blob: 910b40393f77de84afc77d406c17c6e5051a02cd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* AD7124 SPI ADC driver
*
* Copyright 2018 Analog Devices Inc.
* Copyright 2025 BayLibre, SAS
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kfifo.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/sprintf.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/adc/ad_sigma_delta.h>
#include <linux/iio/sysfs.h>
/* AD7124 registers */
#define AD7124_COMMS 0x00
#define AD7124_STATUS 0x00
#define AD7124_ADC_CONTROL 0x01
#define AD7124_DATA 0x02
#define AD7124_IO_CONTROL_1 0x03
#define AD7124_IO_CONTROL_2 0x04
#define AD7124_ID 0x05
#define AD7124_ERROR 0x06
#define AD7124_ERROR_EN 0x07
#define AD7124_MCLK_COUNT 0x08
#define AD7124_CHANNEL(x) (0x09 + (x))
#define AD7124_CONFIG(x) (0x19 + (x))
#define AD7124_FILTER(x) (0x21 + (x))
#define AD7124_OFFSET(x) (0x29 + (x))
#define AD7124_GAIN(x) (0x31 + (x))
/* AD7124_STATUS */
#define AD7124_STATUS_POR_FLAG BIT(4)
/* AD7124_ADC_CONTROL */
#define AD7124_ADC_CONTROL_CLK_SEL GENMASK(1, 0)
#define AD7124_ADC_CONTROL_CLK_SEL_INT 0
#define AD7124_ADC_CONTROL_CLK_SEL_INT_OUT 1
#define AD7124_ADC_CONTROL_CLK_SEL_EXT 2
#define AD7124_ADC_CONTROL_CLK_SEL_EXT_DIV4 3
#define AD7124_ADC_CONTROL_MODE GENMASK(5, 2)
#define AD7124_ADC_CONTROL_MODE_CONTINUOUS 0
#define AD7124_ADC_CONTROL_MODE_SINGLE 1
#define AD7124_ADC_CONTROL_MODE_STANDBY 2
#define AD7124_ADC_CONTROL_MODE_POWERDOWN 3
#define AD7124_ADC_CONTROL_MODE_IDLE 4
#define AD7124_ADC_CONTROL_MODE_INT_OFFSET_CALIB 5 /* Internal Zero-Scale Calibration */
#define AD7124_ADC_CONTROL_MODE_INT_GAIN_CALIB 6 /* Internal Full-Scale Calibration */
#define AD7124_ADC_CONTROL_MODE_SYS_OFFSET_CALIB 7 /* System Zero-Scale Calibration */
#define AD7124_ADC_CONTROL_MODE_SYS_GAIN_CALIB 8 /* System Full-Scale Calibration */
#define AD7124_ADC_CONTROL_POWER_MODE GENMASK(7, 6)
#define AD7124_ADC_CONTROL_POWER_MODE_LOW 0
#define AD7124_ADC_CONTROL_POWER_MODE_MID 1
#define AD7124_ADC_CONTROL_POWER_MODE_FULL 2
#define AD7124_ADC_CONTROL_REF_EN BIT(8)
#define AD7124_ADC_CONTROL_DATA_STATUS BIT(10)
/* AD7124_ID */
#define AD7124_ID_SILICON_REVISION GENMASK(3, 0)
#define AD7124_ID_DEVICE_ID GENMASK(7, 4)
#define AD7124_ID_DEVICE_ID_AD7124_4 0x0
#define AD7124_ID_DEVICE_ID_AD7124_8 0x1
/* AD7124_CHANNEL_X */
#define AD7124_CHANNEL_ENABLE BIT(15)
#define AD7124_CHANNEL_SETUP GENMASK(14, 12)
#define AD7124_CHANNEL_AINP GENMASK(9, 5)
#define AD7124_CHANNEL_AINM GENMASK(4, 0)
#define AD7124_CHANNEL_AINx_TEMPSENSOR 16
#define AD7124_CHANNEL_AINx_AVSS 17
/* AD7124_CONFIG_X */
#define AD7124_CONFIG_BIPOLAR BIT(11)
#define AD7124_CONFIG_IN_BUFF GENMASK(6, 5)
#define AD7124_CONFIG_AIN_BUFP BIT(6)
#define AD7124_CONFIG_AIN_BUFM BIT(5)
#define AD7124_CONFIG_REF_SEL GENMASK(4, 3)
#define AD7124_CONFIG_PGA GENMASK(2, 0)
/* AD7124_FILTER_X */
#define AD7124_FILTER_FILTER GENMASK(23, 21)
#define AD7124_FILTER_FILTER_SINC4 0
#define AD7124_FILTER_FILTER_SINC3 2
#define AD7124_FILTER_FILTER_SINC4_SINC1 4
#define AD7124_FILTER_FILTER_SINC3_SINC1 5
#define AD7124_FILTER_FILTER_SINC3_PF 7
#define AD7124_FILTER_REJ60 BIT(20)
#define AD7124_FILTER_POST_FILTER GENMASK(19, 17)
#define AD7124_FILTER_POST_FILTER_47dB 2
#define AD7124_FILTER_POST_FILTER_62dB 3
#define AD7124_FILTER_POST_FILTER_86dB 5
#define AD7124_FILTER_POST_FILTER_92dB 6
#define AD7124_FILTER_SINGLE_CYCLE BIT(16)
#define AD7124_FILTER_FS GENMASK(10, 0)
#define AD7124_MAX_CONFIGS 8
#define AD7124_MAX_CHANNELS 16
#define AD7124_INT_CLK_HZ 614400
/* AD7124 input sources */
enum ad7124_ref_sel {
AD7124_REFIN1,
AD7124_REFIN2,
AD7124_INT_REF,
AD7124_AVDD_REF,
};
enum ad7124_power_mode {
AD7124_LOW_POWER,
AD7124_MID_POWER,
AD7124_FULL_POWER,
};
static const unsigned int ad7124_gain[8] = {
1, 2, 4, 8, 16, 32, 64, 128
};
static const unsigned int ad7124_reg_size[] = {
1, 2, 3, 3, 2, 1, 3, 3, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3
};
static const int ad7124_master_clk_freq_hz[3] = {
[AD7124_LOW_POWER] = AD7124_INT_CLK_HZ / 8,
[AD7124_MID_POWER] = AD7124_INT_CLK_HZ / 4,
[AD7124_FULL_POWER] = AD7124_INT_CLK_HZ,
};
static const char * const ad7124_ref_names[] = {
[AD7124_REFIN1] = "refin1",
[AD7124_REFIN2] = "refin2",
[AD7124_INT_REF] = "int",
[AD7124_AVDD_REF] = "avdd",
};
struct ad7124_chip_info {
const char *name;
unsigned int chip_id;
unsigned int num_inputs;
};
enum ad7124_filter_type {
AD7124_FILTER_TYPE_SINC3,
AD7124_FILTER_TYPE_SINC3_PF1,
AD7124_FILTER_TYPE_SINC3_PF2,
AD7124_FILTER_TYPE_SINC3_PF3,
AD7124_FILTER_TYPE_SINC3_PF4,
AD7124_FILTER_TYPE_SINC3_REJ60,
AD7124_FILTER_TYPE_SINC3_SINC1,
AD7124_FILTER_TYPE_SINC4,
AD7124_FILTER_TYPE_SINC4_REJ60,
AD7124_FILTER_TYPE_SINC4_SINC1,
};
struct ad7124_channel_config {
bool live;
unsigned int cfg_slot;
unsigned int requested_odr;
unsigned int requested_odr_micro;
/*
* Following fields are used to compare for equality. If you
* make adaptations in it, you most likely also have to adapt
* ad7124_find_similar_live_cfg(), too.
*/
struct_group(config_props,
enum ad7124_ref_sel refsel;
bool bipolar;
bool buf_positive;
bool buf_negative;
unsigned int vref_mv;
unsigned int pga_bits;
unsigned int odr_sel_bits;
enum ad7124_filter_type filter_type;
unsigned int calibration_offset;
unsigned int calibration_gain;
);
};
struct ad7124_channel {
unsigned int nr;
struct ad7124_channel_config cfg;
unsigned int ain;
unsigned int slot;
u8 syscalib_mode;
};
struct ad7124_state {
const struct ad7124_chip_info *chip_info;
struct ad_sigma_delta sd;
struct ad7124_channel *channels;
struct regulator *vref[4];
u32 clk_hz;
unsigned int adc_control;
unsigned int num_channels;
struct mutex cfgs_lock; /* lock for configs access */
unsigned long cfg_slots_status; /* bitmap with slot status (1 means it is used) */
/*
* Stores the power-on reset value for the GAIN(x) registers which are
* needed for measurements at gain 1 (i.e. CONFIG(x).PGA == 0)
*/
unsigned int gain_default;
DECLARE_KFIFO(live_cfgs_fifo, struct ad7124_channel_config *, AD7124_MAX_CONFIGS);
};
static const struct ad7124_chip_info ad7124_4_chip_info = {
.name = "ad7124-4",
.chip_id = AD7124_ID_DEVICE_ID_AD7124_4,
.num_inputs = 8,
};
static const struct ad7124_chip_info ad7124_8_chip_info = {
.name = "ad7124-8",
.chip_id = AD7124_ID_DEVICE_ID_AD7124_8,
.num_inputs = 16,
};
static int ad7124_find_closest_match(const int *array,
unsigned int size, int val)
{
int i, idx;
unsigned int diff_new, diff_old;
diff_old = U32_MAX;
idx = 0;
for (i = 0; i < size; i++) {
diff_new = abs(val - array[i]);
if (diff_new < diff_old) {
diff_old = diff_new;
idx = i;
}
}
return idx;
}
static int ad7124_spi_write_mask(struct ad7124_state *st,
unsigned int addr,
unsigned long mask,
unsigned int val,
unsigned int bytes)
{
unsigned int readval;
int ret;
ret = ad_sd_read_reg(&st->sd, addr, bytes, &readval);
if (ret < 0)
return ret;
readval &= ~mask;
readval |= val;
return ad_sd_write_reg(&st->sd, addr, bytes, readval);
}
static int ad7124_set_mode(struct ad_sigma_delta *sd,
enum ad_sigma_delta_mode mode)
{
struct ad7124_state *st = container_of(sd, struct ad7124_state, sd);
st->adc_control &= ~AD7124_ADC_CONTROL_MODE;
st->adc_control |= FIELD_PREP(AD7124_ADC_CONTROL_MODE, mode);
return ad_sd_write_reg(&st->sd, AD7124_ADC_CONTROL, 2, st->adc_control);
}
static u32 ad7124_get_fclk_hz(struct ad7124_state *st)
{
enum ad7124_power_mode power_mode;
u32 fclk_hz;
power_mode = FIELD_GET(AD7124_ADC_CONTROL_POWER_MODE, st->adc_control);
fclk_hz = st->clk_hz;
switch (power_mode) {
case AD7124_LOW_POWER:
fclk_hz /= 8;
break;
case AD7124_MID_POWER:
fclk_hz /= 4;
break;
default:
break;
}
return fclk_hz;
}
static u32 ad7124_get_fs_factor(struct ad7124_state *st, unsigned int channel)
{
enum ad7124_power_mode power_mode =
FIELD_GET(AD7124_ADC_CONTROL_POWER_MODE, st->adc_control);
u32 avg = power_mode == AD7124_LOW_POWER ? 8 : 16;
/*
* These are the "zero-latency" factors from the data sheet. For the
* sinc1 filters, these aren't documented, but derived by taking the
* single-channel formula from the sinc1 section of the data sheet and
* multiplying that by the sinc3/4 factor from the corresponding zero-
* latency sections.
*/
switch (st->channels[channel].cfg.filter_type) {
case AD7124_FILTER_TYPE_SINC4:
case AD7124_FILTER_TYPE_SINC4_REJ60:
return 4 * 32;
case AD7124_FILTER_TYPE_SINC4_SINC1:
return 4 * avg * 32;
case AD7124_FILTER_TYPE_SINC3_SINC1:
return 3 * avg * 32;
default:
return 3 * 32;
}
}
static u32 ad7124_get_fadc_divisor(struct ad7124_state *st, unsigned int channel)
{
u32 factor = ad7124_get_fs_factor(st, channel);
/*
* The output data rate (f_ADC) is f_CLK / divisor. We are returning
* the divisor.
*/
return st->channels[channel].cfg.odr_sel_bits * factor;
}
static void ad7124_set_channel_odr(struct ad7124_state *st, unsigned int channel)
{
struct ad7124_channel_config *cfg = &st->channels[channel].cfg;
unsigned int fclk, factor, divisor, odr_sel_bits;
fclk = ad7124_get_fclk_hz(st);
factor = ad7124_get_fs_factor(st, channel);
/*
* FS[10:0] = fCLK / (fADC x 32 * N) where:
* fADC is the output data rate
* fCLK is the master clock frequency
* N is number of conversions per sample (depends on filter type)
* FS[10:0] are the bits in the filter register
* FS[10:0] can have a value from 1 to 2047
*/
divisor = cfg->requested_odr * factor +
cfg->requested_odr_micro * factor / MICRO;
odr_sel_bits = clamp(DIV_ROUND_CLOSEST(fclk, divisor), 1, 2047);
if (odr_sel_bits != st->channels[channel].cfg.odr_sel_bits)
st->channels[channel].cfg.live = false;
st->channels[channel].cfg.odr_sel_bits = odr_sel_bits;
}
static int ad7124_get_3db_filter_factor(struct ad7124_state *st,
unsigned int channel)
{
struct ad7124_channel_config *cfg = &st->channels[channel].cfg;
/*
* 3dB point is the f_CLK rate times some factor. This functions returns
* the factor times 1000.
*/
switch (cfg->filter_type) {
case AD7124_FILTER_TYPE_SINC3:
case AD7124_FILTER_TYPE_SINC3_REJ60:
case AD7124_FILTER_TYPE_SINC3_SINC1:
return 272;
case AD7124_FILTER_TYPE_SINC4:
case AD7124_FILTER_TYPE_SINC4_REJ60:
case AD7124_FILTER_TYPE_SINC4_SINC1:
return 230;
case AD7124_FILTER_TYPE_SINC3_PF1:
return 633;
case AD7124_FILTER_TYPE_SINC3_PF2:
return 605;
case AD7124_FILTER_TYPE_SINC3_PF3:
return 669;
case AD7124_FILTER_TYPE_SINC3_PF4:
return 759;
default:
return -EINVAL;
}
}
static struct ad7124_channel_config *ad7124_find_similar_live_cfg(struct ad7124_state *st,
struct ad7124_channel_config *cfg)
{
struct ad7124_channel_config *cfg_aux;
int i;
/*
* This is just to make sure that the comparison is adapted after
* struct ad7124_channel_config was changed.
*/
static_assert(sizeof_field(struct ad7124_channel_config, config_props) ==
sizeof(struct {
enum ad7124_ref_sel refsel;
bool bipolar;
bool buf_positive;
bool buf_negative;
unsigned int vref_mv;
unsigned int pga_bits;
unsigned int odr_sel_bits;
enum ad7124_filter_type filter_type;
unsigned int calibration_offset;
unsigned int calibration_gain;
}));
for (i = 0; i < st->num_channels; i++) {
cfg_aux = &st->channels[i].cfg;
if (cfg_aux->live &&
cfg->refsel == cfg_aux->refsel &&
cfg->bipolar == cfg_aux->bipolar &&
cfg->buf_positive == cfg_aux->buf_positive &&
cfg->buf_negative == cfg_aux->buf_negative &&
cfg->vref_mv == cfg_aux->vref_mv &&
cfg->pga_bits == cfg_aux->pga_bits &&
cfg->odr_sel_bits == cfg_aux->odr_sel_bits &&
cfg->filter_type == cfg_aux->filter_type &&
cfg->calibration_offset == cfg_aux->calibration_offset &&
cfg->calibration_gain == cfg_aux->calibration_gain)
return cfg_aux;
}
return NULL;
}
static int ad7124_find_free_config_slot(struct ad7124_state *st)
{
unsigned int free_cfg_slot;
free_cfg_slot = find_first_zero_bit(&st->cfg_slots_status, AD7124_MAX_CONFIGS);
if (free_cfg_slot == AD7124_MAX_CONFIGS)
return -1;
return free_cfg_slot;
}
/* Only called during probe, so dev_err_probe() can be used */
static int ad7124_init_config_vref(struct ad7124_state *st, struct ad7124_channel_config *cfg)
{
struct device *dev = &st->sd.spi->dev;
unsigned int refsel = cfg->refsel;
switch (refsel) {
case AD7124_REFIN1:
case AD7124_REFIN2:
case AD7124_AVDD_REF:
if (IS_ERR(st->vref[refsel]))
return dev_err_probe(dev, PTR_ERR(st->vref[refsel]),
"Error, trying to use external voltage reference without a %s regulator.\n",
ad7124_ref_names[refsel]);
cfg->vref_mv = regulator_get_voltage(st->vref[refsel]);
/* Conversion from uV to mV */
cfg->vref_mv /= 1000;
return 0;
case AD7124_INT_REF:
cfg->vref_mv = 2500;
st->adc_control |= AD7124_ADC_CONTROL_REF_EN;
return 0;
default:
return dev_err_probe(dev, -EINVAL, "Invalid reference %d\n", refsel);
}
}
static int ad7124_write_config(struct ad7124_state *st, struct ad7124_channel_config *cfg,
unsigned int cfg_slot)
{
unsigned int val, filter;
unsigned int rej60 = 0;
unsigned int post = 0;
int ret;
cfg->cfg_slot = cfg_slot;
ret = ad_sd_write_reg(&st->sd, AD7124_OFFSET(cfg->cfg_slot), 3, cfg->calibration_offset);
if (ret)
return ret;
ret = ad_sd_write_reg(&st->sd, AD7124_GAIN(cfg->cfg_slot), 3, cfg->calibration_gain);
if (ret)
return ret;
val = FIELD_PREP(AD7124_CONFIG_BIPOLAR, cfg->bipolar) |
FIELD_PREP(AD7124_CONFIG_REF_SEL, cfg->refsel) |
(cfg->buf_positive ? AD7124_CONFIG_AIN_BUFP : 0) |
(cfg->buf_negative ? AD7124_CONFIG_AIN_BUFM : 0) |
FIELD_PREP(AD7124_CONFIG_PGA, cfg->pga_bits);
ret = ad_sd_write_reg(&st->sd, AD7124_CONFIG(cfg->cfg_slot), 2, val);
if (ret < 0)
return ret;
switch (cfg->filter_type) {
case AD7124_FILTER_TYPE_SINC3:
filter = AD7124_FILTER_FILTER_SINC3;
break;
case AD7124_FILTER_TYPE_SINC3_PF1:
filter = AD7124_FILTER_FILTER_SINC3_PF;
post = AD7124_FILTER_POST_FILTER_47dB;
break;
case AD7124_FILTER_TYPE_SINC3_PF2:
filter = AD7124_FILTER_FILTER_SINC3_PF;
post = AD7124_FILTER_POST_FILTER_62dB;
break;
case AD7124_FILTER_TYPE_SINC3_PF3:
filter = AD7124_FILTER_FILTER_SINC3_PF;
post = AD7124_FILTER_POST_FILTER_86dB;
break;
case AD7124_FILTER_TYPE_SINC3_PF4:
filter = AD7124_FILTER_FILTER_SINC3_PF;
post = AD7124_FILTER_POST_FILTER_92dB;
break;
case AD7124_FILTER_TYPE_SINC3_REJ60:
filter = AD7124_FILTER_FILTER_SINC3;
rej60 = 1;
break;
case AD7124_FILTER_TYPE_SINC3_SINC1:
filter = AD7124_FILTER_FILTER_SINC3_SINC1;
break;
case AD7124_FILTER_TYPE_SINC4:
filter = AD7124_FILTER_FILTER_SINC4;
break;
case AD7124_FILTER_TYPE_SINC4_REJ60:
filter = AD7124_FILTER_FILTER_SINC4;
rej60 = 1;
break;
case AD7124_FILTER_TYPE_SINC4_SINC1:
filter = AD7124_FILTER_FILTER_SINC4_SINC1;
break;
default:
return -EINVAL;
}
/*
* NB: AD7124_FILTER_SINGLE_CYCLE is always set so that we get the same
* sampling frequency even when only one channel is enabled in a
* buffered read. If it was not set, the N in ad7124_set_channel_odr()
* would be 1 and we would get a faster sampling frequency than what
* was requested.
*/
return ad_sd_write_reg(&st->sd, AD7124_FILTER(cfg->cfg_slot), 3,
FIELD_PREP(AD7124_FILTER_FILTER, filter) |
FIELD_PREP(AD7124_FILTER_REJ60, rej60) |
FIELD_PREP(AD7124_FILTER_POST_FILTER, post) |
AD7124_FILTER_SINGLE_CYCLE |
FIELD_PREP(AD7124_FILTER_FS, cfg->odr_sel_bits));
}
static struct ad7124_channel_config *ad7124_pop_config(struct ad7124_state *st)
{
struct ad7124_channel_config *lru_cfg;
struct ad7124_channel_config *cfg;
int ret;
int i;
/*
* Pop least recently used config from the fifo
* in order to make room for the new one
*/
ret = kfifo_get(&st->live_cfgs_fifo, &lru_cfg);
if (ret <= 0)
return NULL;
lru_cfg->live = false;
/* mark slot as free */
assign_bit(lru_cfg->cfg_slot, &st->cfg_slots_status, 0);
/* invalidate all other configs that pointed to this one */
for (i = 0; i < st->num_channels; i++) {
cfg = &st->channels[i].cfg;
if (cfg->cfg_slot == lru_cfg->cfg_slot)
cfg->live = false;
}
return lru_cfg;
}
static int ad7124_push_config(struct ad7124_state *st, struct ad7124_channel_config *cfg)
{
struct ad7124_channel_config *lru_cfg;
int free_cfg_slot;
free_cfg_slot = ad7124_find_free_config_slot(st);
if (free_cfg_slot >= 0) {
/* push the new config in configs queue */
kfifo_put(&st->live_cfgs_fifo, cfg);
} else {
/* pop one config to make room for the new one */
lru_cfg = ad7124_pop_config(st);
if (!lru_cfg)
return -EINVAL;
/* push the new config in configs queue */
free_cfg_slot = lru_cfg->cfg_slot;
kfifo_put(&st->live_cfgs_fifo, cfg);
}
/* mark slot as used */
assign_bit(free_cfg_slot, &st->cfg_slots_status, 1);
return ad7124_write_config(st, cfg, free_cfg_slot);
}
static int ad7124_enable_channel(struct ad7124_state *st, struct ad7124_channel *ch)
{
ch->cfg.live = true;
return ad_sd_write_reg(&st->sd, AD7124_CHANNEL(ch->nr), 2, ch->ain |
FIELD_PREP(AD7124_CHANNEL_SETUP, ch->cfg.cfg_slot) |
AD7124_CHANNEL_ENABLE);
}
static int ad7124_prepare_read(struct ad7124_state *st, int address)
{
struct ad7124_channel_config *cfg = &st->channels[address].cfg;
struct ad7124_channel_config *live_cfg;
/*
* Before doing any reads assign the channel a configuration.
* Check if channel's config is on the device
*/
if (!cfg->live) {
/* check if config matches another one */
live_cfg = ad7124_find_similar_live_cfg(st, cfg);
if (!live_cfg)
ad7124_push_config(st, cfg);
else
cfg->cfg_slot = live_cfg->cfg_slot;
}
/* point channel to the config slot and enable */
return ad7124_enable_channel(st, &st->channels[address]);
}
static int __ad7124_set_channel(struct ad_sigma_delta *sd, unsigned int channel)
{
struct ad7124_state *st = container_of(sd, struct ad7124_state, sd);
return ad7124_prepare_read(st, channel);
}
static int ad7124_set_channel(struct ad_sigma_delta *sd, unsigned int channel)
{
struct ad7124_state *st = container_of(sd, struct ad7124_state, sd);
int ret;
mutex_lock(&st->cfgs_lock);
ret = __ad7124_set_channel(sd, channel);
mutex_unlock(&st->cfgs_lock);
return ret;
}
static int ad7124_append_status(struct ad_sigma_delta *sd, bool append)
{
struct ad7124_state *st = container_of(sd, struct ad7124_state, sd);
unsigned int adc_control = st->adc_control;
int ret;
if (append)
adc_control |= AD7124_ADC_CONTROL_DATA_STATUS;
else
adc_control &= ~AD7124_ADC_CONTROL_DATA_STATUS;
ret = ad_sd_write_reg(&st->sd, AD7124_ADC_CONTROL, 2, adc_control);
if (ret < 0)
return ret;
st->adc_control = adc_control;
return 0;
}
static int ad7124_disable_one(struct ad_sigma_delta *sd, unsigned int chan)
{
struct ad7124_state *st = container_of(sd, struct ad7124_state, sd);
/* The relevant thing here is that AD7124_CHANNEL_ENABLE is cleared. */
return ad_sd_write_reg(&st->sd, AD7124_CHANNEL(chan), 2, 0);
}
static int ad7124_disable_all(struct ad_sigma_delta *sd)
{
int ret;
int i;
for (i = 0; i < 16; i++) {
ret = ad7124_disable_one(sd, i);
if (ret < 0)
return ret;
}
return 0;
}
static const struct ad_sigma_delta_info ad7124_sigma_delta_info = {
.set_channel = ad7124_set_channel,
.append_status = ad7124_append_status,
.disable_all = ad7124_disable_all,
.disable_one = ad7124_disable_one,
.set_mode = ad7124_set_mode,
.has_registers = true,
.addr_shift = 0,
.read_mask = BIT(6),
.status_ch_mask = GENMASK(3, 0),
.data_reg = AD7124_DATA,
.num_slots = 8,
.irq_flags = IRQF_TRIGGER_FALLING,
.num_resetclks = 64,
};
static const int ad7124_voltage_scales[][2] = {
{ 0, 1164 },
{ 0, 2328 },
{ 0, 4656 },
{ 0, 9313 },
{ 0, 18626 },
{ 0, 37252 },
{ 0, 74505 },
{ 0, 149011 },
{ 0, 298023 },
};
static int ad7124_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length, long info)
{
switch (info) {
case IIO_CHAN_INFO_SCALE:
*vals = (const int *)ad7124_voltage_scales;
*type = IIO_VAL_INT_PLUS_NANO;
*length = ARRAY_SIZE(ad7124_voltage_scales) * 2;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int ad7124_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct ad7124_state *st = iio_priv(indio_dev);
int idx, ret;
switch (info) {
case IIO_CHAN_INFO_RAW:
ret = ad_sigma_delta_single_conversion(indio_dev, chan, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_VOLTAGE:
mutex_lock(&st->cfgs_lock);
idx = st->channels[chan->address].cfg.pga_bits;
*val = st->channels[chan->address].cfg.vref_mv;
if (st->channels[chan->address].cfg.bipolar)
*val2 = chan->scan_type.realbits - 1 + idx;
else
*val2 = chan->scan_type.realbits + idx;
mutex_unlock(&st->cfgs_lock);
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_TEMP:
/*
* According to the data sheet
* Temperature (°C)
* = ((Conversion − 0x800000)/13584) − 272.5
* = (Conversion − 0x800000 - 13584 * 272.5) / 13584
* = (Conversion − 12090248) / 13584
* So scale with 1000/13584 to yield °mC. Reduce by 8 to
* 125/1698.
*/
*val = 125;
*val2 = 1698;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_VOLTAGE:
mutex_lock(&st->cfgs_lock);
if (st->channels[chan->address].cfg.bipolar)
*val = -(1 << (chan->scan_type.realbits - 1));
else
*val = 0;
mutex_unlock(&st->cfgs_lock);
return IIO_VAL_INT;
case IIO_TEMP:
/* see calculation above */
*val = -12090248;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ: {
struct ad7124_channel_config *cfg = &st->channels[chan->address].cfg;
guard(mutex)(&st->cfgs_lock);
switch (cfg->filter_type) {
case AD7124_FILTER_TYPE_SINC3:
case AD7124_FILTER_TYPE_SINC3_REJ60:
case AD7124_FILTER_TYPE_SINC3_SINC1:
case AD7124_FILTER_TYPE_SINC4:
case AD7124_FILTER_TYPE_SINC4_REJ60:
case AD7124_FILTER_TYPE_SINC4_SINC1:
*val = ad7124_get_fclk_hz(st);
*val2 = ad7124_get_fadc_divisor(st, chan->address);
return IIO_VAL_FRACTIONAL;
/*
* Post filters force the chip to a fixed rate. These are the
* single-channel rates from the data sheet divided by 3 for
* the multi-channel case (data sheet doesn't explicitly state
* this but confirmed through testing).
*/
case AD7124_FILTER_TYPE_SINC3_PF1:
*val = 300;
*val2 = 33;
return IIO_VAL_FRACTIONAL;
case AD7124_FILTER_TYPE_SINC3_PF2:
*val = 25;
*val2 = 3;
return IIO_VAL_FRACTIONAL;
case AD7124_FILTER_TYPE_SINC3_PF3:
*val = 20;
*val2 = 3;
return IIO_VAL_FRACTIONAL;
case AD7124_FILTER_TYPE_SINC3_PF4:
*val = 50;
*val2 = 9;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
}
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: {
guard(mutex)(&st->cfgs_lock);
ret = ad7124_get_3db_filter_factor(st, chan->address);
if (ret < 0)
return ret;
/* 3dB point is the f_CLK rate times a fractional value */
*val = ret * ad7124_get_fclk_hz(st);
*val2 = MILLI * ad7124_get_fadc_divisor(st, chan->address);
return IIO_VAL_FRACTIONAL;
}
default:
return -EINVAL;
}
}
static int ad7124_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
struct ad7124_state *st = iio_priv(indio_dev);
struct ad7124_channel_config *cfg = &st->channels[chan->address].cfg;
unsigned int res, gain, full_scale, vref;
guard(mutex)(&st->cfgs_lock);
switch (info) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val2 < 0 || val < 0 || (val2 == 0 && val == 0))
return -EINVAL;
cfg->requested_odr = val;
cfg->requested_odr_micro = val2;
ad7124_set_channel_odr(st, chan->address);
return 0;
case IIO_CHAN_INFO_SCALE:
if (val != 0)
return -EINVAL;
if (st->channels[chan->address].cfg.bipolar)
full_scale = 1 << (chan->scan_type.realbits - 1);
else
full_scale = 1 << chan->scan_type.realbits;
vref = st->channels[chan->address].cfg.vref_mv * 1000000LL;
res = DIV_ROUND_CLOSEST(vref, full_scale);
gain = DIV_ROUND_CLOSEST(res, val2);
res = ad7124_find_closest_match(ad7124_gain, ARRAY_SIZE(ad7124_gain), gain);
if (st->channels[chan->address].cfg.pga_bits != res)
st->channels[chan->address].cfg.live = false;
st->channels[chan->address].cfg.pga_bits = res;
return 0;
default:
return -EINVAL;
}
}
static int ad7124_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct ad7124_state *st = iio_priv(indio_dev);
int ret;
if (reg >= ARRAY_SIZE(ad7124_reg_size))
return -EINVAL;
if (readval)
ret = ad_sd_read_reg(&st->sd, reg, ad7124_reg_size[reg],
readval);
else
ret = ad_sd_write_reg(&st->sd, reg, ad7124_reg_size[reg],
writeval);
return ret;
}
static int ad7124_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct ad7124_state *st = iio_priv(indio_dev);
bool bit_set;
int ret;
int i;
guard(mutex)(&st->cfgs_lock);
for (i = 0; i < st->num_channels; i++) {
bit_set = test_bit(i, scan_mask);
if (bit_set)
ret = __ad7124_set_channel(&st->sd, i);
else
ret = ad7124_spi_write_mask(st, AD7124_CHANNEL(i), AD7124_CHANNEL_ENABLE,
0, 2);
if (ret < 0)
return ret;
}
return 0;
}
static const struct iio_info ad7124_info = {
.read_avail = ad7124_read_avail,
.read_raw = ad7124_read_raw,
.write_raw = ad7124_write_raw,
.debugfs_reg_access = &ad7124_reg_access,
.validate_trigger = ad_sd_validate_trigger,
.update_scan_mode = ad7124_update_scan_mode,
};
/* Only called during probe, so dev_err_probe() can be used */
static int ad7124_soft_reset(struct ad7124_state *st)
{
struct device *dev = &st->sd.spi->dev;
unsigned int readval, timeout;
int ret;
ret = ad_sd_reset(&st->sd);
if (ret < 0)
return ret;
fsleep(200);
timeout = 100;
do {
ret = ad_sd_read_reg(&st->sd, AD7124_STATUS, 1, &readval);
if (ret < 0)
return dev_err_probe(dev, ret, "Error reading status register\n");
if (!(readval & AD7124_STATUS_POR_FLAG))
break;
/* The AD7124 requires typically 2ms to power up and settle */
usleep_range(100, 2000);
} while (--timeout);
if (readval & AD7124_STATUS_POR_FLAG)
return dev_err_probe(dev, -EIO, "Soft reset failed\n");
ret = ad_sd_read_reg(&st->sd, AD7124_GAIN(0), 3, &st->gain_default);
if (ret < 0)
return dev_err_probe(dev, ret, "Error reading gain register\n");
dev_dbg(dev, "Reset value of GAIN register is 0x%x\n", st->gain_default);
return 0;
}
static int ad7124_check_chip_id(struct ad7124_state *st)
{
struct device *dev = &st->sd.spi->dev;
unsigned int readval, chip_id, silicon_rev;
int ret;
ret = ad_sd_read_reg(&st->sd, AD7124_ID, 1, &readval);
if (ret < 0)
return dev_err_probe(dev, ret, "Failure to read ID register\n");
chip_id = FIELD_GET(AD7124_ID_DEVICE_ID, readval);
silicon_rev = FIELD_GET(AD7124_ID_SILICON_REVISION, readval);
if (chip_id != st->chip_info->chip_id)
return dev_err_probe(dev, -ENODEV,
"Chip ID mismatch: expected %u, got %u\n",
st->chip_info->chip_id, chip_id);
if (silicon_rev == 0)
return dev_err_probe(dev, -ENODEV,
"Silicon revision empty. Chip may not be present\n");
return 0;
}
enum {
AD7124_SYSCALIB_ZERO_SCALE,
AD7124_SYSCALIB_FULL_SCALE,
};
static int ad7124_syscalib_locked(struct ad7124_state *st, const struct iio_chan_spec *chan)
{
struct device *dev = &st->sd.spi->dev;
struct ad7124_channel *ch = &st->channels[chan->address];
int ret;
if (ch->syscalib_mode == AD7124_SYSCALIB_ZERO_SCALE) {
ch->cfg.calibration_offset = 0x800000;
ret = ad_sd_calibrate(&st->sd, AD7124_ADC_CONTROL_MODE_SYS_OFFSET_CALIB,
chan->address);
if (ret < 0)
return ret;
ret = ad_sd_read_reg(&st->sd, AD7124_OFFSET(ch->cfg.cfg_slot), 3,
&ch->cfg.calibration_offset);
if (ret < 0)
return ret;
dev_dbg(dev, "offset for channel %lu after zero-scale calibration: 0x%x\n",
chan->address, ch->cfg.calibration_offset);
} else {
ch->cfg.calibration_gain = st->gain_default;
ret = ad_sd_calibrate(&st->sd, AD7124_ADC_CONTROL_MODE_SYS_GAIN_CALIB,
chan->address);
if (ret < 0)
return ret;
ret = ad_sd_read_reg(&st->sd, AD7124_GAIN(ch->cfg.cfg_slot), 3,
&ch->cfg.calibration_gain);
if (ret < 0)
return ret;
dev_dbg(dev, "gain for channel %lu after full-scale calibration: 0x%x\n",
chan->address, ch->cfg.calibration_gain);
}
return 0;
}
static ssize_t ad7124_write_syscalib(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct ad7124_state *st = iio_priv(indio_dev);
bool sys_calib;
int ret;
ret = kstrtobool(buf, &sys_calib);
if (ret)
return ret;
if (!sys_calib)
return len;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad7124_syscalib_locked(st, chan);
iio_device_release_direct(indio_dev);
return ret ?: len;
}
static const char * const ad7124_syscalib_modes[] = {
[AD7124_SYSCALIB_ZERO_SCALE] = "zero_scale",
[AD7124_SYSCALIB_FULL_SCALE] = "full_scale",
};
static int ad7124_set_syscalib_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int mode)
{
struct ad7124_state *st = iio_priv(indio_dev);
st->channels[chan->address].syscalib_mode = mode;
return 0;
}
static int ad7124_get_syscalib_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad7124_state *st = iio_priv(indio_dev);
return st->channels[chan->address].syscalib_mode;
}
static const struct iio_enum ad7124_syscalib_mode_enum = {
.items = ad7124_syscalib_modes,
.num_items = ARRAY_SIZE(ad7124_syscalib_modes),
.set = ad7124_set_syscalib_mode,
.get = ad7124_get_syscalib_mode
};
static const char * const ad7124_filter_types[] = {
[AD7124_FILTER_TYPE_SINC3] = "sinc3",
[AD7124_FILTER_TYPE_SINC3_PF1] = "sinc3+pf1",
[AD7124_FILTER_TYPE_SINC3_PF2] = "sinc3+pf2",
[AD7124_FILTER_TYPE_SINC3_PF3] = "sinc3+pf3",
[AD7124_FILTER_TYPE_SINC3_PF4] = "sinc3+pf4",
[AD7124_FILTER_TYPE_SINC3_REJ60] = "sinc3+rej60",
[AD7124_FILTER_TYPE_SINC3_SINC1] = "sinc3+sinc1",
[AD7124_FILTER_TYPE_SINC4] = "sinc4",
[AD7124_FILTER_TYPE_SINC4_REJ60] = "sinc4+rej60",
[AD7124_FILTER_TYPE_SINC4_SINC1] = "sinc4+sinc1",
};
static int ad7124_set_filter_type_attr(struct iio_dev *dev,
const struct iio_chan_spec *chan,
unsigned int value)
{
struct ad7124_state *st = iio_priv(dev);
struct ad7124_channel_config *cfg = &st->channels[chan->address].cfg;
guard(mutex)(&st->cfgs_lock);
cfg->live = false;
cfg->filter_type = value;
ad7124_set_channel_odr(st, chan->address);
return 0;
}
static int ad7124_get_filter_type_attr(struct iio_dev *dev,
const struct iio_chan_spec *chan)
{
struct ad7124_state *st = iio_priv(dev);
guard(mutex)(&st->cfgs_lock);
return st->channels[chan->address].cfg.filter_type;
}
static const struct iio_enum ad7124_filter_type_enum = {
.items = ad7124_filter_types,
.num_items = ARRAY_SIZE(ad7124_filter_types),
.set = ad7124_set_filter_type_attr,
.get = ad7124_get_filter_type_attr,
};
static const struct iio_chan_spec_ext_info ad7124_calibsys_ext_info[] = {
{
.name = "sys_calibration",
.write = ad7124_write_syscalib,
.shared = IIO_SEPARATE,
},
IIO_ENUM("sys_calibration_mode", IIO_SEPARATE,
&ad7124_syscalib_mode_enum),
IIO_ENUM_AVAILABLE("sys_calibration_mode", IIO_SHARED_BY_TYPE,
&ad7124_syscalib_mode_enum),
IIO_ENUM("filter_type", IIO_SEPARATE, &ad7124_filter_type_enum),
IIO_ENUM_AVAILABLE("filter_type", IIO_SHARED_BY_TYPE,
&ad7124_filter_type_enum),
{ }
};
static const struct iio_chan_spec ad7124_channel_template = {
.type = IIO_VOLTAGE,
.indexed = 1,
.differential = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE),
.scan_type = {
.sign = 'u',
.realbits = 24,
.storagebits = 32,
.endianness = IIO_BE,
},
.ext_info = ad7124_calibsys_ext_info,
};
/*
* Input specifiers 8 - 15 are explicitly reserved for ad7124-4
* while they are fine for ad7124-8. Values above 31 don't fit
* into the register field and so are invalid for sure.
*/
static bool ad7124_valid_input_select(unsigned int ain, const struct ad7124_chip_info *info)
{
if (ain >= info->num_inputs && ain < 16)
return false;
return ain <= FIELD_MAX(AD7124_CHANNEL_AINM);
}
static int ad7124_parse_channel_config(struct iio_dev *indio_dev,
struct device *dev)
{
struct ad7124_state *st = iio_priv(indio_dev);
struct ad7124_channel_config *cfg;
struct ad7124_channel *channels;
struct iio_chan_spec *chan;
unsigned int ain[2], channel = 0, tmp;
unsigned int num_channels;
int ret;
num_channels = device_get_child_node_count(dev);
/*
* The driver assigns each logical channel defined in the device tree
* statically one channel register. So only accept 16 such logical
* channels to not treat CONFIG_0 (i.e. the register following
* CHANNEL_15) as an additional channel register. The driver could be
* improved to lift this limitation.
*/
if (num_channels > AD7124_MAX_CHANNELS)
return dev_err_probe(dev, -EINVAL, "Too many channels defined\n");
/* Add one for temperature */
st->num_channels = min(num_channels + 1, AD7124_MAX_CHANNELS);
chan = devm_kcalloc(dev, st->num_channels,
sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
channels = devm_kcalloc(dev, st->num_channels, sizeof(*channels),
GFP_KERNEL);
if (!channels)
return -ENOMEM;
indio_dev->channels = chan;
indio_dev->num_channels = st->num_channels;
st->channels = channels;
device_for_each_child_node_scoped(dev, child) {
ret = fwnode_property_read_u32(child, "reg", &channel);
if (ret)
return dev_err_probe(dev, ret,
"Failed to parse reg property of %pfwP\n", child);
if (channel >= num_channels)
return dev_err_probe(dev, -EINVAL,
"Channel index >= number of channels in %pfwP\n", child);
ret = fwnode_property_read_u32_array(child, "diff-channels",
ain, 2);
if (ret)
return dev_err_probe(dev, ret,
"Failed to parse diff-channels property of %pfwP\n", child);
if (!ad7124_valid_input_select(ain[0], st->chip_info) ||
!ad7124_valid_input_select(ain[1], st->chip_info))
return dev_err_probe(dev, -EINVAL,
"diff-channels property of %pfwP contains invalid data\n", child);
st->channels[channel].nr = channel;
st->channels[channel].ain = FIELD_PREP(AD7124_CHANNEL_AINP, ain[0]) |
FIELD_PREP(AD7124_CHANNEL_AINM, ain[1]);
cfg = &st->channels[channel].cfg;
cfg->bipolar = fwnode_property_read_bool(child, "bipolar");
ret = fwnode_property_read_u32(child, "adi,reference-select", &tmp);
if (ret)
cfg->refsel = AD7124_INT_REF;
else
cfg->refsel = tmp;
cfg->buf_positive =
fwnode_property_read_bool(child, "adi,buffered-positive");
cfg->buf_negative =
fwnode_property_read_bool(child, "adi,buffered-negative");
chan[channel] = ad7124_channel_template;
chan[channel].address = channel;
chan[channel].scan_index = channel;
chan[channel].channel = ain[0];
chan[channel].channel2 = ain[1];
}
if (num_channels < AD7124_MAX_CHANNELS) {
st->channels[num_channels] = (struct ad7124_channel) {
.nr = num_channels,
.ain = FIELD_PREP(AD7124_CHANNEL_AINP, AD7124_CHANNEL_AINx_TEMPSENSOR) |
FIELD_PREP(AD7124_CHANNEL_AINM, AD7124_CHANNEL_AINx_AVSS),
.cfg = {
.bipolar = true,
},
};
chan[num_channels] = (struct iio_chan_spec) {
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.scan_type = {
/*
* You might find it strange that a bipolar
* measurement yields an unsigned value, but
* this matches the device's manual.
*/
.sign = 'u',
.realbits = 24,
.storagebits = 32,
.endianness = IIO_BE,
},
.address = num_channels,
.scan_index = num_channels,
};
}
return 0;
}
static int ad7124_setup(struct ad7124_state *st)
{
struct device *dev = &st->sd.spi->dev;
unsigned int power_mode, clk_sel;
struct clk *mclk;
int i, ret;
/*
* Always use full power mode for max performance. If needed, the driver
* could be adapted to use a dynamic power mode based on the requested
* output data rate.
*/
power_mode = AD7124_ADC_CONTROL_POWER_MODE_FULL;
/*
* This "mclk" business is needed for backwards compatibility with old
* devicetrees that specified a fake clock named "mclk" to select the
* power mode.
*/
mclk = devm_clk_get_optional_enabled(dev, "mclk");
if (IS_ERR(mclk))
return dev_err_probe(dev, PTR_ERR(mclk), "Failed to get mclk\n");
if (mclk) {
unsigned long mclk_hz;
mclk_hz = clk_get_rate(mclk);
if (!mclk_hz)
return dev_err_probe(dev, -EINVAL,
"Failed to get mclk rate\n");
/*
* This logic is a bit backwards, which is why it is only here
* for backwards compatibility. The driver should be able to set
* the power mode as it sees fit and the f_clk/mclk rate should
* be dynamic accordingly. But here, we are selecting a fixed
* power mode based on the given "mclk" rate.
*/
power_mode = ad7124_find_closest_match(ad7124_master_clk_freq_hz,
ARRAY_SIZE(ad7124_master_clk_freq_hz), mclk_hz);
if (mclk_hz != ad7124_master_clk_freq_hz[power_mode]) {
ret = clk_set_rate(mclk, mclk_hz);
if (ret)
return dev_err_probe(dev, ret,
"Failed to set mclk rate\n");
}
clk_sel = AD7124_ADC_CONTROL_CLK_SEL_INT;
st->clk_hz = AD7124_INT_CLK_HZ;
} else if (!device_property_present(dev, "clocks") &&
device_property_present(dev, "#clock-cells")) {
#ifdef CONFIG_COMMON_CLK
struct clk_hw *clk_hw;
const char *name __free(kfree) = kasprintf(GFP_KERNEL, "%pfwP-clk",
dev_fwnode(dev));
if (!name)
return -ENOMEM;
clk_hw = devm_clk_hw_register_fixed_rate(dev, name, NULL, 0,
AD7124_INT_CLK_HZ);
if (IS_ERR(clk_hw))
return dev_err_probe(dev, PTR_ERR(clk_hw),
"Failed to register clock provider\n");
ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
clk_hw);
if (ret)
return dev_err_probe(dev, ret,
"Failed to add clock provider\n");
#endif
/*
* Treat the clock as always on. This way we don't have to deal
* with someone trying to enable/disable the clock while we are
* reading samples.
*/
clk_sel = AD7124_ADC_CONTROL_CLK_SEL_INT_OUT;
st->clk_hz = AD7124_INT_CLK_HZ;
} else {
struct clk *clk;
clk = devm_clk_get_optional_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk),
"Failed to get external clock\n");
if (clk) {
unsigned long clk_hz;
clk_hz = clk_get_rate(clk);
if (!clk_hz)
return dev_err_probe(dev, -EINVAL,
"Failed to get external clock rate\n");
/*
* The external clock may be 4x the nominal clock rate,
* in which case the ADC needs to be configured to
* divide it by 4. Using MEGA is a bit arbitrary, but
* the expected clock rates are either 614.4 kHz or
* 2.4576 MHz, so this should work.
*/
if (clk_hz > (1 * HZ_PER_MHZ)) {
clk_sel = AD7124_ADC_CONTROL_CLK_SEL_EXT_DIV4;
st->clk_hz = clk_hz / 4;
} else {
clk_sel = AD7124_ADC_CONTROL_CLK_SEL_EXT;
st->clk_hz = clk_hz;
}
} else {
clk_sel = AD7124_ADC_CONTROL_CLK_SEL_INT;
st->clk_hz = AD7124_INT_CLK_HZ;
}
}
st->adc_control &= ~AD7124_ADC_CONTROL_CLK_SEL;
st->adc_control |= FIELD_PREP(AD7124_ADC_CONTROL_CLK_SEL, clk_sel);
st->adc_control &= ~AD7124_ADC_CONTROL_POWER_MODE;
st->adc_control |= FIELD_PREP(AD7124_ADC_CONTROL_POWER_MODE, power_mode);
st->adc_control &= ~AD7124_ADC_CONTROL_MODE;
st->adc_control |= FIELD_PREP(AD7124_ADC_CONTROL_MODE, AD_SD_MODE_IDLE);
mutex_init(&st->cfgs_lock);
INIT_KFIFO(st->live_cfgs_fifo);
for (i = 0; i < st->num_channels; i++) {
struct ad7124_channel_config *cfg = &st->channels[i].cfg;
ret = ad7124_init_config_vref(st, cfg);
if (ret < 0)
return ret;
/* Default filter type on the ADC after reset. */
cfg->filter_type = AD7124_FILTER_TYPE_SINC4;
/*
* 9.38 SPS is the minimum output data rate supported
* regardless of the selected power mode. Round it up to 10 and
* set all channels to this default value.
*/
cfg->requested_odr = 10;
ad7124_set_channel_odr(st, i);
}
ad7124_disable_all(&st->sd);
ret = ad_sd_write_reg(&st->sd, AD7124_ADC_CONTROL, 2, st->adc_control);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to setup CONTROL register\n");
return ret;
}
static int __ad7124_calibrate_all(struct ad7124_state *st, struct iio_dev *indio_dev)
{
struct device *dev = &st->sd.spi->dev;
int ret, i;
for (i = 0; i < st->num_channels; i++) {
if (indio_dev->channels[i].type != IIO_VOLTAGE)
continue;
/*
* For calibration the OFFSET register should hold its reset default
* value. For the GAIN register there is no such requirement but
* for gain 1 it should hold the reset default value, too. So to
* simplify matters use the reset default value for both.
*/
st->channels[i].cfg.calibration_offset = 0x800000;
st->channels[i].cfg.calibration_gain = st->gain_default;
/*
* Full-scale calibration isn't supported at gain 1, so skip in
* that case. Note that untypically full-scale calibration has
* to happen before zero-scale calibration. This only applies to
* the internal calibration. For system calibration it's as
* usual: first zero-scale then full-scale calibration.
*/
if (st->channels[i].cfg.pga_bits > 0) {
ret = ad_sd_calibrate(&st->sd, AD7124_ADC_CONTROL_MODE_INT_GAIN_CALIB, i);
if (ret < 0)
return ret;
/*
* read out the resulting value of GAIN
* after full-scale calibration because the next
* ad_sd_calibrate() call overwrites this via
* ad_sigma_delta_set_channel() -> ad7124_set_channel()
* ... -> ad7124_enable_channel().
*/
ret = ad_sd_read_reg(&st->sd, AD7124_GAIN(st->channels[i].cfg.cfg_slot), 3,
&st->channels[i].cfg.calibration_gain);
if (ret < 0)
return ret;
}
ret = ad_sd_calibrate(&st->sd, AD7124_ADC_CONTROL_MODE_INT_OFFSET_CALIB, i);
if (ret < 0)
return ret;
ret = ad_sd_read_reg(&st->sd, AD7124_OFFSET(st->channels[i].cfg.cfg_slot), 3,
&st->channels[i].cfg.calibration_offset);
if (ret < 0)
return ret;
dev_dbg(dev, "offset and gain for channel %d = 0x%x + 0x%x\n", i,
st->channels[i].cfg.calibration_offset,
st->channels[i].cfg.calibration_gain);
}
return 0;
}
static int ad7124_calibrate_all(struct ad7124_state *st, struct iio_dev *indio_dev)
{
int ret;
unsigned int adc_control = st->adc_control;
/*
* Calibration isn't supported at full power, so speed down a bit.
* Setting .adc_control is enough here because the control register is
* written as part of ad_sd_calibrate() -> ad_sigma_delta_set_mode().
* The resulting calibration is then also valid for high-speed, so just
* restore adc_control afterwards.
*/
if (FIELD_GET(AD7124_ADC_CONTROL_POWER_MODE, adc_control) >= AD7124_FULL_POWER) {
st->adc_control &= ~AD7124_ADC_CONTROL_POWER_MODE;
st->adc_control |= FIELD_PREP(AD7124_ADC_CONTROL_POWER_MODE, AD7124_MID_POWER);
}
ret = __ad7124_calibrate_all(st, indio_dev);
st->adc_control = adc_control;
return ret;
}
static void ad7124_reg_disable(void *r)
{
regulator_disable(r);
}
static int ad7124_probe(struct spi_device *spi)
{
const struct ad7124_chip_info *info;
struct device *dev = &spi->dev;
struct ad7124_state *st;
struct iio_dev *indio_dev;
int i, ret;
info = spi_get_device_match_data(spi);
if (!info)
return dev_err_probe(dev, -ENODEV, "Failed to get match data\n");
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->chip_info = info;
indio_dev->name = st->chip_info->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &ad7124_info;
ret = ad_sd_init(&st->sd, indio_dev, spi, &ad7124_sigma_delta_info);
if (ret < 0)
return ret;
ret = ad7124_parse_channel_config(indio_dev, &spi->dev);
if (ret < 0)
return ret;
for (i = 0; i < ARRAY_SIZE(st->vref); i++) {
if (i == AD7124_INT_REF)
continue;
st->vref[i] = devm_regulator_get_optional(&spi->dev,
ad7124_ref_names[i]);
if (PTR_ERR(st->vref[i]) == -ENODEV)
continue;
else if (IS_ERR(st->vref[i]))
return PTR_ERR(st->vref[i]);
ret = regulator_enable(st->vref[i]);
if (ret)
return dev_err_probe(dev, ret, "Failed to enable regulator #%d\n", i);
ret = devm_add_action_or_reset(&spi->dev, ad7124_reg_disable,
st->vref[i]);
if (ret)
return ret;
}
ret = ad7124_soft_reset(st);
if (ret < 0)
return ret;
ret = ad7124_check_chip_id(st);
if (ret)
return ret;
ret = ad7124_setup(st);
if (ret < 0)
return ret;
ret = devm_ad_sd_setup_buffer_and_trigger(&spi->dev, indio_dev);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to setup triggers\n");
ret = ad7124_calibrate_all(st, indio_dev);
if (ret)
return ret;
ret = devm_iio_device_register(&spi->dev, indio_dev);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to register iio device\n");
return 0;
}
static const struct of_device_id ad7124_of_match[] = {
{ .compatible = "adi,ad7124-4", .data = &ad7124_4_chip_info },
{ .compatible = "adi,ad7124-8", .data = &ad7124_8_chip_info },
{ }
};
MODULE_DEVICE_TABLE(of, ad7124_of_match);
static const struct spi_device_id ad71124_ids[] = {
{ "ad7124-4", (kernel_ulong_t)&ad7124_4_chip_info },
{ "ad7124-8", (kernel_ulong_t)&ad7124_8_chip_info },
{ }
};
MODULE_DEVICE_TABLE(spi, ad71124_ids);
static struct spi_driver ad71124_driver = {
.driver = {
.name = "ad7124",
.of_match_table = ad7124_of_match,
},
.probe = ad7124_probe,
.id_table = ad71124_ids,
};
module_spi_driver(ad71124_driver);
MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7124 SPI driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS("IIO_AD_SIGMA_DELTA");