| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | #ifndef MM_SLAB_H | 
 | #define MM_SLAB_H | 
 |  | 
 | #include <linux/reciprocal_div.h> | 
 | #include <linux/list_lru.h> | 
 | #include <linux/local_lock.h> | 
 | #include <linux/random.h> | 
 | #include <linux/kobject.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/kfence.h> | 
 | #include <linux/kasan.h> | 
 |  | 
 | /* | 
 |  * Internal slab definitions | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | # ifdef system_has_cmpxchg128 | 
 | # define system_has_freelist_aba()	system_has_cmpxchg128() | 
 | # define try_cmpxchg_freelist		try_cmpxchg128 | 
 | # endif | 
 | #define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg128 | 
 | typedef u128 freelist_full_t; | 
 | #else /* CONFIG_64BIT */ | 
 | # ifdef system_has_cmpxchg64 | 
 | # define system_has_freelist_aba()	system_has_cmpxchg64() | 
 | # define try_cmpxchg_freelist		try_cmpxchg64 | 
 | # endif | 
 | #define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg64 | 
 | typedef u64 freelist_full_t; | 
 | #endif /* CONFIG_64BIT */ | 
 |  | 
 | #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | #undef system_has_freelist_aba | 
 | #endif | 
 |  | 
 | /* | 
 |  * Freelist pointer and counter to cmpxchg together, avoids the typical ABA | 
 |  * problems with cmpxchg of just a pointer. | 
 |  */ | 
 | typedef union { | 
 | 	struct { | 
 | 		void *freelist; | 
 | 		unsigned long counter; | 
 | 	}; | 
 | 	freelist_full_t full; | 
 | } freelist_aba_t; | 
 |  | 
 | /* Reuses the bits in struct page */ | 
 | struct slab { | 
 | 	unsigned long flags; | 
 |  | 
 | 	struct kmem_cache *slab_cache; | 
 | 	union { | 
 | 		struct { | 
 | 			union { | 
 | 				struct list_head slab_list; | 
 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 				struct { | 
 | 					struct slab *next; | 
 | 					int slabs;	/* Nr of slabs left */ | 
 | 				}; | 
 | #endif | 
 | 			}; | 
 | 			/* Double-word boundary */ | 
 | 			union { | 
 | 				struct { | 
 | 					void *freelist;		/* first free object */ | 
 | 					union { | 
 | 						unsigned long counters; | 
 | 						struct { | 
 | 							unsigned inuse:16; | 
 | 							unsigned objects:15; | 
 | 							/* | 
 | 							 * If slab debugging is enabled then the | 
 | 							 * frozen bit can be reused to indicate | 
 | 							 * that the slab was corrupted | 
 | 							 */ | 
 | 							unsigned frozen:1; | 
 | 						}; | 
 | 					}; | 
 | 				}; | 
 | #ifdef system_has_freelist_aba | 
 | 				freelist_aba_t freelist_counter; | 
 | #endif | 
 | 			}; | 
 | 		}; | 
 | 		struct rcu_head rcu_head; | 
 | 	}; | 
 |  | 
 | 	unsigned int __page_type; | 
 | 	atomic_t __page_refcount; | 
 | #ifdef CONFIG_SLAB_OBJ_EXT | 
 | 	unsigned long obj_exts; | 
 | #endif | 
 | }; | 
 |  | 
 | #define SLAB_MATCH(pg, sl)						\ | 
 | 	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) | 
 | SLAB_MATCH(flags, flags); | 
 | SLAB_MATCH(compound_head, slab_cache);	/* Ensure bit 0 is clear */ | 
 | SLAB_MATCH(_refcount, __page_refcount); | 
 | #ifdef CONFIG_MEMCG | 
 | SLAB_MATCH(memcg_data, obj_exts); | 
 | #elif defined(CONFIG_SLAB_OBJ_EXT) | 
 | SLAB_MATCH(_unused_slab_obj_exts, obj_exts); | 
 | #endif | 
 | #undef SLAB_MATCH | 
 | static_assert(sizeof(struct slab) <= sizeof(struct page)); | 
 | #if defined(system_has_freelist_aba) | 
 | static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t))); | 
 | #endif | 
 |  | 
 | /** | 
 |  * folio_slab - Converts from folio to slab. | 
 |  * @folio: The folio. | 
 |  * | 
 |  * Currently struct slab is a different representation of a folio where | 
 |  * folio_test_slab() is true. | 
 |  * | 
 |  * Return: The slab which contains this folio. | 
 |  */ | 
 | #define folio_slab(folio)	(_Generic((folio),			\ | 
 | 	const struct folio *:	(const struct slab *)(folio),		\ | 
 | 	struct folio *:		(struct slab *)(folio))) | 
 |  | 
 | /** | 
 |  * slab_folio - The folio allocated for a slab | 
 |  * @s: The slab. | 
 |  * | 
 |  * Slabs are allocated as folios that contain the individual objects and are | 
 |  * using some fields in the first struct page of the folio - those fields are | 
 |  * now accessed by struct slab. It is occasionally necessary to convert back to | 
 |  * a folio in order to communicate with the rest of the mm.  Please use this | 
 |  * helper function instead of casting yourself, as the implementation may change | 
 |  * in the future. | 
 |  */ | 
 | #define slab_folio(s)		(_Generic((s),				\ | 
 | 	const struct slab *:	(const struct folio *)s,		\ | 
 | 	struct slab *:		(struct folio *)s)) | 
 |  | 
 | /** | 
 |  * page_slab - Converts from first struct page to slab. | 
 |  * @p: The first (either head of compound or single) page of slab. | 
 |  * | 
 |  * A temporary wrapper to convert struct page to struct slab in situations where | 
 |  * we know the page is the compound head, or single order-0 page. | 
 |  * | 
 |  * Long-term ideally everything would work with struct slab directly or go | 
 |  * through folio to struct slab. | 
 |  * | 
 |  * Return: The slab which contains this page | 
 |  */ | 
 | #define page_slab(p)		(_Generic((p),				\ | 
 | 	const struct page *:	(const struct slab *)(p),		\ | 
 | 	struct page *:		(struct slab *)(p))) | 
 |  | 
 | /** | 
 |  * slab_page - The first struct page allocated for a slab | 
 |  * @s: The slab. | 
 |  * | 
 |  * A convenience wrapper for converting slab to the first struct page of the | 
 |  * underlying folio, to communicate with code not yet converted to folio or | 
 |  * struct slab. | 
 |  */ | 
 | #define slab_page(s) folio_page(slab_folio(s), 0) | 
 |  | 
 | static inline void *slab_address(const struct slab *slab) | 
 | { | 
 | 	return folio_address(slab_folio(slab)); | 
 | } | 
 |  | 
 | static inline int slab_nid(const struct slab *slab) | 
 | { | 
 | 	return folio_nid(slab_folio(slab)); | 
 | } | 
 |  | 
 | static inline pg_data_t *slab_pgdat(const struct slab *slab) | 
 | { | 
 | 	return folio_pgdat(slab_folio(slab)); | 
 | } | 
 |  | 
 | static inline struct slab *virt_to_slab(const void *addr) | 
 | { | 
 | 	struct folio *folio = virt_to_folio(addr); | 
 |  | 
 | 	if (!folio_test_slab(folio)) | 
 | 		return NULL; | 
 |  | 
 | 	return folio_slab(folio); | 
 | } | 
 |  | 
 | static inline int slab_order(const struct slab *slab) | 
 | { | 
 | 	return folio_order(slab_folio(slab)); | 
 | } | 
 |  | 
 | static inline size_t slab_size(const struct slab *slab) | 
 | { | 
 | 	return PAGE_SIZE << slab_order(slab); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | #define slub_percpu_partial(c)			((c)->partial) | 
 |  | 
 | #define slub_set_percpu_partial(c, p)		\ | 
 | ({						\ | 
 | 	slub_percpu_partial(c) = (p)->next;	\ | 
 | }) | 
 |  | 
 | #define slub_percpu_partial_read_once(c)	READ_ONCE(slub_percpu_partial(c)) | 
 | #else | 
 | #define slub_percpu_partial(c)			NULL | 
 |  | 
 | #define slub_set_percpu_partial(c, p) | 
 |  | 
 | #define slub_percpu_partial_read_once(c)	NULL | 
 | #endif // CONFIG_SLUB_CPU_PARTIAL | 
 |  | 
 | /* | 
 |  * Word size structure that can be atomically updated or read and that | 
 |  * contains both the order and the number of objects that a slab of the | 
 |  * given order would contain. | 
 |  */ | 
 | struct kmem_cache_order_objects { | 
 | 	unsigned int x; | 
 | }; | 
 |  | 
 | /* | 
 |  * Slab cache management. | 
 |  */ | 
 | struct kmem_cache { | 
 | #ifndef CONFIG_SLUB_TINY | 
 | 	struct kmem_cache_cpu __percpu *cpu_slab; | 
 | #endif | 
 | 	/* Used for retrieving partial slabs, etc. */ | 
 | 	slab_flags_t flags; | 
 | 	unsigned long min_partial; | 
 | 	unsigned int size;		/* Object size including metadata */ | 
 | 	unsigned int object_size;	/* Object size without metadata */ | 
 | 	struct reciprocal_value reciprocal_size; | 
 | 	unsigned int offset;		/* Free pointer offset */ | 
 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 	/* Number of per cpu partial objects to keep around */ | 
 | 	unsigned int cpu_partial; | 
 | 	/* Number of per cpu partial slabs to keep around */ | 
 | 	unsigned int cpu_partial_slabs; | 
 | #endif | 
 | 	struct kmem_cache_order_objects oo; | 
 |  | 
 | 	/* Allocation and freeing of slabs */ | 
 | 	struct kmem_cache_order_objects min; | 
 | 	gfp_t allocflags;		/* gfp flags to use on each alloc */ | 
 | 	int refcount;			/* Refcount for slab cache destroy */ | 
 | 	void (*ctor)(void *object);	/* Object constructor */ | 
 | 	unsigned int inuse;		/* Offset to metadata */ | 
 | 	unsigned int align;		/* Alignment */ | 
 | 	unsigned int red_left_pad;	/* Left redzone padding size */ | 
 | 	const char *name;		/* Name (only for display!) */ | 
 | 	struct list_head list;		/* List of slab caches */ | 
 | #ifdef CONFIG_SYSFS | 
 | 	struct kobject kobj;		/* For sysfs */ | 
 | #endif | 
 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
 | 	unsigned long random; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * Defragmentation by allocating from a remote node. | 
 | 	 */ | 
 | 	unsigned int remote_node_defrag_ratio; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
 | 	unsigned int *random_seq; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_KASAN_GENERIC | 
 | 	struct kasan_cache kasan_info; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HARDENED_USERCOPY | 
 | 	unsigned int useroffset;	/* Usercopy region offset */ | 
 | 	unsigned int usersize;		/* Usercopy region size */ | 
 | #endif | 
 |  | 
 | 	struct kmem_cache_node *node[MAX_NUMNODES]; | 
 | }; | 
 |  | 
 | #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY) | 
 | #define SLAB_SUPPORTS_SYSFS 1 | 
 | void sysfs_slab_unlink(struct kmem_cache *s); | 
 | void sysfs_slab_release(struct kmem_cache *s); | 
 | #else | 
 | static inline void sysfs_slab_unlink(struct kmem_cache *s) { } | 
 | static inline void sysfs_slab_release(struct kmem_cache *s) { } | 
 | #endif | 
 |  | 
 | void *fixup_red_left(struct kmem_cache *s, void *p); | 
 |  | 
 | static inline void *nearest_obj(struct kmem_cache *cache, | 
 | 				const struct slab *slab, void *x) | 
 | { | 
 | 	void *object = x - (x - slab_address(slab)) % cache->size; | 
 | 	void *last_object = slab_address(slab) + | 
 | 		(slab->objects - 1) * cache->size; | 
 | 	void *result = (unlikely(object > last_object)) ? last_object : object; | 
 |  | 
 | 	result = fixup_red_left(cache, result); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Determine object index from a given position */ | 
 | static inline unsigned int __obj_to_index(const struct kmem_cache *cache, | 
 | 					  void *addr, void *obj) | 
 | { | 
 | 	return reciprocal_divide(kasan_reset_tag(obj) - addr, | 
 | 				 cache->reciprocal_size); | 
 | } | 
 |  | 
 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | 
 | 					const struct slab *slab, void *obj) | 
 | { | 
 | 	if (is_kfence_address(obj)) | 
 | 		return 0; | 
 | 	return __obj_to_index(cache, slab_address(slab), obj); | 
 | } | 
 |  | 
 | static inline int objs_per_slab(const struct kmem_cache *cache, | 
 | 				const struct slab *slab) | 
 | { | 
 | 	return slab->objects; | 
 | } | 
 |  | 
 | /* | 
 |  * State of the slab allocator. | 
 |  * | 
 |  * This is used to describe the states of the allocator during bootup. | 
 |  * Allocators use this to gradually bootstrap themselves. Most allocators | 
 |  * have the problem that the structures used for managing slab caches are | 
 |  * allocated from slab caches themselves. | 
 |  */ | 
 | enum slab_state { | 
 | 	DOWN,			/* No slab functionality yet */ | 
 | 	PARTIAL,		/* SLUB: kmem_cache_node available */ | 
 | 	UP,			/* Slab caches usable but not all extras yet */ | 
 | 	FULL			/* Everything is working */ | 
 | }; | 
 |  | 
 | extern enum slab_state slab_state; | 
 |  | 
 | /* The slab cache mutex protects the management structures during changes */ | 
 | extern struct mutex slab_mutex; | 
 |  | 
 | /* The list of all slab caches on the system */ | 
 | extern struct list_head slab_caches; | 
 |  | 
 | /* The slab cache that manages slab cache information */ | 
 | extern struct kmem_cache *kmem_cache; | 
 |  | 
 | /* A table of kmalloc cache names and sizes */ | 
 | extern const struct kmalloc_info_struct { | 
 | 	const char *name[NR_KMALLOC_TYPES]; | 
 | 	unsigned int size; | 
 | } kmalloc_info[]; | 
 |  | 
 | /* Kmalloc array related functions */ | 
 | void setup_kmalloc_cache_index_table(void); | 
 | void create_kmalloc_caches(void); | 
 |  | 
 | extern u8 kmalloc_size_index[24]; | 
 |  | 
 | static inline unsigned int size_index_elem(unsigned int bytes) | 
 | { | 
 | 	return (bytes - 1) / 8; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the kmem_cache structure that serves a given size of | 
 |  * allocation | 
 |  * | 
 |  * This assumes size is larger than zero and not larger than | 
 |  * KMALLOC_MAX_CACHE_SIZE and the caller must check that. | 
 |  */ | 
 | static inline struct kmem_cache * | 
 | kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller) | 
 | { | 
 | 	unsigned int index; | 
 |  | 
 | 	if (!b) | 
 | 		b = &kmalloc_caches[kmalloc_type(flags, caller)]; | 
 | 	if (size <= 192) | 
 | 		index = kmalloc_size_index[size_index_elem(size)]; | 
 | 	else | 
 | 		index = fls(size - 1); | 
 |  | 
 | 	return (*b)[index]; | 
 | } | 
 |  | 
 | gfp_t kmalloc_fix_flags(gfp_t flags); | 
 |  | 
 | /* Functions provided by the slab allocators */ | 
 | int do_kmem_cache_create(struct kmem_cache *s, const char *name, | 
 | 			 unsigned int size, struct kmem_cache_args *args, | 
 | 			 slab_flags_t flags); | 
 |  | 
 | void __init kmem_cache_init(void); | 
 | extern void create_boot_cache(struct kmem_cache *, const char *name, | 
 | 			unsigned int size, slab_flags_t flags, | 
 | 			unsigned int useroffset, unsigned int usersize); | 
 |  | 
 | int slab_unmergeable(struct kmem_cache *s); | 
 | struct kmem_cache *find_mergeable(unsigned size, unsigned align, | 
 | 		slab_flags_t flags, const char *name, void (*ctor)(void *)); | 
 | struct kmem_cache * | 
 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, | 
 | 		   slab_flags_t flags, void (*ctor)(void *)); | 
 |  | 
 | slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name); | 
 |  | 
 | static inline bool is_kmalloc_cache(struct kmem_cache *s) | 
 | { | 
 | 	return (s->flags & SLAB_KMALLOC); | 
 | } | 
 |  | 
 | static inline bool is_kmalloc_normal(struct kmem_cache *s) | 
 | { | 
 | 	if (!is_kmalloc_cache(s)) | 
 | 		return false; | 
 | 	return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT)); | 
 | } | 
 |  | 
 | #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ | 
 | 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \ | 
 | 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \ | 
 | 			 SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ | 
 | 			 SLAB_TEMPORARY | SLAB_ACCOUNT | \ | 
 | 			 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE) | 
 |  | 
 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
 | 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) | 
 |  | 
 | #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS) | 
 |  | 
 | bool __kmem_cache_empty(struct kmem_cache *); | 
 | int __kmem_cache_shutdown(struct kmem_cache *); | 
 | void __kmem_cache_release(struct kmem_cache *); | 
 | int __kmem_cache_shrink(struct kmem_cache *); | 
 | void slab_kmem_cache_release(struct kmem_cache *); | 
 |  | 
 | struct seq_file; | 
 | struct file; | 
 |  | 
 | struct slabinfo { | 
 | 	unsigned long active_objs; | 
 | 	unsigned long num_objs; | 
 | 	unsigned long active_slabs; | 
 | 	unsigned long num_slabs; | 
 | 	unsigned long shared_avail; | 
 | 	unsigned int limit; | 
 | 	unsigned int batchcount; | 
 | 	unsigned int shared; | 
 | 	unsigned int objects_per_slab; | 
 | 	unsigned int cache_order; | 
 | }; | 
 |  | 
 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | #ifdef CONFIG_SLUB_DEBUG_ON | 
 | DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); | 
 | #else | 
 | DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); | 
 | #endif | 
 | extern void print_tracking(struct kmem_cache *s, void *object); | 
 | long validate_slab_cache(struct kmem_cache *s); | 
 | static inline bool __slub_debug_enabled(void) | 
 | { | 
 | 	return static_branch_unlikely(&slub_debug_enabled); | 
 | } | 
 | #else | 
 | static inline void print_tracking(struct kmem_cache *s, void *object) | 
 | { | 
 | } | 
 | static inline bool __slub_debug_enabled(void) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Returns true if any of the specified slab_debug flags is enabled for the | 
 |  * cache. Use only for flags parsed by setup_slub_debug() as it also enables | 
 |  * the static key. | 
 |  */ | 
 | static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_SLUB_DEBUG)) | 
 | 		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); | 
 | 	if (__slub_debug_enabled()) | 
 | 		return s->flags & flags; | 
 | 	return false; | 
 | } | 
 |  | 
 | #if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT) | 
 | bool slab_in_kunit_test(void); | 
 | #else | 
 | static inline bool slab_in_kunit_test(void) { return false; } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SLAB_OBJ_EXT | 
 |  | 
 | /* | 
 |  * slab_obj_exts - get the pointer to the slab object extension vector | 
 |  * associated with a slab. | 
 |  * @slab: a pointer to the slab struct | 
 |  * | 
 |  * Returns a pointer to the object extension vector associated with the slab, | 
 |  * or NULL if no such vector has been associated yet. | 
 |  */ | 
 | static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) | 
 | { | 
 | 	unsigned long obj_exts = READ_ONCE(slab->obj_exts); | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | 	VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS), | 
 | 							slab_page(slab)); | 
 | 	VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab)); | 
 | #endif | 
 | 	return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK); | 
 | } | 
 |  | 
 | int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, | 
 |                         gfp_t gfp, bool new_slab); | 
 |  | 
 | #else /* CONFIG_SLAB_OBJ_EXT */ | 
 |  | 
 | static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SLAB_OBJ_EXT */ | 
 |  | 
 | static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) | 
 | { | 
 | 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
 | 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, | 
 | 				  gfp_t flags, size_t size, void **p); | 
 | void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, | 
 | 			    void **p, int objects, struct slabobj_ext *obj_exts); | 
 | #endif | 
 |  | 
 | void kvfree_rcu_cb(struct rcu_head *head); | 
 |  | 
 | size_t __ksize(const void *objp); | 
 |  | 
 | static inline size_t slab_ksize(const struct kmem_cache *s) | 
 | { | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	/* | 
 | 	 * Debugging requires use of the padding between object | 
 | 	 * and whatever may come after it. | 
 | 	 */ | 
 | 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | 
 | 		return s->object_size; | 
 | #endif | 
 | 	if (s->flags & SLAB_KASAN) | 
 | 		return s->object_size; | 
 | 	/* | 
 | 	 * If we have the need to store the freelist pointer | 
 | 	 * back there or track user information then we can | 
 | 	 * only use the space before that information. | 
 | 	 */ | 
 | 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) | 
 | 		return s->inuse; | 
 | 	/* | 
 | 	 * Else we can use all the padding etc for the allocation | 
 | 	 */ | 
 | 	return s->size; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | void dump_unreclaimable_slab(void); | 
 | #else | 
 | static inline void dump_unreclaimable_slab(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); | 
 |  | 
 | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | 
 | 			gfp_t gfp); | 
 | void cache_random_seq_destroy(struct kmem_cache *cachep); | 
 | #else | 
 | static inline int cache_random_seq_create(struct kmem_cache *cachep, | 
 | 					unsigned int count, gfp_t gfp) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } | 
 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
 |  | 
 | static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) | 
 | { | 
 | 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, | 
 | 				&init_on_alloc)) { | 
 | 		if (c->ctor) | 
 | 			return false; | 
 | 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) | 
 | 			return flags & __GFP_ZERO; | 
 | 		return true; | 
 | 	} | 
 | 	return flags & __GFP_ZERO; | 
 | } | 
 |  | 
 | static inline bool slab_want_init_on_free(struct kmem_cache *c) | 
 | { | 
 | 	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, | 
 | 				&init_on_free)) | 
 | 		return !(c->ctor || | 
 | 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); | 
 | 	return false; | 
 | } | 
 |  | 
 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) | 
 | void debugfs_slab_release(struct kmem_cache *); | 
 | #else | 
 | static inline void debugfs_slab_release(struct kmem_cache *s) { } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PRINTK | 
 | #define KS_ADDRS_COUNT 16 | 
 | struct kmem_obj_info { | 
 | 	void *kp_ptr; | 
 | 	struct slab *kp_slab; | 
 | 	void *kp_objp; | 
 | 	unsigned long kp_data_offset; | 
 | 	struct kmem_cache *kp_slab_cache; | 
 | 	void *kp_ret; | 
 | 	void *kp_stack[KS_ADDRS_COUNT]; | 
 | 	void *kp_free_stack[KS_ADDRS_COUNT]; | 
 | }; | 
 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); | 
 | #endif | 
 |  | 
 | void __check_heap_object(const void *ptr, unsigned long n, | 
 | 			 const struct slab *slab, bool to_user); | 
 |  | 
 | static inline bool slub_debug_orig_size(struct kmem_cache *s) | 
 | { | 
 | 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && | 
 | 			(s->flags & SLAB_KMALLOC)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | void skip_orig_size_check(struct kmem_cache *s, const void *object); | 
 | #endif | 
 |  | 
 | #endif /* MM_SLAB_H */ |