| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * Contiguous Memory Allocator | 
 |  * | 
 |  * Copyright (c) 2010-2011 by Samsung Electronics. | 
 |  * Copyright IBM Corporation, 2013 | 
 |  * Copyright LG Electronics Inc., 2014 | 
 |  * Written by: | 
 |  *	Marek Szyprowski <m.szyprowski@samsung.com> | 
 |  *	Michal Nazarewicz <mina86@mina86.com> | 
 |  *	Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> | 
 |  *	Joonsoo Kim <iamjoonsoo.kim@lge.com> | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "cma: " fmt | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 |  | 
 | #include <linux/memblock.h> | 
 | #include <linux/err.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/string_choices.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/cma.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/io.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <trace/events/cma.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "cma.h" | 
 |  | 
 | struct cma cma_areas[MAX_CMA_AREAS]; | 
 | unsigned int cma_area_count; | 
 |  | 
 | phys_addr_t cma_get_base(const struct cma *cma) | 
 | { | 
 | 	WARN_ON_ONCE(cma->nranges != 1); | 
 | 	return PFN_PHYS(cma->ranges[0].base_pfn); | 
 | } | 
 |  | 
 | unsigned long cma_get_size(const struct cma *cma) | 
 | { | 
 | 	return cma->count << PAGE_SHIFT; | 
 | } | 
 |  | 
 | const char *cma_get_name(const struct cma *cma) | 
 | { | 
 | 	return cma->name; | 
 | } | 
 |  | 
 | static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, | 
 | 					     unsigned int align_order) | 
 | { | 
 | 	if (align_order <= cma->order_per_bit) | 
 | 		return 0; | 
 | 	return (1UL << (align_order - cma->order_per_bit)) - 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the offset of the base PFN from the specified align_order. | 
 |  * The value returned is represented in order_per_bits. | 
 |  */ | 
 | static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, | 
 | 					       const struct cma_memrange *cmr, | 
 | 					       unsigned int align_order) | 
 | { | 
 | 	return (cmr->base_pfn & ((1UL << align_order) - 1)) | 
 | 		>> cma->order_per_bit; | 
 | } | 
 |  | 
 | static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, | 
 | 					      unsigned long pages) | 
 | { | 
 | 	return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; | 
 | } | 
 |  | 
 | static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr, | 
 | 			     unsigned long pfn, unsigned long count) | 
 | { | 
 | 	unsigned long bitmap_no, bitmap_count; | 
 | 	unsigned long flags; | 
 |  | 
 | 	bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit; | 
 | 	bitmap_count = cma_bitmap_pages_to_bits(cma, count); | 
 |  | 
 | 	spin_lock_irqsave(&cma->lock, flags); | 
 | 	bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count); | 
 | 	cma->available_count += count; | 
 | 	spin_unlock_irqrestore(&cma->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if a CMA area contains no ranges that intersect with | 
 |  * multiple zones. Store the result in the flags in case | 
 |  * this gets called more than once. | 
 |  */ | 
 | bool cma_validate_zones(struct cma *cma) | 
 | { | 
 | 	int r; | 
 | 	unsigned long base_pfn; | 
 | 	struct cma_memrange *cmr; | 
 | 	bool valid_bit_set; | 
 |  | 
 | 	/* | 
 | 	 * If already validated, return result of previous check. | 
 | 	 * Either the valid or invalid bit will be set if this | 
 | 	 * check has already been done. If neither is set, the | 
 | 	 * check has not been performed yet. | 
 | 	 */ | 
 | 	valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags); | 
 | 	if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags)) | 
 | 		return valid_bit_set; | 
 |  | 
 | 	for (r = 0; r < cma->nranges; r++) { | 
 | 		cmr = &cma->ranges[r]; | 
 | 		base_pfn = cmr->base_pfn; | 
 |  | 
 | 		/* | 
 | 		 * alloc_contig_range() requires the pfn range specified | 
 | 		 * to be in the same zone. Simplify by forcing the entire | 
 | 		 * CMA resv range to be in the same zone. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(!pfn_valid(base_pfn)); | 
 | 		if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) { | 
 | 			set_bit(CMA_ZONES_INVALID, &cma->flags); | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	set_bit(CMA_ZONES_VALID, &cma->flags); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __init cma_activate_area(struct cma *cma) | 
 | { | 
 | 	unsigned long pfn, end_pfn, early_pfn[CMA_MAX_RANGES]; | 
 | 	int allocrange, r; | 
 | 	struct cma_memrange *cmr; | 
 | 	unsigned long bitmap_count, count; | 
 |  | 
 | 	for (allocrange = 0; allocrange < cma->nranges; allocrange++) { | 
 | 		cmr = &cma->ranges[allocrange]; | 
 | 		early_pfn[allocrange] = cmr->early_pfn; | 
 | 		cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr), | 
 | 					    GFP_KERNEL); | 
 | 		if (!cmr->bitmap) | 
 | 			goto cleanup; | 
 | 	} | 
 |  | 
 | 	if (!cma_validate_zones(cma)) | 
 | 		goto cleanup; | 
 |  | 
 | 	for (r = 0; r < cma->nranges; r++) { | 
 | 		cmr = &cma->ranges[r]; | 
 | 		if (early_pfn[r] != cmr->base_pfn) { | 
 | 			count = early_pfn[r] - cmr->base_pfn; | 
 | 			bitmap_count = cma_bitmap_pages_to_bits(cma, count); | 
 | 			bitmap_set(cmr->bitmap, 0, bitmap_count); | 
 | 		} | 
 |  | 
 | 		for (pfn = early_pfn[r]; pfn < cmr->base_pfn + cmr->count; | 
 | 		     pfn += pageblock_nr_pages) | 
 | 			init_cma_reserved_pageblock(pfn_to_page(pfn)); | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&cma->lock); | 
 |  | 
 | 	mutex_init(&cma->alloc_mutex); | 
 |  | 
 | #ifdef CONFIG_CMA_DEBUGFS | 
 | 	INIT_HLIST_HEAD(&cma->mem_head); | 
 | 	spin_lock_init(&cma->mem_head_lock); | 
 | #endif | 
 | 	set_bit(CMA_ACTIVATED, &cma->flags); | 
 |  | 
 | 	return; | 
 |  | 
 | cleanup: | 
 | 	for (r = 0; r < allocrange; r++) | 
 | 		bitmap_free(cma->ranges[r].bitmap); | 
 |  | 
 | 	/* Expose all pages to the buddy, they are useless for CMA. */ | 
 | 	if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) { | 
 | 		for (r = 0; r < allocrange; r++) { | 
 | 			cmr = &cma->ranges[r]; | 
 | 			end_pfn = cmr->base_pfn + cmr->count; | 
 | 			for (pfn = early_pfn[r]; pfn < end_pfn; pfn++) | 
 | 				free_reserved_page(pfn_to_page(pfn)); | 
 | 		} | 
 | 	} | 
 | 	totalcma_pages -= cma->count; | 
 | 	cma->available_count = cma->count = 0; | 
 | 	pr_err("CMA area %s could not be activated\n", cma->name); | 
 | } | 
 |  | 
 | static int __init cma_init_reserved_areas(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cma_area_count; i++) | 
 | 		cma_activate_area(&cma_areas[i]); | 
 |  | 
 | 	return 0; | 
 | } | 
 | core_initcall(cma_init_reserved_areas); | 
 |  | 
 | void __init cma_reserve_pages_on_error(struct cma *cma) | 
 | { | 
 | 	set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags); | 
 | } | 
 |  | 
 | static int __init cma_new_area(const char *name, phys_addr_t size, | 
 | 			       unsigned int order_per_bit, | 
 | 			       struct cma **res_cma) | 
 | { | 
 | 	struct cma *cma; | 
 |  | 
 | 	if (cma_area_count == ARRAY_SIZE(cma_areas)) { | 
 | 		pr_err("Not enough slots for CMA reserved regions!\n"); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Each reserved area must be initialised later, when more kernel | 
 | 	 * subsystems (like slab allocator) are available. | 
 | 	 */ | 
 | 	cma = &cma_areas[cma_area_count]; | 
 | 	cma_area_count++; | 
 |  | 
 | 	if (name) | 
 | 		snprintf(cma->name, CMA_MAX_NAME, "%s", name); | 
 | 	else | 
 | 		snprintf(cma->name, CMA_MAX_NAME,  "cma%d\n", cma_area_count); | 
 |  | 
 | 	cma->available_count = cma->count = size >> PAGE_SHIFT; | 
 | 	cma->order_per_bit = order_per_bit; | 
 | 	*res_cma = cma; | 
 | 	totalcma_pages += cma->count; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init cma_drop_area(struct cma *cma) | 
 | { | 
 | 	totalcma_pages -= cma->count; | 
 | 	cma_area_count--; | 
 | } | 
 |  | 
 | /** | 
 |  * cma_init_reserved_mem() - create custom contiguous area from reserved memory | 
 |  * @base: Base address of the reserved area | 
 |  * @size: Size of the reserved area (in bytes), | 
 |  * @order_per_bit: Order of pages represented by one bit on bitmap. | 
 |  * @name: The name of the area. If this parameter is NULL, the name of | 
 |  *        the area will be set to "cmaN", where N is a running counter of | 
 |  *        used areas. | 
 |  * @res_cma: Pointer to store the created cma region. | 
 |  * | 
 |  * This function creates custom contiguous area from already reserved memory. | 
 |  */ | 
 | int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, | 
 | 				 unsigned int order_per_bit, | 
 | 				 const char *name, | 
 | 				 struct cma **res_cma) | 
 | { | 
 | 	struct cma *cma; | 
 | 	int ret; | 
 |  | 
 | 	/* Sanity checks */ | 
 | 	if (!size || !memblock_is_region_reserved(base, size)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which | 
 | 	 * needs pageblock_order to be initialized. Let's enforce it. | 
 | 	 */ | 
 | 	if (!pageblock_order) { | 
 | 		pr_err("pageblock_order not yet initialized. Called during early boot?\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* ensure minimal alignment required by mm core */ | 
 | 	if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = cma_new_area(name, size, order_per_bit, &cma); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	cma->ranges[0].base_pfn = PFN_DOWN(base); | 
 | 	cma->ranges[0].early_pfn = PFN_DOWN(base); | 
 | 	cma->ranges[0].count = cma->count; | 
 | 	cma->nranges = 1; | 
 | 	cma->nid = NUMA_NO_NODE; | 
 |  | 
 | 	*res_cma = cma; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Structure used while walking physical memory ranges and finding out | 
 |  * which one(s) to use for a CMA area. | 
 |  */ | 
 | struct cma_init_memrange { | 
 | 	phys_addr_t base; | 
 | 	phys_addr_t size; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | /* | 
 |  * Work array used during CMA initialization. | 
 |  */ | 
 | static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata; | 
 |  | 
 | static bool __init revsizecmp(struct cma_init_memrange *mlp, | 
 | 			      struct cma_init_memrange *mrp) | 
 | { | 
 | 	return mlp->size > mrp->size; | 
 | } | 
 |  | 
 | static bool __init basecmp(struct cma_init_memrange *mlp, | 
 | 			   struct cma_init_memrange *mrp) | 
 | { | 
 | 	return mlp->base < mrp->base; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to create sorted lists. | 
 |  */ | 
 | static void __init list_insert_sorted( | 
 | 	struct list_head *ranges, | 
 | 	struct cma_init_memrange *mrp, | 
 | 	bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh)) | 
 | { | 
 | 	struct list_head *mp; | 
 | 	struct cma_init_memrange *mlp; | 
 |  | 
 | 	if (list_empty(ranges)) | 
 | 		list_add(&mrp->list, ranges); | 
 | 	else { | 
 | 		list_for_each(mp, ranges) { | 
 | 			mlp = list_entry(mp, struct cma_init_memrange, list); | 
 | 			if (cmp(mlp, mrp)) | 
 | 				break; | 
 | 		} | 
 | 		__list_add(&mrp->list, mlp->list.prev, &mlp->list); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init cma_fixed_reserve(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_HIGHMEM)) { | 
 | 		phys_addr_t highmem_start = __pa(high_memory - 1) + 1; | 
 |  | 
 | 		/* | 
 | 		 * If allocating at a fixed base the request region must not | 
 | 		 * cross the low/high memory boundary. | 
 | 		 */ | 
 | 		if (base < highmem_start && base + size > highmem_start) { | 
 | 			pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", | 
 | 			       &base, &highmem_start); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (memblock_is_region_reserved(base, size) || | 
 | 	    memblock_reserve(base, size) < 0) { | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static phys_addr_t __init cma_alloc_mem(phys_addr_t base, phys_addr_t size, | 
 | 			phys_addr_t align, phys_addr_t limit, int nid) | 
 | { | 
 | 	phys_addr_t addr = 0; | 
 |  | 
 | 	/* | 
 | 	 * If there is enough memory, try a bottom-up allocation first. | 
 | 	 * It will place the new cma area close to the start of the node | 
 | 	 * and guarantee that the compaction is moving pages out of the | 
 | 	 * cma area and not into it. | 
 | 	 * Avoid using first 4GB to not interfere with constrained zones | 
 | 	 * like DMA/DMA32. | 
 | 	 */ | 
 | #ifdef CONFIG_PHYS_ADDR_T_64BIT | 
 | 	if (!memblock_bottom_up() && limit >= SZ_4G + size) { | 
 | 		memblock_set_bottom_up(true); | 
 | 		addr = memblock_alloc_range_nid(size, align, SZ_4G, limit, | 
 | 						nid, true); | 
 | 		memblock_set_bottom_up(false); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * On systems with HIGHMEM try allocating from there before consuming | 
 | 	 * memory in lower zones. | 
 | 	 */ | 
 | 	if (!addr && IS_ENABLED(CONFIG_HIGHMEM)) { | 
 | 		phys_addr_t highmem = __pa(high_memory - 1) + 1; | 
 |  | 
 | 		/* | 
 | 		 * All pages in the reserved area must come from the same zone. | 
 | 		 * If the requested region crosses the low/high memory boundary, | 
 | 		 * try allocating from high memory first and fall back to low | 
 | 		 * memory in case of failure. | 
 | 		 */ | 
 | 		if (base < highmem && limit > highmem) { | 
 | 			addr = memblock_alloc_range_nid(size, align, highmem, | 
 | 							limit, nid, true); | 
 | 			limit = highmem; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!addr) | 
 | 		addr = memblock_alloc_range_nid(size, align, base, limit, nid, | 
 | 						true); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static int __init __cma_declare_contiguous_nid(phys_addr_t *basep, | 
 | 			phys_addr_t size, phys_addr_t limit, | 
 | 			phys_addr_t alignment, unsigned int order_per_bit, | 
 | 			bool fixed, const char *name, struct cma **res_cma, | 
 | 			int nid) | 
 | { | 
 | 	phys_addr_t memblock_end = memblock_end_of_DRAM(); | 
 | 	phys_addr_t base = *basep; | 
 | 	int ret; | 
 |  | 
 | 	pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n", | 
 | 		__func__, &size, &base, &limit, &alignment); | 
 |  | 
 | 	if (cma_area_count == ARRAY_SIZE(cma_areas)) { | 
 | 		pr_err("Not enough slots for CMA reserved regions!\n"); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	if (!size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (alignment && !is_power_of_2(alignment)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_NUMA)) | 
 | 		nid = NUMA_NO_NODE; | 
 |  | 
 | 	/* Sanitise input arguments. */ | 
 | 	alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); | 
 | 	if (fixed && base & (alignment - 1)) { | 
 | 		pr_err("Region at %pa must be aligned to %pa bytes\n", | 
 | 			&base, &alignment); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	base = ALIGN(base, alignment); | 
 | 	size = ALIGN(size, alignment); | 
 | 	limit &= ~(alignment - 1); | 
 |  | 
 | 	if (!base) | 
 | 		fixed = false; | 
 |  | 
 | 	/* size should be aligned with order_per_bit */ | 
 | 	if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit)) | 
 | 		return -EINVAL; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * If the limit is unspecified or above the memblock end, its effective | 
 | 	 * value will be the memblock end. Set it explicitly to simplify further | 
 | 	 * checks. | 
 | 	 */ | 
 | 	if (limit == 0 || limit > memblock_end) | 
 | 		limit = memblock_end; | 
 |  | 
 | 	if (base + size > limit) { | 
 | 		pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", | 
 | 			&size, &base, &limit); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Reserve memory */ | 
 | 	if (fixed) { | 
 | 		ret = cma_fixed_reserve(base, size); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} else { | 
 | 		base = cma_alloc_mem(base, size, alignment, limit, nid); | 
 | 		if (!base) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		/* | 
 | 		 * kmemleak scans/reads tracked objects for pointers to other | 
 | 		 * objects but this address isn't mapped and accessible | 
 | 		 */ | 
 | 		kmemleak_ignore_phys(base); | 
 | 	} | 
 |  | 
 | 	ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); | 
 | 	if (ret) { | 
 | 		memblock_phys_free(base, size); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	(*res_cma)->nid = nid; | 
 | 	*basep = base; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Create CMA areas with a total size of @total_size. A normal allocation | 
 |  * for one area is tried first. If that fails, the biggest memblock | 
 |  * ranges above 4G are selected, and allocated bottom up. | 
 |  * | 
 |  * The complexity here is not great, but this function will only be | 
 |  * called during boot, and the lists operated on have fewer than | 
 |  * CMA_MAX_RANGES elements (default value: 8). | 
 |  */ | 
 | int __init cma_declare_contiguous_multi(phys_addr_t total_size, | 
 | 			phys_addr_t align, unsigned int order_per_bit, | 
 | 			const char *name, struct cma **res_cma, int nid) | 
 | { | 
 | 	phys_addr_t start = 0, end; | 
 | 	phys_addr_t size, sizesum, sizeleft; | 
 | 	struct cma_init_memrange *mrp, *mlp, *failed; | 
 | 	struct cma_memrange *cmrp; | 
 | 	LIST_HEAD(ranges); | 
 | 	LIST_HEAD(final_ranges); | 
 | 	struct list_head *mp, *next; | 
 | 	int ret, nr = 1; | 
 | 	u64 i; | 
 | 	struct cma *cma; | 
 |  | 
 | 	/* | 
 | 	 * First, try it the normal way, producing just one range. | 
 | 	 */ | 
 | 	ret = __cma_declare_contiguous_nid(&start, total_size, 0, align, | 
 | 			order_per_bit, false, name, res_cma, nid); | 
 | 	if (ret != -ENOMEM) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Couldn't find one range that fits our needs, so try multiple | 
 | 	 * ranges. | 
 | 	 * | 
 | 	 * No need to do the alignment checks here, the call to | 
 | 	 * cma_declare_contiguous_nid above would have caught | 
 | 	 * any issues. With the checks, we know that: | 
 | 	 * | 
 | 	 * - @align is a power of 2 | 
 | 	 * - @align is >= pageblock alignment | 
 | 	 * - @size is aligned to @align and to @order_per_bit | 
 | 	 * | 
 | 	 * So, as long as we create ranges that have a base | 
 | 	 * aligned to @align, and a size that is aligned to | 
 | 	 * both @align and @order_to_bit, things will work out. | 
 | 	 */ | 
 | 	nr = 0; | 
 | 	sizesum = 0; | 
 | 	failed = NULL; | 
 |  | 
 | 	ret = cma_new_area(name, total_size, order_per_bit, &cma); | 
 | 	if (ret != 0) | 
 | 		goto out; | 
 |  | 
 | 	align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); | 
 | 	/* | 
 | 	 * Create a list of ranges above 4G, largest range first. | 
 | 	 */ | 
 | 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) { | 
 | 		if (upper_32_bits(start) == 0) | 
 | 			continue; | 
 |  | 
 | 		start = ALIGN(start, align); | 
 | 		if (start >= end) | 
 | 			continue; | 
 |  | 
 | 		end = ALIGN_DOWN(end, align); | 
 | 		if (end <= start) | 
 | 			continue; | 
 |  | 
 | 		size = end - start; | 
 | 		size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit)); | 
 | 		if (!size) | 
 | 			continue; | 
 | 		sizesum += size; | 
 |  | 
 | 		pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end); | 
 |  | 
 | 		/* | 
 | 		 * If we don't yet have used the maximum number of | 
 | 		 * areas, grab a new one. | 
 | 		 * | 
 | 		 * If we can't use anymore, see if this range is not | 
 | 		 * smaller than the smallest one already recorded. If | 
 | 		 * not, re-use the smallest element. | 
 | 		 */ | 
 | 		if (nr < CMA_MAX_RANGES) | 
 | 			mrp = &memranges[nr++]; | 
 | 		else { | 
 | 			mrp = list_last_entry(&ranges, | 
 | 					      struct cma_init_memrange, list); | 
 | 			if (size < mrp->size) | 
 | 				continue; | 
 | 			list_del(&mrp->list); | 
 | 			sizesum -= mrp->size; | 
 | 			pr_debug("deleted %016llx - %016llx from the list\n", | 
 | 				(u64)mrp->base, (u64)mrp->base + size); | 
 | 		} | 
 | 		mrp->base = start; | 
 | 		mrp->size = size; | 
 |  | 
 | 		/* | 
 | 		 * Now do a sorted insert. | 
 | 		 */ | 
 | 		list_insert_sorted(&ranges, mrp, revsizecmp); | 
 | 		pr_debug("added %016llx - %016llx to the list\n", | 
 | 		    (u64)mrp->base, (u64)mrp->base + size); | 
 | 		pr_debug("total size now %llu\n", (u64)sizesum); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * There is not enough room in the CMA_MAX_RANGES largest | 
 | 	 * ranges, so bail out. | 
 | 	 */ | 
 | 	if (sizesum < total_size) { | 
 | 		cma_drop_area(cma); | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Found ranges that provide enough combined space. | 
 | 	 * Now, sorted them by address, smallest first, because we | 
 | 	 * want to mimic a bottom-up memblock allocation. | 
 | 	 */ | 
 | 	sizesum = 0; | 
 | 	list_for_each_safe(mp, next, &ranges) { | 
 | 		mlp = list_entry(mp, struct cma_init_memrange, list); | 
 | 		list_del(mp); | 
 | 		list_insert_sorted(&final_ranges, mlp, basecmp); | 
 | 		sizesum += mlp->size; | 
 | 		if (sizesum >= total_size) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Walk the final list, and add a CMA range for | 
 | 	 * each range, possibly not using the last one fully. | 
 | 	 */ | 
 | 	nr = 0; | 
 | 	sizeleft = total_size; | 
 | 	list_for_each(mp, &final_ranges) { | 
 | 		mlp = list_entry(mp, struct cma_init_memrange, list); | 
 | 		size = min(sizeleft, mlp->size); | 
 | 		if (memblock_reserve(mlp->base, size)) { | 
 | 			/* | 
 | 			 * Unexpected error. Could go on to | 
 | 			 * the next one, but just abort to | 
 | 			 * be safe. | 
 | 			 */ | 
 | 			failed = mlp; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pr_debug("created region %d: %016llx - %016llx\n", | 
 | 		    nr, (u64)mlp->base, (u64)mlp->base + size); | 
 | 		cmrp = &cma->ranges[nr++]; | 
 | 		cmrp->base_pfn = PHYS_PFN(mlp->base); | 
 | 		cmrp->early_pfn = cmrp->base_pfn; | 
 | 		cmrp->count = size >> PAGE_SHIFT; | 
 |  | 
 | 		sizeleft -= size; | 
 | 		if (sizeleft == 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (failed) { | 
 | 		list_for_each(mp, &final_ranges) { | 
 | 			mlp = list_entry(mp, struct cma_init_memrange, list); | 
 | 			if (mlp == failed) | 
 | 				break; | 
 | 			memblock_phys_free(mlp->base, mlp->size); | 
 | 		} | 
 | 		cma_drop_area(cma); | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	cma->nranges = nr; | 
 | 	cma->nid = nid; | 
 | 	*res_cma = cma; | 
 |  | 
 | out: | 
 | 	if (ret != 0) | 
 | 		pr_err("Failed to reserve %lu MiB\n", | 
 | 			(unsigned long)total_size / SZ_1M); | 
 | 	else | 
 | 		pr_info("Reserved %lu MiB in %d range%s\n", | 
 | 			(unsigned long)total_size / SZ_1M, nr, str_plural(nr)); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * cma_declare_contiguous_nid() - reserve custom contiguous area | 
 |  * @base: Base address of the reserved area optional, use 0 for any | 
 |  * @size: Size of the reserved area (in bytes), | 
 |  * @limit: End address of the reserved memory (optional, 0 for any). | 
 |  * @alignment: Alignment for the CMA area, should be power of 2 or zero | 
 |  * @order_per_bit: Order of pages represented by one bit on bitmap. | 
 |  * @fixed: hint about where to place the reserved area | 
 |  * @name: The name of the area. See function cma_init_reserved_mem() | 
 |  * @res_cma: Pointer to store the created cma region. | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * | 
 |  * This function reserves memory from early allocator. It should be | 
 |  * called by arch specific code once the early allocator (memblock or bootmem) | 
 |  * has been activated and all other subsystems have already allocated/reserved | 
 |  * memory. This function allows to create custom reserved areas. | 
 |  * | 
 |  * If @fixed is true, reserve contiguous area at exactly @base.  If false, | 
 |  * reserve in range from @base to @limit. | 
 |  */ | 
 | int __init cma_declare_contiguous_nid(phys_addr_t base, | 
 | 			phys_addr_t size, phys_addr_t limit, | 
 | 			phys_addr_t alignment, unsigned int order_per_bit, | 
 | 			bool fixed, const char *name, struct cma **res_cma, | 
 | 			int nid) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = __cma_declare_contiguous_nid(&base, size, limit, alignment, | 
 | 			order_per_bit, fixed, name, res_cma, nid); | 
 | 	if (ret != 0) | 
 | 		pr_err("Failed to reserve %ld MiB\n", | 
 | 				(unsigned long)size / SZ_1M); | 
 | 	else | 
 | 		pr_info("Reserved %ld MiB at %pa\n", | 
 | 				(unsigned long)size / SZ_1M, &base); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void cma_debug_show_areas(struct cma *cma) | 
 | { | 
 | 	unsigned long start, end; | 
 | 	unsigned long nr_part; | 
 | 	unsigned long nbits; | 
 | 	int r; | 
 | 	struct cma_memrange *cmr; | 
 |  | 
 | 	spin_lock_irq(&cma->lock); | 
 | 	pr_info("number of available pages: "); | 
 | 	for (r = 0; r < cma->nranges; r++) { | 
 | 		cmr = &cma->ranges[r]; | 
 |  | 
 | 		nbits = cma_bitmap_maxno(cma, cmr); | 
 |  | 
 | 		pr_info("range %d: ", r); | 
 | 		for_each_clear_bitrange(start, end, cmr->bitmap, nbits) { | 
 | 			nr_part = (end - start) << cma->order_per_bit; | 
 | 			pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, start); | 
 | 		} | 
 | 		pr_info("\n"); | 
 | 	} | 
 | 	pr_cont("=> %lu free of %lu total pages\n", cma->available_count, | 
 | 			cma->count); | 
 | 	spin_unlock_irq(&cma->lock); | 
 | } | 
 |  | 
 | static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr, | 
 | 				unsigned long count, unsigned int align, | 
 | 				struct page **pagep, gfp_t gfp) | 
 | { | 
 | 	unsigned long mask, offset; | 
 | 	unsigned long pfn = -1; | 
 | 	unsigned long start = 0; | 
 | 	unsigned long bitmap_maxno, bitmap_no, bitmap_count; | 
 | 	int ret = -EBUSY; | 
 | 	struct page *page = NULL; | 
 |  | 
 | 	mask = cma_bitmap_aligned_mask(cma, align); | 
 | 	offset = cma_bitmap_aligned_offset(cma, cmr, align); | 
 | 	bitmap_maxno = cma_bitmap_maxno(cma, cmr); | 
 | 	bitmap_count = cma_bitmap_pages_to_bits(cma, count); | 
 |  | 
 | 	if (bitmap_count > bitmap_maxno) | 
 | 		goto out; | 
 |  | 
 | 	for (;;) { | 
 | 		spin_lock_irq(&cma->lock); | 
 | 		/* | 
 | 		 * If the request is larger than the available number | 
 | 		 * of pages, stop right away. | 
 | 		 */ | 
 | 		if (count > cma->available_count) { | 
 | 			spin_unlock_irq(&cma->lock); | 
 | 			break; | 
 | 		} | 
 | 		bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap, | 
 | 				bitmap_maxno, start, bitmap_count, mask, | 
 | 				offset); | 
 | 		if (bitmap_no >= bitmap_maxno) { | 
 | 			spin_unlock_irq(&cma->lock); | 
 | 			break; | 
 | 		} | 
 | 		bitmap_set(cmr->bitmap, bitmap_no, bitmap_count); | 
 | 		cma->available_count -= count; | 
 | 		/* | 
 | 		 * It's safe to drop the lock here. We've marked this region for | 
 | 		 * our exclusive use. If the migration fails we will take the | 
 | 		 * lock again and unmark it. | 
 | 		 */ | 
 | 		spin_unlock_irq(&cma->lock); | 
 |  | 
 | 		pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit); | 
 | 		mutex_lock(&cma->alloc_mutex); | 
 | 		ret = alloc_contig_range(pfn, pfn + count, ACR_FLAGS_CMA, gfp); | 
 | 		mutex_unlock(&cma->alloc_mutex); | 
 | 		if (ret == 0) { | 
 | 			page = pfn_to_page(pfn); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		cma_clear_bitmap(cma, cmr, pfn, count); | 
 | 		if (ret != -EBUSY) | 
 | 			break; | 
 |  | 
 | 		pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n", | 
 | 			 __func__, pfn, pfn_to_page(pfn)); | 
 |  | 
 | 		trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn), | 
 | 					   count, align); | 
 | 		/* try again with a bit different memory target */ | 
 | 		start = bitmap_no + mask + 1; | 
 | 	} | 
 | out: | 
 | 	*pagep = page; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct page *__cma_alloc(struct cma *cma, unsigned long count, | 
 | 		       unsigned int align, gfp_t gfp) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	int ret = -ENOMEM, r; | 
 | 	unsigned long i; | 
 | 	const char *name = cma ? cma->name : NULL; | 
 |  | 
 | 	if (!cma || !cma->count) | 
 | 		return page; | 
 |  | 
 | 	pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, | 
 | 		(void *)cma, cma->name, count, align); | 
 |  | 
 | 	if (!count) | 
 | 		return page; | 
 |  | 
 | 	trace_cma_alloc_start(name, count, align); | 
 |  | 
 | 	for (r = 0; r < cma->nranges; r++) { | 
 | 		page = NULL; | 
 |  | 
 | 		ret = cma_range_alloc(cma, &cma->ranges[r], count, align, | 
 | 				       &page, gfp); | 
 | 		if (ret != -EBUSY || page) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * CMA can allocate multiple page blocks, which results in different | 
 | 	 * blocks being marked with different tags. Reset the tags to ignore | 
 | 	 * those page blocks. | 
 | 	 */ | 
 | 	if (page) { | 
 | 		for (i = 0; i < count; i++) | 
 | 			page_kasan_tag_reset(nth_page(page, i)); | 
 | 	} | 
 |  | 
 | 	if (ret && !(gfp & __GFP_NOWARN)) { | 
 | 		pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n", | 
 | 				   __func__, cma->name, count, ret); | 
 | 		cma_debug_show_areas(cma); | 
 | 	} | 
 |  | 
 | 	pr_debug("%s(): returned %p\n", __func__, page); | 
 | 	trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0, | 
 | 			       page, count, align, ret); | 
 | 	if (page) { | 
 | 		count_vm_event(CMA_ALLOC_SUCCESS); | 
 | 		cma_sysfs_account_success_pages(cma, count); | 
 | 	} else { | 
 | 		count_vm_event(CMA_ALLOC_FAIL); | 
 | 		cma_sysfs_account_fail_pages(cma, count); | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /** | 
 |  * cma_alloc() - allocate pages from contiguous area | 
 |  * @cma:   Contiguous memory region for which the allocation is performed. | 
 |  * @count: Requested number of pages. | 
 |  * @align: Requested alignment of pages (in PAGE_SIZE order). | 
 |  * @no_warn: Avoid printing message about failed allocation | 
 |  * | 
 |  * This function allocates part of contiguous memory on specific | 
 |  * contiguous memory area. | 
 |  */ | 
 | struct page *cma_alloc(struct cma *cma, unsigned long count, | 
 | 		       unsigned int align, bool no_warn) | 
 | { | 
 | 	return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0)); | 
 | } | 
 |  | 
 | struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (WARN_ON(!order || !(gfp & __GFP_COMP))) | 
 | 		return NULL; | 
 |  | 
 | 	page = __cma_alloc(cma, 1 << order, order, gfp); | 
 |  | 
 | 	return page ? page_folio(page) : NULL; | 
 | } | 
 |  | 
 | bool cma_pages_valid(struct cma *cma, const struct page *pages, | 
 | 		     unsigned long count) | 
 | { | 
 | 	unsigned long pfn, end; | 
 | 	int r; | 
 | 	struct cma_memrange *cmr; | 
 | 	bool ret; | 
 |  | 
 | 	if (!cma || !pages || count > cma->count) | 
 | 		return false; | 
 |  | 
 | 	pfn = page_to_pfn(pages); | 
 | 	ret = false; | 
 |  | 
 | 	for (r = 0; r < cma->nranges; r++) { | 
 | 		cmr = &cma->ranges[r]; | 
 | 		end = cmr->base_pfn + cmr->count; | 
 | 		if (pfn >= cmr->base_pfn && pfn < end) { | 
 | 			ret = pfn + count <= end; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!ret) | 
 | 		pr_debug("%s(page %p, count %lu)\n", | 
 | 				__func__, (void *)pages, count); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * cma_release() - release allocated pages | 
 |  * @cma:   Contiguous memory region for which the allocation is performed. | 
 |  * @pages: Allocated pages. | 
 |  * @count: Number of allocated pages. | 
 |  * | 
 |  * This function releases memory allocated by cma_alloc(). | 
 |  * It returns false when provided pages do not belong to contiguous area and | 
 |  * true otherwise. | 
 |  */ | 
 | bool cma_release(struct cma *cma, const struct page *pages, | 
 | 		 unsigned long count) | 
 | { | 
 | 	struct cma_memrange *cmr; | 
 | 	unsigned long pfn, end_pfn; | 
 | 	int r; | 
 |  | 
 | 	pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); | 
 |  | 
 | 	if (!cma_pages_valid(cma, pages, count)) | 
 | 		return false; | 
 |  | 
 | 	pfn = page_to_pfn(pages); | 
 | 	end_pfn = pfn + count; | 
 |  | 
 | 	for (r = 0; r < cma->nranges; r++) { | 
 | 		cmr = &cma->ranges[r]; | 
 | 		if (pfn >= cmr->base_pfn && | 
 | 		    pfn < (cmr->base_pfn + cmr->count)) { | 
 | 			VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (r == cma->nranges) | 
 | 		return false; | 
 |  | 
 | 	free_contig_range(pfn, count); | 
 | 	cma_clear_bitmap(cma, cmr, pfn, count); | 
 | 	cma_sysfs_account_release_pages(cma, count); | 
 | 	trace_cma_release(cma->name, pfn, pages, count); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | bool cma_free_folio(struct cma *cma, const struct folio *folio) | 
 | { | 
 | 	if (WARN_ON(!folio_test_large(folio))) | 
 | 		return false; | 
 |  | 
 | 	return cma_release(cma, &folio->page, folio_nr_pages(folio)); | 
 | } | 
 |  | 
 | int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cma_area_count; i++) { | 
 | 		int ret = it(&cma_areas[i], data); | 
 |  | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end) | 
 | { | 
 | 	int r; | 
 | 	struct cma_memrange *cmr; | 
 | 	unsigned long rstart, rend; | 
 |  | 
 | 	for (r = 0; r < cma->nranges; r++) { | 
 | 		cmr = &cma->ranges[r]; | 
 |  | 
 | 		rstart = PFN_PHYS(cmr->base_pfn); | 
 | 		rend = PFN_PHYS(cmr->base_pfn + cmr->count); | 
 | 		if (end < rstart) | 
 | 			continue; | 
 | 		if (start >= rend) | 
 | 			continue; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Very basic function to reserve memory from a CMA area that has not | 
 |  * yet been activated. This is expected to be called early, when the | 
 |  * system is single-threaded, so there is no locking. The alignment | 
 |  * checking is restrictive - only pageblock-aligned areas | 
 |  * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function. | 
 |  * This keeps things simple, and is enough for the current use case. | 
 |  * | 
 |  * The CMA bitmaps have not yet been allocated, so just start | 
 |  * reserving from the bottom up, using a PFN to keep track | 
 |  * of what has been reserved. Unreserving is not possible. | 
 |  * | 
 |  * The caller is responsible for initializing the page structures | 
 |  * in the area properly, since this just points to memblock-allocated | 
 |  * memory. The caller should subsequently use init_cma_pageblock to | 
 |  * set the migrate type and CMA stats  the pageblocks that were reserved. | 
 |  * | 
 |  * If the CMA area fails to activate later, memory obtained through | 
 |  * this interface is not handed to the page allocator, this is | 
 |  * the responsibility of the caller (e.g. like normal memblock-allocated | 
 |  * memory). | 
 |  */ | 
 | void __init *cma_reserve_early(struct cma *cma, unsigned long size) | 
 | { | 
 | 	int r; | 
 | 	struct cma_memrange *cmr; | 
 | 	unsigned long available; | 
 | 	void *ret = NULL; | 
 |  | 
 | 	if (!cma || !cma->count) | 
 | 		return NULL; | 
 | 	/* | 
 | 	 * Can only be called early in init. | 
 | 	 */ | 
 | 	if (test_bit(CMA_ACTIVATED, &cma->flags)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit))) | 
 | 		return NULL; | 
 |  | 
 | 	size >>= PAGE_SHIFT; | 
 |  | 
 | 	if (size > cma->available_count) | 
 | 		return NULL; | 
 |  | 
 | 	for (r = 0; r < cma->nranges; r++) { | 
 | 		cmr = &cma->ranges[r]; | 
 | 		available = cmr->count - (cmr->early_pfn - cmr->base_pfn); | 
 | 		if (size <= available) { | 
 | 			ret = phys_to_virt(PFN_PHYS(cmr->early_pfn)); | 
 | 			cmr->early_pfn += size; | 
 | 			cma->available_count -= size; | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } |