_end(&rec->sg_aead_in[1]); | 
 |  | 
 | 	sg_init_table(rec->sg_aead_out, 2); | 
 | 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); | 
 | 	sg_unmark_end(&rec->sg_aead_out[1]); | 
 |  | 
 | 	rec->sk = sk; | 
 |  | 
 | 	return rec; | 
 | } | 
 |  | 
 | static void tls_free_rec(struct sock *sk, struct tls_rec *rec) | 
 | { | 
 | 	sk_msg_free(sk, &rec->msg_encrypted); | 
 | 	sk_msg_free(sk, &rec->msg_plaintext); | 
 | 	kfree(rec); | 
 | } | 
 |  | 
 | static void tls_free_open_rec(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 |  | 
 | 	if (rec) { | 
 | 		tls_free_rec(sk, rec); | 
 | 		ctx->open_rec = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | int tls_tx_records(struct sock *sk, int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec, *tmp; | 
 | 	struct sk_msg *msg_en; | 
 | 	int tx_flags, rc = 0; | 
 |  | 
 | 	if (tls_is_partially_sent_record(tls_ctx)) { | 
 | 		rec = list_first_entry(&ctx->tx_list, | 
 | 				       struct tls_rec, list); | 
 |  | 
 | 		if (flags == -1) | 
 | 			tx_flags = rec->tx_flags; | 
 | 		else | 
 | 			tx_flags = flags; | 
 |  | 
 | 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags); | 
 | 		if (rc) | 
 | 			goto tx_err; | 
 |  | 
 | 		/* Full record has been transmitted. | 
 | 		 * Remove the head of tx_list | 
 | 		 */ | 
 | 		list_del(&rec->list); | 
 | 		sk_msg_free(sk, &rec->msg_plaintext); | 
 | 		kfree(rec); | 
 | 	} | 
 |  | 
 | 	/* Tx all ready records */ | 
 | 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { | 
 | 		if (READ_ONCE(rec->tx_ready)) { | 
 | 			if (flags == -1) | 
 | 				tx_flags = rec->tx_flags; | 
 | 			else | 
 | 				tx_flags = flags; | 
 |  | 
 | 			msg_en = &rec->msg_encrypted; | 
 | 			rc = tls_push_sg(sk, tls_ctx, | 
 | 					 &msg_en->sg.data[msg_en->sg.curr], | 
 | 					 0, tx_flags); | 
 | 			if (rc) | 
 | 				goto tx_err; | 
 |  | 
 | 			list_del(&rec->list); | 
 | 			sk_msg_free(sk, &rec->msg_plaintext); | 
 | 			kfree(rec); | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | tx_err: | 
 | 	if (rc < 0 && rc != -EAGAIN) | 
 | 		tls_err_abort(sk, rc); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void tls_encrypt_done(void *data, int err) | 
 | { | 
 | 	struct tls_sw_context_tx *ctx; | 
 | 	struct tls_context *tls_ctx; | 
 | 	struct tls_prot_info *prot; | 
 | 	struct tls_rec *rec = data; | 
 | 	struct scatterlist *sge; | 
 | 	struct sk_msg *msg_en; | 
 | 	struct sock *sk; | 
 |  | 
 | 	if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ | 
 | 		return; | 
 |  | 
 | 	msg_en = &rec->msg_encrypted; | 
 |  | 
 | 	sk = rec->sk; | 
 | 	tls_ctx = tls_get_ctx(sk); | 
 | 	prot = &tls_ctx->prot_info; | 
 | 	ctx = tls_sw_ctx_tx(tls_ctx); | 
 |  | 
 | 	sge = sk_msg_elem(msg_en, msg_en->sg.curr); | 
 | 	sge->offset -= prot->prepend_size; | 
 | 	sge->length += prot->prepend_size; | 
 |  | 
 | 	/* Check if error is previously set on socket */ | 
 | 	if (err || sk->sk_err) { | 
 | 		rec = NULL; | 
 |  | 
 | 		/* If err is already set on socket, return the same code */ | 
 | 		if (sk->sk_err) { | 
 | 			ctx->async_wait.err = -sk->sk_err; | 
 | 		} else { | 
 | 			ctx->async_wait.err = err; | 
 | 			tls_err_abort(sk, err); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rec) { | 
 | 		struct tls_rec *first_rec; | 
 |  | 
 | 		/* Mark the record as ready for transmission */ | 
 | 		smp_store_mb(rec->tx_ready, true); | 
 |  | 
 | 		/* If received record is at head of tx_list, schedule tx */ | 
 | 		first_rec = list_first_entry(&ctx->tx_list, | 
 | 					     struct tls_rec, list); | 
 | 		if (rec == first_rec) { | 
 | 			/* Schedule the transmission */ | 
 | 			if (!test_and_set_bit(BIT_TX_SCHEDULED, | 
 | 					      &ctx->tx_bitmask)) | 
 | 				schedule_delayed_work(&ctx->tx_work.work, 1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (atomic_dec_and_test(&ctx->encrypt_pending)) | 
 | 		complete(&ctx->async_wait.completion); | 
 | } | 
 |  | 
 | static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) | 
 | { | 
 | 	if (!atomic_dec_and_test(&ctx->encrypt_pending)) | 
 | 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait); | 
 | 	atomic_inc(&ctx->encrypt_pending); | 
 |  | 
 | 	return ctx->async_wait.err; | 
 | } | 
 |  | 
 | static int tls_do_encryption(struct sock *sk, | 
 | 			     struct tls_context *tls_ctx, | 
 | 			     struct tls_sw_context_tx *ctx, | 
 | 			     struct aead_request *aead_req, | 
 | 			     size_t data_len, u32 start) | 
 | { | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 | 	struct sk_msg *msg_en = &rec->msg_encrypted; | 
 | 	struct scatterlist *sge = sk_msg_elem(msg_en, start); | 
 | 	int rc, iv_offset = 0; | 
 |  | 
 | 	/* For CCM based ciphers, first byte of IV is a constant */ | 
 | 	switch (prot->cipher_type) { | 
 | 	case TLS_CIPHER_AES_CCM_128: | 
 | 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; | 
 | 		iv_offset = 1; | 
 | 		break; | 
 | 	case TLS_CIPHER_SM4_CCM: | 
 | 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; | 
 | 		iv_offset = 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, | 
 | 	       prot->iv_size + prot->salt_size); | 
 |  | 
 | 	tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, | 
 | 			    tls_ctx->tx.rec_seq); | 
 |  | 
 | 	sge->offset += prot->prepend_size; | 
 | 	sge->length -= prot->prepend_size; | 
 |  | 
 | 	msg_en->sg.curr = start; | 
 |  | 
 | 	aead_request_set_tfm(aead_req, ctx->aead_send); | 
 | 	aead_request_set_ad(aead_req, prot->aad_size); | 
 | 	aead_request_set_crypt(aead_req, rec->sg_aead_in, | 
 | 			       rec->sg_aead_out, | 
 | 			       data_len, rec->iv_data); | 
 |  | 
 | 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 				  tls_encrypt_done, rec); | 
 |  | 
 | 	/* Add the record in tx_list */ | 
 | 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); | 
 | 	DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); | 
 | 	atomic_inc(&ctx->encrypt_pending); | 
 |  | 
 | 	rc = crypto_aead_encrypt(aead_req); | 
 | 	if (rc == -EBUSY) { | 
 | 		rc = tls_encrypt_async_wait(ctx); | 
 | 		rc = rc ?: -EINPROGRESS; | 
 | 	} | 
 | 	if (!rc || rc != -EINPROGRESS) { | 
 | 		atomic_dec(&ctx->encrypt_pending); | 
 | 		sge->offset -= prot->prepend_size; | 
 | 		sge->length += prot->prepend_size; | 
 | 	} | 
 |  | 
 | 	if (!rc) { | 
 | 		WRITE_ONCE(rec->tx_ready, true); | 
 | 	} else if (rc != -EINPROGRESS) { | 
 | 		list_del(&rec->list); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	/* Unhook the record from context if encryption is not failure */ | 
 | 	ctx->open_rec = NULL; | 
 | 	tls_advance_record_sn(sk, prot, &tls_ctx->tx); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int tls_split_open_record(struct sock *sk, struct tls_rec *from, | 
 | 				 struct tls_rec **to, struct sk_msg *msg_opl, | 
 | 				 struct sk_msg *msg_oen, u32 split_point, | 
 | 				 u32 tx_overhead_size, u32 *orig_end) | 
 | { | 
 | 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; | 
 | 	struct scatterlist *sge, *osge, *nsge; | 
 | 	u32 orig_size = msg_opl->sg.size; | 
 | 	struct scatterlist tmp = { }; | 
 | 	struct sk_msg *msg_npl; | 
 | 	struct tls_rec *new; | 
 | 	int ret; | 
 |  | 
 | 	new = tls_get_rec(sk); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 | 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + | 
 | 			   tx_overhead_size, 0); | 
 | 	if (ret < 0) { | 
 | 		tls_free_rec(sk, new); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	*orig_end = msg_opl->sg.end; | 
 | 	i = msg_opl->sg.start; | 
 | 	sge = sk_msg_elem(msg_opl, i); | 
 | 	while (apply && sge->length) { | 
 | 		if (sge->length > apply) { | 
 | 			u32 len = sge->length - apply; | 
 |  | 
 | 			get_page(sg_page(sge)); | 
 | 			sg_set_page(&tmp, sg_page(sge), len, | 
 | 				    sge->offset + apply); | 
 | 			sge->length = apply; | 
 | 			bytes += apply; | 
 | 			apply = 0; | 
 | 		} else { | 
 | 			apply -= sge->length; | 
 | 			bytes += sge->length; | 
 | 		} | 
 |  | 
 | 		sk_msg_iter_var_next(i); | 
 | 		if (i == msg_opl->sg.end) | 
 | 			break; | 
 | 		sge = sk_msg_elem(msg_opl, i); | 
 | 	} | 
 |  | 
 | 	msg_opl->sg.end = i; | 
 | 	msg_opl->sg.curr = i; | 
 | 	msg_opl->sg.copybreak = 0; | 
 | 	msg_opl->apply_bytes = 0; | 
 | 	msg_opl->sg.size = bytes; | 
 |  | 
 | 	msg_npl = &new->msg_plaintext; | 
 | 	msg_npl->apply_bytes = apply; | 
 | 	msg_npl->sg.size = orig_size - bytes; | 
 |  | 
 | 	j = msg_npl->sg.start; | 
 | 	nsge = sk_msg_elem(msg_npl, j); | 
 | 	if (tmp.length) { | 
 | 		memcpy(nsge, &tmp, sizeof(*nsge)); | 
 | 		sk_msg_iter_var_next(j); | 
 | 		nsge = sk_msg_elem(msg_npl, j); | 
 | 	} | 
 |  | 
 | 	osge = sk_msg_elem(msg_opl, i); | 
 | 	while (osge->length) { | 
 | 		memcpy(nsge, osge, sizeof(*nsge)); | 
 | 		sg_unmark_end(nsge); | 
 | 		sk_msg_iter_var_next(i); | 
 | 		sk_msg_iter_var_next(j); | 
 | 		if (i == *orig_end) | 
 | 			break; | 
 | 		osge = sk_msg_elem(msg_opl, i); | 
 | 		nsge = sk_msg_elem(msg_npl, j); | 
 | 	} | 
 |  | 
 | 	msg_npl->sg.end = j; | 
 | 	msg_npl->sg.curr = j; | 
 | 	msg_npl->sg.copybreak = 0; | 
 |  | 
 | 	*to = new; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, | 
 | 				  struct tls_rec *from, u32 orig_end) | 
 | { | 
 | 	struct sk_msg *msg_npl = &from->msg_plaintext; | 
 | 	struct sk_msg *msg_opl = &to->msg_plaintext; | 
 | 	struct scatterlist *osge, *nsge; | 
 | 	u32 i, j; | 
 |  | 
 | 	i = msg_opl->sg.end; | 
 | 	sk_msg_iter_var_prev(i); | 
 | 	j = msg_npl->sg.start; | 
 |  | 
 | 	osge = sk_msg_elem(msg_opl, i); | 
 | 	nsge = sk_msg_elem(msg_npl, j); | 
 |  | 
 | 	if (sg_page(osge) == sg_page(nsge) && | 
 | 	    osge->offset + osge->length == nsge->offset) { | 
 | 		osge->length += nsge->length; | 
 | 		put_page(sg_page(nsge)); | 
 | 	} | 
 |  | 
 | 	msg_opl->sg.end = orig_end; | 
 | 	msg_opl->sg.curr = orig_end; | 
 | 	msg_opl->sg.copybreak = 0; | 
 | 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; | 
 | 	msg_opl->sg.size += msg_npl->sg.size; | 
 |  | 
 | 	sk_msg_free(sk, &to->msg_encrypted); | 
 | 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); | 
 |  | 
 | 	kfree(from); | 
 | } | 
 |  | 
 | static int tls_push_record(struct sock *sk, int flags, | 
 | 			   unsigned char record_type) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL; | 
 | 	u32 i, split_point, orig_end; | 
 | 	struct sk_msg *msg_pl, *msg_en; | 
 | 	struct aead_request *req; | 
 | 	bool split; | 
 | 	int rc; | 
 |  | 
 | 	if (!rec) | 
 | 		return 0; | 
 |  | 
 | 	msg_pl = &rec->msg_plaintext; | 
 | 	msg_en = &rec->msg_encrypted; | 
 |  | 
 | 	split_point = msg_pl->apply_bytes; | 
 | 	split = split_point && split_point < msg_pl->sg.size; | 
 | 	if (unlikely((!split && | 
 | 		      msg_pl->sg.size + | 
 | 		      prot->overhead_size > msg_en->sg.size) || | 
 | 		     (split && | 
 | 		      split_point + | 
 | 		      prot->overhead_size > msg_en->sg.size))) { | 
 | 		split = true; | 
 | 		split_point = msg_en->sg.size; | 
 | 	} | 
 | 	if (split) { | 
 | 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, | 
 | 					   split_point, prot->overhead_size, | 
 | 					   &orig_end); | 
 | 		if (rc < 0) | 
 | 			return rc; | 
 | 		/* This can happen if above tls_split_open_record allocates | 
 | 		 * a single large encryption buffer instead of two smaller | 
 | 		 * ones. In this case adjust pointers and continue without | 
 | 		 * split. | 
 | 		 */ | 
 | 		if (!msg_pl->sg.size) { | 
 | 			tls_merge_open_record(sk, rec, tmp, orig_end); | 
 | 			msg_pl = &rec->msg_plaintext; | 
 | 			msg_en = &rec->msg_encrypted; | 
 | 			split = false; | 
 | 		} | 
 | 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + | 
 | 			    prot->overhead_size); | 
 | 	} | 
 |  | 
 | 	rec->tx_flags = flags; | 
 | 	req = &rec->aead_req; | 
 |  | 
 | 	i = msg_pl->sg.end; | 
 | 	sk_msg_iter_var_prev(i); | 
 |  | 
 | 	rec->content_type = record_type; | 
 | 	if (prot->version == TLS_1_3_VERSION) { | 
 | 		/* Add content type to end of message.  No padding added */ | 
 | 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); | 
 | 		sg_mark_end(&rec->sg_content_type); | 
 | 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, | 
 | 			 &rec->sg_content_type); | 
 | 	} else { | 
 | 		sg_mark_end(sk_msg_elem(msg_pl, i)); | 
 | 	} | 
 |  | 
 | 	if (msg_pl->sg.end < msg_pl->sg.start) { | 
 | 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start], | 
 | 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1, | 
 | 			 msg_pl->sg.data); | 
 | 	} | 
 |  | 
 | 	i = msg_pl->sg.start; | 
 | 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); | 
 |  | 
 | 	i = msg_en->sg.end; | 
 | 	sk_msg_iter_var_prev(i); | 
 | 	sg_mark_end(sk_msg_elem(msg_en, i)); | 
 |  | 
 | 	i = msg_en->sg.start; | 
 | 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); | 
 |  | 
 | 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, | 
 | 		     tls_ctx->tx.rec_seq, record_type, prot); | 
 |  | 
 | 	tls_fill_prepend(tls_ctx, | 
 | 			 page_address(sg_page(&msg_en->sg.data[i])) + | 
 | 			 msg_en->sg.data[i].offset, | 
 | 			 msg_pl->sg.size + prot->tail_size, | 
 | 			 record_type); | 
 |  | 
 | 	tls_ctx->pending_open_record_frags = false; | 
 |  | 
 | 	rc = tls_do_encryption(sk, tls_ctx, ctx, req, | 
 | 			       msg_pl->sg.size + prot->tail_size, i); | 
 | 	if (rc < 0) { | 
 | 		if (rc != -EINPROGRESS) { | 
 | 			tls_err_abort(sk, -EBADMSG); | 
 | 			if (split) { | 
 | 				tls_ctx->pending_open_record_frags = true; | 
 | 				tls_merge_open_record(sk, rec, tmp, orig_end); | 
 | 			} | 
 | 		} | 
 | 		ctx->async_capable = 1; | 
 | 		return rc; | 
 | 	} else if (split) { | 
 | 		msg_pl = &tmp->msg_plaintext; | 
 | 		msg_en = &tmp->msg_encrypted; | 
 | 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); | 
 | 		tls_ctx->pending_open_record_frags = true; | 
 | 		ctx->open_rec = tmp; | 
 | 	} | 
 |  | 
 | 	return tls_tx_records(sk, flags); | 
 | } | 
 |  | 
 | static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, | 
 | 			       bool full_record, u8 record_type, | 
 | 			       ssize_t *copied, int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct sk_msg msg_redir = { }; | 
 | 	struct sk_psock *psock; | 
 | 	struct sock *sk_redir; | 
 | 	struct tls_rec *rec; | 
 | 	bool enospc, policy, redir_ingress; | 
 | 	int err = 0, send; | 
 | 	u32 delta = 0; | 
 |  | 
 | 	policy = !(flags & MSG_SENDPAGE_NOPOLICY); | 
 | 	psock = sk_psock_get(sk); | 
 | 	if (!psock || !policy) { | 
 | 		err = tls_push_record(sk, flags, record_type); | 
 | 		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { | 
 | 			*copied -= sk_msg_free(sk, msg); | 
 | 			tls_free_open_rec(sk); | 
 | 			err = -sk->sk_err; | 
 | 		} | 
 | 		if (psock) | 
 | 			sk_psock_put(sk, psock); | 
 | 		return err; | 
 | 	} | 
 | more_data: | 
 | 	enospc = sk_msg_full(msg); | 
 | 	if (psock->eval == __SK_NONE) { | 
 | 		delta = msg->sg.size; | 
 | 		psock->eval = sk_psock_msg_verdict(sk, psock, msg); | 
 | 		delta -= msg->sg.size; | 
 |  | 
 | 		if ((s32)delta > 0) { | 
 | 			/* It indicates that we executed bpf_msg_pop_data(), | 
 | 			 * causing the plaintext data size to decrease. | 
 | 			 * Therefore the encrypted data size also needs to | 
 | 			 * correspondingly decrease. We only need to subtract | 
 | 			 * delta to calculate the new ciphertext length since | 
 | 			 * ktls does not support block encryption. | 
 | 			 */ | 
 | 			struct sk_msg *enc = &ctx->open_rec->msg_encrypted; | 
 |  | 
 | 			sk_msg_trim(sk, enc, enc->sg.size - delta); | 
 | 		} | 
 | 	} | 
 | 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && | 
 | 	    !enospc && !full_record) { | 
 | 		err = -ENOSPC; | 
 | 		goto out_err; | 
 | 	} | 
 | 	msg->cork_bytes = 0; | 
 | 	send = msg->sg.size; | 
 | 	if (msg->apply_bytes && msg->apply_bytes < send) | 
 | 		send = msg->apply_bytes; | 
 |  | 
 | 	switch (psock->eval) { | 
 | 	case __SK_PASS: | 
 | 		err = tls_push_record(sk, flags, record_type); | 
 | 		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { | 
 | 			*copied -= sk_msg_free(sk, msg); | 
 | 			tls_free_open_rec(sk); | 
 | 			err = -sk->sk_err; | 
 | 			goto out_err; | 
 | 		} | 
 | 		break; | 
 | 	case __SK_REDIRECT: | 
 | 		redir_ingress = psock->redir_ingress; | 
 | 		sk_redir = psock->sk_redir; | 
 | 		memcpy(&msg_redir, msg, sizeof(*msg)); | 
 | 		if (msg->apply_bytes < send) | 
 | 			msg->apply_bytes = 0; | 
 | 		else | 
 | 			msg->apply_bytes -= send; | 
 | 		sk_msg_return_zero(sk, msg, send); | 
 | 		msg->sg.size -= send; | 
 | 		release_sock(sk); | 
 | 		err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, | 
 | 					    &msg_redir, send, flags); | 
 | 		lock_sock(sk); | 
 | 		if (err < 0) { | 
 | 			/* Regardless of whether the data represented by | 
 | 			 * msg_redir is sent successfully, we have already | 
 | 			 * uncharged it via sk_msg_return_zero(). The | 
 | 			 * msg->sg.size represents the remaining unprocessed | 
 | 			 * data, which needs to be uncharged here. | 
 | 			 */ | 
 | 			sk_mem_uncharge(sk, msg->sg.size); | 
 | 			*copied -= sk_msg_free_nocharge(sk, &msg_redir); | 
 | 			msg->sg.size = 0; | 
 | 		} | 
 | 		if (msg->sg.size == 0) | 
 | 			tls_free_open_rec(sk); | 
 | 		break; | 
 | 	case __SK_DROP: | 
 | 	default: | 
 | 		sk_msg_free_partial(sk, msg, send); | 
 | 		if (msg->apply_bytes < send) | 
 | 			msg->apply_bytes = 0; | 
 | 		else | 
 | 			msg->apply_bytes -= send; | 
 | 		if (msg->sg.size == 0) | 
 | 			tls_free_open_rec(sk); | 
 | 		*copied -= (send + delta); | 
 | 		err = -EACCES; | 
 | 	} | 
 |  | 
 | 	if (likely(!err)) { | 
 | 		bool reset_eval = !ctx->open_rec; | 
 |  | 
 | 		rec = ctx->open_rec; | 
 | 		if (rec) { | 
 | 			msg = &rec->msg_plaintext; | 
 | 			if (!msg->apply_bytes) | 
 | 				reset_eval = true; | 
 | 		} | 
 | 		if (reset_eval) { | 
 | 			psock->eval = __SK_NONE; | 
 | 			if (psock->sk_redir) { | 
 | 				sock_put(psock->sk_redir); | 
 | 				psock->sk_redir = NULL; | 
 | 			} | 
 | 		} | 
 | 		if (rec) | 
 | 			goto more_data; | 
 | 	} | 
 |  out_err: | 
 | 	sk_psock_put(sk, psock); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int tls_sw_push_pending_record(struct sock *sk, int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec = ctx->open_rec; | 
 | 	struct sk_msg *msg_pl; | 
 | 	size_t copied; | 
 |  | 
 | 	if (!rec) | 
 | 		return 0; | 
 |  | 
 | 	msg_pl = &rec->msg_plaintext; | 
 | 	copied = msg_pl->sg.size; | 
 | 	if (!copied) | 
 | 		return 0; | 
 |  | 
 | 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, | 
 | 				   &copied, flags); | 
 | } | 
 |  | 
 | static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, | 
 | 				 struct sk_msg *msg_pl, size_t try_to_copy, | 
 | 				 ssize_t *copied) | 
 | { | 
 | 	struct page *page = NULL, **pages = &page; | 
 |  | 
 | 	do { | 
 | 		ssize_t part; | 
 | 		size_t off; | 
 |  | 
 | 		part = iov_iter_extract_pages(&msg->msg_iter, &pages, | 
 | 					      try_to_copy, 1, 0, &off); | 
 | 		if (part <= 0) | 
 | 			return part ?: -EIO; | 
 |  | 
 | 		if (WARN_ON_ONCE(!sendpage_ok(page))) { | 
 | 			iov_iter_revert(&msg->msg_iter, part); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		sk_msg_page_add(msg_pl, page, part, off); | 
 | 		msg_pl->sg.copybreak = 0; | 
 | 		msg_pl->sg.curr = msg_pl->sg.end; | 
 | 		sk_mem_charge(sk, part); | 
 | 		*copied += part; | 
 | 		try_to_copy -= part; | 
 | 	} while (try_to_copy && !sk_msg_full(msg_pl)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, | 
 | 				 size_t size) | 
 | { | 
 | 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	bool async_capable = ctx->async_capable; | 
 | 	unsigned char record_type = TLS_RECORD_TYPE_DATA; | 
 | 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); | 
 | 	bool eor = !(msg->msg_flags & MSG_MORE); | 
 | 	size_t try_to_copy; | 
 | 	ssize_t copied = 0; | 
 | 	struct sk_msg *msg_pl, *msg_en; | 
 | 	struct tls_rec *rec; | 
 | 	int required_size; | 
 | 	int num_async = 0; | 
 | 	bool full_record; | 
 | 	int record_room; | 
 | 	int num_zc = 0; | 
 | 	int orig_size; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!eor && (msg->msg_flags & MSG_EOR)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (unlikely(msg->msg_controllen)) { | 
 | 		ret = tls_process_cmsg(sk, msg, &record_type); | 
 | 		if (ret) { | 
 | 			if (ret == -EINPROGRESS) | 
 | 				num_async++; | 
 | 			else if (ret != -EAGAIN) | 
 | 				goto send_end; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (msg_data_left(msg)) { | 
 | 		if (sk->sk_err) { | 
 | 			ret = -sk->sk_err; | 
 | 			goto send_end; | 
 | 		} | 
 |  | 
 | 		if (ctx->open_rec) | 
 | 			rec = ctx->open_rec; | 
 | 		else | 
 | 			rec = ctx->open_rec = tls_get_rec(sk); | 
 | 		if (!rec) { | 
 | 			ret = -ENOMEM; | 
 | 			goto send_end; | 
 | 		} | 
 |  | 
 | 		msg_pl = &rec->msg_plaintext; | 
 | 		msg_en = &rec->msg_encrypted; | 
 |  | 
 | 		orig_size = msg_pl->sg.size; | 
 | 		full_record = false; | 
 | 		try_to_copy = msg_data_left(msg); | 
 | 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; | 
 | 		if (try_to_copy >= record_room) { | 
 | 			try_to_copy = record_room; | 
 | 			full_record = true; | 
 | 		} | 
 |  | 
 | 		required_size = msg_pl->sg.size + try_to_copy + | 
 | 				prot->overhead_size; | 
 |  | 
 | 		if (!sk_stream_memory_free(sk)) | 
 | 			goto wait_for_sndbuf; | 
 |  | 
 | alloc_encrypted: | 
 | 		ret = tls_alloc_encrypted_msg(sk, required_size); | 
 | 		if (ret) { | 
 | 			if (ret != -ENOSPC) | 
 | 				goto wait_for_memory; | 
 |  | 
 | 			/* Adjust try_to_copy according to the amount that was | 
 | 			 * actually allocated. The difference is due | 
 | 			 * to max sg elements limit | 
 | 			 */ | 
 | 			try_to_copy -= required_size - msg_en->sg.size; | 
 | 			full_record = true; | 
 | 		} | 
 |  | 
 | 		if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { | 
 | 			ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, | 
 | 						    try_to_copy, &copied); | 
 | 			if (ret < 0) | 
 | 				goto send_end; | 
 | 			tls_ctx->pending_open_record_frags = true; | 
 |  | 
 | 			if (sk_msg_full(msg_pl)) | 
 | 				full_record = true; | 
 |  | 
 | 			if (full_record || eor) | 
 | 				goto copied; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!is_kvec && (full_record || eor) && !async_capable) { | 
 | 			u32 first = msg_pl->sg.end; | 
 |  | 
 | 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, | 
 | 							msg_pl, try_to_copy); | 
 | 			if (ret) | 
 | 				goto fallback_to_reg_send; | 
 |  | 
 | 			num_zc++; | 
 | 			copied += try_to_copy; | 
 |  | 
 | 			sk_msg_sg_copy_set(msg_pl, first); | 
 | 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, | 
 | 						  record_type, &copied, | 
 | 						  msg->msg_flags); | 
 | 			if (ret) { | 
 | 				if (ret == -EINPROGRESS) | 
 | 					num_async++; | 
 | 				else if (ret == -ENOMEM) | 
 | 					goto wait_for_memory; | 
 | 				else if (ctx->open_rec && ret == -ENOSPC) { | 
 | 					if (msg_pl->cork_bytes) { | 
 | 						ret = 0; | 
 | 						goto send_end; | 
 | 					} | 
 | 					goto rollback_iter; | 
 | 				} else if (ret != -EAGAIN) | 
 | 					goto send_end; | 
 | 			} | 
 | 			continue; | 
 | rollback_iter: | 
 | 			copied -= try_to_copy; | 
 | 			sk_msg_sg_copy_clear(msg_pl, first); | 
 | 			iov_iter_revert(&msg->msg_iter, | 
 | 					msg_pl->sg.size - orig_size); | 
 | fallback_to_reg_send: | 
 | 			sk_msg_trim(sk, msg_pl, orig_size); | 
 | 		} | 
 |  | 
 | 		required_size = msg_pl->sg.size + try_to_copy; | 
 |  | 
 | 		ret = tls_clone_plaintext_msg(sk, required_size); | 
 | 		if (ret) { | 
 | 			if (ret != -ENOSPC) | 
 | 				goto send_end; | 
 |  | 
 | 			/* Adjust try_to_copy according to the amount that was | 
 | 			 * actually allocated. The difference is due | 
 | 			 * to max sg elements limit | 
 | 			 */ | 
 | 			try_to_copy -= required_size - msg_pl->sg.size; | 
 | 			full_record = true; | 
 | 			sk_msg_trim(sk, msg_en, | 
 | 				    msg_pl->sg.size + prot->overhead_size); | 
 | 		} | 
 |  | 
 | 		if (try_to_copy) { | 
 | 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, | 
 | 						       msg_pl, try_to_copy); | 
 | 			if (ret < 0) | 
 | 				goto trim_sgl; | 
 | 		} | 
 |  | 
 | 		/* Open records defined only if successfully copied, otherwise | 
 | 		 * we would trim the sg but not reset the open record frags. | 
 | 		 */ | 
 | 		tls_ctx->pending_open_record_frags = true; | 
 | 		copied += try_to_copy; | 
 | copied: | 
 | 		if (full_record || eor) { | 
 | 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, | 
 | 						  record_type, &copied, | 
 | 						  msg->msg_flags); | 
 | 			if (ret) { | 
 | 				if (ret == -EINPROGRESS) | 
 | 					num_async++; | 
 | 				else if (ret == -ENOMEM) | 
 | 					goto wait_for_memory; | 
 | 				else if (ret != -EAGAIN) { | 
 | 					if (ret == -ENOSPC) | 
 | 						ret = 0; | 
 | 					goto send_end; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		continue; | 
 |  | 
 | wait_for_sndbuf: | 
 | 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); | 
 | wait_for_memory: | 
 | 		ret = sk_stream_wait_memory(sk, &timeo); | 
 | 		if (ret) { | 
 | trim_sgl: | 
 | 			if (ctx->open_rec) | 
 | 				tls_trim_both_msgs(sk, orig_size); | 
 | 			goto send_end; | 
 | 		} | 
 |  | 
 | 		if (ctx->open_rec && msg_en->sg.size < required_size) | 
 | 			goto alloc_encrypted; | 
 | 	} | 
 |  | 
 | 	if (!num_async) { | 
 | 		goto send_end; | 
 | 	} else if (num_zc || eor) { | 
 | 		int err; | 
 |  | 
 | 		/* Wait for pending encryptions to get completed */ | 
 | 		err = tls_encrypt_async_wait(ctx); | 
 | 		if (err) { | 
 | 			ret = err; | 
 | 			copied = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Transmit if any encryptions have completed */ | 
 | 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { | 
 | 		cancel_delayed_work(&ctx->tx_work.work); | 
 | 		tls_tx_records(sk, msg->msg_flags); | 
 | 	} | 
 |  | 
 | send_end: | 
 | 	ret = sk_stream_error(sk, msg->msg_flags, ret); | 
 | 	return copied > 0 ? copied : ret; | 
 | } | 
 |  | 
 | int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	int ret; | 
 |  | 
 | 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | | 
 | 			       MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | | 
 | 			       MSG_SENDPAGE_NOPOLICY)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	ret = mutex_lock_interruptible(&tls_ctx->tx_lock); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	lock_sock(sk); | 
 | 	ret = tls_sw_sendmsg_locked(sk, msg, size); | 
 | 	release_sock(sk); | 
 | 	mutex_unlock(&tls_ctx->tx_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle unexpected EOF during splice without SPLICE_F_MORE set. | 
 |  */ | 
 | void tls_sw_splice_eof(struct socket *sock) | 
 | { | 
 | 	struct sock *sk = sock->sk; | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec; | 
 | 	struct sk_msg *msg_pl; | 
 | 	ssize_t copied = 0; | 
 | 	bool retrying = false; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!ctx->open_rec) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&tls_ctx->tx_lock); | 
 | 	lock_sock(sk); | 
 |  | 
 | retry: | 
 | 	/* same checks as in tls_sw_push_pending_record() */ | 
 | 	rec = ctx->open_rec; | 
 | 	if (!rec) | 
 | 		goto unlock; | 
 |  | 
 | 	msg_pl = &rec->msg_plaintext; | 
 | 	if (msg_pl->sg.size == 0) | 
 | 		goto unlock; | 
 |  | 
 | 	/* Check the BPF advisor and perform transmission. */ | 
 | 	ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, | 
 | 				  &copied, 0); | 
 | 	switch (ret) { | 
 | 	case 0: | 
 | 	case -EAGAIN: | 
 | 		if (retrying) | 
 | 			goto unlock; | 
 | 		retrying = true; | 
 | 		goto retry; | 
 | 	case -EINPROGRESS: | 
 | 		break; | 
 | 	default: | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	/* Wait for pending encryptions to get completed */ | 
 | 	if (tls_encrypt_async_wait(ctx)) | 
 | 		goto unlock; | 
 |  | 
 | 	/* Transmit if any encryptions have completed */ | 
 | 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { | 
 | 		cancel_delayed_work(&ctx->tx_work.work); | 
 | 		tls_tx_records(sk, 0); | 
 | 	} | 
 |  | 
 | unlock: | 
 | 	release_sock(sk); | 
 | 	mutex_unlock(&tls_ctx->tx_lock); | 
 | } | 
 |  | 
 | static int | 
 | tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, | 
 | 		bool released) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	DEFINE_WAIT_FUNC(wait, woken_wake_function); | 
 | 	int ret = 0; | 
 | 	long timeo; | 
 |  | 
 | 	/* a rekey is pending, let userspace deal with it */ | 
 | 	if (unlikely(ctx->key_update_pending)) | 
 | 		return -EKEYEXPIRED; | 
 |  | 
 | 	timeo = sock_rcvtimeo(sk, nonblock); | 
 |  | 
 | 	while (!tls_strp_msg_ready(ctx)) { | 
 | 		if (!sk_psock_queue_empty(psock)) | 
 | 			return 0; | 
 |  | 
 | 		if (sk->sk_err) | 
 | 			return sock_error(sk); | 
 |  | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 |  | 
 | 		if (!skb_queue_empty(&sk->sk_receive_queue)) { | 
 | 			tls_strp_check_rcv(&ctx->strp); | 
 | 			if (tls_strp_msg_ready(ctx)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (sk->sk_shutdown & RCV_SHUTDOWN) | 
 | 			return 0; | 
 |  | 
 | 		if (sock_flag(sk, SOCK_DONE)) | 
 | 			return 0; | 
 |  | 
 | 		if (!timeo) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		released = true; | 
 | 		add_wait_queue(sk_sleep(sk), &wait); | 
 | 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); | 
 | 		ret = sk_wait_event(sk, &timeo, | 
 | 				    tls_strp_msg_ready(ctx) || | 
 | 				    !sk_psock_queue_empty(psock), | 
 | 				    &wait); | 
 | 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); | 
 | 		remove_wait_queue(sk_sleep(sk), &wait); | 
 |  | 
 | 		/* Handle signals */ | 
 | 		if (signal_pending(current)) | 
 | 			return sock_intr_errno(timeo); | 
 | 	} | 
 |  | 
 | 	tls_strp_msg_load(&ctx->strp, released); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int tls_setup_from_iter(struct iov_iter *from, | 
 | 			       int length, int *pages_used, | 
 | 			       struct scatterlist *to, | 
 | 			       int to_max_pages) | 
 | { | 
 | 	int rc = 0, i = 0, num_elem = *pages_used, maxpages; | 
 | 	struct page *pages[MAX_SKB_FRAGS]; | 
 | 	unsigned int size = 0; | 
 | 	ssize_t copied, use; | 
 | 	size_t offset; | 
 |  | 
 | 	while (length > 0) { | 
 | 		i = 0; | 
 | 		maxpages = to_max_pages - num_elem; | 
 | 		if (maxpages == 0) { | 
 | 			rc = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 		copied = iov_iter_get_pages2(from, pages, | 
 | 					    length, | 
 | 					    maxpages, &offset); | 
 | 		if (copied <= 0) { | 
 | 			rc = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		length -= copied; | 
 | 		size += copied; | 
 | 		while (copied) { | 
 | 			use = min_t(int, copied, PAGE_SIZE - offset); | 
 |  | 
 | 			sg_set_page(&to[num_elem], | 
 | 				    pages[i], use, offset); | 
 | 			sg_unmark_end(&to[num_elem]); | 
 | 			/* We do not uncharge memory from this API */ | 
 |  | 
 | 			offset = 0; | 
 | 			copied -= use; | 
 |  | 
 | 			i++; | 
 | 			num_elem++; | 
 | 		} | 
 | 	} | 
 | 	/* Mark the end in the last sg entry if newly added */ | 
 | 	if (num_elem > *pages_used) | 
 | 		sg_mark_end(&to[num_elem - 1]); | 
 | out: | 
 | 	if (rc) | 
 | 		iov_iter_revert(from, size); | 
 | 	*pages_used = num_elem; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static struct sk_buff * | 
 | tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, | 
 | 		     unsigned int full_len) | 
 | { | 
 | 	struct strp_msg *clr_rxm; | 
 | 	struct sk_buff *clr_skb; | 
 | 	int err; | 
 |  | 
 | 	clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, | 
 | 				       &err, sk->sk_allocation); | 
 | 	if (!clr_skb) | 
 | 		return NULL; | 
 |  | 
 | 	skb_copy_header(clr_skb, skb); | 
 | 	clr_skb->len = full_len; | 
 | 	clr_skb->data_len = full_len; | 
 |  | 
 | 	clr_rxm = strp_msg(clr_skb); | 
 | 	clr_rxm->offset = 0; | 
 |  | 
 | 	return clr_skb; | 
 | } | 
 |  | 
 | /* Decrypt handlers | 
 |  * | 
 |  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. | 
 |  * They must transform the darg in/out argument are as follows: | 
 |  *       |          Input            |         Output | 
 |  * ------------------------------------------------------------------- | 
 |  *    zc | Zero-copy decrypt allowed | Zero-copy performed | 
 |  * async | Async decrypt allowed     | Async crypto used / in progress | 
 |  *   skb |            *              | Output skb | 
 |  * | 
 |  * If ZC decryption was performed darg.skb will point to the input skb. | 
 |  */ | 
 |  | 
 | /* This function decrypts the input skb into either out_iov or in out_sg | 
 |  * or in skb buffers itself. The input parameter 'darg->zc' indicates if | 
 |  * zero-copy mode needs to be tried or not. With zero-copy mode, either | 
 |  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are | 
 |  * NULL, then the decryption happens inside skb buffers itself, i.e. | 
 |  * zero-copy gets disabled and 'darg->zc' is updated. | 
 |  */ | 
 | static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, | 
 | 			  struct scatterlist *out_sg, | 
 | 			  struct tls_decrypt_arg *darg) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	int n_sgin, n_sgout, aead_size, err, pages = 0; | 
 | 	struct sk_buff *skb = tls_strp_msg(ctx); | 
 | 	const struct strp_msg *rxm = strp_msg(skb); | 
 | 	const struct tls_msg *tlm = tls_msg(skb); | 
 | 	struct aead_request *aead_req; | 
 | 	struct scatterlist *sgin = NULL; | 
 | 	struct scatterlist *sgout = NULL; | 
 | 	const int data_len = rxm->full_len - prot->overhead_size; | 
 | 	int tail_pages = !!prot->tail_size; | 
 | 	struct tls_decrypt_ctx *dctx; | 
 | 	struct sk_buff *clear_skb; | 
 | 	int iv_offset = 0; | 
 | 	u8 *mem; | 
 |  | 
 | 	n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, | 
 | 			 rxm->full_len - prot->prepend_size); | 
 | 	if (n_sgin < 1) | 
 | 		return n_sgin ?: -EBADMSG; | 
 |  | 
 | 	if (darg->zc && (out_iov || out_sg)) { | 
 | 		clear_skb = NULL; | 
 |  | 
 | 		if (out_iov) | 
 | 			n_sgout = 1 + tail_pages + | 
 | 				iov_iter_npages_cap(out_iov, INT_MAX, data_len); | 
 | 		else | 
 | 			n_sgout = sg_nents(out_sg); | 
 | 	} else { | 
 | 		darg->zc = false; | 
 |  | 
 | 		clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); | 
 | 		if (!clear_skb) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; | 
 | 	} | 
 |  | 
 | 	/* Increment to accommodate AAD */ | 
 | 	n_sgin = n_sgin + 1; | 
 |  | 
 | 	/* Allocate a single block of memory which contains | 
 | 	 *   aead_req || tls_decrypt_ctx. | 
 | 	 * Both structs are variable length. | 
 | 	 */ | 
 | 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); | 
 | 	aead_size = ALIGN(aead_size, __alignof__(*dctx)); | 
 | 	mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), | 
 | 		      sk->sk_allocation); | 
 | 	if (!mem) { | 
 | 		err = -ENOMEM; | 
 | 		goto exit_free_skb; | 
 | 	} | 
 |  | 
 | 	/* Segment the allocated memory */ | 
 | 	aead_req = (struct aead_request *)mem; | 
 | 	dctx = (struct tls_decrypt_ctx *)(mem + aead_size); | 
 | 	dctx->sk = sk; | 
 | 	sgin = &dctx->sg[0]; | 
 | 	sgout = &dctx->sg[n_sgin]; | 
 |  | 
 | 	/* For CCM based ciphers, first byte of nonce+iv is a constant */ | 
 | 	switch (prot->cipher_type) { | 
 | 	case TLS_CIPHER_AES_CCM_128: | 
 | 		dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; | 
 | 		iv_offset = 1; | 
 | 		break; | 
 | 	case TLS_CIPHER_SM4_CCM: | 
 | 		dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; | 
 | 		iv_offset = 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Prepare IV */ | 
 | 	if (prot->version == TLS_1_3_VERSION || | 
 | 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { | 
 | 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, | 
 | 		       prot->iv_size + prot->salt_size); | 
 | 	} else { | 
 | 		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, | 
 | 				    &dctx->iv[iv_offset] + prot->salt_size, | 
 | 				    prot->iv_size); | 
 | 		if (err < 0) | 
 | 			goto exit_free; | 
 | 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); | 
 | 	} | 
 | 	tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); | 
 |  | 
 | 	/* Prepare AAD */ | 
 | 	tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + | 
 | 		     prot->tail_size, | 
 | 		     tls_ctx->rx.rec_seq, tlm->control, prot); | 
 |  | 
 | 	/* Prepare sgin */ | 
 | 	sg_init_table(sgin, n_sgin); | 
 | 	sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); | 
 | 	err = skb_to_sgvec(skb, &sgin[1], | 
 | 			   rxm->offset + prot->prepend_size, | 
 | 			   rxm->full_len - prot->prepend_size); | 
 | 	if (err < 0) | 
 | 		goto exit_free; | 
 |  | 
 | 	if (clear_skb) { | 
 | 		sg_init_table(sgout, n_sgout); | 
 | 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); | 
 |  | 
 | 		err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, | 
 | 				   data_len + prot->tail_size); | 
 | 		if (err < 0) | 
 | 			goto exit_free; | 
 | 	} else if (out_iov) { | 
 | 		sg_init_table(sgout, n_sgout); | 
 | 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); | 
 |  | 
 | 		err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], | 
 | 					  (n_sgout - 1 - tail_pages)); | 
 | 		if (err < 0) | 
 | 			goto exit_free_pages; | 
 |  | 
 | 		if (prot->tail_size) { | 
 | 			sg_unmark_end(&sgout[pages]); | 
 | 			sg_set_buf(&sgout[pages + 1], &dctx->tail, | 
 | 				   prot->tail_size); | 
 | 			sg_mark_end(&sgout[pages + 1]); | 
 | 		} | 
 | 	} else if (out_sg) { | 
 | 		memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); | 
 | 	} | 
 | 	dctx->free_sgout = !!pages; | 
 |  | 
 | 	/* Prepare and submit AEAD request */ | 
 | 	err = tls_do_decryption(sk, sgin, sgout, dctx->iv, | 
 | 				data_len + prot->tail_size, aead_req, darg); | 
 | 	if (err) { | 
 | 		if (darg->async_done) | 
 | 			goto exit_free_skb; | 
 | 		goto exit_free_pages; | 
 | 	} | 
 |  | 
 | 	darg->skb = clear_skb ?: tls_strp_msg(ctx); | 
 | 	clear_skb = NULL; | 
 |  | 
 | 	if (unlikely(darg->async)) { | 
 | 		err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); | 
 | 		if (err) | 
 | 			__skb_queue_tail(&ctx->async_hold, darg->skb); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (unlikely(darg->async_done)) | 
 | 		return 0; | 
 |  | 
 | 	if (prot->tail_size) | 
 | 		darg->tail = dctx->tail; | 
 |  | 
 | exit_free_pages: | 
 | 	/* Release the pages in case iov was mapped to pages */ | 
 | 	for (; pages > 0; pages--) | 
 | 		put_page(sg_page(&sgout[pages])); | 
 | exit_free: | 
 | 	kfree(mem); | 
 | exit_free_skb: | 
 | 	consume_skb(clear_skb); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int | 
 | tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, | 
 | 	       struct msghdr *msg, struct tls_decrypt_arg *darg) | 
 | { | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct strp_msg *rxm; | 
 | 	int pad, err; | 
 |  | 
 | 	err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); | 
 | 	if (err < 0) { | 
 | 		if (err == -EBADMSG) | 
 | 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); | 
 | 		return err; | 
 | 	} | 
 | 	/* keep going even for ->async, the code below is TLS 1.3 */ | 
 |  | 
 | 	/* If opportunistic TLS 1.3 ZC failed retry without ZC */ | 
 | 	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && | 
 | 		     darg->tail != TLS_RECORD_TYPE_DATA)) { | 
 | 		darg->zc = false; | 
 | 		if (!darg->tail) | 
 | 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); | 
 | 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); | 
 | 		return tls_decrypt_sw(sk, tls_ctx, msg, darg); | 
 | 	} | 
 |  | 
 | 	pad = tls_padding_length(prot, darg->skb, darg); | 
 | 	if (pad < 0) { | 
 | 		if (darg->skb != tls_strp_msg(ctx)) | 
 | 			consume_skb(darg->skb); | 
 | 		return pad; | 
 | 	} | 
 |  | 
 | 	rxm = strp_msg(darg->skb); | 
 | 	rxm->full_len -= pad; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | tls_decrypt_device(struct sock *sk, struct msghdr *msg, | 
 | 		   struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) | 
 | { | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct strp_msg *rxm; | 
 | 	int pad, err; | 
 |  | 
 | 	if (tls_ctx->rx_conf != TLS_HW) | 
 | 		return 0; | 
 |  | 
 | 	err = tls_device_decrypted(sk, tls_ctx); | 
 | 	if (err <= 0) | 
 | 		return err; | 
 |  | 
 | 	pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); | 
 | 	if (pad < 0) | 
 | 		return pad; | 
 |  | 
 | 	darg->async = false; | 
 | 	darg->skb = tls_strp_msg(ctx); | 
 | 	/* ->zc downgrade check, in case TLS 1.3 gets here */ | 
 | 	darg->zc &= !(prot->version == TLS_1_3_VERSION && | 
 | 		      tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); | 
 |  | 
 | 	rxm = strp_msg(darg->skb); | 
 | 	rxm->full_len -= pad; | 
 |  | 
 | 	if (!darg->zc) { | 
 | 		/* Non-ZC case needs a real skb */ | 
 | 		darg->skb = tls_strp_msg_detach(ctx); | 
 | 		if (!darg->skb) | 
 | 			return -ENOMEM; | 
 | 	} else { | 
 | 		unsigned int off, len; | 
 |  | 
 | 		/* In ZC case nobody cares about the output skb. | 
 | 		 * Just copy the data here. Note the skb is not fully trimmed. | 
 | 		 */ | 
 | 		off = rxm->offset + prot->prepend_size; | 
 | 		len = rxm->full_len - prot->overhead_size; | 
 |  | 
 | 		err = skb_copy_datagram_msg(darg->skb, off, msg, len); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx, | 
 | 				   struct sk_buff *skb) | 
 | { | 
 | 	const struct strp_msg *rxm = strp_msg(skb); | 
 | 	const struct tls_msg *tlm = tls_msg(skb); | 
 | 	char hs_type; | 
 | 	int err; | 
 |  | 
 | 	if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE)) | 
 | 		return 0; | 
 |  | 
 | 	if (rxm->full_len < 1) | 
 | 		return 0; | 
 |  | 
 | 	err = skb_copy_bits(skb, rxm->offset, &hs_type, 1); | 
 | 	if (err < 0) { | 
 | 		DEBUG_NET_WARN_ON_ONCE(1); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (hs_type == TLS_HANDSHAKE_KEYUPDATE) { | 
 | 		struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx; | 
 |  | 
 | 		WRITE_ONCE(rx_ctx->key_update_pending, true); | 
 | 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, | 
 | 			     struct tls_decrypt_arg *darg) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct strp_msg *rxm; | 
 | 	int err; | 
 |  | 
 | 	err = tls_decrypt_device(sk, msg, tls_ctx, darg); | 
 | 	if (!err) | 
 | 		err = tls_decrypt_sw(sk, tls_ctx, msg, darg); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	rxm = strp_msg(darg->skb); | 
 | 	rxm->offset += prot->prepend_size; | 
 | 	rxm->full_len -= prot->overhead_size; | 
 | 	tls_advance_record_sn(sk, prot, &tls_ctx->rx); | 
 |  | 
 | 	return tls_check_pending_rekey(sk, tls_ctx, darg->skb); | 
 | } | 
 |  | 
 | int decrypt_skb(struct sock *sk, struct scatterlist *sgout) | 
 | { | 
 | 	struct tls_decrypt_arg darg = { .zc = true, }; | 
 |  | 
 | 	return tls_decrypt_sg(sk, NULL, sgout, &darg); | 
 | } | 
 |  | 
 | static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, | 
 | 				   u8 *control) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!*control) { | 
 | 		*control = tlm->control; | 
 | 		if (!*control) | 
 | 			return -EBADMSG; | 
 |  | 
 | 		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, | 
 | 			       sizeof(*control), control); | 
 | 		if (*control != TLS_RECORD_TYPE_DATA) { | 
 | 			if (err || msg->msg_flags & MSG_CTRUNC) | 
 | 				return -EIO; | 
 | 		} | 
 | 	} else if (*control != tlm->control) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) | 
 | { | 
 | 	tls_strp_msg_done(&ctx->strp); | 
 | } | 
 |  | 
 | /* This function traverses the rx_list in tls receive context to copies the | 
 |  * decrypted records into the buffer provided by caller zero copy is not | 
 |  * true. Further, the records are removed from the rx_list if it is not a peek | 
 |  * case and the record has been consumed completely. | 
 |  */ | 
 | static int process_rx_list(struct tls_sw_context_rx *ctx, | 
 | 			   struct msghdr *msg, | 
 | 			   u8 *control, | 
 | 			   size_t skip, | 
 | 			   size_t len, | 
 | 			   bool is_peek, | 
 | 			   bool *more) | 
 | { | 
 | 	struct sk_buff *skb = skb_peek(&ctx->rx_list); | 
 | 	struct tls_msg *tlm; | 
 | 	ssize_t copied = 0; | 
 | 	int err; | 
 |  | 
 | 	while (skip && skb) { | 
 | 		struct strp_msg *rxm = strp_msg(skb); | 
 | 		tlm = tls_msg(skb); | 
 |  | 
 | 		err = tls_record_content_type(msg, tlm, control); | 
 | 		if (err <= 0) | 
 | 			goto more; | 
 |  | 
 | 		if (skip < rxm->full_len) | 
 | 			break; | 
 |  | 
 | 		skip = skip - rxm->full_len; | 
 | 		skb = skb_peek_next(skb, &ctx->rx_list); | 
 | 	} | 
 |  | 
 | 	while (len && skb) { | 
 | 		struct sk_buff *next_skb; | 
 | 		struct strp_msg *rxm = strp_msg(skb); | 
 | 		int chunk = min_t(unsigned int, rxm->full_len - skip, len); | 
 |  | 
 | 		tlm = tls_msg(skb); | 
 |  | 
 | 		err = tls_record_content_type(msg, tlm, control); | 
 | 		if (err <= 0) | 
 | 			goto more; | 
 |  | 
 | 		err = skb_copy_datagram_msg(skb, rxm->offset + skip, | 
 | 					    msg, chunk); | 
 | 		if (err < 0) | 
 | 			goto more; | 
 |  | 
 | 		len = len - chunk; | 
 | 		copied = copied + chunk; | 
 |  | 
 | 		/* Consume the data from record if it is non-peek case*/ | 
 | 		if (!is_peek) { | 
 | 			rxm->offset = rxm->offset + chunk; | 
 | 			rxm->full_len = rxm->full_len - chunk; | 
 |  | 
 | 			/* Return if there is unconsumed data in the record */ | 
 | 			if (rxm->full_len - skip) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* The remaining skip-bytes must lie in 1st record in rx_list. | 
 | 		 * So from the 2nd record, 'skip' should be 0. | 
 | 		 */ | 
 | 		skip = 0; | 
 |  | 
 | 		if (msg) | 
 | 			msg->msg_flags |= MSG_EOR; | 
 |  | 
 | 		next_skb = skb_peek_next(skb, &ctx->rx_list); | 
 |  | 
 | 		if (!is_peek) { | 
 | 			__skb_unlink(skb, &ctx->rx_list); | 
 | 			consume_skb(skb); | 
 | 		} | 
 |  | 
 | 		skb = next_skb; | 
 | 	} | 
 | 	err = 0; | 
 |  | 
 | out: | 
 | 	return copied ? : err; | 
 | more: | 
 | 	if (more) | 
 | 		*more = true; | 
 | 	goto out; | 
 | } | 
 |  | 
 | static bool | 
 | tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, | 
 | 		       size_t len_left, size_t decrypted, ssize_t done, | 
 | 		       size_t *flushed_at) | 
 | { | 
 | 	size_t max_rec; | 
 |  | 
 | 	if (len_left <= decrypted) | 
 | 		return false; | 
 |  | 
 | 	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; | 
 | 	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) | 
 | 		return false; | 
 |  | 
 | 	*flushed_at = done; | 
 | 	return sk_flush_backlog(sk); | 
 | } | 
 |  | 
 | static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, | 
 | 				 bool nonblock) | 
 | { | 
 | 	long timeo; | 
 | 	int ret; | 
 |  | 
 | 	timeo = sock_rcvtimeo(sk, nonblock); | 
 |  | 
 | 	while (unlikely(ctx->reader_present)) { | 
 | 		DEFINE_WAIT_FUNC(wait, woken_wake_function); | 
 |  | 
 | 		ctx->reader_contended = 1; | 
 |  | 
 | 		add_wait_queue(&ctx->wq, &wait); | 
 | 		ret = sk_wait_event(sk, &timeo, | 
 | 				    !READ_ONCE(ctx->reader_present), &wait); | 
 | 		remove_wait_queue(&ctx->wq, &wait); | 
 |  | 
 | 		if (timeo <= 0) | 
 | 			return -EAGAIN; | 
 | 		if (signal_pending(current)) | 
 | 			return sock_intr_errno(timeo); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	WRITE_ONCE(ctx->reader_present, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, | 
 | 			      bool nonblock) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	lock_sock(sk); | 
 | 	err = tls_rx_reader_acquire(sk, ctx, nonblock); | 
 | 	if (err) | 
 | 		release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) | 
 | { | 
 | 	if (unlikely(ctx->reader_contended)) { | 
 | 		if (wq_has_sleeper(&ctx->wq)) | 
 | 			wake_up(&ctx->wq); | 
 | 		else | 
 | 			ctx->reader_contended = 0; | 
 |  | 
 | 		WARN_ON_ONCE(!ctx->reader_present); | 
 | 	} | 
 |  | 
 | 	WRITE_ONCE(ctx->reader_present, 0); | 
 | } | 
 |  | 
 | static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) | 
 | { | 
 | 	tls_rx_reader_release(sk, ctx); | 
 | 	release_sock(sk); | 
 | } | 
 |  | 
 | int tls_sw_recvmsg(struct sock *sk, | 
 | 		   struct msghdr *msg, | 
 | 		   size_t len, | 
 | 		   int flags, | 
 | 		   int *addr_len) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	ssize_t decrypted = 0, async_copy_bytes = 0; | 
 | 	struct sk_psock *psock; | 
 | 	unsigned char control = 0; | 
 | 	size_t flushed_at = 0; | 
 | 	struct strp_msg *rxm; | 
 | 	struct tls_msg *tlm; | 
 | 	ssize_t copied = 0; | 
 | 	ssize_t peeked = 0; | 
 | 	bool async = false; | 
 | 	int target, err; | 
 | 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); | 
 | 	bool is_peek = flags & MSG_PEEK; | 
 | 	bool rx_more = false; | 
 | 	bool released = true; | 
 | 	bool bpf_strp_enabled; | 
 | 	bool zc_capable; | 
 |  | 
 | 	if (unlikely(flags & MSG_ERRQUEUE)) | 
 | 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); | 
 |  | 
 | 	err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); | 
 | 	if (err < 0) | 
 | 		return err; | 
 | 	psock = sk_psock_get(sk); | 
 | 	bpf_strp_enabled = sk_psock_strp_enabled(psock); | 
 |  | 
 | 	/* If crypto failed the connection is broken */ | 
 | 	err = ctx->async_wait.err; | 
 | 	if (err) | 
 | 		goto end; | 
 |  | 
 | 	/* Process pending decrypted records. It must be non-zero-copy */ | 
 | 	err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more); | 
 | 	if (err < 0) | 
 | 		goto end; | 
 |  | 
 | 	copied = err; | 
 | 	if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more) | 
 | 		goto end; | 
 |  | 
 | 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); | 
 | 	len = len - copied; | 
 |  | 
 | 	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && | 
 | 		ctx->zc_capable; | 
 | 	decrypted = 0; | 
 | 	while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { | 
 | 		struct tls_decrypt_arg darg; | 
 | 		int to_decrypt, chunk; | 
 |  | 
 | 		err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, | 
 | 				      released); | 
 | 		if (err <= 0) { | 
 | 			if (psock) { | 
 | 				chunk = sk_msg_recvmsg(sk, psock, msg, len, | 
 | 						       flags); | 
 | 				if (chunk > 0) { | 
 | 					decrypted += chunk; | 
 | 					len -= chunk; | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 | 			goto recv_end; | 
 | 		} | 
 |  | 
 | 		memset(&darg.inargs, 0, sizeof(darg.inargs)); | 
 |  | 
 | 		rxm = strp_msg(tls_strp_msg(ctx)); | 
 | 		tlm = tls_msg(tls_strp_msg(ctx)); | 
 |  | 
 | 		to_decrypt = rxm->full_len - prot->overhead_size; | 
 |  | 
 | 		if (zc_capable && to_decrypt <= len && | 
 | 		    tlm->control == TLS_RECORD_TYPE_DATA) | 
 | 			darg.zc = true; | 
 |  | 
 | 		/* Do not use async mode if record is non-data */ | 
 | 		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) | 
 | 			darg.async = ctx->async_capable; | 
 | 		else | 
 | 			darg.async = false; | 
 |  | 
 | 		err = tls_rx_one_record(sk, msg, &darg); | 
 | 		if (err < 0) { | 
 | 			tls_err_abort(sk, -EBADMSG); | 
 | 			goto recv_end; | 
 | 		} | 
 |  | 
 | 		async |= darg.async; | 
 |  | 
 | 		/* If the type of records being processed is not known yet, | 
 | 		 * set it to record type just dequeued. If it is already known, | 
 | 		 * but does not match the record type just dequeued, go to end. | 
 | 		 * We always get record type here since for tls1.2, record type | 
 | 		 * is known just after record is dequeued from stream parser. | 
 | 		 * For tls1.3, we disable async. | 
 | 		 */ | 
 | 		err = tls_record_content_type(msg, tls_msg(darg.skb), &control); | 
 | 		if (err <= 0) { | 
 | 			DEBUG_NET_WARN_ON_ONCE(darg.zc); | 
 | 			tls_rx_rec_done(ctx); | 
 | put_on_rx_list_err: | 
 | 			__skb_queue_tail(&ctx->rx_list, darg.skb); | 
 | 			goto recv_end; | 
 | 		} | 
 |  | 
 | 		/* periodically flush backlog, and feed strparser */ | 
 | 		released = tls_read_flush_backlog(sk, prot, len, to_decrypt, | 
 | 						  decrypted + copied, | 
 | 						  &flushed_at); | 
 |  | 
 | 		/* TLS 1.3 may have updated the length by more than overhead */ | 
 | 		rxm = strp_msg(darg.skb); | 
 | 		chunk = rxm->full_len; | 
 | 		tls_rx_rec_done(ctx); | 
 |  | 
 | 		if (!darg.zc) { | 
 | 			bool partially_consumed = chunk > len; | 
 | 			struct sk_buff *skb = darg.skb; | 
 |  | 
 | 			DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); | 
 |  | 
 | 			if (async) { | 
 | 				/* TLS 1.2-only, to_decrypt must be text len */ | 
 | 				chunk = min_t(int, to_decrypt, len); | 
 | 				async_copy_bytes += chunk; | 
 | put_on_rx_list: | 
 | 				decrypted += chunk; | 
 | 				len -= chunk; | 
 | 				__skb_queue_tail(&ctx->rx_list, skb); | 
 | 				if (unlikely(control != TLS_RECORD_TYPE_DATA)) | 
 | 					break; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (bpf_strp_enabled) { | 
 | 				released = true; | 
 | 				err = sk_psock_tls_strp_read(psock, skb); | 
 | 				if (err != __SK_PASS) { | 
 | 					rxm->offset = rxm->offset + rxm->full_len; | 
 | 					rxm->full_len = 0; | 
 | 					if (err == __SK_DROP) | 
 | 						consume_skb(skb); | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (partially_consumed) | 
 | 				chunk = len; | 
 |  | 
 | 			err = skb_copy_datagram_msg(skb, rxm->offset, | 
 | 						    msg, chunk); | 
 | 			if (err < 0) | 
 | 				goto put_on_rx_list_err; | 
 |  | 
 | 			if (is_peek) { | 
 | 				peeked += chunk; | 
 | 				goto put_on_rx_list; | 
 | 			} | 
 |  | 
 | 			if (partially_consumed) { | 
 | 				rxm->offset += chunk; | 
 | 				rxm->full_len -= chunk; | 
 | 				goto put_on_rx_list; | 
 | 			} | 
 |  | 
 | 			consume_skb(skb); | 
 | 		} | 
 |  | 
 | 		decrypted += chunk; | 
 | 		len -= chunk; | 
 |  | 
 | 		/* Return full control message to userspace before trying | 
 | 		 * to parse another message type | 
 | 		 */ | 
 | 		msg->msg_flags |= MSG_EOR; | 
 | 		if (control != TLS_RECORD_TYPE_DATA) | 
 | 			break; | 
 | 	} | 
 |  | 
 | recv_end: | 
 | 	if (async) { | 
 | 		int ret; | 
 |  | 
 | 		/* Wait for all previously submitted records to be decrypted */ | 
 | 		ret = tls_decrypt_async_wait(ctx); | 
 | 		__skb_queue_purge(&ctx->async_hold); | 
 |  | 
 | 		if (ret) { | 
 | 			if (err >= 0 || err == -EINPROGRESS) | 
 | 				err = ret; | 
 | 			goto end; | 
 | 		} | 
 |  | 
 | 		/* Drain records from the rx_list & copy if required */ | 
 | 		if (is_peek) | 
 | 			err = process_rx_list(ctx, msg, &control, copied + peeked, | 
 | 					      decrypted - peeked, is_peek, NULL); | 
 | 		else | 
 | 			err = process_rx_list(ctx, msg, &control, 0, | 
 | 					      async_copy_bytes, is_peek, NULL); | 
 |  | 
 | 		/* we could have copied less than we wanted, and possibly nothing */ | 
 | 		decrypted += max(err, 0) - async_copy_bytes; | 
 | 	} | 
 |  | 
 | 	copied += decrypted; | 
 |  | 
 | end: | 
 | 	tls_rx_reader_unlock(sk, ctx); | 
 | 	if (psock) | 
 | 		sk_psock_put(sk, psock); | 
 | 	return copied ? : err; | 
 | } | 
 |  | 
 | ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos, | 
 | 			   struct pipe_inode_info *pipe, | 
 | 			   size_t len, unsigned int flags) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct strp_msg *rxm = NULL; | 
 | 	struct sock *sk = sock->sk; | 
 | 	struct tls_msg *tlm; | 
 | 	struct sk_buff *skb; | 
 | 	ssize_t copied = 0; | 
 | 	int chunk; | 
 | 	int err; | 
 |  | 
 | 	err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	if (!skb_queue_empty(&ctx->rx_list)) { | 
 | 		skb = __skb_dequeue(&ctx->rx_list); | 
 | 	} else { | 
 | 		struct tls_decrypt_arg darg; | 
 |  | 
 | 		err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, | 
 | 				      true); | 
 | 		if (err <= 0) | 
 | 			goto splice_read_end; | 
 |  | 
 | 		memset(&darg.inargs, 0, sizeof(darg.inargs)); | 
 |  | 
 | 		err = tls_rx_one_record(sk, NULL, &darg); | 
 | 		if (err < 0) { | 
 | 			tls_err_abort(sk, -EBADMSG); | 
 | 			goto splice_read_end; | 
 | 		} | 
 |  | 
 | 		tls_rx_rec_done(ctx); | 
 | 		skb = darg.skb; | 
 | 	} | 
 |  | 
 | 	rxm = strp_msg(skb); | 
 | 	tlm = tls_msg(skb); | 
 |  | 
 | 	/* splice does not support reading control messages */ | 
 | 	if (tlm->control != TLS_RECORD_TYPE_DATA) { | 
 | 		err = -EINVAL; | 
 | 		goto splice_requeue; | 
 | 	} | 
 |  | 
 | 	chunk = min_t(unsigned int, rxm->full_len, len); | 
 | 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); | 
 | 	if (copied < 0) | 
 | 		goto splice_requeue; | 
 |  | 
 | 	if (chunk < rxm->full_len) { | 
 | 		rxm->offset += len; | 
 | 		rxm->full_len -= len; | 
 | 		goto splice_requeue; | 
 | 	} | 
 |  | 
 | 	consume_skb(skb); | 
 |  | 
 | splice_read_end: | 
 | 	tls_rx_reader_unlock(sk, ctx); | 
 | 	return copied ? : err; | 
 |  | 
 | splice_requeue: | 
 | 	__skb_queue_head(&ctx->rx_list, skb); | 
 | 	goto splice_read_end; | 
 | } | 
 |  | 
 | int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, | 
 | 		     sk_read_actor_t read_actor) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	struct strp_msg *rxm = NULL; | 
 | 	struct sk_buff *skb = NULL; | 
 | 	struct sk_psock *psock; | 
 | 	size_t flushed_at = 0; | 
 | 	bool released = true; | 
 | 	struct tls_msg *tlm; | 
 | 	ssize_t copied = 0; | 
 | 	ssize_t decrypted; | 
 | 	int err, used; | 
 |  | 
 | 	psock = sk_psock_get(sk); | 
 | 	if (psock) { | 
 | 		sk_psock_put(sk, psock); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	err = tls_rx_reader_acquire(sk, ctx, true); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	/* If crypto failed the connection is broken */ | 
 | 	err = ctx->async_wait.err; | 
 | 	if (err) | 
 | 		goto read_sock_end; | 
 |  | 
 | 	decrypted = 0; | 
 | 	do { | 
 | 		if (!skb_queue_empty(&ctx->rx_list)) { | 
 | 			skb = __skb_dequeue(&ctx->rx_list); | 
 | 			rxm = strp_msg(skb); | 
 | 			tlm = tls_msg(skb); | 
 | 		} else { | 
 | 			struct tls_decrypt_arg darg; | 
 |  | 
 | 			err = tls_rx_rec_wait(sk, NULL, true, released); | 
 | 			if (err <= 0) | 
 | 				goto read_sock_end; | 
 |  | 
 | 			memset(&darg.inargs, 0, sizeof(darg.inargs)); | 
 |  | 
 | 			err = tls_rx_one_record(sk, NULL, &darg); | 
 | 			if (err < 0) { | 
 | 				tls_err_abort(sk, -EBADMSG); | 
 | 				goto read_sock_end; | 
 | 			} | 
 |  | 
 | 			released = tls_read_flush_backlog(sk, prot, INT_MAX, | 
 | 							  0, decrypted, | 
 | 							  &flushed_at); | 
 | 			skb = darg.skb; | 
 | 			rxm = strp_msg(skb); | 
 | 			tlm = tls_msg(skb); | 
 | 			decrypted += rxm->full_len; | 
 |  | 
 | 			tls_rx_rec_done(ctx); | 
 | 		} | 
 |  | 
 | 		/* read_sock does not support reading control messages */ | 
 | 		if (tlm->control != TLS_RECORD_TYPE_DATA) { | 
 | 			err = -EINVAL; | 
 | 			goto read_sock_requeue; | 
 | 		} | 
 |  | 
 | 		used = read_actor(desc, skb, rxm->offset, rxm->full_len); | 
 | 		if (used <= 0) { | 
 | 			if (!copied) | 
 | 				err = used; | 
 | 			goto read_sock_requeue; | 
 | 		} | 
 | 		copied += used; | 
 | 		if (used < rxm->full_len) { | 
 | 			rxm->offset += used; | 
 | 			rxm->full_len -= used; | 
 | 			if (!desc->count) | 
 | 				goto read_sock_requeue; | 
 | 		} else { | 
 | 			consume_skb(skb); | 
 | 			if (!desc->count) | 
 | 				skb = NULL; | 
 | 		} | 
 | 	} while (skb); | 
 |  | 
 | read_sock_end: | 
 | 	tls_rx_reader_release(sk, ctx); | 
 | 	return copied ? : err; | 
 |  | 
 | read_sock_requeue: | 
 | 	__skb_queue_head(&ctx->rx_list, skb); | 
 | 	goto read_sock_end; | 
 | } | 
 |  | 
 | bool tls_sw_sock_is_readable(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	bool ingress_empty = true; | 
 | 	struct sk_psock *psock; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	psock = sk_psock(sk); | 
 | 	if (psock) | 
 | 		ingress_empty = list_empty(&psock->ingress_msg); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return !ingress_empty || tls_strp_msg_ready(ctx) || | 
 | 		!skb_queue_empty(&ctx->rx_list); | 
 | } | 
 |  | 
 | int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk); | 
 | 	struct tls_prot_info *prot = &tls_ctx->prot_info; | 
 | 	char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; | 
 | 	size_t cipher_overhead; | 
 | 	size_t data_len = 0; | 
 | 	int ret; | 
 |  | 
 | 	/* Verify that we have a full TLS header, or wait for more data */ | 
 | 	if (strp->stm.offset + prot->prepend_size > skb->len) | 
 | 		return 0; | 
 |  | 
 | 	/* Sanity-check size of on-stack buffer. */ | 
 | 	if (WARN_ON(prot->prepend_size > sizeof(header))) { | 
 | 		ret = -EINVAL; | 
 | 		goto read_failure; | 
 | 	} | 
 |  | 
 | 	/* Linearize header to local buffer */ | 
 | 	ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); | 
 | 	if (ret < 0) | 
 | 		goto read_failure; | 
 |  | 
 | 	strp->mark = header[0]; | 
 |  | 
 | 	data_len = ((header[4] & 0xFF) | (header[3] << 8)); | 
 |  | 
 | 	cipher_overhead = prot->tag_size; | 
 | 	if (prot->version != TLS_1_3_VERSION && | 
 | 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) | 
 | 		cipher_overhead += prot->iv_size; | 
 |  | 
 | 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + | 
 | 	    prot->tail_size) { | 
 | 		ret = -EMSGSIZE; | 
 | 		goto read_failure; | 
 | 	} | 
 | 	if (data_len < cipher_overhead) { | 
 | 		ret = -EBADMSG; | 
 | 		goto read_failure; | 
 | 	} | 
 |  | 
 | 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ | 
 | 	if (header[1] != TLS_1_2_VERSION_MINOR || | 
 | 	    header[2] != TLS_1_2_VERSION_MAJOR) { | 
 | 		ret = -EINVAL; | 
 | 		goto read_failure; | 
 | 	} | 
 |  | 
 | 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, | 
 | 				     TCP_SKB_CB(skb)->seq + strp->stm.offset); | 
 | 	return data_len + TLS_HEADER_SIZE; | 
 |  | 
 | read_failure: | 
 | 	tls_err_abort(strp->sk, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void tls_rx_msg_ready(struct tls_strparser *strp) | 
 | { | 
 | 	struct tls_sw_context_rx *ctx; | 
 |  | 
 | 	ctx = container_of(strp, struct tls_sw_context_rx, strp); | 
 | 	ctx->saved_data_ready(strp->sk); | 
 | } | 
 |  | 
 | static void tls_data_ready(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 | 	struct sk_psock *psock; | 
 | 	gfp_t alloc_save; | 
 |  | 
 | 	trace_sk_data_ready(sk); | 
 |  | 
 | 	alloc_save = sk->sk_allocation; | 
 | 	sk->sk_allocation = GFP_ATOMIC; | 
 | 	tls_strp_data_ready(&ctx->strp); | 
 | 	sk->sk_allocation = alloc_save; | 
 |  | 
 | 	psock = sk_psock_get(sk); | 
 | 	if (psock) { | 
 | 		if (!list_empty(&psock->ingress_msg)) | 
 | 			ctx->saved_data_ready(sk); | 
 | 		sk_psock_put(sk, psock); | 
 | 	} | 
 | } | 
 |  | 
 | void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 |  | 
 | 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); | 
 | 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); | 
 | 	cancel_delayed_work_sync(&ctx->tx_work.work); | 
 | } | 
 |  | 
 | void tls_sw_release_resources_tx(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	struct tls_rec *rec, *tmp; | 
 |  | 
 | 	/* Wait for any pending async encryptions to complete */ | 
 | 	tls_encrypt_async_wait(ctx); | 
 |  | 
 | 	tls_tx_records(sk, -1); | 
 |  | 
 | 	/* Free up un-sent records in tx_list. First, free | 
 | 	 * the partially sent record if any at head of tx_list. | 
 | 	 */ | 
 | 	if (tls_ctx->partially_sent_record) { | 
 | 		tls_free_partial_record(sk, tls_ctx); | 
 | 		rec = list_first_entry(&ctx->tx_list, | 
 | 				       struct tls_rec, list); | 
 | 		list_del(&rec->list); | 
 | 		sk_msg_free(sk, &rec->msg_plaintext); | 
 | 		kfree(rec); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { | 
 | 		list_del(&rec->list); | 
 | 		sk_msg_free(sk, &rec->msg_encrypted); | 
 | 		sk_msg_free(sk, &rec->msg_plaintext); | 
 | 		kfree(rec); | 
 | 	} | 
 |  | 
 | 	crypto_free_aead(ctx->aead_send); | 
 | 	tls_free_open_rec(sk); | 
 | } | 
 |  | 
 | void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); | 
 |  | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | void tls_sw_release_resources_rx(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	if (ctx->aead_recv) { | 
 | 		__skb_queue_purge(&ctx->rx_list); | 
 | 		crypto_free_aead(ctx->aead_recv); | 
 | 		tls_strp_stop(&ctx->strp); | 
 | 		/* If tls_sw_strparser_arm() was not called (cleanup paths) | 
 | 		 * we still want to tls_strp_stop(), but sk->sk_data_ready was | 
 | 		 * never swapped. | 
 | 		 */ | 
 | 		if (ctx->saved_data_ready) { | 
 | 			write_lock_bh(&sk->sk_callback_lock); | 
 | 			sk->sk_data_ready = ctx->saved_data_ready; | 
 | 			write_unlock_bh(&sk->sk_callback_lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void tls_sw_strparser_done(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	tls_strp_done(&ctx->strp); | 
 | } | 
 |  | 
 | void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | void tls_sw_free_resources_rx(struct sock *sk) | 
 | { | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 |  | 
 | 	tls_sw_release_resources_rx(sk); | 
 | 	tls_sw_free_ctx_rx(tls_ctx); | 
 | } | 
 |  | 
 | /* The work handler to transmitt the encrypted records in tx_list */ | 
 | static void tx_work_handler(struct work_struct *work) | 
 | { | 
 | 	struct delayed_work *delayed_work = to_delayed_work(work); | 
 | 	struct tx_work *tx_work = container_of(delayed_work, | 
 | 					       struct tx_work, work); | 
 | 	struct sock *sk = tx_work->sk; | 
 | 	struct tls_context *tls_ctx = tls_get_ctx(sk); | 
 | 	struct tls_sw_context_tx *ctx; | 
 |  | 
 | 	if (unlikely(!tls_ctx)) | 
 | 		return; | 
 |  | 
 | 	ctx = tls_sw_ctx_tx(tls_ctx); | 
 | 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) | 
 | 		return; | 
 |  | 
 | 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) | 
 | 		return; | 
 |  | 
 | 	if (mutex_trylock(&tls_ctx->tx_lock)) { | 
 | 		lock_sock(sk); | 
 | 		tls_tx_records(sk, -1); | 
 | 		release_sock(sk); | 
 | 		mutex_unlock(&tls_ctx->tx_lock); | 
 | 	} else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { | 
 | 		/* Someone is holding the tx_lock, they will likely run Tx | 
 | 		 * and cancel the work on their way out of the lock section. | 
 | 		 * Schedule a long delay just in case. | 
 | 		 */ | 
 | 		schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); | 
 | 	} | 
 | } | 
 |  | 
 | static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) | 
 | { | 
 | 	struct tls_rec *rec; | 
 |  | 
 | 	rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); | 
 | 	if (!rec) | 
 | 		return false; | 
 |  | 
 | 	return READ_ONCE(rec->tx_ready); | 
 | } | 
 |  | 
 | void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) | 
 | { | 
 | 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); | 
 |  | 
 | 	/* Schedule the transmission if tx list is ready */ | 
 | 	if (tls_is_tx_ready(tx_ctx) && | 
 | 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) | 
 | 		schedule_delayed_work(&tx_ctx->tx_work.work, 0); | 
 | } | 
 |  | 
 | void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	write_lock_bh(&sk->sk_callback_lock); | 
 | 	rx_ctx->saved_data_ready = sk->sk_data_ready; | 
 | 	sk->sk_data_ready = tls_data_ready; | 
 | 	write_unlock_bh(&sk->sk_callback_lock); | 
 | } | 
 |  | 
 | void tls_update_rx_zc_capable(struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); | 
 |  | 
 | 	rx_ctx->zc_capable = tls_ctx->rx_no_pad || | 
 | 		tls_ctx->prot_info.version != TLS_1_3_VERSION; | 
 | } | 
 |  | 
 | static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) | 
 | { | 
 | 	struct tls_sw_context_tx *sw_ctx_tx; | 
 |  | 
 | 	if (!ctx->priv_ctx_tx) { | 
 | 		sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); | 
 | 		if (!sw_ctx_tx) | 
 | 			return NULL; | 
 | 	} else { | 
 | 		sw_ctx_tx = ctx->priv_ctx_tx; | 
 | 	} | 
 |  | 
 | 	crypto_init_wait(&sw_ctx_tx->async_wait); | 
 | 	atomic_set(&sw_ctx_tx->encrypt_pending, 1); | 
 | 	INIT_LIST_HEAD(&sw_ctx_tx->tx_list); | 
 | 	INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); | 
 | 	sw_ctx_tx->tx_work.sk = sk; | 
 |  | 
 | 	return sw_ctx_tx; | 
 | } | 
 |  | 
 | static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *sw_ctx_rx; | 
 |  | 
 | 	if (!ctx->priv_ctx_rx) { | 
 | 		sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); | 
 | 		if (!sw_ctx_rx) | 
 | 			return NULL; | 
 | 	} else { | 
 | 		sw_ctx_rx = ctx->priv_ctx_rx; | 
 | 	} | 
 |  | 
 | 	crypto_init_wait(&sw_ctx_rx->async_wait); | 
 | 	atomic_set(&sw_ctx_rx->decrypt_pending, 1); | 
 | 	init_waitqueue_head(&sw_ctx_rx->wq); | 
 | 	skb_queue_head_init(&sw_ctx_rx->rx_list); | 
 | 	skb_queue_head_init(&sw_ctx_rx->async_hold); | 
 |  | 
 | 	return sw_ctx_rx; | 
 | } | 
 |  | 
 | int init_prot_info(struct tls_prot_info *prot, | 
 | 		   const struct tls_crypto_info *crypto_info, | 
 | 		   const struct tls_cipher_desc *cipher_desc) | 
 | { | 
 | 	u16 nonce_size = cipher_desc->nonce; | 
 |  | 
 | 	if (crypto_info->version == TLS_1_3_VERSION) { | 
 | 		nonce_size = 0; | 
 | 		prot->aad_size = TLS_HEADER_SIZE; | 
 | 		prot->tail_size = 1; | 
 | 	} else { | 
 | 		prot->aad_size = TLS_AAD_SPACE_SIZE; | 
 | 		prot->tail_size = 0; | 
 | 	} | 
 |  | 
 | 	/* Sanity-check the sizes for stack allocations. */ | 
 | 	if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	prot->version = crypto_info->version; | 
 | 	prot->cipher_type = crypto_info->cipher_type; | 
 | 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size; | 
 | 	prot->tag_size = cipher_desc->tag; | 
 | 	prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; | 
 | 	prot->iv_size = cipher_desc->iv; | 
 | 	prot->salt_size = cipher_desc->salt; | 
 | 	prot->rec_seq_size = cipher_desc->rec_seq; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx) | 
 | { | 
 | 	struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx; | 
 |  | 
 | 	WRITE_ONCE(ctx->key_update_pending, false); | 
 | 	/* wake-up pre-existing poll() */ | 
 | 	ctx->saved_data_ready(sk); | 
 | } | 
 |  | 
 | int tls_set_sw_offload(struct sock *sk, int tx, | 
 | 		       struct tls_crypto_info *new_crypto_info) | 
 | { | 
 | 	struct tls_crypto_info *crypto_info, *src_crypto_info; | 
 | 	struct tls_sw_context_tx *sw_ctx_tx = NULL; | 
 | 	struct tls_sw_context_rx *sw_ctx_rx = NULL; | 
 | 	const struct tls_cipher_desc *cipher_desc; | 
 | 	char *iv, *rec_seq, *key, *salt; | 
 | 	struct cipher_context *cctx; | 
 | 	struct tls_prot_info *prot; | 
 | 	struct crypto_aead **aead; | 
 | 	struct tls_context *ctx; | 
 | 	struct crypto_tfm *tfm; | 
 | 	int rc = 0; | 
 |  | 
 | 	ctx = tls_get_ctx(sk); | 
 | 	prot = &ctx->prot_info; | 
 |  | 
 | 	/* new_crypto_info != NULL means rekey */ | 
 | 	if (!new_crypto_info) { | 
 | 		if (tx) { | 
 | 			ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); | 
 | 			if (!ctx->priv_ctx_tx) | 
 | 				return -ENOMEM; | 
 | 		} else { | 
 | 			ctx->priv_ctx_rx = init_ctx_rx(ctx); | 
 | 			if (!ctx->priv_ctx_rx) | 
 | 				return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tx) { | 
 | 		sw_ctx_tx = ctx->priv_ctx_tx; | 
 | 		crypto_info = &ctx->crypto_send.info; | 
 | 		cctx = &ctx->tx; | 
 | 		aead = &sw_ctx_tx->aead_send; | 
 | 	} else { | 
 | 		sw_ctx_rx = ctx->priv_ctx_rx; | 
 | 		crypto_info = &ctx->crypto_recv.info; | 
 | 		cctx = &ctx->rx; | 
 | 		aead = &sw_ctx_rx->aead_recv; | 
 | 	} | 
 |  | 
 | 	src_crypto_info = new_crypto_info ?: crypto_info; | 
 |  | 
 | 	cipher_desc = get_cipher_desc(src_crypto_info->cipher_type); | 
 | 	if (!cipher_desc) { | 
 | 		rc = -EINVAL; | 
 | 		goto free_priv; | 
 | 	} | 
 |  | 
 | 	rc = init_prot_info(prot, src_crypto_info, cipher_desc); | 
 | 	if (rc) | 
 | 		goto free_priv; | 
 |  | 
 | 	iv = crypto_info_iv(src_crypto_info, cipher_desc); | 
 | 	key = crypto_info_key(src_crypto_info, cipher_desc); | 
 | 	salt = crypto_info_salt(src_crypto_info, cipher_desc); | 
 | 	rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc); | 
 |  | 
 | 	if (!*aead) { | 
 | 		*aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); | 
 | 		if (IS_ERR(*aead)) { | 
 | 			rc = PTR_ERR(*aead); | 
 | 			*aead = NULL; | 
 | 			goto free_priv; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ctx->push_pending_record = tls_sw_push_pending_record; | 
 |  | 
 | 	/* setkey is the last operation that could fail during a | 
 | 	 * rekey. if it succeeds, we can start modifying the | 
 | 	 * context. | 
 | 	 */ | 
 | 	rc = crypto_aead_setkey(*aead, key, cipher_desc->key); | 
 | 	if (rc) { | 
 | 		if (new_crypto_info) | 
 | 			goto out; | 
 | 		else | 
 | 			goto free_aead; | 
 | 	} | 
 |  | 
 | 	if (!new_crypto_info) { | 
 | 		rc = crypto_aead_setauthsize(*aead, prot->tag_size); | 
 | 		if (rc) | 
 | 			goto free_aead; | 
 | 	} | 
 |  | 
 | 	if (!tx && !new_crypto_info) { | 
 | 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); | 
 |  | 
 | 		tls_update_rx_zc_capable(ctx); | 
 | 		sw_ctx_rx->async_capable = | 
 | 			src_crypto_info->version != TLS_1_3_VERSION && | 
 | 			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); | 
 |  | 
 | 		rc = tls_strp_init(&sw_ctx_rx->strp, sk); | 
 | 		if (rc) | 
 | 			goto free_aead; | 
 | 	} | 
 |  | 
 | 	memcpy(cctx->iv, salt, cipher_desc->salt); | 
 | 	memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); | 
 | 	memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); | 
 |  | 
 | 	if (new_crypto_info) { | 
 | 		unsafe_memcpy(crypto_info, new_crypto_info, | 
 | 			      cipher_desc->crypto_info, | 
 | 			      /* size was checked in do_tls_setsockopt_conf */); | 
 | 		memzero_explicit(new_crypto_info, cipher_desc->crypto_info); | 
 | 		if (!tx) | 
 | 			tls_finish_key_update(sk, ctx); | 
 | 	} | 
 |  | 
 | 	goto out; | 
 |  | 
 | free_aead: | 
 | 	crypto_free_aead(*aead); | 
 | 	*aead = NULL; | 
 | free_priv: | 
 | 	if (!new_crypto_info) { | 
 | 		if (tx) { | 
 | 			kfree(ctx->priv_ctx_tx); | 
 | 			ctx->priv_ctx_tx = NULL; | 
 | 		} else { | 
 | 			kfree(ctx->priv_ctx_rx); | 
 | 			ctx->priv_ctx_rx = NULL; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } |