|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Cryptographic API. | 
|  | * | 
|  | * Support for VIA PadLock hardware crypto engine. | 
|  | * | 
|  | * Copyright (c) 2004  Michal Ludvig <michal@logix.cz> | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <crypto/algapi.h> | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/internal/skcipher.h> | 
|  | #include <crypto/padlock.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/fpu/api.h> | 
|  |  | 
|  | /* | 
|  | * Number of data blocks actually fetched for each xcrypt insn. | 
|  | * Processors with prefetch errata will fetch extra blocks. | 
|  | */ | 
|  | static unsigned int ecb_fetch_blocks = 2; | 
|  | #define MAX_ECB_FETCH_BLOCKS (8) | 
|  | #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE) | 
|  |  | 
|  | static unsigned int cbc_fetch_blocks = 1; | 
|  | #define MAX_CBC_FETCH_BLOCKS (4) | 
|  | #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE) | 
|  |  | 
|  | /* Control word. */ | 
|  | struct cword { | 
|  | unsigned int __attribute__ ((__packed__)) | 
|  | rounds:4, | 
|  | algo:3, | 
|  | keygen:1, | 
|  | interm:1, | 
|  | encdec:1, | 
|  | ksize:2; | 
|  | } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | 
|  |  | 
|  | /* Whenever making any changes to the following | 
|  | * structure *make sure* you keep E, d_data | 
|  | * and cword aligned on 16 Bytes boundaries and | 
|  | * the Hardware can access 16 * 16 bytes of E and d_data | 
|  | * (only the first 15 * 16 bytes matter but the HW reads | 
|  | * more). | 
|  | */ | 
|  | struct aes_ctx { | 
|  | u32 E[AES_MAX_KEYLENGTH_U32] | 
|  | __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | 
|  | u32 d_data[AES_MAX_KEYLENGTH_U32] | 
|  | __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | 
|  | struct { | 
|  | struct cword encrypt; | 
|  | struct cword decrypt; | 
|  | } cword; | 
|  | u32 *D; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct cword *, paes_last_cword); | 
|  |  | 
|  | /* Tells whether the ACE is capable to generate | 
|  | the extended key for a given key_len. */ | 
|  | static inline int | 
|  | aes_hw_extkey_available(uint8_t key_len) | 
|  | { | 
|  | /* TODO: We should check the actual CPU model/stepping | 
|  | as it's possible that the capability will be | 
|  | added in the next CPU revisions. */ | 
|  | if (key_len == 16) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct aes_ctx *aes_ctx_common(void *ctx) | 
|  | { | 
|  | unsigned long addr = (unsigned long)ctx; | 
|  | unsigned long align = PADLOCK_ALIGNMENT; | 
|  |  | 
|  | if (align <= crypto_tfm_ctx_alignment()) | 
|  | align = 1; | 
|  | return (struct aes_ctx *)ALIGN(addr, align); | 
|  | } | 
|  |  | 
|  | static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm) | 
|  | { | 
|  | return aes_ctx_common(crypto_tfm_ctx(tfm)); | 
|  | } | 
|  |  | 
|  | static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm) | 
|  | { | 
|  | return aes_ctx_common(crypto_skcipher_ctx(tfm)); | 
|  | } | 
|  |  | 
|  | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(tfm); | 
|  | const __le32 *key = (const __le32 *)in_key; | 
|  | struct crypto_aes_ctx gen_aes; | 
|  | int cpu; | 
|  |  | 
|  | if (key_len % 8) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * If the hardware is capable of generating the extended key | 
|  | * itself we must supply the plain key for both encryption | 
|  | * and decryption. | 
|  | */ | 
|  | ctx->D = ctx->E; | 
|  |  | 
|  | ctx->E[0] = le32_to_cpu(key[0]); | 
|  | ctx->E[1] = le32_to_cpu(key[1]); | 
|  | ctx->E[2] = le32_to_cpu(key[2]); | 
|  | ctx->E[3] = le32_to_cpu(key[3]); | 
|  |  | 
|  | /* Prepare control words. */ | 
|  | memset(&ctx->cword, 0, sizeof(ctx->cword)); | 
|  |  | 
|  | ctx->cword.decrypt.encdec = 1; | 
|  | ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4; | 
|  | ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds; | 
|  | ctx->cword.encrypt.ksize = (key_len - 16) / 8; | 
|  | ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize; | 
|  |  | 
|  | /* Don't generate extended keys if the hardware can do it. */ | 
|  | if (aes_hw_extkey_available(key_len)) | 
|  | goto ok; | 
|  |  | 
|  | ctx->D = ctx->d_data; | 
|  | ctx->cword.encrypt.keygen = 1; | 
|  | ctx->cword.decrypt.keygen = 1; | 
|  |  | 
|  | if (aes_expandkey(&gen_aes, in_key, key_len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH); | 
|  | memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH); | 
|  |  | 
|  | ok: | 
|  | for_each_online_cpu(cpu) | 
|  | if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) || | 
|  | &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu)) | 
|  | per_cpu(paes_last_cword, cpu) = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len); | 
|  | } | 
|  |  | 
|  | /* ====== Encryption/decryption routines ====== */ | 
|  |  | 
|  | /* These are the real call to PadLock. */ | 
|  | static inline void padlock_reset_key(struct cword *cword) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (cword != per_cpu(paes_last_cword, cpu)) | 
|  | #ifndef CONFIG_X86_64 | 
|  | asm volatile ("pushfl; popfl"); | 
|  | #else | 
|  | asm volatile ("pushfq; popfq"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void padlock_store_cword(struct cword *cword) | 
|  | { | 
|  | per_cpu(paes_last_cword, raw_smp_processor_id()) = cword; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While the padlock instructions don't use FP/SSE registers, they | 
|  | * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately, | 
|  | * the kernel doesn't use CR0.TS. | 
|  | */ | 
|  |  | 
|  | static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key, | 
|  | struct cword *control_word, int count) | 
|  | { | 
|  | asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */ | 
|  | : "+S"(input), "+D"(output) | 
|  | : "d"(control_word), "b"(key), "c"(count)); | 
|  | } | 
|  |  | 
|  | static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key, | 
|  | u8 *iv, struct cword *control_word, int count) | 
|  | { | 
|  | asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */ | 
|  | : "+S" (input), "+D" (output), "+a" (iv) | 
|  | : "d" (control_word), "b" (key), "c" (count)); | 
|  | return iv; | 
|  | } | 
|  |  | 
|  | static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key, | 
|  | struct cword *cword, int count) | 
|  | { | 
|  | /* | 
|  | * Padlock prefetches extra data so we must provide mapped input buffers. | 
|  | * Assume there are at least 16 bytes of stack already in use. | 
|  | */ | 
|  | u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; | 
|  | u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); | 
|  |  | 
|  | memcpy(tmp, in, count * AES_BLOCK_SIZE); | 
|  | rep_xcrypt_ecb(tmp, out, key, cword, count); | 
|  | } | 
|  |  | 
|  | static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key, | 
|  | u8 *iv, struct cword *cword, int count) | 
|  | { | 
|  | /* | 
|  | * Padlock prefetches extra data so we must provide mapped input buffers. | 
|  | * Assume there are at least 16 bytes of stack already in use. | 
|  | */ | 
|  | u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; | 
|  | u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); | 
|  |  | 
|  | memcpy(tmp, in, count * AES_BLOCK_SIZE); | 
|  | return rep_xcrypt_cbc(tmp, out, key, iv, cword, count); | 
|  | } | 
|  |  | 
|  | static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key, | 
|  | struct cword *cword, int count) | 
|  | { | 
|  | /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data. | 
|  | * We could avoid some copying here but it's probably not worth it. | 
|  | */ | 
|  | if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) { | 
|  | ecb_crypt_copy(in, out, key, cword, count); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rep_xcrypt_ecb(in, out, key, cword, count); | 
|  | } | 
|  |  | 
|  | static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key, | 
|  | u8 *iv, struct cword *cword, int count) | 
|  | { | 
|  | /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */ | 
|  | if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE)) | 
|  | return cbc_crypt_copy(in, out, key, iv, cword, count); | 
|  |  | 
|  | return rep_xcrypt_cbc(in, out, key, iv, cword, count); | 
|  | } | 
|  |  | 
|  | static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key, | 
|  | void *control_word, u32 count) | 
|  | { | 
|  | u32 initial = count & (ecb_fetch_blocks - 1); | 
|  |  | 
|  | if (count < ecb_fetch_blocks) { | 
|  | ecb_crypt(input, output, key, control_word, count); | 
|  | return; | 
|  | } | 
|  |  | 
|  | count -= initial; | 
|  |  | 
|  | if (initial) | 
|  | asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */ | 
|  | : "+S"(input), "+D"(output) | 
|  | : "d"(control_word), "b"(key), "c"(initial)); | 
|  |  | 
|  | asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */ | 
|  | : "+S"(input), "+D"(output) | 
|  | : "d"(control_word), "b"(key), "c"(count)); | 
|  | } | 
|  |  | 
|  | static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key, | 
|  | u8 *iv, void *control_word, u32 count) | 
|  | { | 
|  | u32 initial = count & (cbc_fetch_blocks - 1); | 
|  |  | 
|  | if (count < cbc_fetch_blocks) | 
|  | return cbc_crypt(input, output, key, iv, control_word, count); | 
|  |  | 
|  | count -= initial; | 
|  |  | 
|  | if (initial) | 
|  | asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */ | 
|  | : "+S" (input), "+D" (output), "+a" (iv) | 
|  | : "d" (control_word), "b" (key), "c" (initial)); | 
|  |  | 
|  | asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */ | 
|  | : "+S" (input), "+D" (output), "+a" (iv) | 
|  | : "d" (control_word), "b" (key), "c" (count)); | 
|  | return iv; | 
|  | } | 
|  |  | 
|  | static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(tfm); | 
|  |  | 
|  | padlock_reset_key(&ctx->cword.encrypt); | 
|  | ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1); | 
|  | padlock_store_cword(&ctx->cword.encrypt); | 
|  | } | 
|  |  | 
|  | static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(tfm); | 
|  |  | 
|  | padlock_reset_key(&ctx->cword.encrypt); | 
|  | ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1); | 
|  | padlock_store_cword(&ctx->cword.encrypt); | 
|  | } | 
|  |  | 
|  | static struct crypto_alg aes_alg = { | 
|  | .cra_name		=	"aes", | 
|  | .cra_driver_name	=	"aes-padlock", | 
|  | .cra_priority		=	PADLOCK_CRA_PRIORITY, | 
|  | .cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize		=	AES_BLOCK_SIZE, | 
|  | .cra_ctxsize		=	sizeof(struct aes_ctx), | 
|  | .cra_alignmask		=	PADLOCK_ALIGNMENT - 1, | 
|  | .cra_module		=	THIS_MODULE, | 
|  | .cra_u			=	{ | 
|  | .cipher = { | 
|  | .cia_min_keysize	=	AES_MIN_KEY_SIZE, | 
|  | .cia_max_keysize	=	AES_MAX_KEY_SIZE, | 
|  | .cia_setkey	   	= 	aes_set_key, | 
|  | .cia_encrypt	 	=	padlock_aes_encrypt, | 
|  | .cia_decrypt	  	=	padlock_aes_decrypt, | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int ecb_aes_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct aes_ctx *ctx = skcipher_aes_ctx(tfm); | 
|  | struct skcipher_walk walk; | 
|  | unsigned int nbytes; | 
|  | int err; | 
|  |  | 
|  | padlock_reset_key(&ctx->cword.encrypt); | 
|  |  | 
|  | err = skcipher_walk_virt(&walk, req, false); | 
|  |  | 
|  | while ((nbytes = walk.nbytes) != 0) { | 
|  | padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, | 
|  | ctx->E, &ctx->cword.encrypt, | 
|  | nbytes / AES_BLOCK_SIZE); | 
|  | nbytes &= AES_BLOCK_SIZE - 1; | 
|  | err = skcipher_walk_done(&walk, nbytes); | 
|  | } | 
|  |  | 
|  | padlock_store_cword(&ctx->cword.encrypt); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ecb_aes_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct aes_ctx *ctx = skcipher_aes_ctx(tfm); | 
|  | struct skcipher_walk walk; | 
|  | unsigned int nbytes; | 
|  | int err; | 
|  |  | 
|  | padlock_reset_key(&ctx->cword.decrypt); | 
|  |  | 
|  | err = skcipher_walk_virt(&walk, req, false); | 
|  |  | 
|  | while ((nbytes = walk.nbytes) != 0) { | 
|  | padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, | 
|  | ctx->D, &ctx->cword.decrypt, | 
|  | nbytes / AES_BLOCK_SIZE); | 
|  | nbytes &= AES_BLOCK_SIZE - 1; | 
|  | err = skcipher_walk_done(&walk, nbytes); | 
|  | } | 
|  |  | 
|  | padlock_store_cword(&ctx->cword.encrypt); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct skcipher_alg ecb_aes_alg = { | 
|  | .base.cra_name		=	"ecb(aes)", | 
|  | .base.cra_driver_name	=	"ecb-aes-padlock", | 
|  | .base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY, | 
|  | .base.cra_blocksize	=	AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	=	sizeof(struct aes_ctx), | 
|  | .base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1, | 
|  | .base.cra_module	=	THIS_MODULE, | 
|  | .min_keysize		=	AES_MIN_KEY_SIZE, | 
|  | .max_keysize		=	AES_MAX_KEY_SIZE, | 
|  | .setkey			=	aes_set_key_skcipher, | 
|  | .encrypt		=	ecb_aes_encrypt, | 
|  | .decrypt		=	ecb_aes_decrypt, | 
|  | }; | 
|  |  | 
|  | static int cbc_aes_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct aes_ctx *ctx = skcipher_aes_ctx(tfm); | 
|  | struct skcipher_walk walk; | 
|  | unsigned int nbytes; | 
|  | int err; | 
|  |  | 
|  | padlock_reset_key(&ctx->cword.encrypt); | 
|  |  | 
|  | err = skcipher_walk_virt(&walk, req, false); | 
|  |  | 
|  | while ((nbytes = walk.nbytes) != 0) { | 
|  | u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr, | 
|  | walk.dst.virt.addr, ctx->E, | 
|  | walk.iv, &ctx->cword.encrypt, | 
|  | nbytes / AES_BLOCK_SIZE); | 
|  | memcpy(walk.iv, iv, AES_BLOCK_SIZE); | 
|  | nbytes &= AES_BLOCK_SIZE - 1; | 
|  | err = skcipher_walk_done(&walk, nbytes); | 
|  | } | 
|  |  | 
|  | padlock_store_cword(&ctx->cword.decrypt); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cbc_aes_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct aes_ctx *ctx = skcipher_aes_ctx(tfm); | 
|  | struct skcipher_walk walk; | 
|  | unsigned int nbytes; | 
|  | int err; | 
|  |  | 
|  | padlock_reset_key(&ctx->cword.encrypt); | 
|  |  | 
|  | err = skcipher_walk_virt(&walk, req, false); | 
|  |  | 
|  | while ((nbytes = walk.nbytes) != 0) { | 
|  | padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr, | 
|  | ctx->D, walk.iv, &ctx->cword.decrypt, | 
|  | nbytes / AES_BLOCK_SIZE); | 
|  | nbytes &= AES_BLOCK_SIZE - 1; | 
|  | err = skcipher_walk_done(&walk, nbytes); | 
|  | } | 
|  |  | 
|  | padlock_store_cword(&ctx->cword.encrypt); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct skcipher_alg cbc_aes_alg = { | 
|  | .base.cra_name		=	"cbc(aes)", | 
|  | .base.cra_driver_name	=	"cbc-aes-padlock", | 
|  | .base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY, | 
|  | .base.cra_blocksize	=	AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	=	sizeof(struct aes_ctx), | 
|  | .base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1, | 
|  | .base.cra_module	=	THIS_MODULE, | 
|  | .min_keysize		=	AES_MIN_KEY_SIZE, | 
|  | .max_keysize		=	AES_MAX_KEY_SIZE, | 
|  | .ivsize			=	AES_BLOCK_SIZE, | 
|  | .setkey			=	aes_set_key_skcipher, | 
|  | .encrypt		=	cbc_aes_encrypt, | 
|  | .decrypt		=	cbc_aes_decrypt, | 
|  | }; | 
|  |  | 
|  | static const struct x86_cpu_id padlock_cpu_id[] = { | 
|  | X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL), | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id); | 
|  |  | 
|  | static int __init padlock_init(void) | 
|  | { | 
|  | int ret; | 
|  | struct cpuinfo_x86 *c = &cpu_data(0); | 
|  |  | 
|  | if (!x86_match_cpu(padlock_cpu_id)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) { | 
|  | printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if ((ret = crypto_register_alg(&aes_alg)) != 0) | 
|  | goto aes_err; | 
|  |  | 
|  | if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0) | 
|  | goto ecb_aes_err; | 
|  |  | 
|  | if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0) | 
|  | goto cbc_aes_err; | 
|  |  | 
|  | printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); | 
|  |  | 
|  | if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) { | 
|  | ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS; | 
|  | cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS; | 
|  | printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n"); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | cbc_aes_err: | 
|  | crypto_unregister_skcipher(&ecb_aes_alg); | 
|  | ecb_aes_err: | 
|  | crypto_unregister_alg(&aes_alg); | 
|  | aes_err: | 
|  | printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static void __exit padlock_fini(void) | 
|  | { | 
|  | crypto_unregister_skcipher(&cbc_aes_alg); | 
|  | crypto_unregister_skcipher(&ecb_aes_alg); | 
|  | crypto_unregister_alg(&aes_alg); | 
|  | } | 
|  |  | 
|  | module_init(padlock_init); | 
|  | module_exit(padlock_fini); | 
|  |  | 
|  | MODULE_DESCRIPTION("VIA PadLock AES algorithm support"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Michal Ludvig"); | 
|  |  | 
|  | MODULE_ALIAS_CRYPTO("aes"); |