|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_icache.h" | 
|  | #include "xfs_bmap_util.h" | 
|  | #include "xfs_dquot_item.h" | 
|  | #include "xfs_dquot.h" | 
|  | #include "xfs_reflink.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_health.h" | 
|  | #include "xfs_da_format.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_metafile.h" | 
|  |  | 
|  | #include <linux/iversion.h> | 
|  |  | 
|  | /* Radix tree tags for incore inode tree. */ | 
|  |  | 
|  | /* inode is to be reclaimed */ | 
|  | #define XFS_ICI_RECLAIM_TAG	0 | 
|  | /* Inode has speculative preallocations (posteof or cow) to clean. */ | 
|  | #define XFS_ICI_BLOCKGC_TAG	1 | 
|  |  | 
|  | /* | 
|  | * The goal for walking incore inodes.  These can correspond with incore inode | 
|  | * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace. | 
|  | */ | 
|  | enum xfs_icwalk_goal { | 
|  | /* Goals directly associated with tagged inodes. */ | 
|  | XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG, | 
|  | XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG, | 
|  | }; | 
|  |  | 
|  | static int xfs_icwalk(struct xfs_mount *mp, | 
|  | enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); | 
|  | static int xfs_icwalk_ag(struct xfs_perag *pag, | 
|  | enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); | 
|  |  | 
|  | /* | 
|  | * Private inode cache walk flags for struct xfs_icwalk.  Must not | 
|  | * coincide with XFS_ICWALK_FLAGS_VALID. | 
|  | */ | 
|  |  | 
|  | /* Stop scanning after icw_scan_limit inodes. */ | 
|  | #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28) | 
|  |  | 
|  | #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27) | 
|  | #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */ | 
|  |  | 
|  | #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \ | 
|  | XFS_ICWALK_FLAG_RECLAIM_SICK | \ | 
|  | XFS_ICWALK_FLAG_UNION) | 
|  |  | 
|  | /* Marks for the perag xarray */ | 
|  | #define XFS_PERAG_RECLAIM_MARK	XA_MARK_0 | 
|  | #define XFS_PERAG_BLOCKGC_MARK	XA_MARK_1 | 
|  |  | 
|  | static inline xa_mark_t ici_tag_to_mark(unsigned int tag) | 
|  | { | 
|  | if (tag == XFS_ICI_RECLAIM_TAG) | 
|  | return XFS_PERAG_RECLAIM_MARK; | 
|  | ASSERT(tag == XFS_ICI_BLOCKGC_TAG); | 
|  | return XFS_PERAG_BLOCKGC_MARK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialise an xfs_inode. | 
|  | */ | 
|  | struct xfs_inode * | 
|  | xfs_inode_alloc( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_ino_t		ino) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  |  | 
|  | /* | 
|  | * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL | 
|  | * and return NULL here on ENOMEM. | 
|  | */ | 
|  | ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); | 
|  |  | 
|  | if (inode_init_always(mp->m_super, VFS_I(ip))) { | 
|  | kmem_cache_free(xfs_inode_cache, ip); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* VFS doesn't initialise i_mode! */ | 
|  | VFS_I(ip)->i_mode = 0; | 
|  | mapping_set_folio_min_order(VFS_I(ip)->i_mapping, | 
|  | M_IGEO(mp)->min_folio_order); | 
|  |  | 
|  | XFS_STATS_INC(mp, vn_active); | 
|  | ASSERT(atomic_read(&ip->i_pincount) == 0); | 
|  | ASSERT(ip->i_ino == 0); | 
|  |  | 
|  | /* initialise the xfs inode */ | 
|  | ip->i_ino = ino; | 
|  | ip->i_mount = mp; | 
|  | memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); | 
|  | ip->i_cowfp = NULL; | 
|  | memset(&ip->i_af, 0, sizeof(ip->i_af)); | 
|  | ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; | 
|  | memset(&ip->i_df, 0, sizeof(ip->i_df)); | 
|  | ip->i_flags = 0; | 
|  | ip->i_delayed_blks = 0; | 
|  | ip->i_diflags2 = mp->m_ino_geo.new_diflags2; | 
|  | ip->i_nblocks = 0; | 
|  | ip->i_forkoff = 0; | 
|  | ip->i_sick = 0; | 
|  | ip->i_checked = 0; | 
|  | INIT_WORK(&ip->i_ioend_work, xfs_end_io); | 
|  | INIT_LIST_HEAD(&ip->i_ioend_list); | 
|  | spin_lock_init(&ip->i_ioend_lock); | 
|  | ip->i_next_unlinked = NULLAGINO; | 
|  | ip->i_prev_unlinked = 0; | 
|  |  | 
|  | return ip; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_inode_free_callback( | 
|  | struct rcu_head		*head) | 
|  | { | 
|  | struct inode		*inode = container_of(head, struct inode, i_rcu); | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  |  | 
|  | switch (VFS_I(ip)->i_mode & S_IFMT) { | 
|  | case S_IFREG: | 
|  | case S_IFDIR: | 
|  | case S_IFLNK: | 
|  | xfs_idestroy_fork(&ip->i_df); | 
|  | break; | 
|  | } | 
|  |  | 
|  | xfs_ifork_zap_attr(ip); | 
|  |  | 
|  | if (ip->i_cowfp) { | 
|  | xfs_idestroy_fork(ip->i_cowfp); | 
|  | kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); | 
|  | } | 
|  | if (ip->i_itemp) { | 
|  | ASSERT(!test_bit(XFS_LI_IN_AIL, | 
|  | &ip->i_itemp->ili_item.li_flags)); | 
|  | xfs_inode_item_destroy(ip); | 
|  | ip->i_itemp = NULL; | 
|  | } | 
|  |  | 
|  | kmem_cache_free(xfs_inode_cache, ip); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __xfs_inode_free( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | /* asserts to verify all state is correct here */ | 
|  | ASSERT(atomic_read(&ip->i_pincount) == 0); | 
|  | ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); | 
|  | XFS_STATS_DEC(ip->i_mount, vn_active); | 
|  |  | 
|  | call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_free( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); | 
|  |  | 
|  | /* | 
|  | * Because we use RCU freeing we need to ensure the inode always | 
|  | * appears to be reclaimed with an invalid inode number when in the | 
|  | * free state. The ip->i_flags_lock provides the barrier against lookup | 
|  | * races. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags = XFS_IRECLAIM; | 
|  | ip->i_ino = 0; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | __xfs_inode_free(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue background inode reclaim work if there are reclaimable inodes and there | 
|  | * isn't reclaim work already scheduled or in progress. | 
|  | */ | 
|  | static void | 
|  | xfs_reclaim_work_queue( | 
|  | struct xfs_mount        *mp) | 
|  | { | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { | 
|  | queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, | 
|  | msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Background scanning to trim preallocated space. This is queued based on the | 
|  | * 'speculative_prealloc_lifetime' tunable (5m by default). | 
|  | */ | 
|  | static inline void | 
|  | xfs_blockgc_queue( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | struct xfs_mount	*mp = pag_mount(pag); | 
|  |  | 
|  | if (!xfs_is_blockgc_enabled(mp)) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) | 
|  | queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, | 
|  | secs_to_jiffies(xfs_blockgc_secs)); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* Set a tag on both the AG incore inode tree and the AG radix tree. */ | 
|  | static void | 
|  | xfs_perag_set_inode_tag( | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		agino, | 
|  | unsigned int		tag) | 
|  | { | 
|  | bool			was_tagged; | 
|  |  | 
|  | lockdep_assert_held(&pag->pag_ici_lock); | 
|  |  | 
|  | was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); | 
|  | radix_tree_tag_set(&pag->pag_ici_root, agino, tag); | 
|  |  | 
|  | if (tag == XFS_ICI_RECLAIM_TAG) | 
|  | pag->pag_ici_reclaimable++; | 
|  |  | 
|  | if (was_tagged) | 
|  | return; | 
|  |  | 
|  | /* propagate the tag up into the pag xarray tree */ | 
|  | xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag)); | 
|  |  | 
|  | /* start background work */ | 
|  | switch (tag) { | 
|  | case XFS_ICI_RECLAIM_TAG: | 
|  | xfs_reclaim_work_queue(pag_mount(pag)); | 
|  | break; | 
|  | case XFS_ICI_BLOCKGC_TAG: | 
|  | xfs_blockgc_queue(pag); | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_xfs_perag_set_inode_tag(pag, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ | 
|  | static void | 
|  | xfs_perag_clear_inode_tag( | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		agino, | 
|  | unsigned int		tag) | 
|  | { | 
|  | lockdep_assert_held(&pag->pag_ici_lock); | 
|  |  | 
|  | /* | 
|  | * Reclaim can signal (with a null agino) that it cleared its own tag | 
|  | * by removing the inode from the radix tree. | 
|  | */ | 
|  | if (agino != NULLAGINO) | 
|  | radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); | 
|  | else | 
|  | ASSERT(tag == XFS_ICI_RECLAIM_TAG); | 
|  |  | 
|  | if (tag == XFS_ICI_RECLAIM_TAG) | 
|  | pag->pag_ici_reclaimable--; | 
|  |  | 
|  | if (radix_tree_tagged(&pag->pag_ici_root, tag)) | 
|  | return; | 
|  |  | 
|  | /* clear the tag from the pag xarray */ | 
|  | xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag)); | 
|  | trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the next AG after @pag, or the first AG if @pag is NULL. | 
|  | */ | 
|  | static struct xfs_perag * | 
|  | xfs_perag_grab_next_tag( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_perag	*pag, | 
|  | int			tag) | 
|  | { | 
|  | return to_perag(xfs_group_grab_next_mark(mp, | 
|  | pag ? pag_group(pag) : NULL, | 
|  | ici_tag_to_mark(tag), XG_TYPE_AG)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we recycle a reclaimable inode, we need to re-initialise the VFS inode | 
|  | * part of the structure. This is made more complex by the fact we store | 
|  | * information about the on-disk values in the VFS inode and so we can't just | 
|  | * overwrite the values unconditionally. Hence we save the parameters we | 
|  | * need to retain across reinitialisation, and rewrite them into the VFS inode | 
|  | * after reinitialisation even if it fails. | 
|  | */ | 
|  | static int | 
|  | xfs_reinit_inode( | 
|  | struct xfs_mount	*mp, | 
|  | struct inode		*inode) | 
|  | { | 
|  | int			error; | 
|  | uint32_t		nlink = inode->i_nlink; | 
|  | uint32_t		generation = inode->i_generation; | 
|  | uint64_t		version = inode_peek_iversion(inode); | 
|  | umode_t			mode = inode->i_mode; | 
|  | dev_t			dev = inode->i_rdev; | 
|  | kuid_t			uid = inode->i_uid; | 
|  | kgid_t			gid = inode->i_gid; | 
|  | unsigned long		state = inode->i_state; | 
|  |  | 
|  | error = inode_init_always(mp->m_super, inode); | 
|  |  | 
|  | set_nlink(inode, nlink); | 
|  | inode->i_generation = generation; | 
|  | inode_set_iversion_queried(inode, version); | 
|  | inode->i_mode = mode; | 
|  | inode->i_rdev = dev; | 
|  | inode->i_uid = uid; | 
|  | inode->i_gid = gid; | 
|  | inode->i_state = state; | 
|  | mapping_set_folio_min_order(inode->i_mapping, | 
|  | M_IGEO(mp)->min_folio_order); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Carefully nudge an inode whose VFS state has been torn down back into a | 
|  | * usable state.  Drops the i_flags_lock and the rcu read lock. | 
|  | */ | 
|  | static int | 
|  | xfs_iget_recycle( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*ip) __releases(&ip->i_flags_lock) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct inode		*inode = VFS_I(ip); | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_iget_recycle(ip); | 
|  |  | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * We need to make it look like the inode is being reclaimed to prevent | 
|  | * the actual reclaim workers from stomping over us while we recycle | 
|  | * the inode.  We can't clear the radix tree tag yet as it requires | 
|  | * pag_ici_lock to be held exclusive. | 
|  | */ | 
|  | ip->i_flags |= XFS_IRECLAIM; | 
|  |  | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | ASSERT(!rwsem_is_locked(&inode->i_rwsem)); | 
|  | error = xfs_reinit_inode(mp, inode); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | if (error) { | 
|  | /* | 
|  | * Re-initializing the inode failed, and we are in deep | 
|  | * trouble.  Try to re-add it to the reclaim list. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); | 
|  | ASSERT(ip->i_flags & XFS_IRECLAIMABLE); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | trace_xfs_iget_recycle_fail(ip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  |  | 
|  | /* | 
|  | * Clear the per-lifetime state in the inode as we are now effectively | 
|  | * a new inode and need to return to the initial state before reuse | 
|  | * occurs. | 
|  | */ | 
|  | ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; | 
|  | ip->i_flags |= XFS_INEW; | 
|  | xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), | 
|  | XFS_ICI_RECLAIM_TAG); | 
|  | inode->i_state = I_NEW; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are allocating a new inode, then check what was returned is | 
|  | * actually a free, empty inode. If we are not allocating an inode, | 
|  | * then check we didn't find a free inode. | 
|  | * | 
|  | * Returns: | 
|  | *	0		if the inode free state matches the lookup context | 
|  | *	-ENOENT		if the inode is free and we are not allocating | 
|  | *	-EFSCORRUPTED	if there is any state mismatch at all | 
|  | */ | 
|  | static int | 
|  | xfs_iget_check_free_state( | 
|  | struct xfs_inode	*ip, | 
|  | int			flags) | 
|  | { | 
|  | if (flags & XFS_IGET_CREATE) { | 
|  | /* should be a free inode */ | 
|  | if (VFS_I(ip)->i_mode != 0) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", | 
|  | ip->i_ino, VFS_I(ip)->i_mode); | 
|  | xfs_agno_mark_sick(ip->i_mount, | 
|  | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
|  | XFS_SICK_AG_INOBT); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | if (ip->i_nblocks != 0) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "Corruption detected! Free inode 0x%llx has blocks allocated!", | 
|  | ip->i_ino); | 
|  | xfs_agno_mark_sick(ip->i_mount, | 
|  | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
|  | XFS_SICK_AG_INOBT); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* should be an allocated inode */ | 
|  | if (VFS_I(ip)->i_mode == 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Make all pending inactivation work start immediately. */ | 
|  | static bool | 
|  | xfs_inodegc_queue_all( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_inodegc	*gc; | 
|  | int			cpu; | 
|  | bool			ret = false; | 
|  |  | 
|  | for_each_cpu(cpu, &mp->m_inodegc_cpumask) { | 
|  | gc = per_cpu_ptr(mp->m_inodegc, cpu); | 
|  | if (!llist_empty(&gc->list)) { | 
|  | mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); | 
|  | ret = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Wait for all queued work and collect errors */ | 
|  | static int | 
|  | xfs_inodegc_wait_all( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | int			cpu; | 
|  | int			error = 0; | 
|  |  | 
|  | flush_workqueue(mp->m_inodegc_wq); | 
|  | for_each_cpu(cpu, &mp->m_inodegc_cpumask) { | 
|  | struct xfs_inodegc	*gc; | 
|  |  | 
|  | gc = per_cpu_ptr(mp->m_inodegc, cpu); | 
|  | if (gc->error && !error) | 
|  | error = gc->error; | 
|  | gc->error = 0; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the validity of the inode we just found it the cache | 
|  | */ | 
|  | static int | 
|  | xfs_iget_cache_hit( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*ip, | 
|  | xfs_ino_t		ino, | 
|  | int			flags, | 
|  | int			lock_flags) __releases(RCU) | 
|  | { | 
|  | struct inode		*inode = VFS_I(ip); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * check for re-use of an inode within an RCU grace period due to the | 
|  | * radix tree nodes not being updated yet. We monitor for this by | 
|  | * setting the inode number to zero before freeing the inode structure. | 
|  | * If the inode has been reallocated and set up, then the inode number | 
|  | * will not match, so check for that, too. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (ip->i_ino != ino) | 
|  | goto out_skip; | 
|  |  | 
|  | /* | 
|  | * If we are racing with another cache hit that is currently | 
|  | * instantiating this inode or currently recycling it out of | 
|  | * reclaimable state, wait for the initialisation to complete | 
|  | * before continuing. | 
|  | * | 
|  | * If we're racing with the inactivation worker we also want to wait. | 
|  | * If we're creating a new file, it's possible that the worker | 
|  | * previously marked the inode as free on disk but hasn't finished | 
|  | * updating the incore state yet.  The AGI buffer will be dirty and | 
|  | * locked to the icreate transaction, so a synchronous push of the | 
|  | * inodegc workers would result in deadlock.  For a regular iget, the | 
|  | * worker is running already, so we might as well wait. | 
|  | * | 
|  | * XXX(hch): eventually we should do something equivalent to | 
|  | *	     wait_on_inode to wait for these flags to be cleared | 
|  | *	     instead of polling for it. | 
|  | */ | 
|  | if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) | 
|  | goto out_skip; | 
|  |  | 
|  | if (ip->i_flags & XFS_NEED_INACTIVE) { | 
|  | /* Unlinked inodes cannot be re-grabbed. */ | 
|  | if (VFS_I(ip)->i_nlink == 0) { | 
|  | error = -ENOENT; | 
|  | goto out_error; | 
|  | } | 
|  | goto out_inodegc_flush; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the inode free state is valid. This also detects lookup | 
|  | * racing with unlinks. | 
|  | */ | 
|  | error = xfs_iget_check_free_state(ip, flags); | 
|  | if (error) | 
|  | goto out_error; | 
|  |  | 
|  | /* Skip inodes that have no vfs state. */ | 
|  | if ((flags & XFS_IGET_INCORE) && | 
|  | (ip->i_flags & XFS_IRECLAIMABLE)) | 
|  | goto out_skip; | 
|  |  | 
|  | /* The inode fits the selection criteria; process it. */ | 
|  | if (ip->i_flags & XFS_IRECLAIMABLE) { | 
|  | /* Drops i_flags_lock and RCU read lock. */ | 
|  | error = xfs_iget_recycle(pag, ip); | 
|  | if (error == -EAGAIN) | 
|  | goto out_skip; | 
|  | if (error) | 
|  | return error; | 
|  | } else { | 
|  | /* If the VFS inode is being torn down, pause and try again. */ | 
|  | if (!igrab(inode)) | 
|  | goto out_skip; | 
|  |  | 
|  | /* We've got a live one. */ | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | trace_xfs_iget_hit(ip); | 
|  | } | 
|  |  | 
|  | if (lock_flags != 0) | 
|  | xfs_ilock(ip, lock_flags); | 
|  |  | 
|  | if (!(flags & XFS_IGET_INCORE)) | 
|  | xfs_iflags_clear(ip, XFS_ISTALE); | 
|  | XFS_STATS_INC(mp, xs_ig_found); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_skip: | 
|  | trace_xfs_iget_skip(ip); | 
|  | XFS_STATS_INC(mp, xs_ig_frecycle); | 
|  | error = -EAGAIN; | 
|  | out_error: | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | return error; | 
|  |  | 
|  | out_inodegc_flush: | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | /* | 
|  | * Do not wait for the workers, because the caller could hold an AGI | 
|  | * buffer lock.  We're just going to sleep in a loop anyway. | 
|  | */ | 
|  | if (xfs_is_inodegc_enabled(mp)) | 
|  | xfs_inodegc_queue_all(mp); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_iget_cache_miss( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_perag	*pag, | 
|  | xfs_trans_t		*tp, | 
|  | xfs_ino_t		ino, | 
|  | struct xfs_inode	**ipp, | 
|  | int			flags, | 
|  | int			lock_flags) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  | int			error; | 
|  | xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino); | 
|  |  | 
|  | ip = xfs_inode_alloc(mp, ino); | 
|  | if (!ip) | 
|  | return -ENOMEM; | 
|  |  | 
|  | error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); | 
|  | if (error) | 
|  | goto out_destroy; | 
|  |  | 
|  | /* | 
|  | * For version 5 superblocks, if we are initialising a new inode and we | 
|  | * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can | 
|  | * simply build the new inode core with a random generation number. | 
|  | * | 
|  | * For version 4 (and older) superblocks, log recovery is dependent on | 
|  | * the i_flushiter field being initialised from the current on-disk | 
|  | * value and hence we must also read the inode off disk even when | 
|  | * initializing new inodes. | 
|  | */ | 
|  | if (xfs_has_v3inodes(mp) && | 
|  | (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { | 
|  | VFS_I(ip)->i_generation = get_random_u32(); | 
|  | } else { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); | 
|  | if (error) | 
|  | goto out_destroy; | 
|  |  | 
|  | error = xfs_inode_from_disk(ip, | 
|  | xfs_buf_offset(bp, ip->i_imap.im_boffset)); | 
|  | if (!error) | 
|  | xfs_buf_set_ref(bp, XFS_INO_REF); | 
|  | else | 
|  | xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); | 
|  | xfs_trans_brelse(tp, bp); | 
|  |  | 
|  | if (error) | 
|  | goto out_destroy; | 
|  | } | 
|  |  | 
|  | trace_xfs_iget_miss(ip); | 
|  |  | 
|  | /* | 
|  | * Check the inode free state is valid. This also detects lookup | 
|  | * racing with unlinks. | 
|  | */ | 
|  | error = xfs_iget_check_free_state(ip, flags); | 
|  | if (error) | 
|  | goto out_destroy; | 
|  |  | 
|  | /* | 
|  | * Preload the radix tree so we can insert safely under the | 
|  | * write spinlock. Note that we cannot sleep inside the preload | 
|  | * region. | 
|  | */ | 
|  | if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) { | 
|  | error = -EAGAIN; | 
|  | goto out_destroy; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the inode hasn't been added to the radix-tree yet it can't | 
|  | * be found by another thread, so we can do the non-sleeping lock here. | 
|  | */ | 
|  | if (lock_flags) { | 
|  | if (!xfs_ilock_nowait(ip, lock_flags)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These values must be set before inserting the inode into the radix | 
|  | * tree as the moment it is inserted a concurrent lookup (allowed by the | 
|  | * RCU locking mechanism) can find it and that lookup must see that this | 
|  | * is an inode currently under construction (i.e. that XFS_INEW is set). | 
|  | * The ip->i_flags_lock that protects the XFS_INEW flag forms the | 
|  | * memory barrier that ensures this detection works correctly at lookup | 
|  | * time. | 
|  | */ | 
|  | if (flags & XFS_IGET_DONTCACHE) | 
|  | d_mark_dontcache(VFS_I(ip)); | 
|  | ip->i_udquot = NULL; | 
|  | ip->i_gdquot = NULL; | 
|  | ip->i_pdquot = NULL; | 
|  | xfs_iflags_set(ip, XFS_INEW); | 
|  |  | 
|  | /* insert the new inode */ | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  | error = radix_tree_insert(&pag->pag_ici_root, agino, ip); | 
|  | if (unlikely(error)) { | 
|  | WARN_ON(error != -EEXIST); | 
|  | XFS_STATS_INC(mp, xs_ig_dup); | 
|  | error = -EAGAIN; | 
|  | goto out_preload_end; | 
|  | } | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | radix_tree_preload_end(); | 
|  |  | 
|  | *ipp = ip; | 
|  | return 0; | 
|  |  | 
|  | out_preload_end: | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | radix_tree_preload_end(); | 
|  | if (lock_flags) | 
|  | xfs_iunlock(ip, lock_flags); | 
|  | out_destroy: | 
|  | __destroy_inode(VFS_I(ip)); | 
|  | xfs_inode_free(ip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up an inode by number in the given file system.  The inode is looked up | 
|  | * in the cache held in each AG.  If the inode is found in the cache, initialise | 
|  | * the vfs inode if necessary. | 
|  | * | 
|  | * If it is not in core, read it in from the file system's device, add it to the | 
|  | * cache and initialise the vfs inode. | 
|  | * | 
|  | * The inode is locked according to the value of the lock_flags parameter. | 
|  | * Inode lookup is only done during metadata operations and not as part of the | 
|  | * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. | 
|  | */ | 
|  | int | 
|  | xfs_iget( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_trans	*tp, | 
|  | xfs_ino_t		ino, | 
|  | uint			flags, | 
|  | uint			lock_flags, | 
|  | struct xfs_inode	**ipp) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  | struct xfs_perag	*pag; | 
|  | xfs_agino_t		agino; | 
|  | int			error; | 
|  |  | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); | 
|  |  | 
|  | /* reject inode numbers outside existing AGs */ | 
|  | if (!xfs_verify_ino(mp, ino)) | 
|  | return -EINVAL; | 
|  |  | 
|  | XFS_STATS_INC(mp, xs_ig_attempts); | 
|  |  | 
|  | /* get the perag structure and ensure that it's inode capable */ | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); | 
|  | agino = XFS_INO_TO_AGINO(mp, ino); | 
|  |  | 
|  | again: | 
|  | error = 0; | 
|  | rcu_read_lock(); | 
|  | ip = radix_tree_lookup(&pag->pag_ici_root, agino); | 
|  |  | 
|  | if (ip) { | 
|  | error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); | 
|  | if (error) | 
|  | goto out_error_or_again; | 
|  | } else { | 
|  | rcu_read_unlock(); | 
|  | if (flags & XFS_IGET_INCORE) { | 
|  | error = -ENODATA; | 
|  | goto out_error_or_again; | 
|  | } | 
|  | XFS_STATS_INC(mp, xs_ig_missed); | 
|  |  | 
|  | error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, | 
|  | flags, lock_flags); | 
|  | if (error) | 
|  | goto out_error_or_again; | 
|  | } | 
|  | xfs_perag_put(pag); | 
|  |  | 
|  | *ipp = ip; | 
|  |  | 
|  | /* | 
|  | * If we have a real type for an on-disk inode, we can setup the inode | 
|  | * now.	 If it's a new inode being created, xfs_init_new_inode will | 
|  | * handle it. | 
|  | */ | 
|  | if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) | 
|  | xfs_setup_existing_inode(ip); | 
|  | return 0; | 
|  |  | 
|  | out_error_or_again: | 
|  | if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && | 
|  | error == -EAGAIN) { | 
|  | delay(1); | 
|  | goto again; | 
|  | } | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a metadata inode. | 
|  | * | 
|  | * The metafile type must match the file mode exactly, and for files in the | 
|  | * metadata directory tree, it must match the inode's metatype exactly. | 
|  | */ | 
|  | int | 
|  | xfs_trans_metafile_iget( | 
|  | struct xfs_trans	*tp, | 
|  | xfs_ino_t		ino, | 
|  | enum xfs_metafile_type	metafile_type, | 
|  | struct xfs_inode	**ipp) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_inode	*ip; | 
|  | umode_t			mode; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_iget(mp, tp, ino, 0, 0, &ip); | 
|  | if (error == -EFSCORRUPTED || error == -EINVAL) | 
|  | goto whine; | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (VFS_I(ip)->i_nlink == 0) | 
|  | goto bad_rele; | 
|  |  | 
|  | if (metafile_type == XFS_METAFILE_DIR) | 
|  | mode = S_IFDIR; | 
|  | else | 
|  | mode = S_IFREG; | 
|  | if (inode_wrong_type(VFS_I(ip), mode)) | 
|  | goto bad_rele; | 
|  | if (xfs_has_metadir(mp)) { | 
|  | if (!xfs_is_metadir_inode(ip)) | 
|  | goto bad_rele; | 
|  | if (metafile_type != ip->i_metatype) | 
|  | goto bad_rele; | 
|  | } | 
|  |  | 
|  | *ipp = ip; | 
|  | return 0; | 
|  | bad_rele: | 
|  | xfs_irele(ip); | 
|  | whine: | 
|  | xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino, | 
|  | metafile_type); | 
|  | xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* Grab a metadata file if the caller doesn't already have a transaction. */ | 
|  | int | 
|  | xfs_metafile_iget( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_ino_t		ino, | 
|  | enum xfs_metafile_type	metafile_type, | 
|  | struct xfs_inode	**ipp) | 
|  | { | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | tp = xfs_trans_alloc_empty(mp); | 
|  | error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp); | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the inode for reclaim exclusively. | 
|  | * | 
|  | * We have found this inode via a lookup under RCU, so the inode may have | 
|  | * already been freed, or it may be in the process of being recycled by | 
|  | * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode | 
|  | * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE | 
|  | * will not be set. Hence we need to check for both these flag conditions to | 
|  | * avoid inodes that are no longer reclaim candidates. | 
|  | * | 
|  | * Note: checking for other state flags here, under the i_flags_lock or not, is | 
|  | * racy and should be avoided. Those races should be resolved only after we have | 
|  | * ensured that we are able to reclaim this inode and the world can see that we | 
|  | * are going to reclaim it. | 
|  | * | 
|  | * Return true if we grabbed it, false otherwise. | 
|  | */ | 
|  | static bool | 
|  | xfs_reclaim_igrab( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | ASSERT(rcu_read_lock_held()); | 
|  |  | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || | 
|  | __xfs_iflags_test(ip, XFS_IRECLAIM)) { | 
|  | /* not a reclaim candidate. */ | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Don't reclaim a sick inode unless the caller asked for it. */ | 
|  | if (ip->i_sick && | 
|  | (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | __xfs_iflags_set(ip, XFS_IRECLAIM); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inode reclaim is non-blocking, so the default action if progress cannot be | 
|  | * made is to "requeue" the inode for reclaim by unlocking it and clearing the | 
|  | * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about | 
|  | * blocking anymore and hence we can wait for the inode to be able to reclaim | 
|  | * it. | 
|  | * | 
|  | * We do no IO here - if callers require inodes to be cleaned they must push the | 
|  | * AIL first to trigger writeback of dirty inodes.  This enables writeback to be | 
|  | * done in the background in a non-blocking manner, and enables memory reclaim | 
|  | * to make progress without blocking. | 
|  | */ | 
|  | static void | 
|  | xfs_reclaim_inode( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */ | 
|  |  | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) | 
|  | goto out; | 
|  | if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) | 
|  | goto out_iunlock; | 
|  |  | 
|  | /* | 
|  | * Check for log shutdown because aborting the inode can move the log | 
|  | * tail and corrupt in memory state. This is fine if the log is shut | 
|  | * down, but if the log is still active and only the mount is shut down | 
|  | * then the in-memory log tail movement caused by the abort can be | 
|  | * incorrectly propagated to disk. | 
|  | */ | 
|  | if (xlog_is_shutdown(ip->i_mount->m_log)) { | 
|  | xfs_iunpin_wait(ip); | 
|  | /* | 
|  | * Avoid a ABBA deadlock on the inode cluster buffer vs | 
|  | * concurrent xfs_ifree_cluster() trying to mark the inode | 
|  | * stale. We don't need the inode locked to run the flush abort | 
|  | * code, but the flush abort needs to lock the cluster buffer. | 
|  | */ | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_iflush_shutdown_abort(ip); | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | goto reclaim; | 
|  | } | 
|  | if (xfs_ipincount(ip)) | 
|  | goto out_clear_flush; | 
|  | if (!xfs_inode_clean(ip)) | 
|  | goto out_clear_flush; | 
|  |  | 
|  | xfs_iflags_clear(ip, XFS_IFLUSHING); | 
|  | reclaim: | 
|  | trace_xfs_inode_reclaiming(ip); | 
|  |  | 
|  | /* | 
|  | * Because we use RCU freeing we need to ensure the inode always appears | 
|  | * to be reclaimed with an invalid inode number when in the free state. | 
|  | * We do this as early as possible under the ILOCK so that | 
|  | * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to | 
|  | * detect races with us here. By doing this, we guarantee that once | 
|  | * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that | 
|  | * it will see either a valid inode that will serialise correctly, or it | 
|  | * will see an invalid inode that it can skip. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags = XFS_IRECLAIM; | 
|  | ip->i_ino = 0; | 
|  | ip->i_sick = 0; | 
|  | ip->i_checked = 0; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); | 
|  | /* | 
|  | * Remove the inode from the per-AG radix tree. | 
|  | * | 
|  | * Because radix_tree_delete won't complain even if the item was never | 
|  | * added to the tree assert that it's been there before to catch | 
|  | * problems with the inode life time early on. | 
|  | */ | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  | if (!radix_tree_delete(&pag->pag_ici_root, | 
|  | XFS_INO_TO_AGINO(ip->i_mount, ino))) | 
|  | ASSERT(0); | 
|  | xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  |  | 
|  | /* | 
|  | * Here we do an (almost) spurious inode lock in order to coordinate | 
|  | * with inode cache radix tree lookups.  This is because the lookup | 
|  | * can reference the inodes in the cache without taking references. | 
|  | * | 
|  | * We make that OK here by ensuring that we wait until the inode is | 
|  | * unlocked after the lookup before we go ahead and free it. | 
|  | */ | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | ASSERT(xfs_inode_clean(ip)); | 
|  |  | 
|  | __xfs_inode_free(ip); | 
|  | return; | 
|  |  | 
|  | out_clear_flush: | 
|  | xfs_iflags_clear(ip, XFS_IFLUSHING); | 
|  | out_iunlock: | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | out: | 
|  | xfs_iflags_clear(ip, XFS_IRECLAIM); | 
|  | } | 
|  |  | 
|  | /* Reclaim sick inodes if we're unmounting or the fs went down. */ | 
|  | static inline bool | 
|  | xfs_want_reclaim_sick( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || | 
|  | xfs_is_shutdown(mp); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_reclaim_inodes( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_icwalk	icw = { | 
|  | .icw_flags	= 0, | 
|  | }; | 
|  |  | 
|  | if (xfs_want_reclaim_sick(mp)) | 
|  | icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; | 
|  |  | 
|  | while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { | 
|  | xfs_ail_push_all_sync(mp->m_ail); | 
|  | xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The shrinker infrastructure determines how many inodes we should scan for | 
|  | * reclaim. We want as many clean inodes ready to reclaim as possible, so we | 
|  | * push the AIL here. We also want to proactively free up memory if we can to | 
|  | * minimise the amount of work memory reclaim has to do so we kick the | 
|  | * background reclaim if it isn't already scheduled. | 
|  | */ | 
|  | long | 
|  | xfs_reclaim_inodes_nr( | 
|  | struct xfs_mount	*mp, | 
|  | unsigned long		nr_to_scan) | 
|  | { | 
|  | struct xfs_icwalk	icw = { | 
|  | .icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT, | 
|  | .icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan), | 
|  | }; | 
|  |  | 
|  | if (xfs_want_reclaim_sick(mp)) | 
|  | icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; | 
|  |  | 
|  | /* kick background reclaimer and push the AIL */ | 
|  | xfs_reclaim_work_queue(mp); | 
|  | xfs_ail_push_all(mp->m_ail); | 
|  |  | 
|  | xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of reclaimable inodes in the filesystem for | 
|  | * the shrinker to determine how much to reclaim. | 
|  | */ | 
|  | long | 
|  | xfs_reclaim_inodes_count( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | XA_STATE		(xas, &mp->m_groups[XG_TYPE_AG].xa, 0); | 
|  | long			reclaimable = 0; | 
|  | struct xfs_perag	*pag; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) { | 
|  | trace_xfs_reclaim_inodes_count(pag, _THIS_IP_); | 
|  | reclaimable += pag->pag_ici_reclaimable; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return reclaimable; | 
|  | } | 
|  |  | 
|  | STATIC bool | 
|  | xfs_icwalk_match_id( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && | 
|  | !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) | 
|  | return false; | 
|  |  | 
|  | if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && | 
|  | !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) | 
|  | return false; | 
|  |  | 
|  | if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && | 
|  | ip->i_projid != icw->icw_prid) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A union-based inode filtering algorithm. Process the inode if any of the | 
|  | * criteria match. This is for global/internal scans only. | 
|  | */ | 
|  | STATIC bool | 
|  | xfs_icwalk_match_id_union( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && | 
|  | uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) | 
|  | return true; | 
|  |  | 
|  | if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && | 
|  | gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) | 
|  | return true; | 
|  |  | 
|  | if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && | 
|  | ip->i_projid == icw->icw_prid) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is this inode @ip eligible for eof/cow block reclamation, given some | 
|  | * filtering parameters @icw?  The inode is eligible if @icw is null or | 
|  | * if the predicate functions match. | 
|  | */ | 
|  | static bool | 
|  | xfs_icwalk_match( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | bool			match; | 
|  |  | 
|  | if (!icw) | 
|  | return true; | 
|  |  | 
|  | if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) | 
|  | match = xfs_icwalk_match_id_union(ip, icw); | 
|  | else | 
|  | match = xfs_icwalk_match_id(ip, icw); | 
|  | if (!match) | 
|  | return false; | 
|  |  | 
|  | /* skip the inode if the file size is too small */ | 
|  | if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && | 
|  | XFS_ISIZE(ip) < icw->icw_min_file_size) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a fast pass over the inode cache to try to get reclaim moving on as | 
|  | * many inodes as possible in a short period of time. It kicks itself every few | 
|  | * seconds, as well as being kicked by the inode cache shrinker when memory | 
|  | * goes low. | 
|  | */ | 
|  | void | 
|  | xfs_reclaim_worker( | 
|  | struct work_struct *work) | 
|  | { | 
|  | struct xfs_mount *mp = container_of(to_delayed_work(work), | 
|  | struct xfs_mount, m_reclaim_work); | 
|  |  | 
|  | xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); | 
|  | xfs_reclaim_work_queue(mp); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_inode_free_eofblocks( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw, | 
|  | unsigned int		*lockflags) | 
|  | { | 
|  | bool			wait; | 
|  |  | 
|  | wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); | 
|  |  | 
|  | if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the mapping is dirty the operation can block and wait for some | 
|  | * time. Unless we are waiting, skip it. | 
|  | */ | 
|  | if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) | 
|  | return 0; | 
|  |  | 
|  | if (!xfs_icwalk_match(ip, icw)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the caller is waiting, return -EAGAIN to keep the background | 
|  | * scanner moving and revisit the inode in a subsequent pass. | 
|  | */ | 
|  | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { | 
|  | if (wait) | 
|  | return -EAGAIN; | 
|  | return 0; | 
|  | } | 
|  | *lockflags |= XFS_IOLOCK_EXCL; | 
|  |  | 
|  | if (xfs_can_free_eofblocks(ip)) | 
|  | return xfs_free_eofblocks(ip); | 
|  |  | 
|  | /* inode could be preallocated */ | 
|  | trace_xfs_inode_free_eofblocks_invalid(ip); | 
|  | xfs_inode_clear_eofblocks_tag(ip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_blockgc_set_iflag( | 
|  | struct xfs_inode	*ip, | 
|  | unsigned long		iflag) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_perag	*pag; | 
|  |  | 
|  | ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); | 
|  |  | 
|  | /* | 
|  | * Don't bother locking the AG and looking up in the radix trees | 
|  | * if we already know that we have the tag set. | 
|  | */ | 
|  | if (ip->i_flags & iflag) | 
|  | return; | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags |= iflag; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  |  | 
|  | xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), | 
|  | XFS_ICI_BLOCKGC_TAG); | 
|  |  | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_set_eofblocks_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | trace_xfs_inode_set_eofblocks_tag(ip); | 
|  | return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_blockgc_clear_iflag( | 
|  | struct xfs_inode	*ip, | 
|  | unsigned long		iflag) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_perag	*pag; | 
|  | bool			clear_tag; | 
|  |  | 
|  | ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); | 
|  |  | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags &= ~iflag; | 
|  | clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | if (!clear_tag) | 
|  | return; | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  |  | 
|  | xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), | 
|  | XFS_ICI_BLOCKGC_TAG); | 
|  |  | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_clear_eofblocks_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | trace_xfs_inode_clear_eofblocks_tag(ip); | 
|  | return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare to free COW fork blocks from an inode. | 
|  | */ | 
|  | static bool | 
|  | xfs_prep_free_cowblocks( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | bool			sync; | 
|  |  | 
|  | sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); | 
|  |  | 
|  | /* | 
|  | * Just clear the tag if we have an empty cow fork or none at all. It's | 
|  | * possible the inode was fully unshared since it was originally tagged. | 
|  | */ | 
|  | if (!xfs_inode_has_cow_data(ip)) { | 
|  | trace_xfs_inode_free_cowblocks_invalid(ip); | 
|  | xfs_inode_clear_cowblocks_tag(ip); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A cowblocks trim of an inode can have a significant effect on | 
|  | * fragmentation even when a reasonable COW extent size hint is set. | 
|  | * Therefore, we prefer to not process cowblocks unless they are clean | 
|  | * and idle. We can never process a cowblocks inode that is dirty or has | 
|  | * in-flight I/O under any circumstances, because outstanding writeback | 
|  | * or dio expects targeted COW fork blocks exist through write | 
|  | * completion where they can be remapped into the data fork. | 
|  | * | 
|  | * Therefore, the heuristic used here is to never process inodes | 
|  | * currently opened for write from background (i.e. non-sync) scans. For | 
|  | * sync scans, use the pagecache/dio state of the inode to ensure we | 
|  | * never free COW fork blocks out from under pending I/O. | 
|  | */ | 
|  | if (!sync && inode_is_open_for_write(VFS_I(ip))) | 
|  | return false; | 
|  | return xfs_can_free_cowblocks(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Automatic CoW Reservation Freeing | 
|  | * | 
|  | * These functions automatically garbage collect leftover CoW reservations | 
|  | * that were made on behalf of a cowextsize hint when we start to run out | 
|  | * of quota or when the reservations sit around for too long.  If the file | 
|  | * has dirty pages or is undergoing writeback, its CoW reservations will | 
|  | * be retained. | 
|  | * | 
|  | * The actual garbage collection piggybacks off the same code that runs | 
|  | * the speculative EOF preallocation garbage collector. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inode_free_cowblocks( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw, | 
|  | unsigned int		*lockflags) | 
|  | { | 
|  | bool			wait; | 
|  | int			ret = 0; | 
|  |  | 
|  | wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); | 
|  |  | 
|  | if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) | 
|  | return 0; | 
|  |  | 
|  | if (!xfs_prep_free_cowblocks(ip, icw)) | 
|  | return 0; | 
|  |  | 
|  | if (!xfs_icwalk_match(ip, icw)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the caller is waiting, return -EAGAIN to keep the background | 
|  | * scanner moving and revisit the inode in a subsequent pass. | 
|  | */ | 
|  | if (!(*lockflags & XFS_IOLOCK_EXCL) && | 
|  | !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { | 
|  | if (wait) | 
|  | return -EAGAIN; | 
|  | return 0; | 
|  | } | 
|  | *lockflags |= XFS_IOLOCK_EXCL; | 
|  |  | 
|  | if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { | 
|  | if (wait) | 
|  | return -EAGAIN; | 
|  | return 0; | 
|  | } | 
|  | *lockflags |= XFS_MMAPLOCK_EXCL; | 
|  |  | 
|  | /* | 
|  | * Check again, nobody else should be able to dirty blocks or change | 
|  | * the reflink iflag now that we have the first two locks held. | 
|  | */ | 
|  | if (xfs_prep_free_cowblocks(ip, icw)) | 
|  | ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_set_cowblocks_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | trace_xfs_inode_set_cowblocks_tag(ip); | 
|  | return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_clear_cowblocks_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | trace_xfs_inode_clear_cowblocks_tag(ip); | 
|  | return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); | 
|  | } | 
|  |  | 
|  | /* Disable post-EOF and CoW block auto-reclamation. */ | 
|  | void | 
|  | xfs_blockgc_stop( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_perag	*pag = NULL; | 
|  |  | 
|  | if (!xfs_clear_blockgc_enabled(mp)) | 
|  | return; | 
|  |  | 
|  | while ((pag = xfs_perag_next(mp, pag))) | 
|  | cancel_delayed_work_sync(&pag->pag_blockgc_work); | 
|  | trace_xfs_blockgc_stop(mp, __return_address); | 
|  | } | 
|  |  | 
|  | /* Enable post-EOF and CoW block auto-reclamation. */ | 
|  | void | 
|  | xfs_blockgc_start( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_perag	*pag = NULL; | 
|  |  | 
|  | if (xfs_set_blockgc_enabled(mp)) | 
|  | return; | 
|  |  | 
|  | trace_xfs_blockgc_start(mp, __return_address); | 
|  | while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) | 
|  | xfs_blockgc_queue(pag); | 
|  | } | 
|  |  | 
|  | /* Don't try to run block gc on an inode that's in any of these states. */ | 
|  | #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \ | 
|  | XFS_NEED_INACTIVE | \ | 
|  | XFS_INACTIVATING | \ | 
|  | XFS_IRECLAIMABLE | \ | 
|  | XFS_IRECLAIM) | 
|  | /* | 
|  | * Decide if the given @ip is eligible for garbage collection of speculative | 
|  | * preallocations, and grab it if so.  Returns true if it's ready to go or | 
|  | * false if we should just ignore it. | 
|  | */ | 
|  | static bool | 
|  | xfs_blockgc_igrab( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct inode		*inode = VFS_I(ip); | 
|  |  | 
|  | ASSERT(rcu_read_lock_held()); | 
|  |  | 
|  | /* Check for stale RCU freed inode */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (!ip->i_ino) | 
|  | goto out_unlock_noent; | 
|  |  | 
|  | if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) | 
|  | goto out_unlock_noent; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | /* nothing to sync during shutdown */ | 
|  | if (xfs_is_shutdown(ip->i_mount)) | 
|  | return false; | 
|  |  | 
|  | /* If we can't grab the inode, it must on it's way to reclaim. */ | 
|  | if (!igrab(inode)) | 
|  | return false; | 
|  |  | 
|  | /* inode is valid */ | 
|  | return true; | 
|  |  | 
|  | out_unlock_noent: | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Scan one incore inode for block preallocations that we can remove. */ | 
|  | static int | 
|  | xfs_blockgc_scan_inode( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | unsigned int		lockflags = 0; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_inode_free_eofblocks(ip, icw, &lockflags); | 
|  | if (error) | 
|  | goto unlock; | 
|  |  | 
|  | error = xfs_inode_free_cowblocks(ip, icw, &lockflags); | 
|  | unlock: | 
|  | if (lockflags) | 
|  | xfs_iunlock(ip, lockflags); | 
|  | xfs_irele(ip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Background worker that trims preallocated space. */ | 
|  | void | 
|  | xfs_blockgc_worker( | 
|  | struct work_struct	*work) | 
|  | { | 
|  | struct xfs_perag	*pag = container_of(to_delayed_work(work), | 
|  | struct xfs_perag, pag_blockgc_work); | 
|  | struct xfs_mount	*mp = pag_mount(pag); | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_blockgc_worker(mp, __return_address); | 
|  |  | 
|  | error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); | 
|  | if (error) | 
|  | xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", | 
|  | pag_agno(pag), error); | 
|  | xfs_blockgc_queue(pag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to free space in the filesystem by purging inactive inodes, eofblocks | 
|  | * and cowblocks. | 
|  | */ | 
|  | int | 
|  | xfs_blockgc_free_space( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); | 
|  |  | 
|  | error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | return xfs_inodegc_flush(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reclaim all the free space that we can by scheduling the background blockgc | 
|  | * and inodegc workers immediately and waiting for them all to clear. | 
|  | */ | 
|  | int | 
|  | xfs_blockgc_flush_all( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_perag	*pag = NULL; | 
|  |  | 
|  | trace_xfs_blockgc_flush_all(mp, __return_address); | 
|  |  | 
|  | /* | 
|  | * For each blockgc worker, move its queue time up to now.  If it wasn't | 
|  | * queued, it will not be requeued.  Then flush whatever is left. | 
|  | */ | 
|  | while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) | 
|  | mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0); | 
|  |  | 
|  | while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) | 
|  | flush_delayed_work(&pag->pag_blockgc_work); | 
|  |  | 
|  | return xfs_inodegc_flush(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which | 
|  | * quota caused an allocation failure, so we make a best effort by including | 
|  | * each quota under low free space conditions (less than 1% free space) in the | 
|  | * scan. | 
|  | * | 
|  | * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan | 
|  | * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or | 
|  | * MMAPLOCK. | 
|  | */ | 
|  | int | 
|  | xfs_blockgc_free_dquots( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_dquot	*udqp, | 
|  | struct xfs_dquot	*gdqp, | 
|  | struct xfs_dquot	*pdqp, | 
|  | unsigned int		iwalk_flags) | 
|  | { | 
|  | struct xfs_icwalk	icw = {0}; | 
|  | bool			do_work = false; | 
|  |  | 
|  | if (!udqp && !gdqp && !pdqp) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Run a scan to free blocks using the union filter to cover all | 
|  | * applicable quotas in a single scan. | 
|  | */ | 
|  | icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; | 
|  |  | 
|  | if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { | 
|  | icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); | 
|  | icw.icw_flags |= XFS_ICWALK_FLAG_UID; | 
|  | do_work = true; | 
|  | } | 
|  |  | 
|  | if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { | 
|  | icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); | 
|  | icw.icw_flags |= XFS_ICWALK_FLAG_GID; | 
|  | do_work = true; | 
|  | } | 
|  |  | 
|  | if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { | 
|  | icw.icw_prid = pdqp->q_id; | 
|  | icw.icw_flags |= XFS_ICWALK_FLAG_PRID; | 
|  | do_work = true; | 
|  | } | 
|  |  | 
|  | if (!do_work) | 
|  | return 0; | 
|  |  | 
|  | return xfs_blockgc_free_space(mp, &icw); | 
|  | } | 
|  |  | 
|  | /* Run cow/eofblocks scans on the quotas attached to the inode. */ | 
|  | int | 
|  | xfs_blockgc_free_quota( | 
|  | struct xfs_inode	*ip, | 
|  | unsigned int		iwalk_flags) | 
|  | { | 
|  | return xfs_blockgc_free_dquots(ip->i_mount, | 
|  | xfs_inode_dquot(ip, XFS_DQTYPE_USER), | 
|  | xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), | 
|  | xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); | 
|  | } | 
|  |  | 
|  | /* XFS Inode Cache Walking Code */ | 
|  |  | 
|  | /* | 
|  | * The inode lookup is done in batches to keep the amount of lock traffic and | 
|  | * radix tree lookups to a minimum. The batch size is a trade off between | 
|  | * lookup reduction and stack usage. This is in the reclaim path, so we can't | 
|  | * be too greedy. | 
|  | */ | 
|  | #define XFS_LOOKUP_BATCH	32 | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Decide if we want to grab this inode in anticipation of doing work towards | 
|  | * the goal. | 
|  | */ | 
|  | static inline bool | 
|  | xfs_icwalk_igrab( | 
|  | enum xfs_icwalk_goal	goal, | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | switch (goal) { | 
|  | case XFS_ICWALK_BLOCKGC: | 
|  | return xfs_blockgc_igrab(ip); | 
|  | case XFS_ICWALK_RECLAIM: | 
|  | return xfs_reclaim_igrab(ip, icw); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an inode.  Each processing function must handle any state changes | 
|  | * made by the icwalk igrab function.  Return -EAGAIN to skip an inode. | 
|  | */ | 
|  | static inline int | 
|  | xfs_icwalk_process_inode( | 
|  | enum xfs_icwalk_goal	goal, | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | int			error = 0; | 
|  |  | 
|  | switch (goal) { | 
|  | case XFS_ICWALK_BLOCKGC: | 
|  | error = xfs_blockgc_scan_inode(ip, icw); | 
|  | break; | 
|  | case XFS_ICWALK_RECLAIM: | 
|  | xfs_reclaim_inode(ip, pag); | 
|  | break; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For a given per-AG structure @pag and a goal, grab qualifying inodes and | 
|  | * process them in some manner. | 
|  | */ | 
|  | static int | 
|  | xfs_icwalk_ag( | 
|  | struct xfs_perag	*pag, | 
|  | enum xfs_icwalk_goal	goal, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | struct xfs_mount	*mp = pag_mount(pag); | 
|  | uint32_t		first_index; | 
|  | int			last_error = 0; | 
|  | int			skipped; | 
|  | bool			done; | 
|  | int			nr_found; | 
|  |  | 
|  | restart: | 
|  | done = false; | 
|  | skipped = 0; | 
|  | if (goal == XFS_ICWALK_RECLAIM) | 
|  | first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); | 
|  | else | 
|  | first_index = 0; | 
|  | nr_found = 0; | 
|  | do { | 
|  | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
|  | int		error = 0; | 
|  | int		i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, | 
|  | (void **) batch, first_index, | 
|  | XFS_LOOKUP_BATCH, goal); | 
|  | if (!nr_found) { | 
|  | done = true; | 
|  | rcu_read_unlock(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the inodes before we drop the lock. if we found | 
|  | * nothing, nr == 0 and the loop will be skipped. | 
|  | */ | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | struct xfs_inode *ip = batch[i]; | 
|  |  | 
|  | if (done || !xfs_icwalk_igrab(goal, ip, icw)) | 
|  | batch[i] = NULL; | 
|  |  | 
|  | /* | 
|  | * Update the index for the next lookup. Catch | 
|  | * overflows into the next AG range which can occur if | 
|  | * we have inodes in the last block of the AG and we | 
|  | * are currently pointing to the last inode. | 
|  | * | 
|  | * Because we may see inodes that are from the wrong AG | 
|  | * due to RCU freeing and reallocation, only update the | 
|  | * index if it lies in this AG. It was a race that lead | 
|  | * us to see this inode, so another lookup from the | 
|  | * same index will not find it again. | 
|  | */ | 
|  | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag)) | 
|  | continue; | 
|  | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
|  | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
|  | done = true; | 
|  | } | 
|  |  | 
|  | /* unlock now we've grabbed the inodes. */ | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | if (!batch[i]) | 
|  | continue; | 
|  | error = xfs_icwalk_process_inode(goal, batch[i], pag, | 
|  | icw); | 
|  | if (error == -EAGAIN) { | 
|  | skipped++; | 
|  | continue; | 
|  | } | 
|  | if (error && last_error != -EFSCORRUPTED) | 
|  | last_error = error; | 
|  | } | 
|  |  | 
|  | /* bail out if the filesystem is corrupted.  */ | 
|  | if (error == -EFSCORRUPTED) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { | 
|  | icw->icw_scan_limit -= XFS_LOOKUP_BATCH; | 
|  | if (icw->icw_scan_limit <= 0) | 
|  | break; | 
|  | } | 
|  | } while (nr_found && !done); | 
|  |  | 
|  | if (goal == XFS_ICWALK_RECLAIM) { | 
|  | if (done) | 
|  | first_index = 0; | 
|  | WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); | 
|  | } | 
|  |  | 
|  | if (skipped) { | 
|  | delay(1); | 
|  | goto restart; | 
|  | } | 
|  | return last_error; | 
|  | } | 
|  |  | 
|  | /* Walk all incore inodes to achieve a given goal. */ | 
|  | static int | 
|  | xfs_icwalk( | 
|  | struct xfs_mount	*mp, | 
|  | enum xfs_icwalk_goal	goal, | 
|  | struct xfs_icwalk	*icw) | 
|  | { | 
|  | struct xfs_perag	*pag = NULL; | 
|  | int			error = 0; | 
|  | int			last_error = 0; | 
|  |  | 
|  | while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) { | 
|  | error = xfs_icwalk_ag(pag, goal, icw); | 
|  | if (error) { | 
|  | last_error = error; | 
|  | if (error == -EFSCORRUPTED) { | 
|  | xfs_perag_rele(pag); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return last_error; | 
|  | BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | static void | 
|  | xfs_check_delalloc( | 
|  | struct xfs_inode	*ip, | 
|  | int			whichfork) | 
|  | { | 
|  | struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork); | 
|  | struct xfs_bmbt_irec	got; | 
|  | struct xfs_iext_cursor	icur; | 
|  |  | 
|  | if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) | 
|  | return; | 
|  | do { | 
|  | if (isnullstartblock(got.br_startblock)) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", | 
|  | ip->i_ino, | 
|  | whichfork == XFS_DATA_FORK ? "data" : "cow", | 
|  | got.br_startoff, got.br_blockcount); | 
|  | } | 
|  | } while (xfs_iext_next_extent(ifp, &icur, &got)); | 
|  | } | 
|  | #else | 
|  | #define xfs_check_delalloc(ip, whichfork)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* Schedule the inode for reclaim. */ | 
|  | static void | 
|  | xfs_inodegc_set_reclaimable( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_perag	*pag; | 
|  |  | 
|  | if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { | 
|  | xfs_check_delalloc(ip, XFS_DATA_FORK); | 
|  | xfs_check_delalloc(ip, XFS_COW_FORK); | 
|  | ASSERT(0); | 
|  | } | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  |  | 
|  | trace_xfs_inode_set_reclaimable(ip); | 
|  | ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); | 
|  | ip->i_flags |= XFS_IRECLAIMABLE; | 
|  | xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), | 
|  | XFS_ICI_RECLAIM_TAG); | 
|  |  | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all speculative preallocations and possibly even the inode itself. | 
|  | * This is the last chance to make changes to an otherwise unreferenced file | 
|  | * before incore reclamation happens. | 
|  | */ | 
|  | static int | 
|  | xfs_inodegc_inactivate( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_inode_inactivating(ip); | 
|  | error = xfs_inactive(ip); | 
|  | xfs_inodegc_set_reclaimable(ip); | 
|  | return error; | 
|  |  | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inodegc_worker( | 
|  | struct work_struct	*work) | 
|  | { | 
|  | struct xfs_inodegc	*gc = container_of(to_delayed_work(work), | 
|  | struct xfs_inodegc, work); | 
|  | struct llist_node	*node = llist_del_all(&gc->list); | 
|  | struct xfs_inode	*ip, *n; | 
|  | struct xfs_mount	*mp = gc->mp; | 
|  | unsigned int		nofs_flag; | 
|  |  | 
|  | /* | 
|  | * Clear the cpu mask bit and ensure that we have seen the latest | 
|  | * update of the gc structure associated with this CPU. This matches | 
|  | * with the release semantics used when setting the cpumask bit in | 
|  | * xfs_inodegc_queue. | 
|  | */ | 
|  | cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask); | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | WRITE_ONCE(gc->items, 0); | 
|  |  | 
|  | if (!node) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We can allocate memory here while doing writeback on behalf of | 
|  | * memory reclaim.  To avoid memory allocation deadlocks set the | 
|  | * task-wide nofs context for the following operations. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  |  | 
|  | ip = llist_entry(node, struct xfs_inode, i_gclist); | 
|  | trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits)); | 
|  |  | 
|  | WRITE_ONCE(gc->shrinker_hits, 0); | 
|  | llist_for_each_entry_safe(ip, n, node, i_gclist) { | 
|  | int	error; | 
|  |  | 
|  | xfs_iflags_set(ip, XFS_INACTIVATING); | 
|  | error = xfs_inodegc_inactivate(ip); | 
|  | if (error && !gc->error) | 
|  | gc->error = error; | 
|  | } | 
|  |  | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expedite all pending inodegc work to run immediately. This does not wait for | 
|  | * completion of the work. | 
|  | */ | 
|  | void | 
|  | xfs_inodegc_push( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | if (!xfs_is_inodegc_enabled(mp)) | 
|  | return; | 
|  | trace_xfs_inodegc_push(mp, __return_address); | 
|  | xfs_inodegc_queue_all(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force all currently queued inode inactivation work to run immediately and | 
|  | * wait for the work to finish. | 
|  | */ | 
|  | int | 
|  | xfs_inodegc_flush( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | xfs_inodegc_push(mp); | 
|  | trace_xfs_inodegc_flush(mp, __return_address); | 
|  | return xfs_inodegc_wait_all(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all the pending work and then disable the inode inactivation background | 
|  | * workers and wait for them to stop.  Caller must hold sb->s_umount to | 
|  | * coordinate changes in the inodegc_enabled state. | 
|  | */ | 
|  | void | 
|  | xfs_inodegc_stop( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | bool			rerun; | 
|  |  | 
|  | if (!xfs_clear_inodegc_enabled(mp)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Drain all pending inodegc work, including inodes that could be | 
|  | * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan | 
|  | * threads that sample the inodegc state just prior to us clearing it. | 
|  | * The inodegc flag state prevents new threads from queuing more | 
|  | * inodes, so we queue pending work items and flush the workqueue until | 
|  | * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue | 
|  | * here because it does not allow other unserialized mechanisms to | 
|  | * reschedule inodegc work while this draining is in progress. | 
|  | */ | 
|  | xfs_inodegc_queue_all(mp); | 
|  | do { | 
|  | flush_workqueue(mp->m_inodegc_wq); | 
|  | rerun = xfs_inodegc_queue_all(mp); | 
|  | } while (rerun); | 
|  |  | 
|  | trace_xfs_inodegc_stop(mp, __return_address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable the inode inactivation background workers and schedule deferred inode | 
|  | * inactivation work if there is any.  Caller must hold sb->s_umount to | 
|  | * coordinate changes in the inodegc_enabled state. | 
|  | */ | 
|  | void | 
|  | xfs_inodegc_start( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | if (xfs_set_inodegc_enabled(mp)) | 
|  | return; | 
|  |  | 
|  | trace_xfs_inodegc_start(mp, __return_address); | 
|  | xfs_inodegc_queue_all(mp); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_XFS_RT | 
|  | static inline bool | 
|  | xfs_inodegc_want_queue_rt_file( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  |  | 
|  | if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp)) | 
|  | return false; | 
|  |  | 
|  | if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS, | 
|  | mp->m_low_rtexts[XFS_LOWSP_5_PCNT], | 
|  | XFS_FDBLOCKS_BATCH) < 0) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | #else | 
|  | # define xfs_inodegc_want_queue_rt_file(ip)	(false) | 
|  | #endif /* CONFIG_XFS_RT */ | 
|  |  | 
|  | /* | 
|  | * Schedule the inactivation worker when: | 
|  | * | 
|  | *  - We've accumulated more than one inode cluster buffer's worth of inodes. | 
|  | *  - There is less than 5% free space left. | 
|  | *  - Any of the quotas for this inode are near an enforcement limit. | 
|  | */ | 
|  | static inline bool | 
|  | xfs_inodegc_want_queue_work( | 
|  | struct xfs_inode	*ip, | 
|  | unsigned int		items) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  |  | 
|  | if (items > mp->m_ino_geo.inodes_per_cluster) | 
|  | return true; | 
|  |  | 
|  | if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS, | 
|  | mp->m_low_space[XFS_LOWSP_5_PCNT], | 
|  | XFS_FDBLOCKS_BATCH) < 0) | 
|  | return true; | 
|  |  | 
|  | if (xfs_inodegc_want_queue_rt_file(ip)) | 
|  | return true; | 
|  |  | 
|  | if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) | 
|  | return true; | 
|  |  | 
|  | if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) | 
|  | return true; | 
|  |  | 
|  | if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Upper bound on the number of inodes in each AG that can be queued for | 
|  | * inactivation at any given time, to avoid monopolizing the workqueue. | 
|  | */ | 
|  | #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK) | 
|  |  | 
|  | /* | 
|  | * Make the frontend wait for inactivations when: | 
|  | * | 
|  | *  - Memory shrinkers queued the inactivation worker and it hasn't finished. | 
|  | *  - The queue depth exceeds the maximum allowable percpu backlog. | 
|  | * | 
|  | * Note: If we are in a NOFS context here (e.g. current thread is running a | 
|  | * transaction) the we don't want to block here as inodegc progress may require | 
|  | * filesystem resources we hold to make progress and that could result in a | 
|  | * deadlock. Hence we skip out of here if we are in a scoped NOFS context. | 
|  | */ | 
|  | static inline bool | 
|  | xfs_inodegc_want_flush_work( | 
|  | struct xfs_inode	*ip, | 
|  | unsigned int		items, | 
|  | unsigned int		shrinker_hits) | 
|  | { | 
|  | if (current->flags & PF_MEMALLOC_NOFS) | 
|  | return false; | 
|  |  | 
|  | if (shrinker_hits > 0) | 
|  | return true; | 
|  |  | 
|  | if (items > XFS_INODEGC_MAX_BACKLOG) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a background inactivation worker if there are inodes that need to be | 
|  | * inactivated and higher level xfs code hasn't disabled the background | 
|  | * workers. | 
|  | */ | 
|  | static void | 
|  | xfs_inodegc_queue( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_inodegc	*gc; | 
|  | int			items; | 
|  | unsigned int		shrinker_hits; | 
|  | unsigned int		cpu_nr; | 
|  | unsigned long		queue_delay = 1; | 
|  |  | 
|  | trace_xfs_inode_set_need_inactive(ip); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags |= XFS_NEED_INACTIVE; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | cpu_nr = get_cpu(); | 
|  | gc = this_cpu_ptr(mp->m_inodegc); | 
|  | llist_add(&ip->i_gclist, &gc->list); | 
|  | items = READ_ONCE(gc->items); | 
|  | WRITE_ONCE(gc->items, items + 1); | 
|  | shrinker_hits = READ_ONCE(gc->shrinker_hits); | 
|  |  | 
|  | /* | 
|  | * Ensure the list add is always seen by anyone who finds the cpumask | 
|  | * bit set. This effectively gives the cpumask bit set operation | 
|  | * release ordering semantics. | 
|  | */ | 
|  | smp_mb__before_atomic(); | 
|  | if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask)) | 
|  | cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask); | 
|  |  | 
|  | /* | 
|  | * We queue the work while holding the current CPU so that the work | 
|  | * is scheduled to run on this CPU. | 
|  | */ | 
|  | if (!xfs_is_inodegc_enabled(mp)) { | 
|  | put_cpu(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (xfs_inodegc_want_queue_work(ip, items)) | 
|  | queue_delay = 0; | 
|  |  | 
|  | trace_xfs_inodegc_queue(mp, __return_address); | 
|  | mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, | 
|  | queue_delay); | 
|  | put_cpu(); | 
|  |  | 
|  | if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { | 
|  | trace_xfs_inodegc_throttle(mp, __return_address); | 
|  | flush_delayed_work(&gc->work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We set the inode flag atomically with the radix tree tag.  Once we get tag | 
|  | * lookups on the radix tree, this inode flag can go away. | 
|  | * | 
|  | * We always use background reclaim here because even if the inode is clean, it | 
|  | * still may be under IO and hence we have wait for IO completion to occur | 
|  | * before we can reclaim the inode. The background reclaim path handles this | 
|  | * more efficiently than we can here, so simply let background reclaim tear down | 
|  | * all inodes. | 
|  | */ | 
|  | void | 
|  | xfs_inode_mark_reclaimable( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | bool			need_inactive; | 
|  |  | 
|  | XFS_STATS_INC(mp, vn_reclaim); | 
|  |  | 
|  | /* | 
|  | * We should never get here with any of the reclaim flags already set. | 
|  | */ | 
|  | ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); | 
|  |  | 
|  | need_inactive = xfs_inode_needs_inactive(ip); | 
|  | if (need_inactive) { | 
|  | xfs_inodegc_queue(ip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Going straight to reclaim, so drop the dquots. */ | 
|  | xfs_qm_dqdetach(ip); | 
|  | xfs_inodegc_set_reclaimable(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register a phony shrinker so that we can run background inodegc sooner when | 
|  | * there's memory pressure.  Inactivation does not itself free any memory but | 
|  | * it does make inodes reclaimable, which eventually frees memory. | 
|  | * | 
|  | * The count function, seek value, and batch value are crafted to trigger the | 
|  | * scan function during the second round of scanning.  Hopefully this means | 
|  | * that we reclaimed enough memory that initiating metadata transactions won't | 
|  | * make things worse. | 
|  | */ | 
|  | #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY) | 
|  | #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) | 
|  |  | 
|  | static unsigned long | 
|  | xfs_inodegc_shrinker_count( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_mount	*mp = shrink->private_data; | 
|  | struct xfs_inodegc	*gc; | 
|  | int			cpu; | 
|  |  | 
|  | if (!xfs_is_inodegc_enabled(mp)) | 
|  | return 0; | 
|  |  | 
|  | for_each_cpu(cpu, &mp->m_inodegc_cpumask) { | 
|  | gc = per_cpu_ptr(mp->m_inodegc, cpu); | 
|  | if (!llist_empty(&gc->list)) | 
|  | return XFS_INODEGC_SHRINKER_COUNT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | xfs_inodegc_shrinker_scan( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_mount	*mp = shrink->private_data; | 
|  | struct xfs_inodegc	*gc; | 
|  | int			cpu; | 
|  | bool			no_items = true; | 
|  |  | 
|  | if (!xfs_is_inodegc_enabled(mp)) | 
|  | return SHRINK_STOP; | 
|  |  | 
|  | trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); | 
|  |  | 
|  | for_each_cpu(cpu, &mp->m_inodegc_cpumask) { | 
|  | gc = per_cpu_ptr(mp->m_inodegc, cpu); | 
|  | if (!llist_empty(&gc->list)) { | 
|  | unsigned int	h = READ_ONCE(gc->shrinker_hits); | 
|  |  | 
|  | WRITE_ONCE(gc->shrinker_hits, h + 1); | 
|  | mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); | 
|  | no_items = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are no inodes to inactivate, we don't want the shrinker | 
|  | * to think there's deferred work to call us back about. | 
|  | */ | 
|  | if (no_items) | 
|  | return LONG_MAX; | 
|  |  | 
|  | return SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ | 
|  | int | 
|  | xfs_inodegc_register_shrinker( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB, | 
|  | "xfs-inodegc:%s", | 
|  | mp->m_super->s_id); | 
|  | if (!mp->m_inodegc_shrinker) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count; | 
|  | mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan; | 
|  | mp->m_inodegc_shrinker->seeks = 0; | 
|  | mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH; | 
|  | mp->m_inodegc_shrinker->private_data = mp; | 
|  |  | 
|  | shrinker_register(mp->m_inodegc_shrinker); | 
|  |  | 
|  | return 0; | 
|  | } |