| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  linux/arch/arm/mm/dma-mapping.c | 
 |  * | 
 |  *  Copyright (C) 2000-2004 Russell King | 
 |  * | 
 |  *  DMA uncached mapping support. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/genalloc.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/list.h> | 
 | #include <linux/init.h> | 
 | #include <linux/device.h> | 
 | #include <linux/dma-direct.h> | 
 | #include <linux/dma-map-ops.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/io.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/cma.h> | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/highmem.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/mach/arch.h> | 
 | #include <asm/dma-iommu.h> | 
 | #include <asm/mach/map.h> | 
 | #include <asm/system_info.h> | 
 | #include <asm/xen/xen-ops.h> | 
 |  | 
 | #include "dma.h" | 
 | #include "mm.h" | 
 |  | 
 | struct arm_dma_alloc_args { | 
 | 	struct device *dev; | 
 | 	size_t size; | 
 | 	gfp_t gfp; | 
 | 	pgprot_t prot; | 
 | 	const void *caller; | 
 | 	bool want_vaddr; | 
 | 	int coherent_flag; | 
 | }; | 
 |  | 
 | struct arm_dma_free_args { | 
 | 	struct device *dev; | 
 | 	size_t size; | 
 | 	void *cpu_addr; | 
 | 	struct page *page; | 
 | 	bool want_vaddr; | 
 | }; | 
 |  | 
 | #define NORMAL	    0 | 
 | #define COHERENT    1 | 
 |  | 
 | struct arm_dma_allocator { | 
 | 	void *(*alloc)(struct arm_dma_alloc_args *args, | 
 | 		       struct page **ret_page); | 
 | 	void (*free)(struct arm_dma_free_args *args); | 
 | }; | 
 |  | 
 | struct arm_dma_buffer { | 
 | 	struct list_head list; | 
 | 	void *virt; | 
 | 	struct arm_dma_allocator *allocator; | 
 | }; | 
 |  | 
 | static LIST_HEAD(arm_dma_bufs); | 
 | static DEFINE_SPINLOCK(arm_dma_bufs_lock); | 
 |  | 
 | static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) | 
 | { | 
 | 	struct arm_dma_buffer *buf, *found = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&arm_dma_bufs_lock, flags); | 
 | 	list_for_each_entry(buf, &arm_dma_bufs, list) { | 
 | 		if (buf->virt == virt) { | 
 | 			list_del(&buf->list); | 
 | 			found = buf; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); | 
 | 	return found; | 
 | } | 
 |  | 
 | /* | 
 |  * The DMA API is built upon the notion of "buffer ownership".  A buffer | 
 |  * is either exclusively owned by the CPU (and therefore may be accessed | 
 |  * by it) or exclusively owned by the DMA device.  These helper functions | 
 |  * represent the transitions between these two ownership states. | 
 |  * | 
 |  * Note, however, that on later ARMs, this notion does not work due to | 
 |  * speculative prefetches.  We model our approach on the assumption that | 
 |  * the CPU does do speculative prefetches, which means we clean caches | 
 |  * before transfers and delay cache invalidation until transfer completion. | 
 |  * | 
 |  */ | 
 |  | 
 | static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) | 
 | { | 
 | 	/* | 
 | 	 * Ensure that the allocated pages are zeroed, and that any data | 
 | 	 * lurking in the kernel direct-mapped region is invalidated. | 
 | 	 */ | 
 | 	if (PageHighMem(page)) { | 
 | 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); | 
 | 		phys_addr_t end = base + size; | 
 | 		while (size > 0) { | 
 | 			void *ptr = kmap_atomic(page); | 
 | 			memset(ptr, 0, PAGE_SIZE); | 
 | 			if (coherent_flag != COHERENT) | 
 | 				dmac_flush_range(ptr, ptr + PAGE_SIZE); | 
 | 			kunmap_atomic(ptr); | 
 | 			page++; | 
 | 			size -= PAGE_SIZE; | 
 | 		} | 
 | 		if (coherent_flag != COHERENT) | 
 | 			outer_flush_range(base, end); | 
 | 	} else { | 
 | 		void *ptr = page_address(page); | 
 | 		memset(ptr, 0, size); | 
 | 		if (coherent_flag != COHERENT) { | 
 | 			dmac_flush_range(ptr, ptr + size); | 
 | 			outer_flush_range(__pa(ptr), __pa(ptr) + size); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a DMA buffer for 'dev' of size 'size' using the | 
 |  * specified gfp mask.  Note that 'size' must be page aligned. | 
 |  */ | 
 | static struct page *__dma_alloc_buffer(struct device *dev, size_t size, | 
 | 				       gfp_t gfp, int coherent_flag) | 
 | { | 
 | 	unsigned long order = get_order(size); | 
 | 	struct page *page, *p, *e; | 
 |  | 
 | 	page = alloc_pages(gfp, order); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Now split the huge page and free the excess pages | 
 | 	 */ | 
 | 	split_page(page, order); | 
 | 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) | 
 | 		__free_page(p); | 
 |  | 
 | 	__dma_clear_buffer(page, size, coherent_flag); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Free a DMA buffer.  'size' must be page aligned. | 
 |  */ | 
 | static void __dma_free_buffer(struct page *page, size_t size) | 
 | { | 
 | 	struct page *e = page + (size >> PAGE_SHIFT); | 
 |  | 
 | 	while (page < e) { | 
 | 		__free_page(page); | 
 | 		page++; | 
 | 	} | 
 | } | 
 |  | 
 | static void *__alloc_from_contiguous(struct device *dev, size_t size, | 
 | 				     pgprot_t prot, struct page **ret_page, | 
 | 				     const void *caller, bool want_vaddr, | 
 | 				     int coherent_flag, gfp_t gfp); | 
 |  | 
 | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, | 
 | 				 pgprot_t prot, struct page **ret_page, | 
 | 				 const void *caller, bool want_vaddr); | 
 |  | 
 | #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K | 
 | static struct gen_pool *atomic_pool __ro_after_init; | 
 |  | 
 | static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; | 
 |  | 
 | static int __init early_coherent_pool(char *p) | 
 | { | 
 | 	atomic_pool_size = memparse(p, &p); | 
 | 	return 0; | 
 | } | 
 | early_param("coherent_pool", early_coherent_pool); | 
 |  | 
 | /* | 
 |  * Initialise the coherent pool for atomic allocations. | 
 |  */ | 
 | static int __init atomic_pool_init(void) | 
 | { | 
 | 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); | 
 | 	gfp_t gfp = GFP_KERNEL | GFP_DMA; | 
 | 	struct page *page; | 
 | 	void *ptr; | 
 |  | 
 | 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1); | 
 | 	if (!atomic_pool) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * The atomic pool is only used for non-coherent allocations | 
 | 	 * so we must pass NORMAL for coherent_flag. | 
 | 	 */ | 
 | 	if (dev_get_cma_area(NULL)) | 
 | 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, | 
 | 				      &page, atomic_pool_init, true, NORMAL, | 
 | 				      GFP_KERNEL); | 
 | 	else | 
 | 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, | 
 | 					   &page, atomic_pool_init, true); | 
 | 	if (ptr) { | 
 | 		int ret; | 
 |  | 
 | 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, | 
 | 					page_to_phys(page), | 
 | 					atomic_pool_size, -1); | 
 | 		if (ret) | 
 | 			goto destroy_genpool; | 
 |  | 
 | 		gen_pool_set_algo(atomic_pool, | 
 | 				gen_pool_first_fit_order_align, | 
 | 				NULL); | 
 | 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", | 
 | 		       atomic_pool_size / 1024); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | destroy_genpool: | 
 | 	gen_pool_destroy(atomic_pool); | 
 | 	atomic_pool = NULL; | 
 | out: | 
 | 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", | 
 | 	       atomic_pool_size / 1024); | 
 | 	return -ENOMEM; | 
 | } | 
 | /* | 
 |  * CMA is activated by core_initcall, so we must be called after it. | 
 |  */ | 
 | postcore_initcall(atomic_pool_init); | 
 |  | 
 | #ifdef CONFIG_CMA_AREAS | 
 | struct dma_contig_early_reserve { | 
 | 	phys_addr_t base; | 
 | 	unsigned long size; | 
 | }; | 
 |  | 
 | static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; | 
 |  | 
 | static int dma_mmu_remap_num __initdata; | 
 |  | 
 | #ifdef CONFIG_DMA_CMA | 
 | void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) | 
 | { | 
 | 	dma_mmu_remap[dma_mmu_remap_num].base = base; | 
 | 	dma_mmu_remap[dma_mmu_remap_num].size = size; | 
 | 	dma_mmu_remap_num++; | 
 | } | 
 | #endif | 
 |  | 
 | void __init dma_contiguous_remap(void) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < dma_mmu_remap_num; i++) { | 
 | 		phys_addr_t start = dma_mmu_remap[i].base; | 
 | 		phys_addr_t end = start + dma_mmu_remap[i].size; | 
 | 		struct map_desc map; | 
 | 		unsigned long addr; | 
 |  | 
 | 		if (end > arm_lowmem_limit) | 
 | 			end = arm_lowmem_limit; | 
 | 		if (start >= end) | 
 | 			continue; | 
 |  | 
 | 		map.pfn = __phys_to_pfn(start); | 
 | 		map.virtual = __phys_to_virt(start); | 
 | 		map.length = end - start; | 
 | 		map.type = MT_MEMORY_DMA_READY; | 
 |  | 
 | 		/* | 
 | 		 * Clear previous low-memory mapping to ensure that the | 
 | 		 * TLB does not see any conflicting entries, then flush | 
 | 		 * the TLB of the old entries before creating new mappings. | 
 | 		 * | 
 | 		 * This ensures that any speculatively loaded TLB entries | 
 | 		 * (even though they may be rare) can not cause any problems, | 
 | 		 * and ensures that this code is architecturally compliant. | 
 | 		 */ | 
 | 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); | 
 | 		     addr += PMD_SIZE) | 
 | 			pmd_clear(pmd_off_k(addr)); | 
 |  | 
 | 		flush_tlb_kernel_range(__phys_to_virt(start), | 
 | 				       __phys_to_virt(end)); | 
 |  | 
 | 		iotable_init(&map, 1); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) | 
 | { | 
 | 	struct page *page = virt_to_page((void *)addr); | 
 | 	pgprot_t prot = *(pgprot_t *)data; | 
 |  | 
 | 	set_pte_ext(pte, mk_pte(page, prot), 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __dma_remap(struct page *page, size_t size, pgprot_t prot) | 
 | { | 
 | 	unsigned long start = (unsigned long) page_address(page); | 
 | 	unsigned end = start + size; | 
 |  | 
 | 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); | 
 | 	flush_tlb_kernel_range(start, end); | 
 | } | 
 |  | 
 | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, | 
 | 				 pgprot_t prot, struct page **ret_page, | 
 | 				 const void *caller, bool want_vaddr) | 
 | { | 
 | 	struct page *page; | 
 | 	void *ptr = NULL; | 
 | 	/* | 
 | 	 * __alloc_remap_buffer is only called when the device is | 
 | 	 * non-coherent | 
 | 	 */ | 
 | 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL); | 
 | 	if (!page) | 
 | 		return NULL; | 
 | 	if (!want_vaddr) | 
 | 		goto out; | 
 |  | 
 | 	ptr = dma_common_contiguous_remap(page, size, prot, caller); | 
 | 	if (!ptr) { | 
 | 		__dma_free_buffer(page, size); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 |  out: | 
 | 	*ret_page = page; | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static void *__alloc_from_pool(size_t size, struct page **ret_page) | 
 | { | 
 | 	unsigned long val; | 
 | 	void *ptr = NULL; | 
 |  | 
 | 	if (!atomic_pool) { | 
 | 		WARN(1, "coherent pool not initialised!\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	val = gen_pool_alloc(atomic_pool, size); | 
 | 	if (val) { | 
 | 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); | 
 |  | 
 | 		*ret_page = phys_to_page(phys); | 
 | 		ptr = (void *)val; | 
 | 	} | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static bool __in_atomic_pool(void *start, size_t size) | 
 | { | 
 | 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size); | 
 | } | 
 |  | 
 | static int __free_from_pool(void *start, size_t size) | 
 | { | 
 | 	if (!__in_atomic_pool(start, size)) | 
 | 		return 0; | 
 |  | 
 | 	gen_pool_free(atomic_pool, (unsigned long)start, size); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void *__alloc_from_contiguous(struct device *dev, size_t size, | 
 | 				     pgprot_t prot, struct page **ret_page, | 
 | 				     const void *caller, bool want_vaddr, | 
 | 				     int coherent_flag, gfp_t gfp) | 
 | { | 
 | 	unsigned long order = get_order(size); | 
 | 	size_t count = size >> PAGE_SHIFT; | 
 | 	struct page *page; | 
 | 	void *ptr = NULL; | 
 |  | 
 | 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	__dma_clear_buffer(page, size, coherent_flag); | 
 |  | 
 | 	if (!want_vaddr) | 
 | 		goto out; | 
 |  | 
 | 	if (PageHighMem(page)) { | 
 | 		ptr = dma_common_contiguous_remap(page, size, prot, caller); | 
 | 		if (!ptr) { | 
 | 			dma_release_from_contiguous(dev, page, count); | 
 | 			return NULL; | 
 | 		} | 
 | 	} else { | 
 | 		__dma_remap(page, size, prot); | 
 | 		ptr = page_address(page); | 
 | 	} | 
 |  | 
 |  out: | 
 | 	*ret_page = page; | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static void __free_from_contiguous(struct device *dev, struct page *page, | 
 | 				   void *cpu_addr, size_t size, bool want_vaddr) | 
 | { | 
 | 	if (want_vaddr) { | 
 | 		if (PageHighMem(page)) | 
 | 			dma_common_free_remap(cpu_addr, size); | 
 | 		else | 
 | 			__dma_remap(page, size, PAGE_KERNEL); | 
 | 	} | 
 | 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) | 
 | { | 
 | 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? | 
 | 			pgprot_writecombine(prot) : | 
 | 			pgprot_dmacoherent(prot); | 
 | 	return prot; | 
 | } | 
 |  | 
 | static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, | 
 | 				   struct page **ret_page) | 
 | { | 
 | 	struct page *page; | 
 | 	/* __alloc_simple_buffer is only called when the device is coherent */ | 
 | 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	*ret_page = page; | 
 | 	return page_address(page); | 
 | } | 
 |  | 
 | static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, | 
 | 				    struct page **ret_page) | 
 | { | 
 | 	return __alloc_simple_buffer(args->dev, args->size, args->gfp, | 
 | 				     ret_page); | 
 | } | 
 |  | 
 | static void simple_allocator_free(struct arm_dma_free_args *args) | 
 | { | 
 | 	__dma_free_buffer(args->page, args->size); | 
 | } | 
 |  | 
 | static struct arm_dma_allocator simple_allocator = { | 
 | 	.alloc = simple_allocator_alloc, | 
 | 	.free = simple_allocator_free, | 
 | }; | 
 |  | 
 | static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, | 
 | 				 struct page **ret_page) | 
 | { | 
 | 	return __alloc_from_contiguous(args->dev, args->size, args->prot, | 
 | 				       ret_page, args->caller, | 
 | 				       args->want_vaddr, args->coherent_flag, | 
 | 				       args->gfp); | 
 | } | 
 |  | 
 | static void cma_allocator_free(struct arm_dma_free_args *args) | 
 | { | 
 | 	__free_from_contiguous(args->dev, args->page, args->cpu_addr, | 
 | 			       args->size, args->want_vaddr); | 
 | } | 
 |  | 
 | static struct arm_dma_allocator cma_allocator = { | 
 | 	.alloc = cma_allocator_alloc, | 
 | 	.free = cma_allocator_free, | 
 | }; | 
 |  | 
 | static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, | 
 | 				  struct page **ret_page) | 
 | { | 
 | 	return __alloc_from_pool(args->size, ret_page); | 
 | } | 
 |  | 
 | static void pool_allocator_free(struct arm_dma_free_args *args) | 
 | { | 
 | 	__free_from_pool(args->cpu_addr, args->size); | 
 | } | 
 |  | 
 | static struct arm_dma_allocator pool_allocator = { | 
 | 	.alloc = pool_allocator_alloc, | 
 | 	.free = pool_allocator_free, | 
 | }; | 
 |  | 
 | static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, | 
 | 				   struct page **ret_page) | 
 | { | 
 | 	return __alloc_remap_buffer(args->dev, args->size, args->gfp, | 
 | 				    args->prot, ret_page, args->caller, | 
 | 				    args->want_vaddr); | 
 | } | 
 |  | 
 | static void remap_allocator_free(struct arm_dma_free_args *args) | 
 | { | 
 | 	if (args->want_vaddr) | 
 | 		dma_common_free_remap(args->cpu_addr, args->size); | 
 |  | 
 | 	__dma_free_buffer(args->page, args->size); | 
 | } | 
 |  | 
 | static struct arm_dma_allocator remap_allocator = { | 
 | 	.alloc = remap_allocator_alloc, | 
 | 	.free = remap_allocator_free, | 
 | }; | 
 |  | 
 | static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, | 
 | 			 gfp_t gfp, pgprot_t prot, bool is_coherent, | 
 | 			 unsigned long attrs, const void *caller) | 
 | { | 
 | 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); | 
 | 	struct page *page = NULL; | 
 | 	void *addr; | 
 | 	bool allowblock, cma; | 
 | 	struct arm_dma_buffer *buf; | 
 | 	struct arm_dma_alloc_args args = { | 
 | 		.dev = dev, | 
 | 		.size = PAGE_ALIGN(size), | 
 | 		.gfp = gfp, | 
 | 		.prot = prot, | 
 | 		.caller = caller, | 
 | 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), | 
 | 		.coherent_flag = is_coherent ? COHERENT : NORMAL, | 
 | 	}; | 
 |  | 
 | #ifdef CONFIG_DMA_API_DEBUG | 
 | 	u64 limit = (mask + 1) & ~mask; | 
 | 	if (limit && size >= limit) { | 
 | 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", | 
 | 			size, mask); | 
 | 		return NULL; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	buf = kzalloc(sizeof(*buf), | 
 | 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); | 
 | 	if (!buf) | 
 | 		return NULL; | 
 |  | 
 | 	if (mask < 0xffffffffULL) | 
 | 		gfp |= GFP_DMA; | 
 |  | 
 | 	args.gfp = gfp; | 
 |  | 
 | 	*handle = DMA_MAPPING_ERROR; | 
 | 	allowblock = gfpflags_allow_blocking(gfp); | 
 | 	cma = allowblock ? dev_get_cma_area(dev) : NULL; | 
 |  | 
 | 	if (cma) | 
 | 		buf->allocator = &cma_allocator; | 
 | 	else if (is_coherent) | 
 | 		buf->allocator = &simple_allocator; | 
 | 	else if (allowblock) | 
 | 		buf->allocator = &remap_allocator; | 
 | 	else | 
 | 		buf->allocator = &pool_allocator; | 
 |  | 
 | 	addr = buf->allocator->alloc(&args, &page); | 
 |  | 
 | 	if (page) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		*handle = phys_to_dma(dev, page_to_phys(page)); | 
 | 		buf->virt = args.want_vaddr ? addr : page; | 
 |  | 
 | 		spin_lock_irqsave(&arm_dma_bufs_lock, flags); | 
 | 		list_add(&buf->list, &arm_dma_bufs); | 
 | 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); | 
 | 	} else { | 
 | 		kfree(buf); | 
 | 	} | 
 |  | 
 | 	return args.want_vaddr ? addr : page; | 
 | } | 
 |  | 
 | /* | 
 |  * Free a buffer as defined by the above mapping. | 
 |  */ | 
 | static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
 | 			   dma_addr_t handle, unsigned long attrs, | 
 | 			   bool is_coherent) | 
 | { | 
 | 	struct page *page = phys_to_page(dma_to_phys(dev, handle)); | 
 | 	struct arm_dma_buffer *buf; | 
 | 	struct arm_dma_free_args args = { | 
 | 		.dev = dev, | 
 | 		.size = PAGE_ALIGN(size), | 
 | 		.cpu_addr = cpu_addr, | 
 | 		.page = page, | 
 | 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), | 
 | 	}; | 
 |  | 
 | 	buf = arm_dma_buffer_find(cpu_addr); | 
 | 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) | 
 | 		return; | 
 |  | 
 | 	buf->allocator->free(&args); | 
 | 	kfree(buf); | 
 | } | 
 |  | 
 | static void dma_cache_maint_page(struct page *page, unsigned long offset, | 
 | 	size_t size, enum dma_data_direction dir, | 
 | 	void (*op)(const void *, size_t, int)) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	size_t left = size; | 
 |  | 
 | 	pfn = page_to_pfn(page) + offset / PAGE_SIZE; | 
 | 	offset %= PAGE_SIZE; | 
 |  | 
 | 	/* | 
 | 	 * A single sg entry may refer to multiple physically contiguous | 
 | 	 * pages.  But we still need to process highmem pages individually. | 
 | 	 * If highmem is not configured then the bulk of this loop gets | 
 | 	 * optimized out. | 
 | 	 */ | 
 | 	do { | 
 | 		size_t len = left; | 
 | 		void *vaddr; | 
 |  | 
 | 		page = pfn_to_page(pfn); | 
 |  | 
 | 		if (PageHighMem(page)) { | 
 | 			if (len + offset > PAGE_SIZE) | 
 | 				len = PAGE_SIZE - offset; | 
 |  | 
 | 			if (cache_is_vipt_nonaliasing()) { | 
 | 				vaddr = kmap_atomic(page); | 
 | 				op(vaddr + offset, len, dir); | 
 | 				kunmap_atomic(vaddr); | 
 | 			} else { | 
 | 				vaddr = kmap_high_get(page); | 
 | 				if (vaddr) { | 
 | 					op(vaddr + offset, len, dir); | 
 | 					kunmap_high(page); | 
 | 				} | 
 | 			} | 
 | 		} else { | 
 | 			vaddr = page_address(page) + offset; | 
 | 			op(vaddr, len, dir); | 
 | 		} | 
 | 		offset = 0; | 
 | 		pfn++; | 
 | 		left -= len; | 
 | 	} while (left); | 
 | } | 
 |  | 
 | /* | 
 |  * Make an area consistent for devices. | 
 |  * Note: Drivers should NOT use this function directly. | 
 |  * Use the driver DMA support - see dma-mapping.h (dma_sync_*) | 
 |  */ | 
 | static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, | 
 | 	size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	phys_addr_t paddr; | 
 |  | 
 | 	dma_cache_maint_page(page, off, size, dir, dmac_map_area); | 
 |  | 
 | 	paddr = page_to_phys(page) + off; | 
 | 	if (dir == DMA_FROM_DEVICE) { | 
 | 		outer_inv_range(paddr, paddr + size); | 
 | 	} else { | 
 | 		outer_clean_range(paddr, paddr + size); | 
 | 	} | 
 | 	/* FIXME: non-speculating: flush on bidirectional mappings? */ | 
 | } | 
 |  | 
 | static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, | 
 | 	size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	phys_addr_t paddr = page_to_phys(page) + off; | 
 |  | 
 | 	/* FIXME: non-speculating: not required */ | 
 | 	/* in any case, don't bother invalidating if DMA to device */ | 
 | 	if (dir != DMA_TO_DEVICE) { | 
 | 		outer_inv_range(paddr, paddr + size); | 
 |  | 
 | 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mark the D-cache clean for these pages to avoid extra flushing. | 
 | 	 */ | 
 | 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { | 
 | 		struct folio *folio = pfn_folio(paddr / PAGE_SIZE); | 
 | 		size_t offset = offset_in_folio(folio, paddr); | 
 |  | 
 | 		for (;;) { | 
 | 			size_t sz = folio_size(folio) - offset; | 
 |  | 
 | 			if (size < sz) | 
 | 				break; | 
 | 			if (!offset) | 
 | 				set_bit(PG_dcache_clean, &folio->flags); | 
 | 			offset = 0; | 
 | 			size -= sz; | 
 | 			if (!size) | 
 | 				break; | 
 | 			folio = folio_next(folio); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARM_DMA_USE_IOMMU | 
 |  | 
 | static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	int prot = 0; | 
 |  | 
 | 	if (attrs & DMA_ATTR_PRIVILEGED) | 
 | 		prot |= IOMMU_PRIV; | 
 |  | 
 | 	switch (dir) { | 
 | 	case DMA_BIDIRECTIONAL: | 
 | 		return prot | IOMMU_READ | IOMMU_WRITE; | 
 | 	case DMA_TO_DEVICE: | 
 | 		return prot | IOMMU_READ; | 
 | 	case DMA_FROM_DEVICE: | 
 | 		return prot | IOMMU_WRITE; | 
 | 	default: | 
 | 		return prot; | 
 | 	} | 
 | } | 
 |  | 
 | /* IOMMU */ | 
 |  | 
 | static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); | 
 |  | 
 | static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, | 
 | 				      size_t size) | 
 | { | 
 | 	unsigned int order = get_order(size); | 
 | 	unsigned int align = 0; | 
 | 	unsigned int count, start; | 
 | 	size_t mapping_size = mapping->bits << PAGE_SHIFT; | 
 | 	unsigned long flags; | 
 | 	dma_addr_t iova; | 
 | 	int i; | 
 |  | 
 | 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) | 
 | 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; | 
 |  | 
 | 	count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	align = (1 << order) - 1; | 
 |  | 
 | 	spin_lock_irqsave(&mapping->lock, flags); | 
 | 	for (i = 0; i < mapping->nr_bitmaps; i++) { | 
 | 		start = bitmap_find_next_zero_area(mapping->bitmaps[i], | 
 | 				mapping->bits, 0, count, align); | 
 |  | 
 | 		if (start > mapping->bits) | 
 | 			continue; | 
 |  | 
 | 		bitmap_set(mapping->bitmaps[i], start, count); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No unused range found. Try to extend the existing mapping | 
 | 	 * and perform a second attempt to reserve an IO virtual | 
 | 	 * address range of size bytes. | 
 | 	 */ | 
 | 	if (i == mapping->nr_bitmaps) { | 
 | 		if (extend_iommu_mapping(mapping)) { | 
 | 			spin_unlock_irqrestore(&mapping->lock, flags); | 
 | 			return DMA_MAPPING_ERROR; | 
 | 		} | 
 |  | 
 | 		start = bitmap_find_next_zero_area(mapping->bitmaps[i], | 
 | 				mapping->bits, 0, count, align); | 
 |  | 
 | 		if (start > mapping->bits) { | 
 | 			spin_unlock_irqrestore(&mapping->lock, flags); | 
 | 			return DMA_MAPPING_ERROR; | 
 | 		} | 
 |  | 
 | 		bitmap_set(mapping->bitmaps[i], start, count); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&mapping->lock, flags); | 
 |  | 
 | 	iova = mapping->base + (mapping_size * i); | 
 | 	iova += start << PAGE_SHIFT; | 
 |  | 
 | 	return iova; | 
 | } | 
 |  | 
 | static inline void __free_iova(struct dma_iommu_mapping *mapping, | 
 | 			       dma_addr_t addr, size_t size) | 
 | { | 
 | 	unsigned int start, count; | 
 | 	size_t mapping_size = mapping->bits << PAGE_SHIFT; | 
 | 	unsigned long flags; | 
 | 	dma_addr_t bitmap_base; | 
 | 	u32 bitmap_index; | 
 |  | 
 | 	if (!size) | 
 | 		return; | 
 |  | 
 | 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; | 
 | 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); | 
 |  | 
 | 	bitmap_base = mapping->base + mapping_size * bitmap_index; | 
 |  | 
 | 	start = (addr - bitmap_base) >>	PAGE_SHIFT; | 
 |  | 
 | 	if (addr + size > bitmap_base + mapping_size) { | 
 | 		/* | 
 | 		 * The address range to be freed reaches into the iova | 
 | 		 * range of the next bitmap. This should not happen as | 
 | 		 * we don't allow this in __alloc_iova (at the | 
 | 		 * moment). | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} else | 
 | 		count = size >> PAGE_SHIFT; | 
 |  | 
 | 	spin_lock_irqsave(&mapping->lock, flags); | 
 | 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count); | 
 | 	spin_unlock_irqrestore(&mapping->lock, flags); | 
 | } | 
 |  | 
 | /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ | 
 | static const int iommu_order_array[] = { 9, 8, 4, 0 }; | 
 |  | 
 | static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, | 
 | 					  gfp_t gfp, unsigned long attrs, | 
 | 					  int coherent_flag) | 
 | { | 
 | 	struct page **pages; | 
 | 	int count = size >> PAGE_SHIFT; | 
 | 	int array_size = count * sizeof(struct page *); | 
 | 	int i = 0; | 
 | 	int order_idx = 0; | 
 |  | 
 | 	pages = kvzalloc(array_size, GFP_KERNEL); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) | 
 | 	{ | 
 | 		unsigned long order = get_order(size); | 
 | 		struct page *page; | 
 |  | 
 | 		page = dma_alloc_from_contiguous(dev, count, order, | 
 | 						 gfp & __GFP_NOWARN); | 
 | 		if (!page) | 
 | 			goto error; | 
 |  | 
 | 		__dma_clear_buffer(page, size, coherent_flag); | 
 |  | 
 | 		for (i = 0; i < count; i++) | 
 | 			pages[i] = page + i; | 
 |  | 
 | 		return pages; | 
 | 	} | 
 |  | 
 | 	/* Go straight to 4K chunks if caller says it's OK. */ | 
 | 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) | 
 | 		order_idx = ARRAY_SIZE(iommu_order_array) - 1; | 
 |  | 
 | 	/* | 
 | 	 * IOMMU can map any pages, so himem can also be used here | 
 | 	 */ | 
 | 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM; | 
 |  | 
 | 	while (count) { | 
 | 		int j, order; | 
 |  | 
 | 		order = iommu_order_array[order_idx]; | 
 |  | 
 | 		/* Drop down when we get small */ | 
 | 		if (__fls(count) < order) { | 
 | 			order_idx++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (order) { | 
 | 			/* See if it's easy to allocate a high-order chunk */ | 
 | 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); | 
 |  | 
 | 			/* Go down a notch at first sign of pressure */ | 
 | 			if (!pages[i]) { | 
 | 				order_idx++; | 
 | 				continue; | 
 | 			} | 
 | 		} else { | 
 | 			pages[i] = alloc_pages(gfp, 0); | 
 | 			if (!pages[i]) | 
 | 				goto error; | 
 | 		} | 
 |  | 
 | 		if (order) { | 
 | 			split_page(pages[i], order); | 
 | 			j = 1 << order; | 
 | 			while (--j) | 
 | 				pages[i + j] = pages[i] + j; | 
 | 		} | 
 |  | 
 | 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); | 
 | 		i += 1 << order; | 
 | 		count -= 1 << order; | 
 | 	} | 
 |  | 
 | 	return pages; | 
 | error: | 
 | 	while (i--) | 
 | 		if (pages[i]) | 
 | 			__free_pages(pages[i], 0); | 
 | 	kvfree(pages); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int __iommu_free_buffer(struct device *dev, struct page **pages, | 
 | 			       size_t size, unsigned long attrs) | 
 | { | 
 | 	int count = size >> PAGE_SHIFT; | 
 | 	int i; | 
 |  | 
 | 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { | 
 | 		dma_release_from_contiguous(dev, pages[0], count); | 
 | 	} else { | 
 | 		for (i = 0; i < count; i++) | 
 | 			if (pages[i]) | 
 | 				__free_pages(pages[i], 0); | 
 | 	} | 
 |  | 
 | 	kvfree(pages); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Create a mapping in device IO address space for specified pages | 
 |  */ | 
 | static dma_addr_t | 
 | __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, | 
 | 		       unsigned long attrs) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 | 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	dma_addr_t dma_addr, iova; | 
 | 	int i; | 
 |  | 
 | 	dma_addr = __alloc_iova(mapping, size); | 
 | 	if (dma_addr == DMA_MAPPING_ERROR) | 
 | 		return dma_addr; | 
 |  | 
 | 	iova = dma_addr; | 
 | 	for (i = 0; i < count; ) { | 
 | 		int ret; | 
 |  | 
 | 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1; | 
 | 		phys_addr_t phys = page_to_phys(pages[i]); | 
 | 		unsigned int len, j; | 
 |  | 
 | 		for (j = i + 1; j < count; j++, next_pfn++) | 
 | 			if (page_to_pfn(pages[j]) != next_pfn) | 
 | 				break; | 
 |  | 
 | 		len = (j - i) << PAGE_SHIFT; | 
 | 		ret = iommu_map(mapping->domain, iova, phys, len, | 
 | 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs), | 
 | 				GFP_KERNEL); | 
 | 		if (ret < 0) | 
 | 			goto fail; | 
 | 		iova += len; | 
 | 		i = j; | 
 | 	} | 
 | 	return dma_addr; | 
 | fail: | 
 | 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); | 
 | 	__free_iova(mapping, dma_addr, size); | 
 | 	return DMA_MAPPING_ERROR; | 
 | } | 
 |  | 
 | static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 |  | 
 | 	/* | 
 | 	 * add optional in-page offset from iova to size and align | 
 | 	 * result to page size | 
 | 	 */ | 
 | 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); | 
 | 	iova &= PAGE_MASK; | 
 |  | 
 | 	iommu_unmap(mapping->domain, iova, size); | 
 | 	__free_iova(mapping, iova, size); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct page **__atomic_get_pages(void *addr) | 
 | { | 
 | 	struct page *page; | 
 | 	phys_addr_t phys; | 
 |  | 
 | 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); | 
 | 	page = phys_to_page(phys); | 
 |  | 
 | 	return (struct page **)page; | 
 | } | 
 |  | 
 | static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) | 
 | { | 
 | 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) | 
 | 		return __atomic_get_pages(cpu_addr); | 
 |  | 
 | 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) | 
 | 		return cpu_addr; | 
 |  | 
 | 	return dma_common_find_pages(cpu_addr); | 
 | } | 
 |  | 
 | static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, | 
 | 				  dma_addr_t *handle, int coherent_flag, | 
 | 				  unsigned long attrs) | 
 | { | 
 | 	struct page *page; | 
 | 	void *addr; | 
 |  | 
 | 	if (coherent_flag  == COHERENT) | 
 | 		addr = __alloc_simple_buffer(dev, size, gfp, &page); | 
 | 	else | 
 | 		addr = __alloc_from_pool(size, &page); | 
 | 	if (!addr) | 
 | 		return NULL; | 
 |  | 
 | 	*handle = __iommu_create_mapping(dev, &page, size, attrs); | 
 | 	if (*handle == DMA_MAPPING_ERROR) | 
 | 		goto err_mapping; | 
 |  | 
 | 	return addr; | 
 |  | 
 | err_mapping: | 
 | 	__free_from_pool(addr, size); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void __iommu_free_atomic(struct device *dev, void *cpu_addr, | 
 | 			dma_addr_t handle, size_t size, int coherent_flag) | 
 | { | 
 | 	__iommu_remove_mapping(dev, handle, size); | 
 | 	if (coherent_flag == COHERENT) | 
 | 		__dma_free_buffer(virt_to_page(cpu_addr), size); | 
 | 	else | 
 | 		__free_from_pool(cpu_addr, size); | 
 | } | 
 |  | 
 | static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, | 
 | 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs) | 
 | { | 
 | 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); | 
 | 	struct page **pages; | 
 | 	void *addr = NULL; | 
 | 	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL; | 
 |  | 
 | 	*handle = DMA_MAPPING_ERROR; | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp)) | 
 | 		return __iommu_alloc_simple(dev, size, gfp, handle, | 
 | 					    coherent_flag, attrs); | 
 |  | 
 | 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	*handle = __iommu_create_mapping(dev, pages, size, attrs); | 
 | 	if (*handle == DMA_MAPPING_ERROR) | 
 | 		goto err_buffer; | 
 |  | 
 | 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) | 
 | 		return pages; | 
 |  | 
 | 	addr = dma_common_pages_remap(pages, size, prot, | 
 | 				   __builtin_return_address(0)); | 
 | 	if (!addr) | 
 | 		goto err_mapping; | 
 |  | 
 | 	return addr; | 
 |  | 
 | err_mapping: | 
 | 	__iommu_remove_mapping(dev, *handle, size); | 
 | err_buffer: | 
 | 	__iommu_free_buffer(dev, pages, size, attrs); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, | 
 | 		    void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
 | 		    unsigned long attrs) | 
 | { | 
 | 	struct page **pages = __iommu_get_pages(cpu_addr, attrs); | 
 | 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	int err; | 
 |  | 
 | 	if (!pages) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (vma->vm_pgoff >= nr_pages) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (!dev->dma_coherent) | 
 | 		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); | 
 |  | 
 | 	err = vm_map_pages(vma, pages, nr_pages); | 
 | 	if (err) | 
 | 		pr_err("Remapping memory failed: %d\n", err); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * free a page as defined by the above mapping. | 
 |  * Must not be called with IRQs disabled. | 
 |  */ | 
 | static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, | 
 | 	dma_addr_t handle, unsigned long attrs) | 
 | { | 
 | 	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL; | 
 | 	struct page **pages; | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { | 
 | 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pages = __iommu_get_pages(cpu_addr, attrs); | 
 | 	if (!pages) { | 
 | 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) | 
 | 		dma_common_free_remap(cpu_addr, size); | 
 |  | 
 | 	__iommu_remove_mapping(dev, handle, size); | 
 | 	__iommu_free_buffer(dev, pages, size, attrs); | 
 | } | 
 |  | 
 | static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, | 
 | 				 void *cpu_addr, dma_addr_t dma_addr, | 
 | 				 size_t size, unsigned long attrs) | 
 | { | 
 | 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	struct page **pages = __iommu_get_pages(cpu_addr, attrs); | 
 |  | 
 | 	if (!pages) | 
 | 		return -ENXIO; | 
 |  | 
 | 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size, | 
 | 					 GFP_KERNEL); | 
 | } | 
 |  | 
 | /* | 
 |  * Map a part of the scatter-gather list into contiguous io address space | 
 |  */ | 
 | static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, | 
 | 			  size_t size, dma_addr_t *handle, | 
 | 			  enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 | 	dma_addr_t iova, iova_base; | 
 | 	int ret = 0; | 
 | 	unsigned int count; | 
 | 	struct scatterlist *s; | 
 | 	int prot; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	*handle = DMA_MAPPING_ERROR; | 
 |  | 
 | 	iova_base = iova = __alloc_iova(mapping, size); | 
 | 	if (iova == DMA_MAPPING_ERROR) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { | 
 | 		phys_addr_t phys = page_to_phys(sg_page(s)); | 
 | 		unsigned int len = PAGE_ALIGN(s->offset + s->length); | 
 |  | 
 | 		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | 
 | 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); | 
 |  | 
 | 		prot = __dma_info_to_prot(dir, attrs); | 
 |  | 
 | 		ret = iommu_map(mapping->domain, iova, phys, len, prot, | 
 | 				GFP_KERNEL); | 
 | 		if (ret < 0) | 
 | 			goto fail; | 
 | 		count += len >> PAGE_SHIFT; | 
 | 		iova += len; | 
 | 	} | 
 | 	*handle = iova_base; | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); | 
 | 	__free_iova(mapping, iova_base, size); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA | 
 |  * @dev: valid struct device pointer | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
 |  * The scatter gather list elements are merged together (if possible) and | 
 |  * tagged with the appropriate dma address and length. They are obtained via | 
 |  * sg_dma_{address,length}. | 
 |  */ | 
 | static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, | 
 | 		int nents, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	struct scatterlist *s = sg, *dma = sg, *start = sg; | 
 | 	int i, count = 0, ret; | 
 | 	unsigned int offset = s->offset; | 
 | 	unsigned int size = s->offset + s->length; | 
 | 	unsigned int max = dma_get_max_seg_size(dev); | 
 |  | 
 | 	for (i = 1; i < nents; i++) { | 
 | 		s = sg_next(s); | 
 |  | 
 | 		s->dma_length = 0; | 
 |  | 
 | 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { | 
 | 			ret = __map_sg_chunk(dev, start, size, | 
 | 					     &dma->dma_address, dir, attrs); | 
 | 			if (ret < 0) | 
 | 				goto bad_mapping; | 
 |  | 
 | 			dma->dma_address += offset; | 
 | 			dma->dma_length = size - offset; | 
 |  | 
 | 			size = offset = s->offset; | 
 | 			start = s; | 
 | 			dma = sg_next(dma); | 
 | 			count += 1; | 
 | 		} | 
 | 		size += s->length; | 
 | 	} | 
 | 	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs); | 
 | 	if (ret < 0) | 
 | 		goto bad_mapping; | 
 |  | 
 | 	dma->dma_address += offset; | 
 | 	dma->dma_length = size - offset; | 
 |  | 
 | 	return count+1; | 
 |  | 
 | bad_mapping: | 
 | 	for_each_sg(sg, s, count, i) | 
 | 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); | 
 | 	if (ret == -ENOMEM) | 
 | 		return ret; | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
 |  * @dev: valid struct device pointer | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  * | 
 |  * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
 |  * rules concerning calls here are the same as for dma_unmap_single(). | 
 |  */ | 
 | static void arm_iommu_unmap_sg(struct device *dev, | 
 | 			       struct scatterlist *sg, int nents, | 
 | 			       enum dma_data_direction dir, | 
 | 			       unsigned long attrs) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		if (sg_dma_len(s)) | 
 | 			__iommu_remove_mapping(dev, sg_dma_address(s), | 
 | 					       sg_dma_len(s)); | 
 | 		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | 
 | 			__dma_page_dev_to_cpu(sg_page(s), s->offset, | 
 | 					      s->length, dir); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_sync_sg_for_cpu | 
 |  * @dev: valid struct device pointer | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map (returned from dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  */ | 
 | static void arm_iommu_sync_sg_for_cpu(struct device *dev, | 
 | 			struct scatterlist *sg, | 
 | 			int nents, enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	if (dev->dma_coherent) | 
 | 		return; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_sync_sg_for_device | 
 |  * @dev: valid struct device pointer | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map (returned from dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  */ | 
 | static void arm_iommu_sync_sg_for_device(struct device *dev, | 
 | 			struct scatterlist *sg, | 
 | 			int nents, enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	if (dev->dma_coherent) | 
 | 		return; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_map_page | 
 |  * @dev: valid struct device pointer | 
 |  * @page: page that buffer resides in | 
 |  * @offset: offset into page for start of buffer | 
 |  * @size: size of buffer to map | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * IOMMU aware version of arm_dma_map_page() | 
 |  */ | 
 | static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, | 
 | 	     unsigned long offset, size_t size, enum dma_data_direction dir, | 
 | 	     unsigned long attrs) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 | 	dma_addr_t dma_addr; | 
 | 	int ret, prot, len = PAGE_ALIGN(size + offset); | 
 |  | 
 | 	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | 
 | 		__dma_page_cpu_to_dev(page, offset, size, dir); | 
 |  | 
 | 	dma_addr = __alloc_iova(mapping, len); | 
 | 	if (dma_addr == DMA_MAPPING_ERROR) | 
 | 		return dma_addr; | 
 |  | 
 | 	prot = __dma_info_to_prot(dir, attrs); | 
 |  | 
 | 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, | 
 | 			prot, GFP_KERNEL); | 
 | 	if (ret < 0) | 
 | 		goto fail; | 
 |  | 
 | 	return dma_addr + offset; | 
 | fail: | 
 | 	__free_iova(mapping, dma_addr, len); | 
 | 	return DMA_MAPPING_ERROR; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_unmap_page | 
 |  * @dev: valid struct device pointer | 
 |  * @handle: DMA address of buffer | 
 |  * @size: size of buffer (same as passed to dma_map_page) | 
 |  * @dir: DMA transfer direction (same as passed to dma_map_page) | 
 |  * | 
 |  * IOMMU aware version of arm_dma_unmap_page() | 
 |  */ | 
 | static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, | 
 | 		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 | 	dma_addr_t iova = handle & PAGE_MASK; | 
 | 	struct page *page; | 
 | 	int offset = handle & ~PAGE_MASK; | 
 | 	int len = PAGE_ALIGN(size + offset); | 
 |  | 
 | 	if (!iova) | 
 | 		return; | 
 |  | 
 | 	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { | 
 | 		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
 | 		__dma_page_dev_to_cpu(page, offset, size, dir); | 
 | 	} | 
 |  | 
 | 	iommu_unmap(mapping->domain, iova, len); | 
 | 	__free_iova(mapping, iova, len); | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_map_resource - map a device resource for DMA | 
 |  * @dev: valid struct device pointer | 
 |  * @phys_addr: physical address of resource | 
 |  * @size: size of resource to map | 
 |  * @dir: DMA transfer direction | 
 |  */ | 
 | static dma_addr_t arm_iommu_map_resource(struct device *dev, | 
 | 		phys_addr_t phys_addr, size_t size, | 
 | 		enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 | 	dma_addr_t dma_addr; | 
 | 	int ret, prot; | 
 | 	phys_addr_t addr = phys_addr & PAGE_MASK; | 
 | 	unsigned int offset = phys_addr & ~PAGE_MASK; | 
 | 	size_t len = PAGE_ALIGN(size + offset); | 
 |  | 
 | 	dma_addr = __alloc_iova(mapping, len); | 
 | 	if (dma_addr == DMA_MAPPING_ERROR) | 
 | 		return dma_addr; | 
 |  | 
 | 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; | 
 |  | 
 | 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL); | 
 | 	if (ret < 0) | 
 | 		goto fail; | 
 |  | 
 | 	return dma_addr + offset; | 
 | fail: | 
 | 	__free_iova(mapping, dma_addr, len); | 
 | 	return DMA_MAPPING_ERROR; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_unmap_resource - unmap a device DMA resource | 
 |  * @dev: valid struct device pointer | 
 |  * @dma_handle: DMA address to resource | 
 |  * @size: size of resource to map | 
 |  * @dir: DMA transfer direction | 
 |  */ | 
 | static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, | 
 | 		size_t size, enum dma_data_direction dir, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 | 	dma_addr_t iova = dma_handle & PAGE_MASK; | 
 | 	unsigned int offset = dma_handle & ~PAGE_MASK; | 
 | 	size_t len = PAGE_ALIGN(size + offset); | 
 |  | 
 | 	if (!iova) | 
 | 		return; | 
 |  | 
 | 	iommu_unmap(mapping->domain, iova, len); | 
 | 	__free_iova(mapping, iova, len); | 
 | } | 
 |  | 
 | static void arm_iommu_sync_single_for_cpu(struct device *dev, | 
 | 		dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 | 	dma_addr_t iova = handle & PAGE_MASK; | 
 | 	struct page *page; | 
 | 	unsigned int offset = handle & ~PAGE_MASK; | 
 |  | 
 | 	if (dev->dma_coherent || !iova) | 
 | 		return; | 
 |  | 
 | 	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
 | 	__dma_page_dev_to_cpu(page, offset, size, dir); | 
 | } | 
 |  | 
 | static void arm_iommu_sync_single_for_device(struct device *dev, | 
 | 		dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 | 	dma_addr_t iova = handle & PAGE_MASK; | 
 | 	struct page *page; | 
 | 	unsigned int offset = handle & ~PAGE_MASK; | 
 |  | 
 | 	if (dev->dma_coherent || !iova) | 
 | 		return; | 
 |  | 
 | 	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
 | 	__dma_page_cpu_to_dev(page, offset, size, dir); | 
 | } | 
 |  | 
 | static const struct dma_map_ops iommu_ops = { | 
 | 	.alloc		= arm_iommu_alloc_attrs, | 
 | 	.free		= arm_iommu_free_attrs, | 
 | 	.mmap		= arm_iommu_mmap_attrs, | 
 | 	.get_sgtable	= arm_iommu_get_sgtable, | 
 |  | 
 | 	.map_page		= arm_iommu_map_page, | 
 | 	.unmap_page		= arm_iommu_unmap_page, | 
 | 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu, | 
 | 	.sync_single_for_device	= arm_iommu_sync_single_for_device, | 
 |  | 
 | 	.map_sg			= arm_iommu_map_sg, | 
 | 	.unmap_sg		= arm_iommu_unmap_sg, | 
 | 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu, | 
 | 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device, | 
 |  | 
 | 	.map_resource		= arm_iommu_map_resource, | 
 | 	.unmap_resource		= arm_iommu_unmap_resource, | 
 | }; | 
 |  | 
 | /** | 
 |  * arm_iommu_create_mapping | 
 |  * @dev: pointer to the client device (for IOMMU calls) | 
 |  * @base: start address of the valid IO address space | 
 |  * @size: maximum size of the valid IO address space | 
 |  * | 
 |  * Creates a mapping structure which holds information about used/unused | 
 |  * IO address ranges, which is required to perform memory allocation and | 
 |  * mapping with IOMMU aware functions. | 
 |  * | 
 |  * The client device need to be attached to the mapping with | 
 |  * arm_iommu_attach_device function. | 
 |  */ | 
 | struct dma_iommu_mapping * | 
 | arm_iommu_create_mapping(struct device *dev, dma_addr_t base, u64 size) | 
 | { | 
 | 	unsigned int bits = size >> PAGE_SHIFT; | 
 | 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); | 
 | 	struct dma_iommu_mapping *mapping; | 
 | 	int extensions = 1; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	/* currently only 32-bit DMA address space is supported */ | 
 | 	if (size > DMA_BIT_MASK(32) + 1) | 
 | 		return ERR_PTR(-ERANGE); | 
 |  | 
 | 	if (!bitmap_size) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (bitmap_size > PAGE_SIZE) { | 
 | 		extensions = bitmap_size / PAGE_SIZE; | 
 | 		bitmap_size = PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); | 
 | 	if (!mapping) | 
 | 		goto err; | 
 |  | 
 | 	mapping->bitmap_size = bitmap_size; | 
 | 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), | 
 | 				   GFP_KERNEL); | 
 | 	if (!mapping->bitmaps) | 
 | 		goto err2; | 
 |  | 
 | 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); | 
 | 	if (!mapping->bitmaps[0]) | 
 | 		goto err3; | 
 |  | 
 | 	mapping->nr_bitmaps = 1; | 
 | 	mapping->extensions = extensions; | 
 | 	mapping->base = base; | 
 | 	mapping->bits = BITS_PER_BYTE * bitmap_size; | 
 |  | 
 | 	spin_lock_init(&mapping->lock); | 
 |  | 
 | 	mapping->domain = iommu_paging_domain_alloc(dev); | 
 | 	if (IS_ERR(mapping->domain)) { | 
 | 		err = PTR_ERR(mapping->domain); | 
 | 		goto err4; | 
 | 	} | 
 |  | 
 | 	kref_init(&mapping->kref); | 
 | 	return mapping; | 
 | err4: | 
 | 	kfree(mapping->bitmaps[0]); | 
 | err3: | 
 | 	kfree(mapping->bitmaps); | 
 | err2: | 
 | 	kfree(mapping); | 
 | err: | 
 | 	return ERR_PTR(err); | 
 | } | 
 | EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); | 
 |  | 
 | static void release_iommu_mapping(struct kref *kref) | 
 | { | 
 | 	int i; | 
 | 	struct dma_iommu_mapping *mapping = | 
 | 		container_of(kref, struct dma_iommu_mapping, kref); | 
 |  | 
 | 	iommu_domain_free(mapping->domain); | 
 | 	for (i = 0; i < mapping->nr_bitmaps; i++) | 
 | 		kfree(mapping->bitmaps[i]); | 
 | 	kfree(mapping->bitmaps); | 
 | 	kfree(mapping); | 
 | } | 
 |  | 
 | static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) | 
 | { | 
 | 	int next_bitmap; | 
 |  | 
 | 	if (mapping->nr_bitmaps >= mapping->extensions) | 
 | 		return -EINVAL; | 
 |  | 
 | 	next_bitmap = mapping->nr_bitmaps; | 
 | 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, | 
 | 						GFP_ATOMIC); | 
 | 	if (!mapping->bitmaps[next_bitmap]) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mapping->nr_bitmaps++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) | 
 | { | 
 | 	if (mapping) | 
 | 		kref_put(&mapping->kref, release_iommu_mapping); | 
 | } | 
 | EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); | 
 |  | 
 | static int __arm_iommu_attach_device(struct device *dev, | 
 | 				     struct dma_iommu_mapping *mapping) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = iommu_attach_device(mapping->domain, dev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	kref_get(&mapping->kref); | 
 | 	to_dma_iommu_mapping(dev) = mapping; | 
 |  | 
 | 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_attach_device | 
 |  * @dev: valid struct device pointer | 
 |  * @mapping: io address space mapping structure (returned from | 
 |  *	arm_iommu_create_mapping) | 
 |  * | 
 |  * Attaches specified io address space mapping to the provided device. | 
 |  * This replaces the dma operations (dma_map_ops pointer) with the | 
 |  * IOMMU aware version. | 
 |  * | 
 |  * More than one client might be attached to the same io address space | 
 |  * mapping. | 
 |  */ | 
 | int arm_iommu_attach_device(struct device *dev, | 
 | 			    struct dma_iommu_mapping *mapping) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = __arm_iommu_attach_device(dev, mapping); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	set_dma_ops(dev, &iommu_ops); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(arm_iommu_attach_device); | 
 |  | 
 | /** | 
 |  * arm_iommu_detach_device | 
 |  * @dev: valid struct device pointer | 
 |  * | 
 |  * Detaches the provided device from a previously attached map. | 
 |  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. | 
 |  */ | 
 | void arm_iommu_detach_device(struct device *dev) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping; | 
 |  | 
 | 	mapping = to_dma_iommu_mapping(dev); | 
 | 	if (!mapping) { | 
 | 		dev_warn(dev, "Not attached\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	iommu_detach_device(mapping->domain, dev); | 
 | 	kref_put(&mapping->kref, release_iommu_mapping); | 
 | 	to_dma_iommu_mapping(dev) = NULL; | 
 | 	set_dma_ops(dev, NULL); | 
 |  | 
 | 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(arm_iommu_detach_device); | 
 |  | 
 | static void arm_setup_iommu_dma_ops(struct device *dev) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping; | 
 | 	u64 dma_base = 0, size = 1ULL << 32; | 
 |  | 
 | 	if (dev->dma_range_map) { | 
 | 		dma_base = dma_range_map_min(dev->dma_range_map); | 
 | 		size = dma_range_map_max(dev->dma_range_map) - dma_base; | 
 | 	} | 
 | 	mapping = arm_iommu_create_mapping(dev, dma_base, size); | 
 | 	if (IS_ERR(mapping)) { | 
 | 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", | 
 | 				size, dev_name(dev)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (__arm_iommu_attach_device(dev, mapping)) { | 
 | 		pr_warn("Failed to attached device %s to IOMMU_mapping\n", | 
 | 				dev_name(dev)); | 
 | 		arm_iommu_release_mapping(mapping); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	set_dma_ops(dev, &iommu_ops); | 
 | } | 
 |  | 
 | static void arm_teardown_iommu_dma_ops(struct device *dev) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
 |  | 
 | 	if (!mapping) | 
 | 		return; | 
 |  | 
 | 	arm_iommu_detach_device(dev); | 
 | 	arm_iommu_release_mapping(mapping); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void arm_setup_iommu_dma_ops(struct device *dev) | 
 | { | 
 | } | 
 |  | 
 | static void arm_teardown_iommu_dma_ops(struct device *dev) { } | 
 |  | 
 | #endif	/* CONFIG_ARM_DMA_USE_IOMMU */ | 
 |  | 
 | void arch_setup_dma_ops(struct device *dev, bool coherent) | 
 | { | 
 | 	/* | 
 | 	 * Due to legacy code that sets the ->dma_coherent flag from a bus | 
 | 	 * notifier we can't just assign coherent to the ->dma_coherent flag | 
 | 	 * here, but instead have to make sure we only set but never clear it | 
 | 	 * for now. | 
 | 	 */ | 
 | 	if (coherent) | 
 | 		dev->dma_coherent = true; | 
 |  | 
 | 	/* | 
 | 	 * Don't override the dma_ops if they have already been set. Ideally | 
 | 	 * this should be the only location where dma_ops are set, remove this | 
 | 	 * check when all other callers of set_dma_ops will have disappeared. | 
 | 	 */ | 
 | 	if (dev->dma_ops) | 
 | 		return; | 
 |  | 
 | 	if (device_iommu_mapped(dev)) | 
 | 		arm_setup_iommu_dma_ops(dev); | 
 |  | 
 | 	xen_setup_dma_ops(dev); | 
 | 	dev->archdata.dma_ops_setup = true; | 
 | } | 
 |  | 
 | void arch_teardown_dma_ops(struct device *dev) | 
 | { | 
 | 	if (!dev->archdata.dma_ops_setup) | 
 | 		return; | 
 |  | 
 | 	arm_teardown_iommu_dma_ops(dev); | 
 | 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */ | 
 | 	set_dma_ops(dev, NULL); | 
 | } | 
 |  | 
 | void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), | 
 | 			      size, dir); | 
 | } | 
 |  | 
 | void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), | 
 | 			      size, dir); | 
 | } | 
 |  | 
 | void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, | 
 | 		gfp_t gfp, unsigned long attrs) | 
 | { | 
 | 	return __dma_alloc(dev, size, dma_handle, gfp, | 
 | 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false, | 
 | 			   attrs, __builtin_return_address(0)); | 
 | } | 
 |  | 
 | void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
 | 		dma_addr_t dma_handle, unsigned long attrs) | 
 | { | 
 | 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false); | 
 | } |