|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  |  | 
|  | /* | 
|  | * Local APIC virtualization | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright (C) 2007 Novell | 
|  | * Copyright (C) 2007 Intel | 
|  | * Copyright 2009 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Dor Laor <dor.laor@qumranet.com> | 
|  | *   Gregory Haskins <ghaskins@novell.com> | 
|  | *   Yaozu (Eddie) Dong <eddie.dong@intel.com> | 
|  | * | 
|  | * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/mce.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/current.h> | 
|  | #include <asm/apicdef.h> | 
|  | #include <asm/delay.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/jump_label.h> | 
|  | #include "kvm_cache_regs.h" | 
|  | #include "irq.h" | 
|  | #include "ioapic.h" | 
|  | #include "trace.h" | 
|  | #include "x86.h" | 
|  | #include "xen.h" | 
|  | #include "cpuid.h" | 
|  | #include "hyperv.h" | 
|  | #include "smm.h" | 
|  |  | 
|  | #ifndef CONFIG_X86_64 | 
|  | #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) | 
|  | #else | 
|  | #define mod_64(x, y) ((x) % (y)) | 
|  | #endif | 
|  |  | 
|  | /* 14 is the version for Xeon and Pentium 8.4.8*/ | 
|  | #define APIC_VERSION			0x14UL | 
|  | #define LAPIC_MMIO_LENGTH		(1 << 12) | 
|  |  | 
|  | /* | 
|  | * Enable local APIC timer advancement (tscdeadline mode only) with adaptive | 
|  | * tuning.  When enabled, KVM programs the host timer event to fire early, i.e. | 
|  | * before the deadline expires, to account for the delay between taking the | 
|  | * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume | 
|  | * the guest, i.e. so that the interrupt arrives in the guest with minimal | 
|  | * latency relative to the deadline programmed by the guest. | 
|  | */ | 
|  | static bool lapic_timer_advance __read_mostly = true; | 
|  | module_param(lapic_timer_advance, bool, 0444); | 
|  |  | 
|  | #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */ | 
|  | #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */ | 
|  | #define LAPIC_TIMER_ADVANCE_NS_INIT	1000 | 
|  | #define LAPIC_TIMER_ADVANCE_NS_MAX     5000 | 
|  | /* step-by-step approximation to mitigate fluctuation */ | 
|  | #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 | 
|  | static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); | 
|  | static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); | 
|  |  | 
|  | static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) | 
|  | { | 
|  | apic_set_reg(apic->regs, reg_off, val); | 
|  | } | 
|  |  | 
|  | static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) | 
|  | { | 
|  | return apic_get_reg64(apic->regs, reg); | 
|  | } | 
|  |  | 
|  | static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, | 
|  | int reg, u64 val) | 
|  | { | 
|  | apic_set_reg64(apic->regs, reg, val); | 
|  | } | 
|  |  | 
|  | bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | return apic_test_vector(vector, apic->regs + APIC_ISR) || | 
|  | apic_test_vector(vector, apic->regs + APIC_IRR); | 
|  | } | 
|  |  | 
|  | __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); | 
|  | EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); | 
|  |  | 
|  | __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); | 
|  | __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); | 
|  |  | 
|  | static inline int apic_enabled(struct kvm_lapic *apic) | 
|  | { | 
|  | return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic); | 
|  | } | 
|  |  | 
|  | #define LVT_MASK	\ | 
|  | (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) | 
|  |  | 
|  | #define LINT_MASK	\ | 
|  | (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ | 
|  | APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) | 
|  |  | 
|  | static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) | 
|  | { | 
|  | return apic->vcpu->vcpu_id; | 
|  | } | 
|  |  | 
|  | static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && | 
|  | (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); | 
|  | } | 
|  |  | 
|  | bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_x86_ops.set_hv_timer | 
|  | && !(kvm_mwait_in_guest(vcpu->kvm) || | 
|  | kvm_can_post_timer_interrupt(vcpu)); | 
|  | } | 
|  |  | 
|  | static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; | 
|  | } | 
|  |  | 
|  | static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) | 
|  | { | 
|  | return ((id >> 4) << 16) | (1 << (id & 0xf)); | 
|  | } | 
|  |  | 
|  | static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, | 
|  | u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { | 
|  | switch (map->logical_mode) { | 
|  | case KVM_APIC_MODE_SW_DISABLED: | 
|  | /* Arbitrarily use the flat map so that @cluster isn't NULL. */ | 
|  | *cluster = map->xapic_flat_map; | 
|  | *mask = 0; | 
|  | return true; | 
|  | case KVM_APIC_MODE_X2APIC: { | 
|  | u32 offset = (dest_id >> 16) * 16; | 
|  | u32 max_apic_id = map->max_apic_id; | 
|  |  | 
|  | if (offset <= max_apic_id) { | 
|  | u8 cluster_size = min(max_apic_id - offset + 1, 16U); | 
|  |  | 
|  | offset = array_index_nospec(offset, map->max_apic_id + 1); | 
|  | *cluster = &map->phys_map[offset]; | 
|  | *mask = dest_id & (0xffff >> (16 - cluster_size)); | 
|  | } else { | 
|  | *mask = 0; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case KVM_APIC_MODE_XAPIC_FLAT: | 
|  | *cluster = map->xapic_flat_map; | 
|  | *mask = dest_id & 0xff; | 
|  | return true; | 
|  | case KVM_APIC_MODE_XAPIC_CLUSTER: | 
|  | *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; | 
|  | *mask = dest_id & 0xf; | 
|  | return true; | 
|  | case KVM_APIC_MODE_MAP_DISABLED: | 
|  | return false; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_recalculate_phys_map(struct kvm_apic_map *new, | 
|  | struct kvm_vcpu *vcpu, | 
|  | bool *xapic_id_mismatch) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u32 x2apic_id = kvm_x2apic_id(apic); | 
|  | u32 xapic_id = kvm_xapic_id(apic); | 
|  | u32 physical_id; | 
|  |  | 
|  | /* | 
|  | * For simplicity, KVM always allocates enough space for all possible | 
|  | * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on | 
|  | * without the optimized map. | 
|  | */ | 
|  | if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Bail if a vCPU was added and/or enabled its APIC between allocating | 
|  | * the map and doing the actual calculations for the map.  Note, KVM | 
|  | * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if | 
|  | * the compiler decides to reload x2apic_id after this check. | 
|  | */ | 
|  | if (x2apic_id > new->max_apic_id) | 
|  | return -E2BIG; | 
|  |  | 
|  | /* | 
|  | * Deliberately truncate the vCPU ID when detecting a mismatched APIC | 
|  | * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a | 
|  | * 32-bit value.  Any unwanted aliasing due to truncation results will | 
|  | * be detected below. | 
|  | */ | 
|  | if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) | 
|  | *xapic_id_mismatch = true; | 
|  |  | 
|  | /* | 
|  | * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. | 
|  | * Allow sending events to vCPUs by their x2APIC ID even if the target | 
|  | * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs | 
|  | * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap | 
|  | * and collide). | 
|  | * | 
|  | * Honor the architectural (and KVM's non-optimized) behavior if | 
|  | * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed | 
|  | * to process messages independently.  If multiple vCPUs have the same | 
|  | * effective APIC ID, e.g. due to the x2APIC wrap or because the guest | 
|  | * manually modified its xAPIC IDs, events targeting that ID are | 
|  | * supposed to be recognized by all vCPUs with said ID. | 
|  | */ | 
|  | if (vcpu->kvm->arch.x2apic_format) { | 
|  | /* See also kvm_apic_match_physical_addr(). */ | 
|  | if (apic_x2apic_mode(apic) || x2apic_id > 0xff) | 
|  | new->phys_map[x2apic_id] = apic; | 
|  |  | 
|  | if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) | 
|  | new->phys_map[xapic_id] = apic; | 
|  | } else { | 
|  | /* | 
|  | * Disable the optimized map if the physical APIC ID is already | 
|  | * mapped, i.e. is aliased to multiple vCPUs.  The optimized | 
|  | * map requires a strict 1:1 mapping between IDs and vCPUs. | 
|  | */ | 
|  | if (apic_x2apic_mode(apic)) | 
|  | physical_id = x2apic_id; | 
|  | else | 
|  | physical_id = xapic_id; | 
|  |  | 
|  | if (new->phys_map[physical_id]) | 
|  | return -EINVAL; | 
|  |  | 
|  | new->phys_map[physical_id] = apic; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_recalculate_logical_map(struct kvm_apic_map *new, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | enum kvm_apic_logical_mode logical_mode; | 
|  | struct kvm_lapic **cluster; | 
|  | u16 mask; | 
|  | u32 ldr; | 
|  |  | 
|  | if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) | 
|  | return; | 
|  |  | 
|  | if (!kvm_apic_sw_enabled(apic)) | 
|  | return; | 
|  |  | 
|  | ldr = kvm_lapic_get_reg(apic, APIC_LDR); | 
|  | if (!ldr) | 
|  | return; | 
|  |  | 
|  | if (apic_x2apic_mode(apic)) { | 
|  | logical_mode = KVM_APIC_MODE_X2APIC; | 
|  | } else { | 
|  | ldr = GET_APIC_LOGICAL_ID(ldr); | 
|  | if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) | 
|  | logical_mode = KVM_APIC_MODE_XAPIC_FLAT; | 
|  | else | 
|  | logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To optimize logical mode delivery, all software-enabled APICs must | 
|  | * be configured for the same mode. | 
|  | */ | 
|  | if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { | 
|  | new->logical_mode = logical_mode; | 
|  | } else if (new->logical_mode != logical_mode) { | 
|  | new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In x2APIC mode, the LDR is read-only and derived directly from the | 
|  | * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses | 
|  | * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by | 
|  | * reversing the LDR calculation to get cluster of APICs, i.e. no | 
|  | * additional work is required. | 
|  | */ | 
|  | if (apic_x2apic_mode(apic)) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, | 
|  | &cluster, &mask))) { | 
|  | new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!mask) | 
|  | return; | 
|  |  | 
|  | ldr = ffs(mask) - 1; | 
|  | if (!is_power_of_2(mask) || cluster[ldr]) | 
|  | new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; | 
|  | else | 
|  | cluster[ldr] = apic; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. | 
|  | * | 
|  | * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with | 
|  | * apic_map_lock_held. | 
|  | */ | 
|  | enum { | 
|  | CLEAN, | 
|  | UPDATE_IN_PROGRESS, | 
|  | DIRTY | 
|  | }; | 
|  |  | 
|  | static void kvm_recalculate_apic_map(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_apic_map *new, *old = NULL; | 
|  | struct kvm_vcpu *vcpu; | 
|  | unsigned long i; | 
|  | u32 max_id = 255; /* enough space for any xAPIC ID */ | 
|  | bool xapic_id_mismatch; | 
|  | int r; | 
|  |  | 
|  | /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */ | 
|  | if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) | 
|  | return; | 
|  |  | 
|  | WARN_ONCE(!irqchip_in_kernel(kvm), | 
|  | "Dirty APIC map without an in-kernel local APIC"); | 
|  |  | 
|  | mutex_lock(&kvm->arch.apic_map_lock); | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) | 
|  | * or the APIC registers (if dirty).  Note, on retry the map may have | 
|  | * not yet been marked dirty by whatever task changed a vCPU's x2APIC | 
|  | * ID, i.e. the map may still show up as in-progress.  In that case | 
|  | * this task still needs to retry and complete its calculation. | 
|  | */ | 
|  | if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, | 
|  | DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { | 
|  | /* Someone else has updated the map. */ | 
|  | mutex_unlock(&kvm->arch.apic_map_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the mismatch flag between attempts so that KVM does the right | 
|  | * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. | 
|  | * keep max_id strictly increasing.  Disallowing max_id from shrinking | 
|  | * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU | 
|  | * with the highest x2APIC ID is toggling its APIC on and off. | 
|  | */ | 
|  | xapic_id_mismatch = false; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | if (kvm_apic_present(vcpu)) | 
|  | max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); | 
|  |  | 
|  | new = kvzalloc(sizeof(struct kvm_apic_map) + | 
|  | sizeof(struct kvm_lapic *) * ((u64)max_id + 1), | 
|  | GFP_KERNEL_ACCOUNT); | 
|  |  | 
|  | if (!new) | 
|  | goto out; | 
|  |  | 
|  | new->max_apic_id = max_id; | 
|  | new->logical_mode = KVM_APIC_MODE_SW_DISABLED; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | if (!kvm_apic_present(vcpu)) | 
|  | continue; | 
|  |  | 
|  | r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); | 
|  | if (r) { | 
|  | kvfree(new); | 
|  | new = NULL; | 
|  | if (r == -E2BIG) { | 
|  | cond_resched(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kvm_recalculate_logical_map(new, vcpu); | 
|  | } | 
|  | out: | 
|  | /* | 
|  | * The optimized map is effectively KVM's internal version of APICv, | 
|  | * and all unwanted aliasing that results in disabling the optimized | 
|  | * map also applies to APICv. | 
|  | */ | 
|  | if (!new) | 
|  | kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); | 
|  | else | 
|  | kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); | 
|  |  | 
|  | if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) | 
|  | kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); | 
|  | else | 
|  | kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); | 
|  |  | 
|  | if (xapic_id_mismatch) | 
|  | kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); | 
|  | else | 
|  | kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); | 
|  |  | 
|  | old = rcu_dereference_protected(kvm->arch.apic_map, | 
|  | lockdep_is_held(&kvm->arch.apic_map_lock)); | 
|  | rcu_assign_pointer(kvm->arch.apic_map, new); | 
|  | /* | 
|  | * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. | 
|  | * If another update has come in, leave it DIRTY. | 
|  | */ | 
|  | atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, | 
|  | UPDATE_IN_PROGRESS, CLEAN); | 
|  | mutex_unlock(&kvm->arch.apic_map_lock); | 
|  |  | 
|  | if (old) | 
|  | kvfree_rcu(old, rcu); | 
|  |  | 
|  | kvm_make_scan_ioapic_request(kvm); | 
|  | } | 
|  |  | 
|  | static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) | 
|  | { | 
|  | bool enabled = val & APIC_SPIV_APIC_ENABLED; | 
|  |  | 
|  | kvm_lapic_set_reg(apic, APIC_SPIV, val); | 
|  |  | 
|  | if (enabled != apic->sw_enabled) { | 
|  | apic->sw_enabled = enabled; | 
|  | if (enabled) | 
|  | static_branch_slow_dec_deferred(&apic_sw_disabled); | 
|  | else | 
|  | static_branch_inc(&apic_sw_disabled.key); | 
|  |  | 
|  | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | 
|  | } | 
|  |  | 
|  | /* Check if there are APF page ready requests pending */ | 
|  | if (enabled) { | 
|  | kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); | 
|  | kvm_xen_sw_enable_lapic(apic->vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) | 
|  | { | 
|  | kvm_lapic_set_reg(apic, APIC_ID, id << 24); | 
|  | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | 
|  | } | 
|  |  | 
|  | static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) | 
|  | { | 
|  | kvm_lapic_set_reg(apic, APIC_LDR, id); | 
|  | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | 
|  | } | 
|  |  | 
|  | static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) | 
|  | { | 
|  | kvm_lapic_set_reg(apic, APIC_DFR, val); | 
|  | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | 
|  | } | 
|  |  | 
|  | static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) | 
|  | { | 
|  | u32 ldr = kvm_apic_calc_x2apic_ldr(id); | 
|  |  | 
|  | WARN_ON_ONCE(id != apic->vcpu->vcpu_id); | 
|  |  | 
|  | kvm_lapic_set_reg(apic, APIC_ID, id); | 
|  | kvm_lapic_set_reg(apic, APIC_LDR, ldr); | 
|  | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | 
|  | } | 
|  |  | 
|  | static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) | 
|  | { | 
|  | return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); | 
|  | } | 
|  |  | 
|  | static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) | 
|  | { | 
|  | return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; | 
|  | } | 
|  |  | 
|  | static inline int apic_lvtt_period(struct kvm_lapic *apic) | 
|  | { | 
|  | return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; | 
|  | } | 
|  |  | 
|  | static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) | 
|  | { | 
|  | return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; | 
|  | } | 
|  |  | 
|  | static inline int apic_lvt_nmi_mode(u32 lvt_val) | 
|  | { | 
|  | return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; | 
|  | } | 
|  |  | 
|  | static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) | 
|  | { | 
|  | return apic->nr_lvt_entries > lvt_index; | 
|  | } | 
|  |  | 
|  | static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); | 
|  | } | 
|  |  | 
|  | void kvm_apic_set_version(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u32 v = 0; | 
|  |  | 
|  | if (!lapic_in_kernel(vcpu)) | 
|  | return; | 
|  |  | 
|  | v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); | 
|  |  | 
|  | /* | 
|  | * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) | 
|  | * which doesn't have EOI register; Some buggy OSes (e.g. Windows with | 
|  | * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC | 
|  | * version first and level-triggered interrupts never get EOIed in | 
|  | * IOAPIC. | 
|  | */ | 
|  | if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && | 
|  | !ioapic_in_kernel(vcpu->kvm)) | 
|  | v |= APIC_LVR_DIRECTED_EOI; | 
|  | kvm_lapic_set_reg(apic, APIC_LVR, v); | 
|  | } | 
|  |  | 
|  | void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | int i; | 
|  |  | 
|  | if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) | 
|  | return; | 
|  |  | 
|  | /* Initialize/mask any "new" LVT entries. */ | 
|  | for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) | 
|  | kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); | 
|  |  | 
|  | apic->nr_lvt_entries = nr_lvt_entries; | 
|  |  | 
|  | /* The number of LVT entries is reflected in the version register. */ | 
|  | kvm_apic_set_version(vcpu); | 
|  | } | 
|  |  | 
|  | static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { | 
|  | [LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */ | 
|  | [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, | 
|  | [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, | 
|  | [LVT_LINT0] = LINT_MASK, | 
|  | [LVT_LINT1] = LINT_MASK, | 
|  | [LVT_ERROR] = LVT_MASK, | 
|  | [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK | 
|  | }; | 
|  |  | 
|  | static u8 count_vectors(void *bitmap) | 
|  | { | 
|  | int vec; | 
|  | u32 *reg; | 
|  | u8 count = 0; | 
|  |  | 
|  | for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { | 
|  | reg = bitmap + APIC_VECTOR_TO_REG_OFFSET(vec); | 
|  | count += hweight32(*reg); | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr) | 
|  | { | 
|  | unsigned long pir_vals[NR_PIR_WORDS]; | 
|  | u32 *__pir = (void *)pir_vals; | 
|  | u32 i, vec; | 
|  | u32 irr_val, prev_irr_val; | 
|  | int max_updated_irr; | 
|  |  | 
|  | max_updated_irr = -1; | 
|  | *max_irr = -1; | 
|  |  | 
|  | if (!pi_harvest_pir(pir, pir_vals)) | 
|  | return false; | 
|  |  | 
|  | for (i = vec = 0; i <= 7; i++, vec += 32) { | 
|  | u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); | 
|  |  | 
|  | irr_val = READ_ONCE(*p_irr); | 
|  |  | 
|  | if (__pir[i]) { | 
|  | prev_irr_val = irr_val; | 
|  | do { | 
|  | irr_val = prev_irr_val | __pir[i]; | 
|  | } while (prev_irr_val != irr_val && | 
|  | !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); | 
|  |  | 
|  | if (prev_irr_val != irr_val) | 
|  | max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; | 
|  | } | 
|  | if (irr_val) | 
|  | *max_irr = __fls(irr_val) + vec; | 
|  | } | 
|  |  | 
|  | return ((max_updated_irr != -1) && | 
|  | (max_updated_irr == *max_irr)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); | 
|  |  | 
|  | bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); | 
|  |  | 
|  | if (unlikely(!apic->apicv_active && irr_updated)) | 
|  | apic->irr_pending = true; | 
|  | return irr_updated; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_update_irr); | 
|  |  | 
|  | static inline int apic_search_irr(struct kvm_lapic *apic) | 
|  | { | 
|  | return apic_find_highest_vector(apic->regs + APIC_IRR); | 
|  | } | 
|  |  | 
|  | static inline int apic_find_highest_irr(struct kvm_lapic *apic) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | /* | 
|  | * Note that irr_pending is just a hint. It will be always | 
|  | * true with virtual interrupt delivery enabled. | 
|  | */ | 
|  | if (!apic->irr_pending) | 
|  | return -1; | 
|  |  | 
|  | result = apic_search_irr(apic); | 
|  | ASSERT(result == -1 || result >= 16); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) | 
|  | { | 
|  | if (unlikely(apic->apicv_active)) { | 
|  | apic_clear_vector(vec, apic->regs + APIC_IRR); | 
|  | } else { | 
|  | apic->irr_pending = false; | 
|  | apic_clear_vector(vec, apic->regs + APIC_IRR); | 
|  | if (apic_search_irr(apic) != -1) | 
|  | apic->irr_pending = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) | 
|  | { | 
|  | apic_clear_irr(vec, vcpu->arch.apic); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); | 
|  |  | 
|  | static void *apic_vector_to_isr(int vec, struct kvm_lapic *apic) | 
|  | { | 
|  | return apic->regs + APIC_ISR + APIC_VECTOR_TO_REG_OFFSET(vec); | 
|  | } | 
|  |  | 
|  | static inline void apic_set_isr(int vec, struct kvm_lapic *apic) | 
|  | { | 
|  | if (__test_and_set_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), | 
|  | apic_vector_to_isr(vec, apic))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * With APIC virtualization enabled, all caching is disabled | 
|  | * because the processor can modify ISR under the hood.  Instead | 
|  | * just set SVI. | 
|  | */ | 
|  | if (unlikely(apic->apicv_active)) | 
|  | kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); | 
|  | else { | 
|  | ++apic->isr_count; | 
|  | BUG_ON(apic->isr_count > MAX_APIC_VECTOR); | 
|  | /* | 
|  | * ISR (in service register) bit is set when injecting an interrupt. | 
|  | * The highest vector is injected. Thus the latest bit set matches | 
|  | * the highest bit in ISR. | 
|  | */ | 
|  | apic->highest_isr_cache = vec; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int apic_find_highest_isr(struct kvm_lapic *apic) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | /* | 
|  | * Note that isr_count is always 1, and highest_isr_cache | 
|  | * is always -1, with APIC virtualization enabled. | 
|  | */ | 
|  | if (!apic->isr_count) | 
|  | return -1; | 
|  | if (likely(apic->highest_isr_cache != -1)) | 
|  | return apic->highest_isr_cache; | 
|  |  | 
|  | result = apic_find_highest_vector(apic->regs + APIC_ISR); | 
|  | ASSERT(result == -1 || result >= 16); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) | 
|  | { | 
|  | if (!__test_and_clear_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), | 
|  | apic_vector_to_isr(vec, apic))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We do get here for APIC virtualization enabled if the guest | 
|  | * uses the Hyper-V APIC enlightenment.  In this case we may need | 
|  | * to trigger a new interrupt delivery by writing the SVI field; | 
|  | * on the other hand isr_count and highest_isr_cache are unused | 
|  | * and must be left alone. | 
|  | */ | 
|  | if (unlikely(apic->apicv_active)) | 
|  | kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); | 
|  | else { | 
|  | --apic->isr_count; | 
|  | BUG_ON(apic->isr_count < 0); | 
|  | apic->highest_isr_cache = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active) | 
|  | return; | 
|  |  | 
|  | kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr); | 
|  |  | 
|  | int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* This may race with setting of irr in __apic_accept_irq() and | 
|  | * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq | 
|  | * will cause vmexit immediately and the value will be recalculated | 
|  | * on the next vmentry. | 
|  | */ | 
|  | return apic_find_highest_irr(vcpu->arch.apic); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); | 
|  |  | 
|  | static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, | 
|  | int vector, int level, int trig_mode, | 
|  | struct dest_map *dest_map); | 
|  |  | 
|  | int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, | 
|  | struct dest_map *dest_map) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, | 
|  | irq->level, irq->trig_mode, dest_map); | 
|  | } | 
|  |  | 
|  | static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, | 
|  | struct kvm_lapic_irq *irq, u32 min) | 
|  | { | 
|  | int i, count = 0; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | if (min > map->max_apic_id) | 
|  | return 0; | 
|  |  | 
|  | min = array_index_nospec(min, map->max_apic_id + 1); | 
|  |  | 
|  | for_each_set_bit(i, ipi_bitmap, | 
|  | min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { | 
|  | if (map->phys_map[min + i]) { | 
|  | vcpu = map->phys_map[min + i]->vcpu; | 
|  | count += kvm_apic_set_irq(vcpu, irq, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, | 
|  | unsigned long ipi_bitmap_high, u32 min, | 
|  | unsigned long icr, int op_64_bit) | 
|  | { | 
|  | struct kvm_apic_map *map; | 
|  | struct kvm_lapic_irq irq = {0}; | 
|  | int cluster_size = op_64_bit ? 64 : 32; | 
|  | int count; | 
|  |  | 
|  | if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) | 
|  | return -KVM_EINVAL; | 
|  |  | 
|  | irq.vector = icr & APIC_VECTOR_MASK; | 
|  | irq.delivery_mode = icr & APIC_MODE_MASK; | 
|  | irq.level = (icr & APIC_INT_ASSERT) != 0; | 
|  | irq.trig_mode = icr & APIC_INT_LEVELTRIG; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | map = rcu_dereference(kvm->arch.apic_map); | 
|  |  | 
|  | count = -EOPNOTSUPP; | 
|  | if (likely(map)) { | 
|  | count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); | 
|  | min += cluster_size; | 
|  | count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) | 
|  | { | 
|  |  | 
|  | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, | 
|  | sizeof(val)); | 
|  | } | 
|  |  | 
|  | static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) | 
|  | { | 
|  |  | 
|  | return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, | 
|  | sizeof(*val)); | 
|  | } | 
|  |  | 
|  | static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; | 
|  | } | 
|  |  | 
|  | static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) | 
|  | return; | 
|  |  | 
|  | __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); | 
|  | } | 
|  |  | 
|  | static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u8 val; | 
|  |  | 
|  | if (pv_eoi_get_user(vcpu, &val) < 0) | 
|  | return false; | 
|  |  | 
|  | val &= KVM_PV_EOI_ENABLED; | 
|  |  | 
|  | if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Clear pending bit in any case: it will be set again on vmentry. | 
|  | * While this might not be ideal from performance point of view, | 
|  | * this makes sure pv eoi is only enabled when we know it's safe. | 
|  | */ | 
|  | __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) | 
|  | { | 
|  | int highest_irr; | 
|  | if (kvm_x86_ops.sync_pir_to_irr) | 
|  | highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); | 
|  | else | 
|  | highest_irr = apic_find_highest_irr(apic); | 
|  | if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) | 
|  | return -1; | 
|  | return highest_irr; | 
|  | } | 
|  |  | 
|  | static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) | 
|  | { | 
|  | u32 tpr, isrv, ppr, old_ppr; | 
|  | int isr; | 
|  |  | 
|  | old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); | 
|  | tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); | 
|  | isr = apic_find_highest_isr(apic); | 
|  | isrv = (isr != -1) ? isr : 0; | 
|  |  | 
|  | if ((tpr & 0xf0) >= (isrv & 0xf0)) | 
|  | ppr = tpr & 0xff; | 
|  | else | 
|  | ppr = isrv & 0xf0; | 
|  |  | 
|  | *new_ppr = ppr; | 
|  | if (old_ppr != ppr) | 
|  | kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); | 
|  |  | 
|  | return ppr < old_ppr; | 
|  | } | 
|  |  | 
|  | static void apic_update_ppr(struct kvm_lapic *apic) | 
|  | { | 
|  | u32 ppr; | 
|  |  | 
|  | if (__apic_update_ppr(apic, &ppr) && | 
|  | apic_has_interrupt_for_ppr(apic, ppr) != -1) | 
|  | kvm_make_request(KVM_REQ_EVENT, apic->vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | apic_update_ppr(vcpu->arch.apic); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); | 
|  |  | 
|  | static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) | 
|  | { | 
|  | kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); | 
|  | apic_update_ppr(apic); | 
|  | } | 
|  |  | 
|  | static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) | 
|  | { | 
|  | return mda == (apic_x2apic_mode(apic) ? | 
|  | X2APIC_BROADCAST : APIC_BROADCAST); | 
|  | } | 
|  |  | 
|  | static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) | 
|  | { | 
|  | if (kvm_apic_broadcast(apic, mda)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they | 
|  | * were in x2APIC mode if the target APIC ID can't be encoded as an | 
|  | * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which | 
|  | * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC | 
|  | * mode.  Match the x2APIC ID if and only if the target APIC ID can't | 
|  | * be encoded in xAPIC to avoid spurious matches against a vCPU that | 
|  | * changed its (addressable) xAPIC ID (which is writable). | 
|  | */ | 
|  | if (apic_x2apic_mode(apic) || mda > 0xff) | 
|  | return mda == kvm_x2apic_id(apic); | 
|  |  | 
|  | return mda == kvm_xapic_id(apic); | 
|  | } | 
|  |  | 
|  | static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) | 
|  | { | 
|  | u32 logical_id; | 
|  |  | 
|  | if (kvm_apic_broadcast(apic, mda)) | 
|  | return true; | 
|  |  | 
|  | logical_id = kvm_lapic_get_reg(apic, APIC_LDR); | 
|  |  | 
|  | if (apic_x2apic_mode(apic)) | 
|  | return ((logical_id >> 16) == (mda >> 16)) | 
|  | && (logical_id & mda & 0xffff) != 0; | 
|  |  | 
|  | logical_id = GET_APIC_LOGICAL_ID(logical_id); | 
|  |  | 
|  | switch (kvm_lapic_get_reg(apic, APIC_DFR)) { | 
|  | case APIC_DFR_FLAT: | 
|  | return (logical_id & mda) != 0; | 
|  | case APIC_DFR_CLUSTER: | 
|  | return ((logical_id >> 4) == (mda >> 4)) | 
|  | && (logical_id & mda & 0xf) != 0; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The KVM local APIC implementation has two quirks: | 
|  | * | 
|  | *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs | 
|  | *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. | 
|  | *    KVM doesn't do that aliasing. | 
|  | * | 
|  | *  - in-kernel IOAPIC messages have to be delivered directly to | 
|  | *    x2APIC, because the kernel does not support interrupt remapping. | 
|  | *    In order to support broadcast without interrupt remapping, x2APIC | 
|  | *    rewrites the destination of non-IPI messages from APIC_BROADCAST | 
|  | *    to X2APIC_BROADCAST. | 
|  | * | 
|  | * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is | 
|  | * important when userspace wants to use x2APIC-format MSIs, because | 
|  | * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". | 
|  | */ | 
|  | static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, | 
|  | struct kvm_lapic *source, struct kvm_lapic *target) | 
|  | { | 
|  | bool ipi = source != NULL; | 
|  |  | 
|  | if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && | 
|  | !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) | 
|  | return X2APIC_BROADCAST; | 
|  |  | 
|  | return dest_id; | 
|  | } | 
|  |  | 
|  | bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, | 
|  | int shorthand, unsigned int dest, int dest_mode) | 
|  | { | 
|  | struct kvm_lapic *target = vcpu->arch.apic; | 
|  | u32 mda = kvm_apic_mda(vcpu, dest, source, target); | 
|  |  | 
|  | ASSERT(target); | 
|  | switch (shorthand) { | 
|  | case APIC_DEST_NOSHORT: | 
|  | if (dest_mode == APIC_DEST_PHYSICAL) | 
|  | return kvm_apic_match_physical_addr(target, mda); | 
|  | else | 
|  | return kvm_apic_match_logical_addr(target, mda); | 
|  | case APIC_DEST_SELF: | 
|  | return target == source; | 
|  | case APIC_DEST_ALLINC: | 
|  | return true; | 
|  | case APIC_DEST_ALLBUT: | 
|  | return target != source; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_match_dest); | 
|  |  | 
|  | int kvm_vector_to_index(u32 vector, u32 dest_vcpus, | 
|  | const unsigned long *bitmap, u32 bitmap_size) | 
|  | { | 
|  | u32 mod; | 
|  | int i, idx = -1; | 
|  |  | 
|  | mod = vector % dest_vcpus; | 
|  |  | 
|  | for (i = 0; i <= mod; i++) { | 
|  | idx = find_next_bit(bitmap, bitmap_size, idx + 1); | 
|  | BUG_ON(idx == bitmap_size); | 
|  | } | 
|  |  | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | static void kvm_apic_disabled_lapic_found(struct kvm *kvm) | 
|  | { | 
|  | if (!kvm->arch.disabled_lapic_found) { | 
|  | kvm->arch.disabled_lapic_found = true; | 
|  | pr_info("Disabled LAPIC found during irq injection\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, | 
|  | struct kvm_lapic_irq *irq, struct kvm_apic_map *map) | 
|  | { | 
|  | if (kvm->arch.x2apic_broadcast_quirk_disabled) { | 
|  | if ((irq->dest_id == APIC_BROADCAST && | 
|  | map->logical_mode != KVM_APIC_MODE_X2APIC)) | 
|  | return true; | 
|  | if (irq->dest_id == X2APIC_BROADCAST) | 
|  | return true; | 
|  | } else { | 
|  | bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); | 
|  | if (irq->dest_id == (x2apic_ipi ? | 
|  | X2APIC_BROADCAST : APIC_BROADCAST)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Return true if the interrupt can be handled by using *bitmap as index mask | 
|  | * for valid destinations in *dst array. | 
|  | * Return false if kvm_apic_map_get_dest_lapic did nothing useful. | 
|  | * Note: we may have zero kvm_lapic destinations when we return true, which | 
|  | * means that the interrupt should be dropped.  In this case, *bitmap would be | 
|  | * zero and *dst undefined. | 
|  | */ | 
|  | static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, | 
|  | struct kvm_lapic **src, struct kvm_lapic_irq *irq, | 
|  | struct kvm_apic_map *map, struct kvm_lapic ***dst, | 
|  | unsigned long *bitmap) | 
|  | { | 
|  | int i, lowest; | 
|  |  | 
|  | if (irq->shorthand == APIC_DEST_SELF && src) { | 
|  | *dst = src; | 
|  | *bitmap = 1; | 
|  | return true; | 
|  | } else if (irq->shorthand) | 
|  | return false; | 
|  |  | 
|  | if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) | 
|  | return false; | 
|  |  | 
|  | if (irq->dest_mode == APIC_DEST_PHYSICAL) { | 
|  | if (irq->dest_id > map->max_apic_id) { | 
|  | *bitmap = 0; | 
|  | } else { | 
|  | u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); | 
|  | *dst = &map->phys_map[dest_id]; | 
|  | *bitmap = 1; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *bitmap = 0; | 
|  | if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, | 
|  | (u16 *)bitmap)) | 
|  | return false; | 
|  |  | 
|  | if (!kvm_lowest_prio_delivery(irq)) | 
|  | return true; | 
|  |  | 
|  | if (!kvm_vector_hashing_enabled()) { | 
|  | lowest = -1; | 
|  | for_each_set_bit(i, bitmap, 16) { | 
|  | if (!(*dst)[i]) | 
|  | continue; | 
|  | if (lowest < 0) | 
|  | lowest = i; | 
|  | else if (kvm_apic_compare_prio((*dst)[i]->vcpu, | 
|  | (*dst)[lowest]->vcpu) < 0) | 
|  | lowest = i; | 
|  | } | 
|  | } else { | 
|  | if (!*bitmap) | 
|  | return true; | 
|  |  | 
|  | lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), | 
|  | bitmap, 16); | 
|  |  | 
|  | if (!(*dst)[lowest]) { | 
|  | kvm_apic_disabled_lapic_found(kvm); | 
|  | *bitmap = 0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | *bitmap = (lowest >= 0) ? 1 << lowest : 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, | 
|  | struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) | 
|  | { | 
|  | struct kvm_apic_map *map; | 
|  | unsigned long bitmap; | 
|  | struct kvm_lapic **dst = NULL; | 
|  | int i; | 
|  | bool ret; | 
|  |  | 
|  | *r = -1; | 
|  |  | 
|  | if (irq->shorthand == APIC_DEST_SELF) { | 
|  | if (KVM_BUG_ON(!src, kvm)) { | 
|  | *r = 0; | 
|  | return true; | 
|  | } | 
|  | *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | map = rcu_dereference(kvm->arch.apic_map); | 
|  |  | 
|  | ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); | 
|  | if (ret) { | 
|  | *r = 0; | 
|  | for_each_set_bit(i, &bitmap, 16) { | 
|  | if (!dst[i]) | 
|  | continue; | 
|  | *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine tries to handle interrupts in posted mode, here is how | 
|  | * it deals with different cases: | 
|  | * - For single-destination interrupts, handle it in posted mode | 
|  | * - Else if vector hashing is enabled and it is a lowest-priority | 
|  | *   interrupt, handle it in posted mode and use the following mechanism | 
|  | *   to find the destination vCPU. | 
|  | *	1. For lowest-priority interrupts, store all the possible | 
|  | *	   destination vCPUs in an array. | 
|  | *	2. Use "guest vector % max number of destination vCPUs" to find | 
|  | *	   the right destination vCPU in the array for the lowest-priority | 
|  | *	   interrupt. | 
|  | * - Otherwise, use remapped mode to inject the interrupt. | 
|  | */ | 
|  | bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, | 
|  | struct kvm_vcpu **dest_vcpu) | 
|  | { | 
|  | struct kvm_apic_map *map; | 
|  | unsigned long bitmap; | 
|  | struct kvm_lapic **dst = NULL; | 
|  | bool ret = false; | 
|  |  | 
|  | if (irq->shorthand) | 
|  | return false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | map = rcu_dereference(kvm->arch.apic_map); | 
|  |  | 
|  | if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && | 
|  | hweight16(bitmap) == 1) { | 
|  | unsigned long i = find_first_bit(&bitmap, 16); | 
|  |  | 
|  | if (dst[i]) { | 
|  | *dest_vcpu = dst[i]->vcpu; | 
|  | ret = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a pending IRQ into lapic. | 
|  | * Return 1 if successfully added and 0 if discarded. | 
|  | */ | 
|  | static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, | 
|  | int vector, int level, int trig_mode, | 
|  | struct dest_map *dest_map) | 
|  | { | 
|  | int result = 0; | 
|  | struct kvm_vcpu *vcpu = apic->vcpu; | 
|  |  | 
|  | trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, | 
|  | trig_mode, vector); | 
|  | switch (delivery_mode) { | 
|  | case APIC_DM_LOWEST: | 
|  | vcpu->arch.apic_arb_prio++; | 
|  | fallthrough; | 
|  | case APIC_DM_FIXED: | 
|  | if (unlikely(trig_mode && !level)) | 
|  | break; | 
|  |  | 
|  | /* FIXME add logic for vcpu on reset */ | 
|  | if (unlikely(!apic_enabled(apic))) | 
|  | break; | 
|  |  | 
|  | result = 1; | 
|  |  | 
|  | if (dest_map) { | 
|  | __set_bit(vcpu->vcpu_id, dest_map->map); | 
|  | dest_map->vectors[vcpu->vcpu_id] = vector; | 
|  | } | 
|  |  | 
|  | if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { | 
|  | if (trig_mode) | 
|  | apic_set_vector(vector, apic->regs + APIC_TMR); | 
|  | else | 
|  | apic_clear_vector(vector, apic->regs + APIC_TMR); | 
|  | } | 
|  |  | 
|  | kvm_x86_call(deliver_interrupt)(apic, delivery_mode, | 
|  | trig_mode, vector); | 
|  | break; | 
|  |  | 
|  | case APIC_DM_REMRD: | 
|  | result = 1; | 
|  | vcpu->arch.pv.pv_unhalted = 1; | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | break; | 
|  |  | 
|  | case APIC_DM_SMI: | 
|  | if (!kvm_inject_smi(vcpu)) { | 
|  | kvm_vcpu_kick(vcpu); | 
|  | result = 1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case APIC_DM_NMI: | 
|  | result = 1; | 
|  | kvm_inject_nmi(vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | break; | 
|  |  | 
|  | case APIC_DM_INIT: | 
|  | if (!trig_mode || level) { | 
|  | result = 1; | 
|  | /* assumes that there are only KVM_APIC_INIT/SIPI */ | 
|  | apic->pending_events = (1UL << KVM_APIC_INIT); | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case APIC_DM_STARTUP: | 
|  | result = 1; | 
|  | apic->sipi_vector = vector; | 
|  | /* make sure sipi_vector is visible for the receiver */ | 
|  | smp_wmb(); | 
|  | set_bit(KVM_APIC_SIPI, &apic->pending_events); | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | break; | 
|  |  | 
|  | case APIC_DM_EXTINT: | 
|  | /* | 
|  | * Should only be called by kvm_apic_local_deliver() with LVT0, | 
|  | * before NMI watchdog was enabled. Already handled by | 
|  | * kvm_apic_accept_pic_intr(). | 
|  | */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_ERR "TODO: unsupported delivery mode %x\n", | 
|  | delivery_mode); | 
|  | break; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine identifies the destination vcpus mask meant to receive the | 
|  | * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find | 
|  | * out the destination vcpus array and set the bitmap or it traverses to | 
|  | * each available vcpu to identify the same. | 
|  | */ | 
|  | void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, | 
|  | unsigned long *vcpu_bitmap) | 
|  | { | 
|  | struct kvm_lapic **dest_vcpu = NULL; | 
|  | struct kvm_lapic *src = NULL; | 
|  | struct kvm_apic_map *map; | 
|  | struct kvm_vcpu *vcpu; | 
|  | unsigned long bitmap, i; | 
|  | int vcpu_idx; | 
|  | bool ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | map = rcu_dereference(kvm->arch.apic_map); | 
|  |  | 
|  | ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, | 
|  | &bitmap); | 
|  | if (ret) { | 
|  | for_each_set_bit(i, &bitmap, 16) { | 
|  | if (!dest_vcpu[i]) | 
|  | continue; | 
|  | vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; | 
|  | __set_bit(vcpu_idx, vcpu_bitmap); | 
|  | } | 
|  | } else { | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | if (!kvm_apic_present(vcpu)) | 
|  | continue; | 
|  | if (!kvm_apic_match_dest(vcpu, NULL, | 
|  | irq->shorthand, | 
|  | irq->dest_id, | 
|  | irq->dest_mode)) | 
|  | continue; | 
|  | __set_bit(i, vcpu_bitmap); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) | 
|  | { | 
|  | return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; | 
|  | } | 
|  |  | 
|  | static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) | 
|  | { | 
|  | return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); | 
|  | } | 
|  |  | 
|  | static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) | 
|  | { | 
|  | int __maybe_unused trigger_mode; | 
|  |  | 
|  | /* Eoi the ioapic only if the ioapic doesn't own the vector. */ | 
|  | if (!kvm_ioapic_handles_vector(apic, vector)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If the intercepted EOI is for an IRQ that was pending from previous | 
|  | * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely | 
|  | * no longer need to be intercepted. | 
|  | */ | 
|  | if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector) | 
|  | kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu); | 
|  |  | 
|  | /* Request a KVM exit to inform the userspace IOAPIC. */ | 
|  | if (irqchip_split(apic->vcpu->kvm)) { | 
|  | apic->vcpu->arch.pending_ioapic_eoi = vector; | 
|  | kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KVM_IOAPIC | 
|  | if (apic_test_vector(vector, apic->regs + APIC_TMR)) | 
|  | trigger_mode = IOAPIC_LEVEL_TRIG; | 
|  | else | 
|  | trigger_mode = IOAPIC_EDGE_TRIG; | 
|  |  | 
|  | kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int apic_set_eoi(struct kvm_lapic *apic) | 
|  | { | 
|  | int vector = apic_find_highest_isr(apic); | 
|  |  | 
|  | trace_kvm_eoi(apic, vector); | 
|  |  | 
|  | /* | 
|  | * Not every write EOI will has corresponding ISR, | 
|  | * one example is when Kernel check timer on setup_IO_APIC | 
|  | */ | 
|  | if (vector == -1) | 
|  | return vector; | 
|  |  | 
|  | apic_clear_isr(vector, apic); | 
|  | apic_update_ppr(apic); | 
|  |  | 
|  | if (kvm_hv_synic_has_vector(apic->vcpu, vector)) | 
|  | kvm_hv_synic_send_eoi(apic->vcpu, vector); | 
|  |  | 
|  | kvm_ioapic_send_eoi(apic, vector); | 
|  | kvm_make_request(KVM_REQ_EVENT, apic->vcpu); | 
|  | return vector; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this interface assumes a trap-like exit, which has already finished | 
|  | * desired side effect including vISR and vPPR update. | 
|  | */ | 
|  | void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | trace_kvm_eoi(apic, vector); | 
|  |  | 
|  | kvm_ioapic_send_eoi(apic, vector); | 
|  | kvm_make_request(KVM_REQ_EVENT, apic->vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); | 
|  |  | 
|  | void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) | 
|  | { | 
|  | struct kvm_lapic_irq irq; | 
|  |  | 
|  | /* KVM has no delay and should always clear the BUSY/PENDING flag. */ | 
|  | WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); | 
|  |  | 
|  | irq.vector = icr_low & APIC_VECTOR_MASK; | 
|  | irq.delivery_mode = icr_low & APIC_MODE_MASK; | 
|  | irq.dest_mode = icr_low & APIC_DEST_MASK; | 
|  | irq.level = (icr_low & APIC_INT_ASSERT) != 0; | 
|  | irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; | 
|  | irq.shorthand = icr_low & APIC_SHORT_MASK; | 
|  | irq.msi_redir_hint = false; | 
|  | if (apic_x2apic_mode(apic)) | 
|  | irq.dest_id = icr_high; | 
|  | else | 
|  | irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); | 
|  |  | 
|  | trace_kvm_apic_ipi(icr_low, irq.dest_id); | 
|  |  | 
|  | kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); | 
|  |  | 
|  | static u32 apic_get_tmcct(struct kvm_lapic *apic) | 
|  | { | 
|  | ktime_t remaining, now; | 
|  | s64 ns; | 
|  |  | 
|  | ASSERT(apic != NULL); | 
|  |  | 
|  | /* if initial count is 0, current count should also be 0 */ | 
|  | if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || | 
|  | apic->lapic_timer.period == 0) | 
|  | return 0; | 
|  |  | 
|  | now = ktime_get(); | 
|  | remaining = ktime_sub(apic->lapic_timer.target_expiration, now); | 
|  | if (ktime_to_ns(remaining) < 0) | 
|  | remaining = 0; | 
|  |  | 
|  | ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); | 
|  | return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * | 
|  | apic->divide_count)); | 
|  | } | 
|  |  | 
|  | static void __report_tpr_access(struct kvm_lapic *apic, bool write) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = apic->vcpu; | 
|  | struct kvm_run *run = vcpu->run; | 
|  |  | 
|  | kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); | 
|  | run->tpr_access.rip = kvm_rip_read(vcpu); | 
|  | run->tpr_access.is_write = write; | 
|  | } | 
|  |  | 
|  | static inline void report_tpr_access(struct kvm_lapic *apic, bool write) | 
|  | { | 
|  | if (apic->vcpu->arch.tpr_access_reporting) | 
|  | __report_tpr_access(apic, write); | 
|  | } | 
|  |  | 
|  | static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) | 
|  | { | 
|  | u32 val = 0; | 
|  |  | 
|  | if (offset >= LAPIC_MMIO_LENGTH) | 
|  | return 0; | 
|  |  | 
|  | switch (offset) { | 
|  | case APIC_ARBPRI: | 
|  | break; | 
|  |  | 
|  | case APIC_TMCCT:	/* Timer CCR */ | 
|  | if (apic_lvtt_tscdeadline(apic)) | 
|  | return 0; | 
|  |  | 
|  | val = apic_get_tmcct(apic); | 
|  | break; | 
|  | case APIC_PROCPRI: | 
|  | apic_update_ppr(apic); | 
|  | val = kvm_lapic_get_reg(apic, offset); | 
|  | break; | 
|  | case APIC_TASKPRI: | 
|  | report_tpr_access(apic, false); | 
|  | fallthrough; | 
|  | default: | 
|  | val = kvm_lapic_get_reg(apic, offset); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) | 
|  | { | 
|  | return container_of(dev, struct kvm_lapic, dev); | 
|  | } | 
|  |  | 
|  | #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4)) | 
|  | #define APIC_REGS_MASK(first, count) \ | 
|  | (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) | 
|  |  | 
|  | u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) | 
|  | { | 
|  | /* Leave bits '0' for reserved and write-only registers. */ | 
|  | u64 valid_reg_mask = | 
|  | APIC_REG_MASK(APIC_ID) | | 
|  | APIC_REG_MASK(APIC_LVR) | | 
|  | APIC_REG_MASK(APIC_TASKPRI) | | 
|  | APIC_REG_MASK(APIC_PROCPRI) | | 
|  | APIC_REG_MASK(APIC_LDR) | | 
|  | APIC_REG_MASK(APIC_SPIV) | | 
|  | APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | | 
|  | APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | | 
|  | APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | | 
|  | APIC_REG_MASK(APIC_ESR) | | 
|  | APIC_REG_MASK(APIC_ICR) | | 
|  | APIC_REG_MASK(APIC_LVTT) | | 
|  | APIC_REG_MASK(APIC_LVTTHMR) | | 
|  | APIC_REG_MASK(APIC_LVTPC) | | 
|  | APIC_REG_MASK(APIC_LVT0) | | 
|  | APIC_REG_MASK(APIC_LVT1) | | 
|  | APIC_REG_MASK(APIC_LVTERR) | | 
|  | APIC_REG_MASK(APIC_TMICT) | | 
|  | APIC_REG_MASK(APIC_TMCCT) | | 
|  | APIC_REG_MASK(APIC_TDCR); | 
|  |  | 
|  | if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) | 
|  | valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); | 
|  |  | 
|  | /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ | 
|  | if (!apic_x2apic_mode(apic)) | 
|  | valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | | 
|  | APIC_REG_MASK(APIC_DFR) | | 
|  | APIC_REG_MASK(APIC_ICR2); | 
|  |  | 
|  | return valid_reg_mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); | 
|  |  | 
|  | static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, | 
|  | void *data) | 
|  | { | 
|  | unsigned char alignment = offset & 0xf; | 
|  | u32 result; | 
|  |  | 
|  | /* | 
|  | * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in | 
|  | * x2APIC and needs to be manually handled by the caller. | 
|  | */ | 
|  | WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); | 
|  |  | 
|  | if (alignment + len > 4) | 
|  | return 1; | 
|  |  | 
|  | if (offset > 0x3f0 || | 
|  | !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) | 
|  | return 1; | 
|  |  | 
|  | result = __apic_read(apic, offset & ~0xf); | 
|  |  | 
|  | trace_kvm_apic_read(offset, result); | 
|  |  | 
|  | switch (len) { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | memcpy(data, (char *)&result + alignment, len); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "Local APIC read with len = %x, " | 
|  | "should be 1,2, or 4 instead\n", len); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) | 
|  | { | 
|  | return addr >= apic->base_address && | 
|  | addr < apic->base_address + LAPIC_MMIO_LENGTH; | 
|  | } | 
|  |  | 
|  | static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, | 
|  | gpa_t address, int len, void *data) | 
|  | { | 
|  | struct kvm_lapic *apic = to_lapic(this); | 
|  | u32 offset = address - apic->base_address; | 
|  |  | 
|  | if (!apic_mmio_in_range(apic, address)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { | 
|  | if (!kvm_check_has_quirk(vcpu->kvm, | 
|  | KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | memset(data, 0xff, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | kvm_lapic_reg_read(apic, offset, len, data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void update_divide_count(struct kvm_lapic *apic) | 
|  | { | 
|  | u32 tmp1, tmp2, tdcr; | 
|  |  | 
|  | tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); | 
|  | tmp1 = tdcr & 0xf; | 
|  | tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; | 
|  | apic->divide_count = 0x1 << (tmp2 & 0x7); | 
|  | } | 
|  |  | 
|  | static void limit_periodic_timer_frequency(struct kvm_lapic *apic) | 
|  | { | 
|  | /* | 
|  | * Do not allow the guest to program periodic timers with small | 
|  | * interval, since the hrtimers are not throttled by the host | 
|  | * scheduler. | 
|  | */ | 
|  | if (apic_lvtt_period(apic) && apic->lapic_timer.period) { | 
|  | s64 min_period = min_timer_period_us * 1000LL; | 
|  |  | 
|  | if (apic->lapic_timer.period < min_period) { | 
|  | pr_info_once( | 
|  | "vcpu %i: requested %lld ns " | 
|  | "lapic timer period limited to %lld ns\n", | 
|  | apic->vcpu->vcpu_id, | 
|  | apic->lapic_timer.period, min_period); | 
|  | apic->lapic_timer.period = min_period; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cancel_hv_timer(struct kvm_lapic *apic); | 
|  |  | 
|  | static void cancel_apic_timer(struct kvm_lapic *apic) | 
|  | { | 
|  | hrtimer_cancel(&apic->lapic_timer.timer); | 
|  | preempt_disable(); | 
|  | if (apic->lapic_timer.hv_timer_in_use) | 
|  | cancel_hv_timer(apic); | 
|  | preempt_enable(); | 
|  | atomic_set(&apic->lapic_timer.pending, 0); | 
|  | } | 
|  |  | 
|  | static void apic_update_lvtt(struct kvm_lapic *apic) | 
|  | { | 
|  | u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & | 
|  | apic->lapic_timer.timer_mode_mask; | 
|  |  | 
|  | if (apic->lapic_timer.timer_mode != timer_mode) { | 
|  | if (apic_lvtt_tscdeadline(apic) != (timer_mode == | 
|  | APIC_LVT_TIMER_TSCDEADLINE)) { | 
|  | cancel_apic_timer(apic); | 
|  | kvm_lapic_set_reg(apic, APIC_TMICT, 0); | 
|  | apic->lapic_timer.period = 0; | 
|  | apic->lapic_timer.tscdeadline = 0; | 
|  | } | 
|  | apic->lapic_timer.timer_mode = timer_mode; | 
|  | limit_periodic_timer_frequency(apic); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On APICv, this test will cause a busy wait | 
|  | * during a higher-priority task. | 
|  | */ | 
|  |  | 
|  | static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Assume a timer IRQ was "injected" if the APIC is protected.  KVM's | 
|  | * copy of the vIRR is bogus, it's the responsibility of the caller to | 
|  | * precisely check whether or not a timer IRQ is pending. | 
|  | */ | 
|  | if (apic->guest_apic_protected) | 
|  | return true; | 
|  |  | 
|  | reg = kvm_lapic_get_reg(apic, APIC_LVTT); | 
|  | if (kvm_apic_hw_enabled(apic)) { | 
|  | int vec = reg & APIC_VECTOR_MASK; | 
|  | void *bitmap = apic->regs + APIC_ISR; | 
|  |  | 
|  | if (apic->apicv_active) | 
|  | bitmap = apic->regs + APIC_IRR; | 
|  |  | 
|  | if (apic_test_vector(vec, bitmap)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) | 
|  | { | 
|  | u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; | 
|  |  | 
|  | /* | 
|  | * If the guest TSC is running at a different ratio than the host, then | 
|  | * convert the delay to nanoseconds to achieve an accurate delay.  Note | 
|  | * that __delay() uses delay_tsc whenever the hardware has TSC, thus | 
|  | * always for VMX enabled hardware. | 
|  | */ | 
|  | if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { | 
|  | __delay(min(guest_cycles, | 
|  | nsec_to_cycles(vcpu, timer_advance_ns))); | 
|  | } else { | 
|  | u64 delay_ns = guest_cycles * 1000000ULL; | 
|  | do_div(delay_ns, vcpu->arch.virtual_tsc_khz); | 
|  | ndelay(min_t(u32, delay_ns, timer_advance_ns)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, | 
|  | s64 advance_expire_delta) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; | 
|  | u64 ns; | 
|  |  | 
|  | /* Do not adjust for tiny fluctuations or large random spikes. */ | 
|  | if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || | 
|  | abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) | 
|  | return; | 
|  |  | 
|  | /* too early */ | 
|  | if (advance_expire_delta < 0) { | 
|  | ns = -advance_expire_delta * 1000000ULL; | 
|  | do_div(ns, vcpu->arch.virtual_tsc_khz); | 
|  | timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; | 
|  | } else { | 
|  | /* too late */ | 
|  | ns = advance_expire_delta * 1000000ULL; | 
|  | do_div(ns, vcpu->arch.virtual_tsc_khz); | 
|  | timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; | 
|  | } | 
|  |  | 
|  | if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) | 
|  | timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; | 
|  | apic->lapic_timer.timer_advance_ns = timer_advance_ns; | 
|  | } | 
|  |  | 
|  | static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u64 guest_tsc, tsc_deadline; | 
|  |  | 
|  | tsc_deadline = apic->lapic_timer.expired_tscdeadline; | 
|  | apic->lapic_timer.expired_tscdeadline = 0; | 
|  | guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); | 
|  | trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); | 
|  |  | 
|  | adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); | 
|  |  | 
|  | /* | 
|  | * If the timer fired early, reread the TSC to account for the overhead | 
|  | * of the above adjustment to avoid waiting longer than is necessary. | 
|  | */ | 
|  | if (guest_tsc < tsc_deadline) | 
|  | guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); | 
|  |  | 
|  | if (guest_tsc < tsc_deadline) | 
|  | __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); | 
|  | } | 
|  |  | 
|  | void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (lapic_in_kernel(vcpu) && | 
|  | vcpu->arch.apic->lapic_timer.expired_tscdeadline && | 
|  | vcpu->arch.apic->lapic_timer.timer_advance_ns && | 
|  | lapic_timer_int_injected(vcpu)) | 
|  | __kvm_wait_lapic_expire(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); | 
|  |  | 
|  | static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) | 
|  | { | 
|  | struct kvm_timer *ktimer = &apic->lapic_timer; | 
|  |  | 
|  | kvm_apic_local_deliver(apic, APIC_LVTT); | 
|  | if (apic_lvtt_tscdeadline(apic)) { | 
|  | ktimer->tscdeadline = 0; | 
|  | } else if (apic_lvtt_oneshot(apic)) { | 
|  | ktimer->tscdeadline = 0; | 
|  | ktimer->target_expiration = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = apic->vcpu; | 
|  | struct kvm_timer *ktimer = &apic->lapic_timer; | 
|  |  | 
|  | if (atomic_read(&apic->lapic_timer.pending)) | 
|  | return; | 
|  |  | 
|  | if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) | 
|  | ktimer->expired_tscdeadline = ktimer->tscdeadline; | 
|  |  | 
|  | if (!from_timer_fn && apic->apicv_active) { | 
|  | WARN_ON(kvm_get_running_vcpu() != vcpu); | 
|  | kvm_apic_inject_pending_timer_irqs(apic); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (kvm_use_posted_timer_interrupt(apic->vcpu)) { | 
|  | /* | 
|  | * Ensure the guest's timer has truly expired before posting an | 
|  | * interrupt.  Open code the relevant checks to avoid querying | 
|  | * lapic_timer_int_injected(), which will be false since the | 
|  | * interrupt isn't yet injected.  Waiting until after injecting | 
|  | * is not an option since that won't help a posted interrupt. | 
|  | */ | 
|  | if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && | 
|  | vcpu->arch.apic->lapic_timer.timer_advance_ns) | 
|  | __kvm_wait_lapic_expire(vcpu); | 
|  | kvm_apic_inject_pending_timer_irqs(apic); | 
|  | return; | 
|  | } | 
|  |  | 
|  | atomic_inc(&apic->lapic_timer.pending); | 
|  | kvm_make_request(KVM_REQ_UNBLOCK, vcpu); | 
|  | if (from_timer_fn) | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  |  | 
|  | static void start_sw_tscdeadline(struct kvm_lapic *apic) | 
|  | { | 
|  | struct kvm_timer *ktimer = &apic->lapic_timer; | 
|  | u64 guest_tsc, tscdeadline = ktimer->tscdeadline; | 
|  | u64 ns = 0; | 
|  | ktime_t expire; | 
|  | struct kvm_vcpu *vcpu = apic->vcpu; | 
|  | u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; | 
|  | unsigned long flags; | 
|  | ktime_t now; | 
|  |  | 
|  | if (unlikely(!tscdeadline || !this_tsc_khz)) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | now = ktime_get(); | 
|  | guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); | 
|  |  | 
|  | ns = (tscdeadline - guest_tsc) * 1000000ULL; | 
|  | do_div(ns, this_tsc_khz); | 
|  |  | 
|  | if (likely(tscdeadline > guest_tsc) && | 
|  | likely(ns > apic->lapic_timer.timer_advance_ns)) { | 
|  | expire = ktime_add_ns(now, ns); | 
|  | expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); | 
|  | hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); | 
|  | } else | 
|  | apic_timer_expired(apic, false); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) | 
|  | { | 
|  | return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * | 
|  | (u64)apic->divide_count; | 
|  | } | 
|  |  | 
|  | static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) | 
|  | { | 
|  | ktime_t now, remaining; | 
|  | u64 ns_remaining_old, ns_remaining_new; | 
|  |  | 
|  | apic->lapic_timer.period = | 
|  | tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); | 
|  | limit_periodic_timer_frequency(apic); | 
|  |  | 
|  | now = ktime_get(); | 
|  | remaining = ktime_sub(apic->lapic_timer.target_expiration, now); | 
|  | if (ktime_to_ns(remaining) < 0) | 
|  | remaining = 0; | 
|  |  | 
|  | ns_remaining_old = ktime_to_ns(remaining); | 
|  | ns_remaining_new = mul_u64_u32_div(ns_remaining_old, | 
|  | apic->divide_count, old_divisor); | 
|  |  | 
|  | apic->lapic_timer.tscdeadline += | 
|  | nsec_to_cycles(apic->vcpu, ns_remaining_new) - | 
|  | nsec_to_cycles(apic->vcpu, ns_remaining_old); | 
|  | apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); | 
|  | } | 
|  |  | 
|  | static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) | 
|  | { | 
|  | ktime_t now; | 
|  | u64 tscl = rdtsc(); | 
|  | s64 deadline; | 
|  |  | 
|  | now = ktime_get(); | 
|  | apic->lapic_timer.period = | 
|  | tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); | 
|  |  | 
|  | if (!apic->lapic_timer.period) { | 
|  | apic->lapic_timer.tscdeadline = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | limit_periodic_timer_frequency(apic); | 
|  | deadline = apic->lapic_timer.period; | 
|  |  | 
|  | if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { | 
|  | if (unlikely(count_reg != APIC_TMICT)) { | 
|  | deadline = tmict_to_ns(apic, | 
|  | kvm_lapic_get_reg(apic, count_reg)); | 
|  | if (unlikely(deadline <= 0)) { | 
|  | if (apic_lvtt_period(apic)) | 
|  | deadline = apic->lapic_timer.period; | 
|  | else | 
|  | deadline = 0; | 
|  | } | 
|  | else if (unlikely(deadline > apic->lapic_timer.period)) { | 
|  | pr_info_ratelimited( | 
|  | "vcpu %i: requested lapic timer restore with " | 
|  | "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " | 
|  | "Using initial count to start timer.\n", | 
|  | apic->vcpu->vcpu_id, | 
|  | count_reg, | 
|  | kvm_lapic_get_reg(apic, count_reg), | 
|  | deadline, apic->lapic_timer.period); | 
|  | kvm_lapic_set_reg(apic, count_reg, 0); | 
|  | deadline = apic->lapic_timer.period; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + | 
|  | nsec_to_cycles(apic->vcpu, deadline); | 
|  | apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void advance_periodic_target_expiration(struct kvm_lapic *apic) | 
|  | { | 
|  | ktime_t now = ktime_get(); | 
|  | u64 tscl = rdtsc(); | 
|  | ktime_t delta; | 
|  |  | 
|  | /* | 
|  | * Synchronize both deadlines to the same time source or | 
|  | * differences in the periods (caused by differences in the | 
|  | * underlying clocks or numerical approximation errors) will | 
|  | * cause the two to drift apart over time as the errors | 
|  | * accumulate. | 
|  | */ | 
|  | apic->lapic_timer.target_expiration = | 
|  | ktime_add_ns(apic->lapic_timer.target_expiration, | 
|  | apic->lapic_timer.period); | 
|  | delta = ktime_sub(apic->lapic_timer.target_expiration, now); | 
|  | apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + | 
|  | nsec_to_cycles(apic->vcpu, delta); | 
|  | } | 
|  |  | 
|  | static void start_sw_period(struct kvm_lapic *apic) | 
|  | { | 
|  | if (!apic->lapic_timer.period) | 
|  | return; | 
|  |  | 
|  | if (ktime_after(ktime_get(), | 
|  | apic->lapic_timer.target_expiration)) { | 
|  | apic_timer_expired(apic, false); | 
|  |  | 
|  | if (apic_lvtt_oneshot(apic)) | 
|  | return; | 
|  |  | 
|  | advance_periodic_target_expiration(apic); | 
|  | } | 
|  |  | 
|  | hrtimer_start(&apic->lapic_timer.timer, | 
|  | apic->lapic_timer.target_expiration, | 
|  | HRTIMER_MODE_ABS_HARD); | 
|  | } | 
|  |  | 
|  | bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!lapic_in_kernel(vcpu)) | 
|  | return false; | 
|  |  | 
|  | return vcpu->arch.apic->lapic_timer.hv_timer_in_use; | 
|  | } | 
|  |  | 
|  | static void cancel_hv_timer(struct kvm_lapic *apic) | 
|  | { | 
|  | WARN_ON(preemptible()); | 
|  | WARN_ON(!apic->lapic_timer.hv_timer_in_use); | 
|  | kvm_x86_call(cancel_hv_timer)(apic->vcpu); | 
|  | apic->lapic_timer.hv_timer_in_use = false; | 
|  | } | 
|  |  | 
|  | static bool start_hv_timer(struct kvm_lapic *apic) | 
|  | { | 
|  | struct kvm_timer *ktimer = &apic->lapic_timer; | 
|  | struct kvm_vcpu *vcpu = apic->vcpu; | 
|  | bool expired; | 
|  |  | 
|  | WARN_ON(preemptible()); | 
|  | if (!kvm_can_use_hv_timer(vcpu)) | 
|  | return false; | 
|  |  | 
|  | if (!ktimer->tscdeadline) | 
|  | return false; | 
|  |  | 
|  | if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) | 
|  | return false; | 
|  |  | 
|  | ktimer->hv_timer_in_use = true; | 
|  | hrtimer_cancel(&ktimer->timer); | 
|  |  | 
|  | /* | 
|  | * To simplify handling the periodic timer, leave the hv timer running | 
|  | * even if the deadline timer has expired, i.e. rely on the resulting | 
|  | * VM-Exit to recompute the periodic timer's target expiration. | 
|  | */ | 
|  | if (!apic_lvtt_period(apic)) { | 
|  | /* | 
|  | * Cancel the hv timer if the sw timer fired while the hv timer | 
|  | * was being programmed, or if the hv timer itself expired. | 
|  | */ | 
|  | if (atomic_read(&ktimer->pending)) { | 
|  | cancel_hv_timer(apic); | 
|  | } else if (expired) { | 
|  | apic_timer_expired(apic, false); | 
|  | cancel_hv_timer(apic); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void start_sw_timer(struct kvm_lapic *apic) | 
|  | { | 
|  | struct kvm_timer *ktimer = &apic->lapic_timer; | 
|  |  | 
|  | WARN_ON(preemptible()); | 
|  | if (apic->lapic_timer.hv_timer_in_use) | 
|  | cancel_hv_timer(apic); | 
|  | if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) | 
|  | return; | 
|  |  | 
|  | if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) | 
|  | start_sw_period(apic); | 
|  | else if (apic_lvtt_tscdeadline(apic)) | 
|  | start_sw_tscdeadline(apic); | 
|  | trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); | 
|  | } | 
|  |  | 
|  | static void restart_apic_timer(struct kvm_lapic *apic) | 
|  | { | 
|  | preempt_disable(); | 
|  |  | 
|  | if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) | 
|  | goto out; | 
|  |  | 
|  | if (!start_hv_timer(apic)) | 
|  | start_sw_timer(apic); | 
|  | out: | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | preempt_disable(); | 
|  | /* If the preempt notifier has already run, it also called apic_timer_expired */ | 
|  | if (!apic->lapic_timer.hv_timer_in_use) | 
|  | goto out; | 
|  | WARN_ON(kvm_vcpu_is_blocking(vcpu)); | 
|  | apic_timer_expired(apic, false); | 
|  | cancel_hv_timer(apic); | 
|  |  | 
|  | if (apic_lvtt_period(apic) && apic->lapic_timer.period) { | 
|  | advance_periodic_target_expiration(apic); | 
|  | restart_apic_timer(apic); | 
|  | } | 
|  | out: | 
|  | preempt_enable(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); | 
|  |  | 
|  | void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | restart_apic_timer(vcpu->arch.apic); | 
|  | } | 
|  |  | 
|  | void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | preempt_disable(); | 
|  | /* Possibly the TSC deadline timer is not enabled yet */ | 
|  | if (apic->lapic_timer.hv_timer_in_use) | 
|  | start_sw_timer(apic); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | WARN_ON(!apic->lapic_timer.hv_timer_in_use); | 
|  | restart_apic_timer(apic); | 
|  | } | 
|  |  | 
|  | static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) | 
|  | { | 
|  | atomic_set(&apic->lapic_timer.pending, 0); | 
|  |  | 
|  | if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) | 
|  | && !set_target_expiration(apic, count_reg)) | 
|  | return; | 
|  |  | 
|  | restart_apic_timer(apic); | 
|  | } | 
|  |  | 
|  | static void start_apic_timer(struct kvm_lapic *apic) | 
|  | { | 
|  | __start_apic_timer(apic, APIC_TMICT); | 
|  | } | 
|  |  | 
|  | static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) | 
|  | { | 
|  | bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); | 
|  |  | 
|  | if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { | 
|  | apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; | 
|  | if (lvt0_in_nmi_mode) { | 
|  | atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); | 
|  | } else | 
|  | atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int get_lvt_index(u32 reg) | 
|  | { | 
|  | if (reg == APIC_LVTCMCI) | 
|  | return LVT_CMCI; | 
|  | if (reg < APIC_LVTT || reg > APIC_LVTERR) | 
|  | return -1; | 
|  | return array_index_nospec( | 
|  | (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); | 
|  | } | 
|  |  | 
|  | static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | trace_kvm_apic_write(reg, val); | 
|  |  | 
|  | switch (reg) { | 
|  | case APIC_ID:		/* Local APIC ID */ | 
|  | if (!apic_x2apic_mode(apic)) { | 
|  | kvm_apic_set_xapic_id(apic, val >> 24); | 
|  | } else { | 
|  | ret = 1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case APIC_TASKPRI: | 
|  | report_tpr_access(apic, true); | 
|  | apic_set_tpr(apic, val & 0xff); | 
|  | break; | 
|  |  | 
|  | case APIC_EOI: | 
|  | apic_set_eoi(apic); | 
|  | break; | 
|  |  | 
|  | case APIC_LDR: | 
|  | if (!apic_x2apic_mode(apic)) | 
|  | kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); | 
|  | else | 
|  | ret = 1; | 
|  | break; | 
|  |  | 
|  | case APIC_DFR: | 
|  | if (!apic_x2apic_mode(apic)) | 
|  | kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); | 
|  | else | 
|  | ret = 1; | 
|  | break; | 
|  |  | 
|  | case APIC_SPIV: { | 
|  | u32 mask = 0x3ff; | 
|  | if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) | 
|  | mask |= APIC_SPIV_DIRECTED_EOI; | 
|  | apic_set_spiv(apic, val & mask); | 
|  | if (!(val & APIC_SPIV_APIC_ENABLED)) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < apic->nr_lvt_entries; i++) { | 
|  | kvm_lapic_set_reg(apic, APIC_LVTx(i), | 
|  | kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); | 
|  | } | 
|  | apic_update_lvtt(apic); | 
|  | atomic_set(&apic->lapic_timer.pending, 0); | 
|  |  | 
|  | } | 
|  | break; | 
|  | } | 
|  | case APIC_ICR: | 
|  | WARN_ON_ONCE(apic_x2apic_mode(apic)); | 
|  |  | 
|  | /* No delay here, so we always clear the pending bit */ | 
|  | val &= ~APIC_ICR_BUSY; | 
|  | kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); | 
|  | kvm_lapic_set_reg(apic, APIC_ICR, val); | 
|  | break; | 
|  | case APIC_ICR2: | 
|  | if (apic_x2apic_mode(apic)) | 
|  | ret = 1; | 
|  | else | 
|  | kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); | 
|  | break; | 
|  |  | 
|  | case APIC_LVT0: | 
|  | apic_manage_nmi_watchdog(apic, val); | 
|  | fallthrough; | 
|  | case APIC_LVTTHMR: | 
|  | case APIC_LVTPC: | 
|  | case APIC_LVT1: | 
|  | case APIC_LVTERR: | 
|  | case APIC_LVTCMCI: { | 
|  | u32 index = get_lvt_index(reg); | 
|  | if (!kvm_lapic_lvt_supported(apic, index)) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | if (!kvm_apic_sw_enabled(apic)) | 
|  | val |= APIC_LVT_MASKED; | 
|  | val &= apic_lvt_mask[index]; | 
|  | kvm_lapic_set_reg(apic, reg, val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case APIC_LVTT: | 
|  | if (!kvm_apic_sw_enabled(apic)) | 
|  | val |= APIC_LVT_MASKED; | 
|  | val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); | 
|  | kvm_lapic_set_reg(apic, APIC_LVTT, val); | 
|  | apic_update_lvtt(apic); | 
|  | break; | 
|  |  | 
|  | case APIC_TMICT: | 
|  | if (apic_lvtt_tscdeadline(apic)) | 
|  | break; | 
|  |  | 
|  | cancel_apic_timer(apic); | 
|  | kvm_lapic_set_reg(apic, APIC_TMICT, val); | 
|  | start_apic_timer(apic); | 
|  | break; | 
|  |  | 
|  | case APIC_TDCR: { | 
|  | uint32_t old_divisor = apic->divide_count; | 
|  |  | 
|  | kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); | 
|  | update_divide_count(apic); | 
|  | if (apic->divide_count != old_divisor && | 
|  | apic->lapic_timer.period) { | 
|  | hrtimer_cancel(&apic->lapic_timer.timer); | 
|  | update_target_expiration(apic, old_divisor); | 
|  | restart_apic_timer(apic); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case APIC_ESR: | 
|  | if (apic_x2apic_mode(apic) && val != 0) | 
|  | ret = 1; | 
|  | break; | 
|  |  | 
|  | case APIC_SELF_IPI: | 
|  | /* | 
|  | * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold | 
|  | * the vector, everything else is reserved. | 
|  | */ | 
|  | if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) | 
|  | ret = 1; | 
|  | else | 
|  | kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); | 
|  | break; | 
|  | default: | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recalculate APIC maps if necessary, e.g. if the software enable bit | 
|  | * was toggled, the APIC ID changed, etc...   The maps are marked dirty | 
|  | * on relevant changes, i.e. this is a nop for most writes. | 
|  | */ | 
|  | kvm_recalculate_apic_map(apic->vcpu->kvm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, | 
|  | gpa_t address, int len, const void *data) | 
|  | { | 
|  | struct kvm_lapic *apic = to_lapic(this); | 
|  | unsigned int offset = address - apic->base_address; | 
|  | u32 val; | 
|  |  | 
|  | if (!apic_mmio_in_range(apic, address)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { | 
|  | if (!kvm_check_has_quirk(vcpu->kvm, | 
|  | KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * APIC register must be aligned on 128-bits boundary. | 
|  | * 32/64/128 bits registers must be accessed thru 32 bits. | 
|  | * Refer SDM 8.4.1 | 
|  | */ | 
|  | if (len != 4 || (offset & 0xf)) | 
|  | return 0; | 
|  |  | 
|  | val = *(u32*)data; | 
|  |  | 
|  | kvm_lapic_reg_write(apic, offset & 0xff0, val); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); | 
|  |  | 
|  | #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) | 
|  |  | 
|  | int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) | 
|  | { | 
|  | if (data & X2APIC_ICR_RESERVED_BITS) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but | 
|  | * only AMD requires it to be zero, Intel essentially just ignores the | 
|  | * bit.  And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, | 
|  | * the CPU performs the reserved bits checks, i.e. the underlying CPU | 
|  | * behavior will "win".  Arbitrarily clear the BUSY bit, as there is no | 
|  | * sane way to provide consistent behavior with respect to hardware. | 
|  | */ | 
|  | data &= ~APIC_ICR_BUSY; | 
|  |  | 
|  | kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); | 
|  | if (kvm_x86_ops.x2apic_icr_is_split) { | 
|  | kvm_lapic_set_reg(apic, APIC_ICR, data); | 
|  | kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); | 
|  | } else { | 
|  | kvm_lapic_set_reg64(apic, APIC_ICR, data); | 
|  | } | 
|  | trace_kvm_apic_write(APIC_ICR, data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) | 
|  | { | 
|  | if (kvm_x86_ops.x2apic_icr_is_split) | 
|  | return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | | 
|  | (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; | 
|  |  | 
|  | return kvm_lapic_get_reg64(apic, APIC_ICR); | 
|  | } | 
|  |  | 
|  | /* emulate APIC access in a trap manner */ | 
|  | void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | /* | 
|  | * ICR is a single 64-bit register when x2APIC is enabled, all others | 
|  | * registers hold 32-bit values.  For legacy xAPIC, ICR writes need to | 
|  | * go down the common path to get the upper half from ICR2. | 
|  | * | 
|  | * Note, using the write helpers may incur an unnecessary write to the | 
|  | * virtual APIC state, but KVM needs to conditionally modify the value | 
|  | * in certain cases, e.g. to clear the ICR busy bit.  The cost of extra | 
|  | * conditional branches is likely a wash relative to the cost of the | 
|  | * maybe-unecessary write, and both are in the noise anyways. | 
|  | */ | 
|  | if (apic_x2apic_mode(apic) && offset == APIC_ICR) | 
|  | WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); | 
|  | else | 
|  | kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); | 
|  |  | 
|  | void kvm_free_lapic(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | if (!vcpu->arch.apic) { | 
|  | static_branch_dec(&kvm_has_noapic_vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hrtimer_cancel(&apic->lapic_timer.timer); | 
|  |  | 
|  | if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) | 
|  | static_branch_slow_dec_deferred(&apic_hw_disabled); | 
|  |  | 
|  | if (!apic->sw_enabled) | 
|  | static_branch_slow_dec_deferred(&apic_sw_disabled); | 
|  |  | 
|  | if (apic->regs) | 
|  | free_page((unsigned long)apic->regs); | 
|  |  | 
|  | kfree(apic); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *---------------------------------------------------------------------- | 
|  | * LAPIC interface | 
|  | *---------------------------------------------------------------------- | 
|  | */ | 
|  | u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) | 
|  | return 0; | 
|  |  | 
|  | return apic->lapic_timer.tscdeadline; | 
|  | } | 
|  |  | 
|  | void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) | 
|  | return; | 
|  |  | 
|  | hrtimer_cancel(&apic->lapic_timer.timer); | 
|  | apic->lapic_timer.tscdeadline = data; | 
|  | start_apic_timer(apic); | 
|  | } | 
|  |  | 
|  | void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) | 
|  | { | 
|  | apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); | 
|  | } | 
|  |  | 
|  | u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 tpr; | 
|  |  | 
|  | tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); | 
|  |  | 
|  | return (tpr & 0xf0) >> 4; | 
|  | } | 
|  |  | 
|  | static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) | 
|  | { | 
|  | u64 old_value = vcpu->arch.apic_base; | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | vcpu->arch.apic_base = value; | 
|  |  | 
|  | if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) | 
|  | vcpu->arch.cpuid_dynamic_bits_dirty = true; | 
|  |  | 
|  | if (!apic) | 
|  | return; | 
|  |  | 
|  | /* update jump label if enable bit changes */ | 
|  | if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { | 
|  | if (value & MSR_IA32_APICBASE_ENABLE) { | 
|  | kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); | 
|  | static_branch_slow_dec_deferred(&apic_hw_disabled); | 
|  | /* Check if there are APF page ready requests pending */ | 
|  | kvm_make_request(KVM_REQ_APF_READY, vcpu); | 
|  | } else { | 
|  | static_branch_inc(&apic_hw_disabled.key); | 
|  | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((old_value ^ value) & X2APIC_ENABLE) { | 
|  | if (value & X2APIC_ENABLE) | 
|  | kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); | 
|  | else if (value & MSR_IA32_APICBASE_ENABLE) | 
|  | kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); | 
|  | } | 
|  |  | 
|  | if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { | 
|  | kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); | 
|  | kvm_x86_call(set_virtual_apic_mode)(vcpu); | 
|  | } | 
|  |  | 
|  | apic->base_address = apic->vcpu->arch.apic_base & | 
|  | MSR_IA32_APICBASE_BASE; | 
|  |  | 
|  | if ((value & MSR_IA32_APICBASE_ENABLE) && | 
|  | apic->base_address != APIC_DEFAULT_PHYS_BASE) { | 
|  | kvm_set_apicv_inhibit(apic->vcpu->kvm, | 
|  | APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) | 
|  | { | 
|  | enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); | 
|  | enum lapic_mode new_mode = kvm_apic_mode(value); | 
|  |  | 
|  | if (vcpu->arch.apic_base == value) | 
|  | return 0; | 
|  |  | 
|  | u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | | 
|  | (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); | 
|  |  | 
|  | if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) | 
|  | return 1; | 
|  | if (!host_initiated) { | 
|  | if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) | 
|  | return 1; | 
|  | if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __kvm_apic_set_base(vcpu, value); | 
|  | kvm_recalculate_apic_map(vcpu->kvm); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_set_base); | 
|  |  | 
|  | void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | /* | 
|  | * When APICv is enabled, KVM must always search the IRR for a pending | 
|  | * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU | 
|  | * isn't running.  If APICv is disabled, KVM _should_ search the IRR | 
|  | * for a pending IRQ.  But KVM currently doesn't ensure *all* hardware, | 
|  | * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching | 
|  | * the IRR at this time could race with IRQ delivery from hardware that | 
|  | * still sees APICv as being enabled. | 
|  | * | 
|  | * FIXME: Ensure other vCPUs and devices observe the change in APICv | 
|  | *        state prior to updating KVM's metadata caches, so that KVM | 
|  | *        can safely search the IRR and set irr_pending accordingly. | 
|  | */ | 
|  | apic->irr_pending = true; | 
|  |  | 
|  | if (apic->apicv_active) | 
|  | apic->isr_count = 1; | 
|  | else | 
|  | apic->isr_count = count_vectors(apic->regs + APIC_ISR); | 
|  |  | 
|  | apic->highest_isr_cache = -1; | 
|  | } | 
|  |  | 
|  | int kvm_alloc_apic_access_page(struct kvm *kvm) | 
|  | { | 
|  | void __user *hva; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | if (kvm->arch.apic_access_memslot_enabled || | 
|  | kvm->arch.apic_access_memslot_inhibited) | 
|  | goto out; | 
|  |  | 
|  | hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, | 
|  | APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); | 
|  | if (IS_ERR(hva)) { | 
|  | ret = PTR_ERR(hva); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kvm->arch.apic_access_memslot_enabled = true; | 
|  | out: | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); | 
|  |  | 
|  | void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  |  | 
|  | if (!kvm->arch.apic_access_memslot_enabled) | 
|  | return; | 
|  |  | 
|  | kvm_vcpu_srcu_read_unlock(vcpu); | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  |  | 
|  | if (kvm->arch.apic_access_memslot_enabled) { | 
|  | __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); | 
|  | /* | 
|  | * Clear "enabled" after the memslot is deleted so that a | 
|  | * different vCPU doesn't get a false negative when checking | 
|  | * the flag out of slots_lock.  No additional memory barrier is | 
|  | * needed as modifying memslots requires waiting other vCPUs to | 
|  | * drop SRCU (see above), and false positives are ok as the | 
|  | * flag is rechecked after acquiring slots_lock. | 
|  | */ | 
|  | kvm->arch.apic_access_memslot_enabled = false; | 
|  |  | 
|  | /* | 
|  | * Mark the memslot as inhibited to prevent reallocating the | 
|  | * memslot during vCPU creation, e.g. if a vCPU is hotplugged. | 
|  | */ | 
|  | kvm->arch.apic_access_memslot_inhibited = true; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  |  | 
|  | kvm_vcpu_srcu_read_lock(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u64 msr_val; | 
|  | int i; | 
|  |  | 
|  | kvm_x86_call(apicv_pre_state_restore)(vcpu); | 
|  |  | 
|  | if (!init_event) { | 
|  | msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; | 
|  | if (kvm_vcpu_is_reset_bsp(vcpu)) | 
|  | msr_val |= MSR_IA32_APICBASE_BSP; | 
|  |  | 
|  | /* | 
|  | * Use the inner helper to avoid an extra recalcuation of the | 
|  | * optimized APIC map if some other task has dirtied the map. | 
|  | * The recalculation needed for this vCPU will be done after | 
|  | * all APIC state has been initialized (see below). | 
|  | */ | 
|  | __kvm_apic_set_base(vcpu, msr_val); | 
|  | } | 
|  |  | 
|  | if (!apic) | 
|  | return; | 
|  |  | 
|  | /* Stop the timer in case it's a reset to an active apic */ | 
|  | hrtimer_cancel(&apic->lapic_timer.timer); | 
|  |  | 
|  | /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ | 
|  | if (!init_event) | 
|  | kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); | 
|  | kvm_apic_set_version(apic->vcpu); | 
|  |  | 
|  | for (i = 0; i < apic->nr_lvt_entries; i++) | 
|  | kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); | 
|  | apic_update_lvtt(apic); | 
|  | if (kvm_vcpu_is_reset_bsp(vcpu) && | 
|  | kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) | 
|  | kvm_lapic_set_reg(apic, APIC_LVT0, | 
|  | SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); | 
|  | apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); | 
|  |  | 
|  | kvm_apic_set_dfr(apic, 0xffffffffU); | 
|  | apic_set_spiv(apic, 0xff); | 
|  | kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); | 
|  | if (!apic_x2apic_mode(apic)) | 
|  | kvm_apic_set_ldr(apic, 0); | 
|  | kvm_lapic_set_reg(apic, APIC_ESR, 0); | 
|  | if (!apic_x2apic_mode(apic)) { | 
|  | kvm_lapic_set_reg(apic, APIC_ICR, 0); | 
|  | kvm_lapic_set_reg(apic, APIC_ICR2, 0); | 
|  | } else { | 
|  | kvm_lapic_set_reg64(apic, APIC_ICR, 0); | 
|  | } | 
|  | kvm_lapic_set_reg(apic, APIC_TDCR, 0); | 
|  | kvm_lapic_set_reg(apic, APIC_TMICT, 0); | 
|  | for (i = 0; i < 8; i++) { | 
|  | kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); | 
|  | kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); | 
|  | kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); | 
|  | } | 
|  | kvm_apic_update_apicv(vcpu); | 
|  | update_divide_count(apic); | 
|  | atomic_set(&apic->lapic_timer.pending, 0); | 
|  |  | 
|  | vcpu->arch.pv_eoi.msr_val = 0; | 
|  | apic_update_ppr(apic); | 
|  | if (apic->apicv_active) { | 
|  | kvm_x86_call(apicv_post_state_restore)(vcpu); | 
|  | kvm_x86_call(hwapic_isr_update)(vcpu, -1); | 
|  | } | 
|  |  | 
|  | vcpu->arch.apic_arb_prio = 0; | 
|  | vcpu->arch.apic_attention = 0; | 
|  |  | 
|  | kvm_recalculate_apic_map(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *---------------------------------------------------------------------- | 
|  | * timer interface | 
|  | *---------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | static bool lapic_is_periodic(struct kvm_lapic *apic) | 
|  | { | 
|  | return apic_lvtt_period(apic); | 
|  | } | 
|  |  | 
|  | int apic_has_pending_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) | 
|  | return atomic_read(&apic->lapic_timer.pending); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) | 
|  | { | 
|  | u32 reg = kvm_lapic_get_reg(apic, lvt_type); | 
|  | int vector, mode, trig_mode; | 
|  | int r; | 
|  |  | 
|  | if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { | 
|  | vector = reg & APIC_VECTOR_MASK; | 
|  | mode = reg & APIC_MODE_MASK; | 
|  | trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; | 
|  |  | 
|  | r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); | 
|  | if (r && lvt_type == APIC_LVTPC && | 
|  | guest_cpuid_is_intel_compatible(apic->vcpu)) | 
|  | kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); | 
|  | return r; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | if (apic) | 
|  | kvm_apic_local_deliver(apic, APIC_LVT0); | 
|  | } | 
|  |  | 
|  | static const struct kvm_io_device_ops apic_mmio_ops = { | 
|  | .read     = apic_mmio_read, | 
|  | .write    = apic_mmio_write, | 
|  | }; | 
|  |  | 
|  | static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) | 
|  | { | 
|  | struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); | 
|  | struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); | 
|  |  | 
|  | apic_timer_expired(apic, true); | 
|  |  | 
|  | if (lapic_is_periodic(apic)) { | 
|  | advance_periodic_target_expiration(apic); | 
|  | hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); | 
|  | return HRTIMER_RESTART; | 
|  | } else | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | int kvm_create_lapic(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic; | 
|  |  | 
|  | ASSERT(vcpu != NULL); | 
|  |  | 
|  | if (!irqchip_in_kernel(vcpu->kvm)) { | 
|  | static_branch_inc(&kvm_has_noapic_vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); | 
|  | if (!apic) | 
|  | goto nomem; | 
|  |  | 
|  | vcpu->arch.apic = apic; | 
|  |  | 
|  | if (kvm_x86_ops.alloc_apic_backing_page) | 
|  | apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); | 
|  | else | 
|  | apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); | 
|  | if (!apic->regs) { | 
|  | printk(KERN_ERR "malloc apic regs error for vcpu %x\n", | 
|  | vcpu->vcpu_id); | 
|  | goto nomem_free_apic; | 
|  | } | 
|  | apic->vcpu = vcpu; | 
|  |  | 
|  | apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); | 
|  |  | 
|  | hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC, | 
|  | HRTIMER_MODE_ABS_HARD); | 
|  | if (lapic_timer_advance) | 
|  | apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; | 
|  |  | 
|  | /* | 
|  | * Stuff the APIC ENABLE bit in lieu of temporarily incrementing | 
|  | * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). | 
|  | */ | 
|  | vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; | 
|  | static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ | 
|  | kvm_iodevice_init(&apic->dev, &apic_mmio_ops); | 
|  |  | 
|  | /* | 
|  | * Defer evaluating inhibits until the vCPU is first run, as this vCPU | 
|  | * will not get notified of any changes until this vCPU is visible to | 
|  | * other vCPUs (marked online and added to the set of vCPUs). | 
|  | * | 
|  | * Opportunistically mark APICv active as VMX in particularly is highly | 
|  | * unlikely to have inhibits.  Ignore the current per-VM APICv state so | 
|  | * that vCPU creation is guaranteed to run with a deterministic value, | 
|  | * the request will ensure the vCPU gets the correct state before VM-Entry. | 
|  | */ | 
|  | if (enable_apicv) { | 
|  | apic->apicv_active = true; | 
|  | kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | nomem_free_apic: | 
|  | kfree(apic); | 
|  | vcpu->arch.apic = NULL; | 
|  | nomem: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u32 ppr; | 
|  |  | 
|  | if (!kvm_apic_present(vcpu)) | 
|  | return -1; | 
|  |  | 
|  | if (apic->guest_apic_protected) | 
|  | return -1; | 
|  |  | 
|  | __apic_update_ppr(apic, &ppr); | 
|  | return apic_has_interrupt_for_ppr(apic, ppr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); | 
|  |  | 
|  | int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); | 
|  |  | 
|  | if (!kvm_apic_hw_enabled(vcpu->arch.apic)) | 
|  | return 1; | 
|  | if ((lvt0 & APIC_LVT_MASKED) == 0 && | 
|  | GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | if (atomic_read(&apic->lapic_timer.pending) > 0) { | 
|  | kvm_apic_inject_pending_timer_irqs(apic); | 
|  | atomic_set(&apic->lapic_timer.pending, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u32 ppr; | 
|  |  | 
|  | if (WARN_ON_ONCE(vector < 0 || !apic)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We get here even with APIC virtualization enabled, if doing | 
|  | * nested virtualization and L1 runs with the "acknowledge interrupt | 
|  | * on exit" mode.  Then we cannot inject the interrupt via RVI, | 
|  | * because the process would deliver it through the IDT. | 
|  | */ | 
|  |  | 
|  | apic_clear_irr(vector, apic); | 
|  | if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { | 
|  | /* | 
|  | * For auto-EOI interrupts, there might be another pending | 
|  | * interrupt above PPR, so check whether to raise another | 
|  | * KVM_REQ_EVENT. | 
|  | */ | 
|  | apic_update_ppr(apic); | 
|  | } else { | 
|  | /* | 
|  | * For normal interrupts, PPR has been raised and there cannot | 
|  | * be a higher-priority pending interrupt---except if there was | 
|  | * a concurrent interrupt injection, but that would have | 
|  | * triggered KVM_REQ_EVENT already. | 
|  | */ | 
|  | apic_set_isr(vector, apic); | 
|  | __apic_update_ppr(apic, &ppr); | 
|  | } | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); | 
|  |  | 
|  | static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, | 
|  | struct kvm_lapic_state *s, bool set) | 
|  | { | 
|  | if (apic_x2apic_mode(vcpu->arch.apic)) { | 
|  | u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); | 
|  | u32 *id = (u32 *)(s->regs + APIC_ID); | 
|  | u32 *ldr = (u32 *)(s->regs + APIC_LDR); | 
|  | u64 icr; | 
|  |  | 
|  | if (vcpu->kvm->arch.x2apic_format) { | 
|  | if (*id != x2apic_id) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | /* | 
|  | * Ignore the userspace value when setting APIC state. | 
|  | * KVM's model is that the x2APIC ID is readonly, e.g. | 
|  | * KVM only supports delivering interrupts to KVM's | 
|  | * version of the x2APIC ID.  However, for backwards | 
|  | * compatibility, don't reject attempts to set a | 
|  | * mismatched ID for userspace that hasn't opted into | 
|  | * x2apic_format. | 
|  | */ | 
|  | if (set) | 
|  | *id = x2apic_id; | 
|  | else | 
|  | *id = x2apic_id << 24; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In x2APIC mode, the LDR is fixed and based on the id.  And | 
|  | * if the ICR is _not_ split, ICR is internally a single 64-bit | 
|  | * register, but needs to be split to ICR+ICR2 in userspace for | 
|  | * backwards compatibility. | 
|  | */ | 
|  | if (set) | 
|  | *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); | 
|  |  | 
|  | if (!kvm_x86_ops.x2apic_icr_is_split) { | 
|  | if (set) { | 
|  | icr = apic_get_reg(s->regs, APIC_ICR) | | 
|  | (u64)apic_get_reg(s->regs, APIC_ICR2) << 32; | 
|  | apic_set_reg64(s->regs, APIC_ICR, icr); | 
|  | } else { | 
|  | icr = apic_get_reg64(s->regs, APIC_ICR); | 
|  | apic_set_reg(s->regs, APIC_ICR2, icr >> 32); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) | 
|  | { | 
|  | memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); | 
|  |  | 
|  | /* | 
|  | * Get calculated timer current count for remaining timer period (if | 
|  | * any) and store it in the returned register set. | 
|  | */ | 
|  | apic_set_reg(s->regs, APIC_TMCCT, __apic_read(vcpu->arch.apic, APIC_TMCCT)); | 
|  |  | 
|  | return kvm_apic_state_fixup(vcpu, s, false); | 
|  | } | 
|  |  | 
|  | int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | int r; | 
|  |  | 
|  | kvm_x86_call(apicv_pre_state_restore)(vcpu); | 
|  |  | 
|  | /* set SPIV separately to get count of SW disabled APICs right */ | 
|  | apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); | 
|  |  | 
|  | r = kvm_apic_state_fixup(vcpu, s, true); | 
|  | if (r) { | 
|  | kvm_recalculate_apic_map(vcpu->kvm); | 
|  | return r; | 
|  | } | 
|  | memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); | 
|  |  | 
|  | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | 
|  | kvm_recalculate_apic_map(vcpu->kvm); | 
|  | kvm_apic_set_version(vcpu); | 
|  |  | 
|  | apic_update_ppr(apic); | 
|  | cancel_apic_timer(apic); | 
|  | apic->lapic_timer.expired_tscdeadline = 0; | 
|  | apic_update_lvtt(apic); | 
|  | apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); | 
|  | update_divide_count(apic); | 
|  | __start_apic_timer(apic, APIC_TMCCT); | 
|  | kvm_lapic_set_reg(apic, APIC_TMCCT, 0); | 
|  | kvm_apic_update_apicv(vcpu); | 
|  | if (apic->apicv_active) { | 
|  | kvm_x86_call(apicv_post_state_restore)(vcpu); | 
|  | kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); | 
|  | } | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  |  | 
|  | #ifdef CONFIG_KVM_IOAPIC | 
|  | if (ioapic_in_kernel(vcpu->kvm)) | 
|  | kvm_rtc_eoi_tracking_restore_one(vcpu); | 
|  | #endif | 
|  |  | 
|  | vcpu->arch.apic_arb_prio = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | if (!lapic_in_kernel(vcpu) || | 
|  | kvm_can_post_timer_interrupt(vcpu)) | 
|  | return; | 
|  |  | 
|  | timer = &vcpu->arch.apic->lapic_timer.timer; | 
|  | if (hrtimer_cancel(timer)) | 
|  | hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt | 
|  | * | 
|  | * Detect whether guest triggered PV EOI since the | 
|  | * last entry. If yes, set EOI on guests's behalf. | 
|  | * Clear PV EOI in guest memory in any case. | 
|  | */ | 
|  | static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, | 
|  | struct kvm_lapic *apic) | 
|  | { | 
|  | int vector; | 
|  | /* | 
|  | * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host | 
|  | * and KVM_PV_EOI_ENABLED in guest memory as follows: | 
|  | * | 
|  | * KVM_APIC_PV_EOI_PENDING is unset: | 
|  | * 	-> host disabled PV EOI. | 
|  | * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: | 
|  | * 	-> host enabled PV EOI, guest did not execute EOI yet. | 
|  | * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: | 
|  | * 	-> host enabled PV EOI, guest executed EOI. | 
|  | */ | 
|  | BUG_ON(!pv_eoi_enabled(vcpu)); | 
|  |  | 
|  | if (pv_eoi_test_and_clr_pending(vcpu)) | 
|  | return; | 
|  | vector = apic_set_eoi(apic); | 
|  | trace_kvm_pv_eoi(apic, vector); | 
|  | } | 
|  |  | 
|  | void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 data; | 
|  |  | 
|  | if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) | 
|  | apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); | 
|  |  | 
|  | if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) | 
|  | return; | 
|  |  | 
|  | if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, | 
|  | sizeof(u32))) | 
|  | return; | 
|  |  | 
|  | apic_set_tpr(vcpu->arch.apic, data & 0xff); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * apic_sync_pv_eoi_to_guest - called before vmentry | 
|  | * | 
|  | * Detect whether it's safe to enable PV EOI and | 
|  | * if yes do so. | 
|  | */ | 
|  | static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, | 
|  | struct kvm_lapic *apic) | 
|  | { | 
|  | if (!pv_eoi_enabled(vcpu) || | 
|  | /* IRR set or many bits in ISR: could be nested. */ | 
|  | apic->irr_pending || | 
|  | /* Cache not set: could be safe but we don't bother. */ | 
|  | apic->highest_isr_cache == -1 || | 
|  | /* Need EOI to update ioapic. */ | 
|  | kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { | 
|  | /* | 
|  | * PV EOI was disabled by apic_sync_pv_eoi_from_guest | 
|  | * so we need not do anything here. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | pv_eoi_set_pending(apic->vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 data, tpr; | 
|  | int max_irr, max_isr; | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | apic_sync_pv_eoi_to_guest(vcpu, apic); | 
|  |  | 
|  | if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) | 
|  | return; | 
|  |  | 
|  | tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; | 
|  | max_irr = apic_find_highest_irr(apic); | 
|  | if (max_irr < 0) | 
|  | max_irr = 0; | 
|  | max_isr = apic_find_highest_isr(apic); | 
|  | if (max_isr < 0) | 
|  | max_isr = 0; | 
|  | data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); | 
|  |  | 
|  | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, | 
|  | sizeof(u32)); | 
|  | } | 
|  |  | 
|  | int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) | 
|  | { | 
|  | if (vapic_addr) { | 
|  | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, | 
|  | &vcpu->arch.apic->vapic_cache, | 
|  | vapic_addr, sizeof(u32))) | 
|  | return -EINVAL; | 
|  | __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); | 
|  | } else { | 
|  | __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); | 
|  | } | 
|  |  | 
|  | vcpu->arch.apic->vapic_addr = vapic_addr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) | 
|  | { | 
|  | u32 low; | 
|  |  | 
|  | if (reg == APIC_ICR) { | 
|  | *data = kvm_x2apic_icr_read(apic); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (kvm_lapic_reg_read(apic, reg, 4, &low)) | 
|  | return 1; | 
|  |  | 
|  | *data = low; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) | 
|  | { | 
|  | /* | 
|  | * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and | 
|  | * can be written as such, all other registers remain accessible only | 
|  | * through 32-bit reads/writes. | 
|  | */ | 
|  | if (reg == APIC_ICR) | 
|  | return kvm_x2apic_icr_write(apic, data); | 
|  |  | 
|  | /* Bits 63:32 are reserved in all other registers. */ | 
|  | if (data >> 32) | 
|  | return 1; | 
|  |  | 
|  | return kvm_lapic_reg_write(apic, reg, (u32)data); | 
|  | } | 
|  |  | 
|  | int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u32 reg = (msr - APIC_BASE_MSR) << 4; | 
|  |  | 
|  | if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) | 
|  | return 1; | 
|  |  | 
|  | return kvm_lapic_msr_write(apic, reg, data); | 
|  | } | 
|  |  | 
|  | int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u32 reg = (msr - APIC_BASE_MSR) << 4; | 
|  |  | 
|  | if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) | 
|  | return 1; | 
|  |  | 
|  | return kvm_lapic_msr_read(apic, reg, data); | 
|  | } | 
|  |  | 
|  | int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) | 
|  | { | 
|  | if (!lapic_in_kernel(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); | 
|  | } | 
|  |  | 
|  | int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) | 
|  | { | 
|  | if (!lapic_in_kernel(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); | 
|  | } | 
|  |  | 
|  | int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) | 
|  | { | 
|  | u64 addr = data & ~KVM_MSR_ENABLED; | 
|  | struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; | 
|  | unsigned long new_len; | 
|  | int ret; | 
|  |  | 
|  | if (!IS_ALIGNED(addr, 4)) | 
|  | return 1; | 
|  |  | 
|  | if (data & KVM_MSR_ENABLED) { | 
|  | if (addr == ghc->gpa && len <= ghc->len) | 
|  | new_len = ghc->len; | 
|  | else | 
|  | new_len = len; | 
|  |  | 
|  | ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | vcpu->arch.pv_eoi.msr_val = data; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_apic_accept_events(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | u8 sipi_vector; | 
|  | int r; | 
|  |  | 
|  | if (!kvm_apic_has_pending_init_or_sipi(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | if (is_guest_mode(vcpu)) { | 
|  | r = kvm_check_nested_events(vcpu); | 
|  | if (r < 0) | 
|  | return r == -EBUSY ? 0 : r; | 
|  | /* | 
|  | * Continue processing INIT/SIPI even if a nested VM-Exit | 
|  | * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI | 
|  | * are blocked as a result of transitioning to VMX root mode. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * INITs are blocked while CPU is in specific states (SMM, VMX root | 
|  | * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in | 
|  | * wait-for-SIPI (WFS). | 
|  | */ | 
|  | if (!kvm_apic_init_sipi_allowed(vcpu)) { | 
|  | WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); | 
|  | clear_bit(KVM_APIC_SIPI, &apic->pending_events); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { | 
|  | kvm_vcpu_reset(vcpu, true); | 
|  | if (kvm_vcpu_is_bsp(apic->vcpu)) | 
|  | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | 
|  | else | 
|  | kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); | 
|  | } | 
|  | if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { | 
|  | if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { | 
|  | /* evaluate pending_events before reading the vector */ | 
|  | smp_rmb(); | 
|  | sipi_vector = apic->sipi_vector; | 
|  | kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, | 
|  | sipi_vector); | 
|  | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_lapic_exit(void) | 
|  | { | 
|  | static_key_deferred_flush(&apic_hw_disabled); | 
|  | WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); | 
|  | static_key_deferred_flush(&apic_sw_disabled); | 
|  | WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); | 
|  | } |