|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * SHA-1 and HMAC-SHA1 library functions | 
|  | */ | 
|  |  | 
|  | #include <crypto/hmac.h> | 
|  | #include <crypto/sha1.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/unaligned.h> | 
|  | #include <linux/wordpart.h> | 
|  |  | 
|  | static const struct sha1_block_state sha1_iv = { | 
|  | .h = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * If you have 32 registers or more, the compiler can (and should) | 
|  | * try to change the array[] accesses into registers. However, on | 
|  | * machines with less than ~25 registers, that won't really work, | 
|  | * and at least gcc will make an unholy mess of it. | 
|  | * | 
|  | * So to avoid that mess which just slows things down, we force | 
|  | * the stores to memory to actually happen (we might be better off | 
|  | * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as | 
|  | * suggested by Artur Skawina - that will also make gcc unable to | 
|  | * try to do the silly "optimize away loads" part because it won't | 
|  | * see what the value will be). | 
|  | * | 
|  | * Ben Herrenschmidt reports that on PPC, the C version comes close | 
|  | * to the optimized asm with this (ie on PPC you don't want that | 
|  | * 'volatile', since there are lots of registers). | 
|  | * | 
|  | * On ARM we get the best code generation by forcing a full memory barrier | 
|  | * between each SHA_ROUND, otherwise gcc happily get wild with spilling and | 
|  | * the stack frame size simply explode and performance goes down the drain. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_X86 | 
|  | #define setW(x, val) (*(volatile __u32 *)&W(x) = (val)) | 
|  | #elif defined(CONFIG_ARM) | 
|  | #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) | 
|  | #else | 
|  | #define setW(x, val) (W(x) = (val)) | 
|  | #endif | 
|  |  | 
|  | /* This "rolls" over the 512-bit array */ | 
|  | #define W(x) (array[(x)&15]) | 
|  |  | 
|  | /* | 
|  | * Where do we get the source from? The first 16 iterations get it from | 
|  | * the input data, the next mix it from the 512-bit array. | 
|  | */ | 
|  | #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t) | 
|  | #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1) | 
|  |  | 
|  | #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ | 
|  | __u32 TEMP = input(t); setW(t, TEMP); \ | 
|  | E += TEMP + rol32(A,5) + (fn) + (constant); \ | 
|  | B = ror32(B, 2); \ | 
|  | TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0) | 
|  |  | 
|  | #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) | 
|  | #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) | 
|  | #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) | 
|  | #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) | 
|  | #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E ) | 
|  |  | 
|  | /** | 
|  | * sha1_transform - single block SHA1 transform (deprecated) | 
|  | * | 
|  | * @digest: 160 bit digest to update | 
|  | * @data:   512 bits of data to hash | 
|  | * @array:  16 words of workspace (see note) | 
|  | * | 
|  | * This function executes SHA-1's internal compression function.  It updates the | 
|  | * 160-bit internal state (@digest) with a single 512-bit data block (@data). | 
|  | * | 
|  | * Don't use this function.  SHA-1 is no longer considered secure.  And even if | 
|  | * you do have to use SHA-1, this isn't the correct way to hash something with | 
|  | * SHA-1 as this doesn't handle padding and finalization. | 
|  | * | 
|  | * Note: If the hash is security sensitive, the caller should be sure | 
|  | * to clear the workspace. This is left to the caller to avoid | 
|  | * unnecessary clears between chained hashing operations. | 
|  | */ | 
|  | void sha1_transform(__u32 *digest, const char *data, __u32 *array) | 
|  | { | 
|  | __u32 A, B, C, D, E; | 
|  | unsigned int i = 0; | 
|  |  | 
|  | A = digest[0]; | 
|  | B = digest[1]; | 
|  | C = digest[2]; | 
|  | D = digest[3]; | 
|  | E = digest[4]; | 
|  |  | 
|  | /* Round 1 - iterations 0-16 take their input from 'data' */ | 
|  | for (; i < 16; ++i) | 
|  | T_0_15(i, A, B, C, D, E); | 
|  |  | 
|  | /* Round 1 - tail. Input from 512-bit mixing array */ | 
|  | for (; i < 20; ++i) | 
|  | T_16_19(i, A, B, C, D, E); | 
|  |  | 
|  | /* Round 2 */ | 
|  | for (; i < 40; ++i) | 
|  | T_20_39(i, A, B, C, D, E); | 
|  |  | 
|  | /* Round 3 */ | 
|  | for (; i < 60; ++i) | 
|  | T_40_59(i, A, B, C, D, E); | 
|  |  | 
|  | /* Round 4 */ | 
|  | for (; i < 80; ++i) | 
|  | T_60_79(i, A, B, C, D, E); | 
|  |  | 
|  | digest[0] += A; | 
|  | digest[1] += B; | 
|  | digest[2] += C; | 
|  | digest[3] += D; | 
|  | digest[4] += E; | 
|  | } | 
|  | EXPORT_SYMBOL(sha1_transform); | 
|  |  | 
|  | /** | 
|  | * sha1_init_raw - initialize the vectors for a SHA1 digest | 
|  | * @buf: vector to initialize | 
|  | */ | 
|  | void sha1_init_raw(__u32 *buf) | 
|  | { | 
|  | buf[0] = 0x67452301; | 
|  | buf[1] = 0xefcdab89; | 
|  | buf[2] = 0x98badcfe; | 
|  | buf[3] = 0x10325476; | 
|  | buf[4] = 0xc3d2e1f0; | 
|  | } | 
|  | EXPORT_SYMBOL(sha1_init_raw); | 
|  |  | 
|  | static void __maybe_unused sha1_blocks_generic(struct sha1_block_state *state, | 
|  | const u8 *data, size_t nblocks) | 
|  | { | 
|  | u32 workspace[SHA1_WORKSPACE_WORDS]; | 
|  |  | 
|  | do { | 
|  | sha1_transform(state->h, data, workspace); | 
|  | data += SHA1_BLOCK_SIZE; | 
|  | } while (--nblocks); | 
|  |  | 
|  | memzero_explicit(workspace, sizeof(workspace)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CRYPTO_LIB_SHA1_ARCH | 
|  | #include "sha1.h" /* $(SRCARCH)/sha1.h */ | 
|  | #else | 
|  | #define sha1_blocks sha1_blocks_generic | 
|  | #endif | 
|  |  | 
|  | void sha1_init(struct sha1_ctx *ctx) | 
|  | { | 
|  | ctx->state = sha1_iv; | 
|  | ctx->bytecount = 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sha1_init); | 
|  |  | 
|  | void sha1_update(struct sha1_ctx *ctx, const u8 *data, size_t len) | 
|  | { | 
|  | size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE; | 
|  |  | 
|  | ctx->bytecount += len; | 
|  |  | 
|  | if (partial + len >= SHA1_BLOCK_SIZE) { | 
|  | size_t nblocks; | 
|  |  | 
|  | if (partial) { | 
|  | size_t l = SHA1_BLOCK_SIZE - partial; | 
|  |  | 
|  | memcpy(&ctx->buf[partial], data, l); | 
|  | data += l; | 
|  | len -= l; | 
|  |  | 
|  | sha1_blocks(&ctx->state, ctx->buf, 1); | 
|  | } | 
|  |  | 
|  | nblocks = len / SHA1_BLOCK_SIZE; | 
|  | len %= SHA1_BLOCK_SIZE; | 
|  |  | 
|  | if (nblocks) { | 
|  | sha1_blocks(&ctx->state, data, nblocks); | 
|  | data += nblocks * SHA1_BLOCK_SIZE; | 
|  | } | 
|  | partial = 0; | 
|  | } | 
|  | if (len) | 
|  | memcpy(&ctx->buf[partial], data, len); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sha1_update); | 
|  |  | 
|  | static void __sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE]) | 
|  | { | 
|  | u64 bitcount = ctx->bytecount << 3; | 
|  | size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE; | 
|  |  | 
|  | ctx->buf[partial++] = 0x80; | 
|  | if (partial > SHA1_BLOCK_SIZE - 8) { | 
|  | memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - partial); | 
|  | sha1_blocks(&ctx->state, ctx->buf, 1); | 
|  | partial = 0; | 
|  | } | 
|  | memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - 8 - partial); | 
|  | *(__be64 *)&ctx->buf[SHA1_BLOCK_SIZE - 8] = cpu_to_be64(bitcount); | 
|  | sha1_blocks(&ctx->state, ctx->buf, 1); | 
|  |  | 
|  | for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4) | 
|  | put_unaligned_be32(ctx->state.h[i / 4], out + i); | 
|  | } | 
|  |  | 
|  | void sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE]) | 
|  | { | 
|  | __sha1_final(ctx, out); | 
|  | memzero_explicit(ctx, sizeof(*ctx)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sha1_final); | 
|  |  | 
|  | void sha1(const u8 *data, size_t len, u8 out[SHA1_DIGEST_SIZE]) | 
|  | { | 
|  | struct sha1_ctx ctx; | 
|  |  | 
|  | sha1_init(&ctx); | 
|  | sha1_update(&ctx, data, len); | 
|  | sha1_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sha1); | 
|  |  | 
|  | static void __hmac_sha1_preparekey(struct sha1_block_state *istate, | 
|  | struct sha1_block_state *ostate, | 
|  | const u8 *raw_key, size_t raw_key_len) | 
|  | { | 
|  | union { | 
|  | u8 b[SHA1_BLOCK_SIZE]; | 
|  | unsigned long w[SHA1_BLOCK_SIZE / sizeof(unsigned long)]; | 
|  | } derived_key = { 0 }; | 
|  |  | 
|  | if (unlikely(raw_key_len > SHA1_BLOCK_SIZE)) | 
|  | sha1(raw_key, raw_key_len, derived_key.b); | 
|  | else | 
|  | memcpy(derived_key.b, raw_key, raw_key_len); | 
|  |  | 
|  | for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) | 
|  | derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE); | 
|  | *istate = sha1_iv; | 
|  | sha1_blocks(istate, derived_key.b, 1); | 
|  |  | 
|  | for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) | 
|  | derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^ | 
|  | HMAC_IPAD_VALUE); | 
|  | *ostate = sha1_iv; | 
|  | sha1_blocks(ostate, derived_key.b, 1); | 
|  |  | 
|  | memzero_explicit(&derived_key, sizeof(derived_key)); | 
|  | } | 
|  |  | 
|  | void hmac_sha1_preparekey(struct hmac_sha1_key *key, | 
|  | const u8 *raw_key, size_t raw_key_len) | 
|  | { | 
|  | __hmac_sha1_preparekey(&key->istate, &key->ostate, | 
|  | raw_key, raw_key_len); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha1_preparekey); | 
|  |  | 
|  | void hmac_sha1_init(struct hmac_sha1_ctx *ctx, const struct hmac_sha1_key *key) | 
|  | { | 
|  | ctx->sha_ctx.state = key->istate; | 
|  | ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE; | 
|  | ctx->ostate = key->ostate; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha1_init); | 
|  |  | 
|  | void hmac_sha1_init_usingrawkey(struct hmac_sha1_ctx *ctx, | 
|  | const u8 *raw_key, size_t raw_key_len) | 
|  | { | 
|  | __hmac_sha1_preparekey(&ctx->sha_ctx.state, &ctx->ostate, | 
|  | raw_key, raw_key_len); | 
|  | ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha1_init_usingrawkey); | 
|  |  | 
|  | void hmac_sha1_final(struct hmac_sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE]) | 
|  | { | 
|  | /* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */ | 
|  | __sha1_final(&ctx->sha_ctx, ctx->sha_ctx.buf); | 
|  | memset(&ctx->sha_ctx.buf[SHA1_DIGEST_SIZE], 0, | 
|  | SHA1_BLOCK_SIZE - SHA1_DIGEST_SIZE); | 
|  | ctx->sha_ctx.buf[SHA1_DIGEST_SIZE] = 0x80; | 
|  | *(__be32 *)&ctx->sha_ctx.buf[SHA1_BLOCK_SIZE - 4] = | 
|  | cpu_to_be32(8 * (SHA1_BLOCK_SIZE + SHA1_DIGEST_SIZE)); | 
|  |  | 
|  | /* Compute the outer hash, which gives the HMAC value. */ | 
|  | sha1_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1); | 
|  | for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4) | 
|  | put_unaligned_be32(ctx->ostate.h[i / 4], out + i); | 
|  |  | 
|  | memzero_explicit(ctx, sizeof(*ctx)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha1_final); | 
|  |  | 
|  | void hmac_sha1(const struct hmac_sha1_key *key, | 
|  | const u8 *data, size_t data_len, u8 out[SHA1_DIGEST_SIZE]) | 
|  | { | 
|  | struct hmac_sha1_ctx ctx; | 
|  |  | 
|  | hmac_sha1_init(&ctx, key); | 
|  | hmac_sha1_update(&ctx, data, data_len); | 
|  | hmac_sha1_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha1); | 
|  |  | 
|  | void hmac_sha1_usingrawkey(const u8 *raw_key, size_t raw_key_len, | 
|  | const u8 *data, size_t data_len, | 
|  | u8 out[SHA1_DIGEST_SIZE]) | 
|  | { | 
|  | struct hmac_sha1_ctx ctx; | 
|  |  | 
|  | hmac_sha1_init_usingrawkey(&ctx, raw_key, raw_key_len); | 
|  | hmac_sha1_update(&ctx, data, data_len); | 
|  | hmac_sha1_final(&ctx, out); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmac_sha1_usingrawkey); | 
|  |  | 
|  | #ifdef sha1_mod_init_arch | 
|  | static int __init sha1_mod_init(void) | 
|  | { | 
|  | sha1_mod_init_arch(); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(sha1_mod_init); | 
|  |  | 
|  | static void __exit sha1_mod_exit(void) | 
|  | { | 
|  | } | 
|  | module_exit(sha1_mod_exit); | 
|  | #endif | 
|  |  | 
|  | MODULE_DESCRIPTION("SHA-1 and HMAC-SHA1 library functions"); | 
|  | MODULE_LICENSE("GPL"); |