| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2008 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/time.h> | 
 | #include <linux/init.h> | 
 | #include <linux/string.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/psi.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/shrinker.h> | 
 | #include <crypto/hash.h> | 
 | #include "misc.h" | 
 | #include "ctree.h" | 
 | #include "fs.h" | 
 | #include "btrfs_inode.h" | 
 | #include "bio.h" | 
 | #include "ordered-data.h" | 
 | #include "compression.h" | 
 | #include "extent_io.h" | 
 | #include "extent_map.h" | 
 | #include "subpage.h" | 
 | #include "messages.h" | 
 | #include "super.h" | 
 |  | 
 | static struct bio_set btrfs_compressed_bioset; | 
 |  | 
 | static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; | 
 |  | 
 | const char* btrfs_compress_type2str(enum btrfs_compression_type type) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_ZLIB: | 
 | 	case BTRFS_COMPRESS_LZO: | 
 | 	case BTRFS_COMPRESS_ZSTD: | 
 | 	case BTRFS_COMPRESS_NONE: | 
 | 		return btrfs_compress_types[type]; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) | 
 | { | 
 | 	return container_of(bbio, struct compressed_bio, bbio); | 
 | } | 
 |  | 
 | static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, | 
 | 						   u64 start, blk_opf_t op, | 
 | 						   btrfs_bio_end_io_t end_io) | 
 | { | 
 | 	struct btrfs_bio *bbio; | 
 |  | 
 | 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op, | 
 | 					  GFP_NOFS, &btrfs_compressed_bioset)); | 
 | 	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL); | 
 | 	bbio->inode = inode; | 
 | 	bbio->file_offset = start; | 
 | 	return to_compressed_bio(bbio); | 
 | } | 
 |  | 
 | bool btrfs_compress_is_valid_type(const char *str, size_t len) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { | 
 | 		size_t comp_len = strlen(btrfs_compress_types[i]); | 
 |  | 
 | 		if (len < comp_len) | 
 | 			continue; | 
 |  | 
 | 		if (!strncmp(btrfs_compress_types[i], str, comp_len)) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static int compression_compress_pages(int type, struct list_head *ws, | 
 | 				      struct btrfs_inode *inode, u64 start, | 
 | 				      struct folio **folios, unsigned long *out_folios, | 
 | 				      unsigned long *total_in, unsigned long *total_out) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_ZLIB: | 
 | 		return zlib_compress_folios(ws, inode, start, folios, | 
 | 					    out_folios, total_in, total_out); | 
 | 	case BTRFS_COMPRESS_LZO: | 
 | 		return lzo_compress_folios(ws, inode, start, folios, | 
 | 					   out_folios, total_in, total_out); | 
 | 	case BTRFS_COMPRESS_ZSTD: | 
 | 		return zstd_compress_folios(ws, inode, start, folios, | 
 | 					    out_folios, total_in, total_out); | 
 | 	case BTRFS_COMPRESS_NONE: | 
 | 	default: | 
 | 		/* | 
 | 		 * This can happen when compression races with remount setting | 
 | 		 * it to 'no compress', while caller doesn't call | 
 | 		 * inode_need_compress() to check if we really need to | 
 | 		 * compress. | 
 | 		 * | 
 | 		 * Not a big deal, just need to inform caller that we | 
 | 		 * haven't allocated any pages yet. | 
 | 		 */ | 
 | 		*out_folios = 0; | 
 | 		return -E2BIG; | 
 | 	} | 
 | } | 
 |  | 
 | static int compression_decompress_bio(struct list_head *ws, | 
 | 				      struct compressed_bio *cb) | 
 | { | 
 | 	switch (cb->compress_type) { | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); | 
 | 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); | 
 | 	case BTRFS_COMPRESS_NONE: | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static int compression_decompress(int type, struct list_head *ws, | 
 | 		const u8 *data_in, struct folio *dest_folio, | 
 | 		unsigned long dest_pgoff, size_t srclen, size_t destlen) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio, | 
 | 						dest_pgoff, srclen, destlen); | 
 | 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_folio, | 
 | 						dest_pgoff, srclen, destlen); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio, | 
 | 						dest_pgoff, srclen, destlen); | 
 | 	case BTRFS_COMPRESS_NONE: | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_free_compressed_folios(struct compressed_bio *cb) | 
 | { | 
 | 	for (unsigned int i = 0; i < cb->nr_folios; i++) | 
 | 		btrfs_free_compr_folio(cb->compressed_folios[i]); | 
 | 	kfree(cb->compressed_folios); | 
 | } | 
 |  | 
 | static int btrfs_decompress_bio(struct compressed_bio *cb); | 
 |  | 
 | /* | 
 |  * Global cache of last unused pages for compression/decompression. | 
 |  */ | 
 | static struct btrfs_compr_pool { | 
 | 	struct shrinker *shrinker; | 
 | 	spinlock_t lock; | 
 | 	struct list_head list; | 
 | 	int count; | 
 | 	int thresh; | 
 | } compr_pool; | 
 |  | 
 | static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * We must not read the values more than once if 'ret' gets expanded in | 
 | 	 * the return statement so we don't accidentally return a negative | 
 | 	 * number, even if the first condition finds it positive. | 
 | 	 */ | 
 | 	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh); | 
 |  | 
 | 	return ret > 0 ? ret : 0; | 
 | } | 
 |  | 
 | static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc) | 
 | { | 
 | 	struct list_head remove; | 
 | 	struct list_head *tmp, *next; | 
 | 	int freed; | 
 |  | 
 | 	if (compr_pool.count == 0) | 
 | 		return SHRINK_STOP; | 
 |  | 
 | 	INIT_LIST_HEAD(&remove); | 
 |  | 
 | 	/* For now, just simply drain the whole list. */ | 
 | 	spin_lock(&compr_pool.lock); | 
 | 	list_splice_init(&compr_pool.list, &remove); | 
 | 	freed = compr_pool.count; | 
 | 	compr_pool.count = 0; | 
 | 	spin_unlock(&compr_pool.lock); | 
 |  | 
 | 	list_for_each_safe(tmp, next, &remove) { | 
 | 		struct page *page = list_entry(tmp, struct page, lru); | 
 |  | 
 | 		ASSERT(page_ref_count(page) == 1); | 
 | 		put_page(page); | 
 | 	} | 
 |  | 
 | 	return freed; | 
 | } | 
 |  | 
 | /* | 
 |  * Common wrappers for page allocation from compression wrappers | 
 |  */ | 
 | struct folio *btrfs_alloc_compr_folio(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct folio *folio = NULL; | 
 |  | 
 | 	/* For bs > ps cases, no cached folio pool for now. */ | 
 | 	if (fs_info->block_min_order) | 
 | 		goto alloc; | 
 |  | 
 | 	spin_lock(&compr_pool.lock); | 
 | 	if (compr_pool.count > 0) { | 
 | 		folio = list_first_entry(&compr_pool.list, struct folio, lru); | 
 | 		list_del_init(&folio->lru); | 
 | 		compr_pool.count--; | 
 | 	} | 
 | 	spin_unlock(&compr_pool.lock); | 
 |  | 
 | 	if (folio) | 
 | 		return folio; | 
 |  | 
 | alloc: | 
 | 	return folio_alloc(GFP_NOFS, fs_info->block_min_order); | 
 | } | 
 |  | 
 | void btrfs_free_compr_folio(struct folio *folio) | 
 | { | 
 | 	bool do_free = false; | 
 |  | 
 | 	/* The folio is from bs > ps fs, no cached pool for now. */ | 
 | 	if (folio_order(folio)) | 
 | 		goto free; | 
 |  | 
 | 	spin_lock(&compr_pool.lock); | 
 | 	if (compr_pool.count > compr_pool.thresh) { | 
 | 		do_free = true; | 
 | 	} else { | 
 | 		list_add(&folio->lru, &compr_pool.list); | 
 | 		compr_pool.count++; | 
 | 	} | 
 | 	spin_unlock(&compr_pool.lock); | 
 |  | 
 | 	if (!do_free) | 
 | 		return; | 
 |  | 
 | free: | 
 | 	ASSERT(folio_ref_count(folio) == 1); | 
 | 	folio_put(folio); | 
 | } | 
 |  | 
 | static void end_bbio_compressed_read(struct btrfs_bio *bbio) | 
 | { | 
 | 	struct compressed_bio *cb = to_compressed_bio(bbio); | 
 | 	blk_status_t status = bbio->bio.bi_status; | 
 |  | 
 | 	if (!status) | 
 | 		status = errno_to_blk_status(btrfs_decompress_bio(cb)); | 
 |  | 
 | 	btrfs_free_compressed_folios(cb); | 
 | 	btrfs_bio_end_io(cb->orig_bbio, status); | 
 | 	bio_put(&bbio->bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the writeback bits on all of the file | 
 |  * pages for a compressed write | 
 |  */ | 
 | static noinline void end_compressed_writeback(const struct compressed_bio *cb) | 
 | { | 
 | 	struct inode *inode = &cb->bbio.inode->vfs_inode; | 
 | 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
 | 	pgoff_t index = cb->start >> PAGE_SHIFT; | 
 | 	const pgoff_t end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; | 
 | 	struct folio_batch fbatch; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	ret = blk_status_to_errno(cb->bbio.bio.bi_status); | 
 | 	if (ret) | 
 | 		mapping_set_error(inode->i_mapping, ret); | 
 |  | 
 | 	folio_batch_init(&fbatch); | 
 | 	while (index <= end_index) { | 
 | 		ret = filemap_get_folios(inode->i_mapping, &index, end_index, | 
 | 				&fbatch); | 
 |  | 
 | 		if (ret == 0) | 
 | 			return; | 
 |  | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			struct folio *folio = fbatch.folios[i]; | 
 |  | 
 | 			btrfs_folio_clamp_clear_writeback(fs_info, folio, | 
 | 							  cb->start, cb->len); | 
 | 		} | 
 | 		folio_batch_release(&fbatch); | 
 | 	} | 
 | 	/* the inode may be gone now */ | 
 | } | 
 |  | 
 | static void btrfs_finish_compressed_write_work(struct work_struct *work) | 
 | { | 
 | 	struct compressed_bio *cb = | 
 | 		container_of(work, struct compressed_bio, write_end_work); | 
 |  | 
 | 	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len, | 
 | 				    cb->bbio.bio.bi_status == BLK_STS_OK); | 
 |  | 
 | 	if (cb->writeback) | 
 | 		end_compressed_writeback(cb); | 
 | 	/* Note, our inode could be gone now */ | 
 |  | 
 | 	btrfs_free_compressed_folios(cb); | 
 | 	bio_put(&cb->bbio.bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Do the cleanup once all the compressed pages hit the disk.  This will clear | 
 |  * writeback on the file pages and free the compressed pages. | 
 |  * | 
 |  * This also calls the writeback end hooks for the file pages so that metadata | 
 |  * and checksums can be updated in the file. | 
 |  */ | 
 | static void end_bbio_compressed_write(struct btrfs_bio *bbio) | 
 | { | 
 | 	struct compressed_bio *cb = to_compressed_bio(bbio); | 
 | 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; | 
 |  | 
 | 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work); | 
 | } | 
 |  | 
 | static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = cb->bbio.fs_info; | 
 | 	struct bio *bio = &cb->bbio.bio; | 
 | 	u32 offset = 0; | 
 |  | 
 | 	while (offset < cb->compressed_len) { | 
 | 		struct folio *folio; | 
 | 		int ret; | 
 | 		u32 len = min_t(u32, cb->compressed_len - offset, | 
 | 				btrfs_min_folio_size(fs_info)); | 
 |  | 
 | 		folio = cb->compressed_folios[offset >> (PAGE_SHIFT + fs_info->block_min_order)]; | 
 | 		/* Maximum compressed extent is smaller than bio size limit. */ | 
 | 		ret = bio_add_folio(bio, folio, len, 0); | 
 | 		ASSERT(ret); | 
 | 		offset += len; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * worker function to build and submit bios for previously compressed pages. | 
 |  * The corresponding pages in the inode should be marked for writeback | 
 |  * and the compressed pages should have a reference on them for dropping | 
 |  * when the IO is complete. | 
 |  * | 
 |  * This also checksums the file bytes and gets things ready for | 
 |  * the end io hooks. | 
 |  */ | 
 | void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered, | 
 | 				   struct folio **compressed_folios, | 
 | 				   unsigned int nr_folios, | 
 | 				   blk_opf_t write_flags, | 
 | 				   bool writeback) | 
 | { | 
 | 	struct btrfs_inode *inode = ordered->inode; | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct compressed_bio *cb; | 
 |  | 
 | 	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize)); | 
 | 	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize)); | 
 |  | 
 | 	cb = alloc_compressed_bio(inode, ordered->file_offset, | 
 | 				  REQ_OP_WRITE | write_flags, | 
 | 				  end_bbio_compressed_write); | 
 | 	cb->start = ordered->file_offset; | 
 | 	cb->len = ordered->num_bytes; | 
 | 	cb->compressed_folios = compressed_folios; | 
 | 	cb->compressed_len = ordered->disk_num_bytes; | 
 | 	cb->writeback = writeback; | 
 | 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); | 
 | 	cb->nr_folios = nr_folios; | 
 | 	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT; | 
 | 	cb->bbio.ordered = ordered; | 
 | 	btrfs_add_compressed_bio_folios(cb); | 
 |  | 
 | 	btrfs_submit_bbio(&cb->bbio, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Add extra pages in the same compressed file extent so that we don't need to | 
 |  * re-read the same extent again and again. | 
 |  * | 
 |  * NOTE: this won't work well for subpage, as for subpage read, we lock the | 
 |  * full page then submit bio for each compressed/regular extents. | 
 |  * | 
 |  * This means, if we have several sectors in the same page points to the same | 
 |  * on-disk compressed data, we will re-read the same extent many times and | 
 |  * this function can only help for the next page. | 
 |  */ | 
 | static noinline int add_ra_bio_pages(struct inode *inode, | 
 | 				     u64 compressed_end, | 
 | 				     struct compressed_bio *cb, | 
 | 				     int *memstall, unsigned long *pflags) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
 | 	pgoff_t end_index; | 
 | 	struct bio *orig_bio = &cb->orig_bbio->bio; | 
 | 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; | 
 | 	u64 isize = i_size_read(inode); | 
 | 	int ret; | 
 | 	struct folio *folio; | 
 | 	struct extent_map *em; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct extent_io_tree *tree; | 
 | 	int sectors_missed = 0; | 
 |  | 
 | 	em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	tree = &BTRFS_I(inode)->io_tree; | 
 |  | 
 | 	if (isize == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * For current subpage support, we only support 64K page size, | 
 | 	 * which means maximum compressed extent size (128K) is just 2x page | 
 | 	 * size. | 
 | 	 * This makes readahead less effective, so here disable readahead for | 
 | 	 * subpage for now, until full compressed write is supported. | 
 | 	 */ | 
 | 	if (fs_info->sectorsize < PAGE_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	/* For bs > ps cases, we don't support readahead for compressed folios for now. */ | 
 | 	if (fs_info->block_min_order) | 
 | 		return 0; | 
 |  | 
 | 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; | 
 |  | 
 | 	while (cur < compressed_end) { | 
 | 		pgoff_t page_end; | 
 | 		pgoff_t pg_index = cur >> PAGE_SHIFT; | 
 | 		u32 add_size; | 
 |  | 
 | 		if (pg_index > end_index) | 
 | 			break; | 
 |  | 
 | 		folio = filemap_get_folio(mapping, pg_index); | 
 | 		if (!IS_ERR(folio)) { | 
 | 			u64 folio_sz = folio_size(folio); | 
 | 			u64 offset = offset_in_folio(folio, cur); | 
 |  | 
 | 			folio_put(folio); | 
 | 			sectors_missed += (folio_sz - offset) >> | 
 | 					  fs_info->sectorsize_bits; | 
 |  | 
 | 			/* Beyond threshold, no need to continue */ | 
 | 			if (sectors_missed > 4) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * Jump to next page start as we already have page for | 
 | 			 * current offset. | 
 | 			 */ | 
 | 			cur += (folio_sz - offset); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		folio = filemap_alloc_folio(mapping_gfp_constraint(mapping, | 
 | 								   ~__GFP_FS), 0); | 
 | 		if (!folio) | 
 | 			break; | 
 |  | 
 | 		if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) { | 
 | 			/* There is already a page, skip to page end */ | 
 | 			cur += folio_size(folio); | 
 | 			folio_put(folio); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!*memstall && folio_test_workingset(folio)) { | 
 | 			psi_memstall_enter(pflags); | 
 | 			*memstall = 1; | 
 | 		} | 
 |  | 
 | 		ret = set_folio_extent_mapped(folio); | 
 | 		if (ret < 0) { | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1; | 
 | 		btrfs_lock_extent(tree, cur, page_end, NULL); | 
 | 		read_lock(&em_tree->lock); | 
 | 		em = btrfs_lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); | 
 | 		read_unlock(&em_tree->lock); | 
 |  | 
 | 		/* | 
 | 		 * At this point, we have a locked page in the page cache for | 
 | 		 * these bytes in the file.  But, we have to make sure they map | 
 | 		 * to this compressed extent on disk. | 
 | 		 */ | 
 | 		if (!em || cur < em->start || | 
 | 		    (cur + fs_info->sectorsize > btrfs_extent_map_end(em)) || | 
 | 		    (btrfs_extent_map_block_start(em) >> SECTOR_SHIFT) != | 
 | 		    orig_bio->bi_iter.bi_sector) { | 
 | 			btrfs_free_extent_map(em); | 
 | 			btrfs_unlock_extent(tree, cur, page_end, NULL); | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			break; | 
 | 		} | 
 | 		add_size = min(em->start + em->len, page_end + 1) - cur; | 
 | 		btrfs_free_extent_map(em); | 
 | 		btrfs_unlock_extent(tree, cur, page_end, NULL); | 
 |  | 
 | 		if (folio_contains(folio, end_index)) { | 
 | 			size_t zero_offset = offset_in_folio(folio, isize); | 
 |  | 
 | 			if (zero_offset) { | 
 | 				int zeros; | 
 | 				zeros = folio_size(folio) - zero_offset; | 
 | 				folio_zero_range(folio, zero_offset, zeros); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!bio_add_folio(orig_bio, folio, add_size, | 
 | 				   offset_in_folio(folio, cur))) { | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * If it's subpage, we also need to increase its | 
 | 		 * subpage::readers number, as at endio we will decrease | 
 | 		 * subpage::readers and to unlock the page. | 
 | 		 */ | 
 | 		if (fs_info->sectorsize < PAGE_SIZE) | 
 | 			btrfs_folio_set_lock(fs_info, folio, cur, add_size); | 
 | 		folio_put(folio); | 
 | 		cur += add_size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * for a compressed read, the bio we get passed has all the inode pages | 
 |  * in it.  We don't actually do IO on those pages but allocate new ones | 
 |  * to hold the compressed pages on disk. | 
 |  * | 
 |  * bio->bi_iter.bi_sector points to the compressed extent on disk | 
 |  * bio->bi_io_vec points to all of the inode pages | 
 |  * | 
 |  * After the compressed pages are read, we copy the bytes into the | 
 |  * bio we were passed and then call the bio end_io calls | 
 |  */ | 
 | void btrfs_submit_compressed_read(struct btrfs_bio *bbio) | 
 | { | 
 | 	struct btrfs_inode *inode = bbio->inode; | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct extent_map_tree *em_tree = &inode->extent_tree; | 
 | 	struct compressed_bio *cb; | 
 | 	unsigned int compressed_len; | 
 | 	u64 file_offset = bbio->file_offset; | 
 | 	u64 em_len; | 
 | 	u64 em_start; | 
 | 	struct extent_map *em; | 
 | 	unsigned long pflags; | 
 | 	int memstall = 0; | 
 | 	blk_status_t status; | 
 | 	int ret; | 
 |  | 
 | 	/* we need the actual starting offset of this extent in the file */ | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = btrfs_lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); | 
 | 	read_unlock(&em_tree->lock); | 
 | 	if (!em) { | 
 | 		status = BLK_STS_IOERR; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ASSERT(btrfs_extent_map_is_compressed(em)); | 
 | 	compressed_len = em->disk_num_bytes; | 
 |  | 
 | 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ, | 
 | 				  end_bbio_compressed_read); | 
 |  | 
 | 	cb->start = em->start - em->offset; | 
 | 	em_len = em->len; | 
 | 	em_start = em->start; | 
 |  | 
 | 	cb->len = bbio->bio.bi_iter.bi_size; | 
 | 	cb->compressed_len = compressed_len; | 
 | 	cb->compress_type = btrfs_extent_map_compression(em); | 
 | 	cb->orig_bbio = bbio; | 
 | 	cb->bbio.csum_search_commit_root = bbio->csum_search_commit_root; | 
 |  | 
 | 	btrfs_free_extent_map(em); | 
 |  | 
 | 	cb->nr_folios = DIV_ROUND_UP(compressed_len, btrfs_min_folio_size(fs_info)); | 
 | 	cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct folio *), GFP_NOFS); | 
 | 	if (!cb->compressed_folios) { | 
 | 		status = BLK_STS_RESOURCE; | 
 | 		goto out_free_bio; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_alloc_folio_array(cb->nr_folios, fs_info->block_min_order, | 
 | 				      cb->compressed_folios); | 
 | 	if (ret) { | 
 | 		status = BLK_STS_RESOURCE; | 
 | 		goto out_free_compressed_pages; | 
 | 	} | 
 |  | 
 | 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall, | 
 | 			 &pflags); | 
 |  | 
 | 	/* include any pages we added in add_ra-bio_pages */ | 
 | 	cb->len = bbio->bio.bi_iter.bi_size; | 
 | 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; | 
 | 	btrfs_add_compressed_bio_folios(cb); | 
 |  | 
 | 	if (memstall) | 
 | 		psi_memstall_leave(&pflags); | 
 |  | 
 | 	btrfs_submit_bbio(&cb->bbio, 0); | 
 | 	return; | 
 |  | 
 | out_free_compressed_pages: | 
 | 	kfree(cb->compressed_folios); | 
 | out_free_bio: | 
 | 	bio_put(&cb->bbio.bio); | 
 | out: | 
 | 	btrfs_bio_end_io(bbio, status); | 
 | } | 
 |  | 
 | /* | 
 |  * Heuristic uses systematic sampling to collect data from the input data | 
 |  * range, the logic can be tuned by the following constants: | 
 |  * | 
 |  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample | 
 |  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected | 
 |  */ | 
 | #define SAMPLING_READ_SIZE	(16) | 
 | #define SAMPLING_INTERVAL	(256) | 
 |  | 
 | /* | 
 |  * For statistical analysis of the input data we consider bytes that form a | 
 |  * Galois Field of 256 objects. Each object has an attribute count, ie. how | 
 |  * many times the object appeared in the sample. | 
 |  */ | 
 | #define BUCKET_SIZE		(256) | 
 |  | 
 | /* | 
 |  * The size of the sample is based on a statistical sampling rule of thumb. | 
 |  * The common way is to perform sampling tests as long as the number of | 
 |  * elements in each cell is at least 5. | 
 |  * | 
 |  * Instead of 5, we choose 32 to obtain more accurate results. | 
 |  * If the data contain the maximum number of symbols, which is 256, we obtain a | 
 |  * sample size bound by 8192. | 
 |  * | 
 |  * For a sample of at most 8KB of data per data range: 16 consecutive bytes | 
 |  * from up to 512 locations. | 
 |  */ | 
 | #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\ | 
 | 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) | 
 |  | 
 | struct bucket_item { | 
 | 	u32 count; | 
 | }; | 
 |  | 
 | struct heuristic_ws { | 
 | 	/* Partial copy of input data */ | 
 | 	u8 *sample; | 
 | 	u32 sample_size; | 
 | 	/* Buckets store counters for each byte value */ | 
 | 	struct bucket_item *bucket; | 
 | 	/* Sorting buffer */ | 
 | 	struct bucket_item *bucket_b; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | static void free_heuristic_ws(struct list_head *ws) | 
 | { | 
 | 	struct heuristic_ws *workspace; | 
 |  | 
 | 	workspace = list_entry(ws, struct heuristic_ws, list); | 
 |  | 
 | 	kvfree(workspace->sample); | 
 | 	kfree(workspace->bucket); | 
 | 	kfree(workspace->bucket_b); | 
 | 	kfree(workspace); | 
 | } | 
 |  | 
 | static struct list_head *alloc_heuristic_ws(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct heuristic_ws *ws; | 
 |  | 
 | 	ws = kzalloc(sizeof(*ws), GFP_KERNEL); | 
 | 	if (!ws) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); | 
 | 	if (!ws->sample) | 
 | 		goto fail; | 
 |  | 
 | 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); | 
 | 	if (!ws->bucket) | 
 | 		goto fail; | 
 |  | 
 | 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); | 
 | 	if (!ws->bucket_b) | 
 | 		goto fail; | 
 |  | 
 | 	INIT_LIST_HEAD(&ws->list); | 
 | 	return &ws->list; | 
 | fail: | 
 | 	free_heuristic_ws(&ws->list); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | const struct btrfs_compress_levels btrfs_heuristic_compress = { 0 }; | 
 |  | 
 | static const struct btrfs_compress_levels * const btrfs_compress_levels[] = { | 
 | 	/* The heuristic is represented as compression type 0 */ | 
 | 	&btrfs_heuristic_compress, | 
 | 	&btrfs_zlib_compress, | 
 | 	&btrfs_lzo_compress, | 
 | 	&btrfs_zstd_compress, | 
 | }; | 
 |  | 
 | static struct list_head *alloc_workspace(struct btrfs_fs_info *fs_info, int type, int level) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(fs_info); | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(fs_info, level); | 
 | 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(fs_info); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(fs_info, level); | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void free_workspace(int type, struct list_head *ws) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); | 
 | 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static int alloc_workspace_manager(struct btrfs_fs_info *fs_info, | 
 | 				   enum btrfs_compression_type type) | 
 | { | 
 | 	struct workspace_manager *gwsm; | 
 | 	struct list_head *workspace; | 
 |  | 
 | 	ASSERT(fs_info->compr_wsm[type] == NULL); | 
 | 	gwsm = kzalloc(sizeof(*gwsm), GFP_KERNEL); | 
 | 	if (!gwsm) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_LIST_HEAD(&gwsm->idle_ws); | 
 | 	spin_lock_init(&gwsm->ws_lock); | 
 | 	atomic_set(&gwsm->total_ws, 0); | 
 | 	init_waitqueue_head(&gwsm->ws_wait); | 
 | 	fs_info->compr_wsm[type] = gwsm; | 
 |  | 
 | 	/* | 
 | 	 * Preallocate one workspace for each compression type so we can | 
 | 	 * guarantee forward progress in the worst case | 
 | 	 */ | 
 | 	workspace = alloc_workspace(fs_info, type, 0); | 
 | 	if (IS_ERR(workspace)) { | 
 | 		btrfs_warn(fs_info, | 
 | 	"cannot preallocate compression workspace for %s, will try later", | 
 | 			   btrfs_compress_type2str(type)); | 
 | 	} else { | 
 | 		atomic_set(&gwsm->total_ws, 1); | 
 | 		gwsm->free_ws = 1; | 
 | 		list_add(workspace, &gwsm->idle_ws); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_workspace_manager(struct btrfs_fs_info *fs_info, | 
 | 				   enum btrfs_compression_type type) | 
 | { | 
 | 	struct list_head *ws; | 
 | 	struct workspace_manager *gwsm = fs_info->compr_wsm[type]; | 
 |  | 
 | 	/* ZSTD uses its own workspace manager, should enter here. */ | 
 | 	ASSERT(type != BTRFS_COMPRESS_ZSTD && type < BTRFS_NR_COMPRESS_TYPES); | 
 | 	if (!gwsm) | 
 | 		return; | 
 | 	fs_info->compr_wsm[type] = NULL; | 
 | 	while (!list_empty(&gwsm->idle_ws)) { | 
 | 		ws = gwsm->idle_ws.next; | 
 | 		list_del(ws); | 
 | 		free_workspace(type, ws); | 
 | 		atomic_dec(&gwsm->total_ws); | 
 | 	} | 
 | 	kfree(gwsm); | 
 | } | 
 |  | 
 | /* | 
 |  * This finds an available workspace or allocates a new one. | 
 |  * If it's not possible to allocate a new one, waits until there's one. | 
 |  * Preallocation makes a forward progress guarantees and we do not return | 
 |  * errors. | 
 |  */ | 
 | struct list_head *btrfs_get_workspace(struct btrfs_fs_info *fs_info, int type, int level) | 
 | { | 
 | 	struct workspace_manager *wsm = fs_info->compr_wsm[type]; | 
 | 	struct list_head *workspace; | 
 | 	int cpus = num_online_cpus(); | 
 | 	unsigned nofs_flag; | 
 | 	struct list_head *idle_ws; | 
 | 	spinlock_t *ws_lock; | 
 | 	atomic_t *total_ws; | 
 | 	wait_queue_head_t *ws_wait; | 
 | 	int *free_ws; | 
 |  | 
 | 	ASSERT(wsm); | 
 | 	idle_ws	 = &wsm->idle_ws; | 
 | 	ws_lock	 = &wsm->ws_lock; | 
 | 	total_ws = &wsm->total_ws; | 
 | 	ws_wait	 = &wsm->ws_wait; | 
 | 	free_ws	 = &wsm->free_ws; | 
 |  | 
 | again: | 
 | 	spin_lock(ws_lock); | 
 | 	if (!list_empty(idle_ws)) { | 
 | 		workspace = idle_ws->next; | 
 | 		list_del(workspace); | 
 | 		(*free_ws)--; | 
 | 		spin_unlock(ws_lock); | 
 | 		return workspace; | 
 |  | 
 | 	} | 
 | 	if (atomic_read(total_ws) > cpus) { | 
 | 		DEFINE_WAIT(wait); | 
 |  | 
 | 		spin_unlock(ws_lock); | 
 | 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); | 
 | 		if (atomic_read(total_ws) > cpus && !*free_ws) | 
 | 			schedule(); | 
 | 		finish_wait(ws_wait, &wait); | 
 | 		goto again; | 
 | 	} | 
 | 	atomic_inc(total_ws); | 
 | 	spin_unlock(ws_lock); | 
 |  | 
 | 	/* | 
 | 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have | 
 | 	 * to turn it off here because we might get called from the restricted | 
 | 	 * context of btrfs_compress_bio/btrfs_compress_pages | 
 | 	 */ | 
 | 	nofs_flag = memalloc_nofs_save(); | 
 | 	workspace = alloc_workspace(fs_info, type, level); | 
 | 	memalloc_nofs_restore(nofs_flag); | 
 |  | 
 | 	if (IS_ERR(workspace)) { | 
 | 		atomic_dec(total_ws); | 
 | 		wake_up(ws_wait); | 
 |  | 
 | 		/* | 
 | 		 * Do not return the error but go back to waiting. There's a | 
 | 		 * workspace preallocated for each type and the compression | 
 | 		 * time is bounded so we get to a workspace eventually. This | 
 | 		 * makes our caller's life easier. | 
 | 		 * | 
 | 		 * To prevent silent and low-probability deadlocks (when the | 
 | 		 * initial preallocation fails), check if there are any | 
 | 		 * workspaces at all. | 
 | 		 */ | 
 | 		if (atomic_read(total_ws) == 0) { | 
 | 			static DEFINE_RATELIMIT_STATE(_rs, | 
 | 					/* once per minute */ 60 * HZ, | 
 | 					/* no burst */ 1); | 
 |  | 
 | 			if (__ratelimit(&_rs)) | 
 | 				btrfs_warn(fs_info, | 
 | 				"no compression workspaces, low memory, retrying"); | 
 | 		} | 
 | 		goto again; | 
 | 	} | 
 | 	return workspace; | 
 | } | 
 |  | 
 | static struct list_head *get_workspace(struct btrfs_fs_info *fs_info, int type, int level) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(fs_info, type, level); | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(fs_info, level); | 
 | 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(fs_info, type, level); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(fs_info, level); | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * put a workspace struct back on the list or free it if we have enough | 
 |  * idle ones sitting around | 
 |  */ | 
 | void btrfs_put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws) | 
 | { | 
 | 	struct workspace_manager *gwsm = fs_info->compr_wsm[type]; | 
 | 	struct list_head *idle_ws; | 
 | 	spinlock_t *ws_lock; | 
 | 	atomic_t *total_ws; | 
 | 	wait_queue_head_t *ws_wait; | 
 | 	int *free_ws; | 
 |  | 
 | 	ASSERT(gwsm); | 
 | 	idle_ws	 = &gwsm->idle_ws; | 
 | 	ws_lock	 = &gwsm->ws_lock; | 
 | 	total_ws = &gwsm->total_ws; | 
 | 	ws_wait	 = &gwsm->ws_wait; | 
 | 	free_ws	 = &gwsm->free_ws; | 
 |  | 
 | 	spin_lock(ws_lock); | 
 | 	if (*free_ws <= num_online_cpus()) { | 
 | 		list_add(ws, idle_ws); | 
 | 		(*free_ws)++; | 
 | 		spin_unlock(ws_lock); | 
 | 		goto wake; | 
 | 	} | 
 | 	spin_unlock(ws_lock); | 
 |  | 
 | 	free_workspace(type, ws); | 
 | 	atomic_dec(total_ws); | 
 | wake: | 
 | 	cond_wake_up(ws_wait); | 
 | } | 
 |  | 
 | static void put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(fs_info, type, ws); | 
 | 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(fs_info, type, ws); | 
 | 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(fs_info, type, ws); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(fs_info, ws); | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Adjust @level according to the limits of the compression algorithm or | 
 |  * fallback to default | 
 |  */ | 
 | static int btrfs_compress_set_level(unsigned int type, int level) | 
 | { | 
 | 	const struct btrfs_compress_levels *levels = btrfs_compress_levels[type]; | 
 |  | 
 | 	if (level == 0) | 
 | 		level = levels->default_level; | 
 | 	else | 
 | 		level = clamp(level, levels->min_level, levels->max_level); | 
 |  | 
 | 	return level; | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether the @level is within the valid range for the given type. | 
 |  */ | 
 | bool btrfs_compress_level_valid(unsigned int type, int level) | 
 | { | 
 | 	const struct btrfs_compress_levels *levels = btrfs_compress_levels[type]; | 
 |  | 
 | 	return levels->min_level <= level && level <= levels->max_level; | 
 | } | 
 |  | 
 | /* Wrapper around find_get_page(), with extra error message. */ | 
 | int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start, | 
 | 				     struct folio **in_folio_ret) | 
 | { | 
 | 	struct folio *in_folio; | 
 |  | 
 | 	/* | 
 | 	 * The compressed write path should have the folio locked already, thus | 
 | 	 * we only need to grab one reference. | 
 | 	 */ | 
 | 	in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT); | 
 | 	if (IS_ERR(in_folio)) { | 
 | 		struct btrfs_inode *inode = BTRFS_I(mapping->host); | 
 |  | 
 | 		btrfs_crit(inode->root->fs_info, | 
 | 		"failed to get page cache, root %lld ino %llu file offset %llu", | 
 | 			   btrfs_root_id(inode->root), btrfs_ino(inode), start); | 
 | 		return -ENOENT; | 
 | 	} | 
 | 	*in_folio_ret = in_folio; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Given an address space and start and length, compress the bytes into @pages | 
 |  * that are allocated on demand. | 
 |  * | 
 |  * @type_level is encoded algorithm and level, where level 0 means whatever | 
 |  * default the algorithm chooses and is opaque here; | 
 |  * - compression algo are 0-3 | 
 |  * - the level are bits 4-7 | 
 |  * | 
 |  * @out_folios is an in/out parameter, holds maximum number of folios to allocate | 
 |  * and returns number of actually allocated folios | 
 |  * | 
 |  * @total_in is used to return the number of bytes actually read.  It | 
 |  * may be smaller than the input length if we had to exit early because we | 
 |  * ran out of room in the folios array or because we cross the | 
 |  * max_out threshold. | 
 |  * | 
 |  * @total_out is an in/out parameter, must be set to the input length and will | 
 |  * be also used to return the total number of compressed bytes | 
 |  */ | 
 | int btrfs_compress_folios(unsigned int type, int level, struct btrfs_inode *inode, | 
 | 			 u64 start, struct folio **folios, unsigned long *out_folios, | 
 | 			 unsigned long *total_in, unsigned long *total_out) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	const unsigned long orig_len = *total_out; | 
 | 	struct list_head *workspace; | 
 | 	int ret; | 
 |  | 
 | 	level = btrfs_compress_set_level(type, level); | 
 | 	workspace = get_workspace(fs_info, type, level); | 
 | 	ret = compression_compress_pages(type, workspace, inode, start, folios, | 
 | 					 out_folios, total_in, total_out); | 
 | 	/* The total read-in bytes should be no larger than the input. */ | 
 | 	ASSERT(*total_in <= orig_len); | 
 | 	put_workspace(fs_info, type, workspace); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_decompress_bio(struct compressed_bio *cb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = cb_to_fs_info(cb); | 
 | 	struct list_head *workspace; | 
 | 	int ret; | 
 | 	int type = cb->compress_type; | 
 |  | 
 | 	workspace = get_workspace(fs_info, type, 0); | 
 | 	ret = compression_decompress_bio(workspace, cb); | 
 | 	put_workspace(fs_info, type, workspace); | 
 |  | 
 | 	if (!ret) | 
 | 		zero_fill_bio(&cb->orig_bbio->bio); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * a less complex decompression routine.  Our compressed data fits in a | 
 |  * single page, and we want to read a single page out of it. | 
 |  * start_byte tells us the offset into the compressed data we're interested in | 
 |  */ | 
 | int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio, | 
 | 		     unsigned long dest_pgoff, size_t srclen, size_t destlen) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio); | 
 | 	struct list_head *workspace; | 
 | 	const u32 sectorsize = fs_info->sectorsize; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * The full destination folio range should not exceed the folio size. | 
 | 	 * And the @destlen should not exceed sectorsize, as this is only called for | 
 | 	 * inline file extents, which should not exceed sectorsize. | 
 | 	 */ | 
 | 	ASSERT(dest_pgoff + destlen <= folio_size(dest_folio) && destlen <= sectorsize); | 
 |  | 
 | 	workspace = get_workspace(fs_info, type, 0); | 
 | 	ret = compression_decompress(type, workspace, data_in, dest_folio, | 
 | 				     dest_pgoff, srclen, destlen); | 
 | 	put_workspace(fs_info, type, workspace); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_alloc_compress_wsm(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_NONE); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_LZO); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | 	ret = zstd_alloc_workspace_manager(fs_info); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | 	return 0; | 
 | error: | 
 | 	btrfs_free_compress_wsm(fs_info); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_free_compress_wsm(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	free_workspace_manager(fs_info, BTRFS_COMPRESS_NONE); | 
 | 	free_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB); | 
 | 	free_workspace_manager(fs_info, BTRFS_COMPRESS_LZO); | 
 | 	zstd_free_workspace_manager(fs_info); | 
 | } | 
 |  | 
 | int __init btrfs_init_compress(void) | 
 | { | 
 | 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, | 
 | 			offsetof(struct compressed_bio, bbio.bio), | 
 | 			BIOSET_NEED_BVECS)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages"); | 
 | 	if (!compr_pool.shrinker) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock_init(&compr_pool.lock); | 
 | 	INIT_LIST_HEAD(&compr_pool.list); | 
 | 	compr_pool.count = 0; | 
 | 	/* 128K / 4K = 32, for 8 threads is 256 pages. */ | 
 | 	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8; | 
 | 	compr_pool.shrinker->count_objects = btrfs_compr_pool_count; | 
 | 	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan; | 
 | 	compr_pool.shrinker->batch = 32; | 
 | 	compr_pool.shrinker->seeks = DEFAULT_SEEKS; | 
 | 	shrinker_register(compr_pool.shrinker); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cold btrfs_exit_compress(void) | 
 | { | 
 | 	/* For now scan drains all pages and does not touch the parameters. */ | 
 | 	btrfs_compr_pool_scan(NULL, NULL); | 
 | 	shrinker_free(compr_pool.shrinker); | 
 |  | 
 | 	bioset_exit(&btrfs_compressed_bioset); | 
 | } | 
 |  | 
 | /* | 
 |  * The bvec is a single page bvec from a bio that contains folios from a filemap. | 
 |  * | 
 |  * Since the folio may be a large one, and if the bv_page is not a head page of | 
 |  * a large folio, then page->index is unreliable. | 
 |  * | 
 |  * Thus we need this helper to grab the proper file offset. | 
 |  */ | 
 | static u64 file_offset_from_bvec(const struct bio_vec *bvec) | 
 | { | 
 | 	const struct page *page = bvec->bv_page; | 
 | 	const struct folio *folio = page_folio(page); | 
 |  | 
 | 	return (page_pgoff(folio, page) << PAGE_SHIFT) + bvec->bv_offset; | 
 | } | 
 |  | 
 | /* | 
 |  * Copy decompressed data from working buffer to pages. | 
 |  * | 
 |  * @buf:		The decompressed data buffer | 
 |  * @buf_len:		The decompressed data length | 
 |  * @decompressed:	Number of bytes that are already decompressed inside the | 
 |  * 			compressed extent | 
 |  * @cb:			The compressed extent descriptor | 
 |  * @orig_bio:		The original bio that the caller wants to read for | 
 |  * | 
 |  * An easier to understand graph is like below: | 
 |  * | 
 |  * 		|<- orig_bio ->|     |<- orig_bio->| | 
 |  * 	|<-------      full decompressed extent      ----->| | 
 |  * 	|<-----------    @cb range   ---->| | 
 |  * 	|			|<-- @buf_len -->| | 
 |  * 	|<--- @decompressed --->| | 
 |  * | 
 |  * Note that, @cb can be a subpage of the full decompressed extent, but | 
 |  * @cb->start always has the same as the orig_file_offset value of the full | 
 |  * decompressed extent. | 
 |  * | 
 |  * When reading compressed extent, we have to read the full compressed extent, | 
 |  * while @orig_bio may only want part of the range. | 
 |  * Thus this function will ensure only data covered by @orig_bio will be copied | 
 |  * to. | 
 |  * | 
 |  * Return 0 if we have copied all needed contents for @orig_bio. | 
 |  * Return >0 if we need continue decompress. | 
 |  */ | 
 | int btrfs_decompress_buf2page(const char *buf, u32 buf_len, | 
 | 			      struct compressed_bio *cb, u32 decompressed) | 
 | { | 
 | 	struct bio *orig_bio = &cb->orig_bbio->bio; | 
 | 	/* Offset inside the full decompressed extent */ | 
 | 	u32 cur_offset; | 
 |  | 
 | 	cur_offset = decompressed; | 
 | 	/* The main loop to do the copy */ | 
 | 	while (cur_offset < decompressed + buf_len) { | 
 | 		struct bio_vec bvec; | 
 | 		size_t copy_len; | 
 | 		u32 copy_start; | 
 | 		/* Offset inside the full decompressed extent */ | 
 | 		u32 bvec_offset; | 
 | 		void *kaddr; | 
 |  | 
 | 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); | 
 | 		/* | 
 | 		 * cb->start may underflow, but subtracting that value can still | 
 | 		 * give us correct offset inside the full decompressed extent. | 
 | 		 */ | 
 | 		bvec_offset = file_offset_from_bvec(&bvec) - cb->start; | 
 |  | 
 | 		/* Haven't reached the bvec range, exit */ | 
 | 		if (decompressed + buf_len <= bvec_offset) | 
 | 			return 1; | 
 |  | 
 | 		copy_start = max(cur_offset, bvec_offset); | 
 | 		copy_len = min(bvec_offset + bvec.bv_len, | 
 | 			       decompressed + buf_len) - copy_start; | 
 | 		ASSERT(copy_len); | 
 |  | 
 | 		/* | 
 | 		 * Extra range check to ensure we didn't go beyond | 
 | 		 * @buf + @buf_len. | 
 | 		 */ | 
 | 		ASSERT(copy_start - decompressed < buf_len); | 
 |  | 
 | 		kaddr = bvec_kmap_local(&bvec); | 
 | 		memcpy(kaddr, buf + copy_start - decompressed, copy_len); | 
 | 		kunmap_local(kaddr); | 
 |  | 
 | 		cur_offset += copy_len; | 
 | 		bio_advance(orig_bio, copy_len); | 
 | 		/* Finished the bio */ | 
 | 		if (!orig_bio->bi_iter.bi_size) | 
 | 			return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Shannon Entropy calculation | 
 |  * | 
 |  * Pure byte distribution analysis fails to determine compressibility of data. | 
 |  * Try calculating entropy to estimate the average minimum number of bits | 
 |  * needed to encode the sampled data. | 
 |  * | 
 |  * For convenience, return the percentage of needed bits, instead of amount of | 
 |  * bits directly. | 
 |  * | 
 |  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy | 
 |  *			    and can be compressible with high probability | 
 |  * | 
 |  * @ENTROPY_LVL_HIGH - data are not compressible with high probability | 
 |  * | 
 |  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. | 
 |  */ | 
 | #define ENTROPY_LVL_ACEPTABLE		(65) | 
 | #define ENTROPY_LVL_HIGH		(80) | 
 |  | 
 | /* | 
 |  * For increased precision in shannon_entropy calculation, | 
 |  * let's do pow(n, M) to save more digits after comma: | 
 |  * | 
 |  * - maximum int bit length is 64 | 
 |  * - ilog2(MAX_SAMPLE_SIZE)	-> 13 | 
 |  * - 13 * 4 = 52 < 64		-> M = 4 | 
 |  * | 
 |  * So use pow(n, 4). | 
 |  */ | 
 | static inline u32 ilog2_w(u64 n) | 
 | { | 
 | 	return ilog2(n * n * n * n); | 
 | } | 
 |  | 
 | static u32 shannon_entropy(struct heuristic_ws *ws) | 
 | { | 
 | 	const u32 entropy_max = 8 * ilog2_w(2); | 
 | 	u32 entropy_sum = 0; | 
 | 	u32 p, p_base, sz_base; | 
 | 	u32 i; | 
 |  | 
 | 	sz_base = ilog2_w(ws->sample_size); | 
 | 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { | 
 | 		p = ws->bucket[i].count; | 
 | 		p_base = ilog2_w(p); | 
 | 		entropy_sum += p * (sz_base - p_base); | 
 | 	} | 
 |  | 
 | 	entropy_sum /= ws->sample_size; | 
 | 	return entropy_sum * 100 / entropy_max; | 
 | } | 
 |  | 
 | #define RADIX_BASE		4U | 
 | #define COUNTERS_SIZE		(1U << RADIX_BASE) | 
 |  | 
 | static u8 get4bits(u64 num, int shift) { | 
 | 	u8 low4bits; | 
 |  | 
 | 	num >>= shift; | 
 | 	/* Reverse order */ | 
 | 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); | 
 | 	return low4bits; | 
 | } | 
 |  | 
 | /* | 
 |  * Use 4 bits as radix base | 
 |  * Use 16 u32 counters for calculating new position in buf array | 
 |  * | 
 |  * @array     - array that will be sorted | 
 |  * @array_buf - buffer array to store sorting results | 
 |  *              must be equal in size to @array | 
 |  * @num       - array size | 
 |  */ | 
 | static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, | 
 | 		       int num) | 
 | { | 
 | 	u64 max_num; | 
 | 	u64 buf_num; | 
 | 	u32 counters[COUNTERS_SIZE]; | 
 | 	u32 new_addr; | 
 | 	u32 addr; | 
 | 	int bitlen; | 
 | 	int shift; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Try avoid useless loop iterations for small numbers stored in big | 
 | 	 * counters.  Example: 48 33 4 ... in 64bit array | 
 | 	 */ | 
 | 	max_num = array[0].count; | 
 | 	for (i = 1; i < num; i++) { | 
 | 		buf_num = array[i].count; | 
 | 		if (buf_num > max_num) | 
 | 			max_num = buf_num; | 
 | 	} | 
 |  | 
 | 	buf_num = ilog2(max_num); | 
 | 	bitlen = ALIGN(buf_num, RADIX_BASE * 2); | 
 |  | 
 | 	shift = 0; | 
 | 	while (shift < bitlen) { | 
 | 		memset(counters, 0, sizeof(counters)); | 
 |  | 
 | 		for (i = 0; i < num; i++) { | 
 | 			buf_num = array[i].count; | 
 | 			addr = get4bits(buf_num, shift); | 
 | 			counters[addr]++; | 
 | 		} | 
 |  | 
 | 		for (i = 1; i < COUNTERS_SIZE; i++) | 
 | 			counters[i] += counters[i - 1]; | 
 |  | 
 | 		for (i = num - 1; i >= 0; i--) { | 
 | 			buf_num = array[i].count; | 
 | 			addr = get4bits(buf_num, shift); | 
 | 			counters[addr]--; | 
 | 			new_addr = counters[addr]; | 
 | 			array_buf[new_addr] = array[i]; | 
 | 		} | 
 |  | 
 | 		shift += RADIX_BASE; | 
 |  | 
 | 		/* | 
 | 		 * Normal radix expects to move data from a temporary array, to | 
 | 		 * the main one.  But that requires some CPU time. Avoid that | 
 | 		 * by doing another sort iteration to original array instead of | 
 | 		 * memcpy() | 
 | 		 */ | 
 | 		memset(counters, 0, sizeof(counters)); | 
 |  | 
 | 		for (i = 0; i < num; i ++) { | 
 | 			buf_num = array_buf[i].count; | 
 | 			addr = get4bits(buf_num, shift); | 
 | 			counters[addr]++; | 
 | 		} | 
 |  | 
 | 		for (i = 1; i < COUNTERS_SIZE; i++) | 
 | 			counters[i] += counters[i - 1]; | 
 |  | 
 | 		for (i = num - 1; i >= 0; i--) { | 
 | 			buf_num = array_buf[i].count; | 
 | 			addr = get4bits(buf_num, shift); | 
 | 			counters[addr]--; | 
 | 			new_addr = counters[addr]; | 
 | 			array[new_addr] = array_buf[i]; | 
 | 		} | 
 |  | 
 | 		shift += RADIX_BASE; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Size of the core byte set - how many bytes cover 90% of the sample | 
 |  * | 
 |  * There are several types of structured binary data that use nearly all byte | 
 |  * values. The distribution can be uniform and counts in all buckets will be | 
 |  * nearly the same (eg. encrypted data). Unlikely to be compressible. | 
 |  * | 
 |  * Other possibility is normal (Gaussian) distribution, where the data could | 
 |  * be potentially compressible, but we have to take a few more steps to decide | 
 |  * how much. | 
 |  * | 
 |  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently, | 
 |  *                       compression algo can easy fix that | 
 |  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high | 
 |  *                       probability is not compressible | 
 |  */ | 
 | #define BYTE_CORE_SET_LOW		(64) | 
 | #define BYTE_CORE_SET_HIGH		(200) | 
 |  | 
 | static int byte_core_set_size(struct heuristic_ws *ws) | 
 | { | 
 | 	u32 i; | 
 | 	u32 coreset_sum = 0; | 
 | 	const u32 core_set_threshold = ws->sample_size * 90 / 100; | 
 | 	struct bucket_item *bucket = ws->bucket; | 
 |  | 
 | 	/* Sort in reverse order */ | 
 | 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); | 
 |  | 
 | 	for (i = 0; i < BYTE_CORE_SET_LOW; i++) | 
 | 		coreset_sum += bucket[i].count; | 
 |  | 
 | 	if (coreset_sum > core_set_threshold) | 
 | 		return i; | 
 |  | 
 | 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { | 
 | 		coreset_sum += bucket[i].count; | 
 | 		if (coreset_sum > core_set_threshold) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * Count byte values in buckets. | 
 |  * This heuristic can detect textual data (configs, xml, json, html, etc). | 
 |  * Because in most text-like data byte set is restricted to limited number of | 
 |  * possible characters, and that restriction in most cases makes data easy to | 
 |  * compress. | 
 |  * | 
 |  * @BYTE_SET_THRESHOLD - consider all data within this byte set size: | 
 |  *	less - compressible | 
 |  *	more - need additional analysis | 
 |  */ | 
 | #define BYTE_SET_THRESHOLD		(64) | 
 |  | 
 | static u32 byte_set_size(const struct heuristic_ws *ws) | 
 | { | 
 | 	u32 i; | 
 | 	u32 byte_set_size = 0; | 
 |  | 
 | 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) { | 
 | 		if (ws->bucket[i].count > 0) | 
 | 			byte_set_size++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Continue collecting count of byte values in buckets.  If the byte | 
 | 	 * set size is bigger then the threshold, it's pointless to continue, | 
 | 	 * the detection technique would fail for this type of data. | 
 | 	 */ | 
 | 	for (; i < BUCKET_SIZE; i++) { | 
 | 		if (ws->bucket[i].count > 0) { | 
 | 			byte_set_size++; | 
 | 			if (byte_set_size > BYTE_SET_THRESHOLD) | 
 | 				return byte_set_size; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return byte_set_size; | 
 | } | 
 |  | 
 | static bool sample_repeated_patterns(struct heuristic_ws *ws) | 
 | { | 
 | 	const u32 half_of_sample = ws->sample_size / 2; | 
 | 	const u8 *data = ws->sample; | 
 |  | 
 | 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; | 
 | } | 
 |  | 
 | static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, | 
 | 				     struct heuristic_ws *ws) | 
 | { | 
 | 	struct page *page; | 
 | 	pgoff_t index, index_end; | 
 | 	u32 i, curr_sample_pos; | 
 | 	u8 *in_data; | 
 |  | 
 | 	/* | 
 | 	 * Compression handles the input data by chunks of 128KiB | 
 | 	 * (defined by BTRFS_MAX_UNCOMPRESSED) | 
 | 	 * | 
 | 	 * We do the same for the heuristic and loop over the whole range. | 
 | 	 * | 
 | 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will | 
 | 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. | 
 | 	 */ | 
 | 	if (end - start > BTRFS_MAX_UNCOMPRESSED) | 
 | 		end = start + BTRFS_MAX_UNCOMPRESSED; | 
 |  | 
 | 	index = start >> PAGE_SHIFT; | 
 | 	index_end = end >> PAGE_SHIFT; | 
 |  | 
 | 	/* Don't miss unaligned end */ | 
 | 	if (!PAGE_ALIGNED(end)) | 
 | 		index_end++; | 
 |  | 
 | 	curr_sample_pos = 0; | 
 | 	while (index < index_end) { | 
 | 		page = find_get_page(inode->i_mapping, index); | 
 | 		in_data = kmap_local_page(page); | 
 | 		/* Handle case where the start is not aligned to PAGE_SIZE */ | 
 | 		i = start % PAGE_SIZE; | 
 | 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { | 
 | 			/* Don't sample any garbage from the last page */ | 
 | 			if (start > end - SAMPLING_READ_SIZE) | 
 | 				break; | 
 | 			memcpy(&ws->sample[curr_sample_pos], &in_data[i], | 
 | 					SAMPLING_READ_SIZE); | 
 | 			i += SAMPLING_INTERVAL; | 
 | 			start += SAMPLING_INTERVAL; | 
 | 			curr_sample_pos += SAMPLING_READ_SIZE; | 
 | 		} | 
 | 		kunmap_local(in_data); | 
 | 		put_page(page); | 
 |  | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	ws->sample_size = curr_sample_pos; | 
 | } | 
 |  | 
 | /* | 
 |  * Compression heuristic. | 
 |  * | 
 |  * The following types of analysis can be performed: | 
 |  * - detect mostly zero data | 
 |  * - detect data with low "byte set" size (text, etc) | 
 |  * - detect data with low/high "core byte" set | 
 |  * | 
 |  * Return non-zero if the compression should be done, 0 otherwise. | 
 |  */ | 
 | int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct list_head *ws_list = get_workspace(fs_info, 0, 0); | 
 | 	struct heuristic_ws *ws; | 
 | 	u32 i; | 
 | 	u8 byte; | 
 | 	int ret = 0; | 
 |  | 
 | 	ws = list_entry(ws_list, struct heuristic_ws, list); | 
 |  | 
 | 	heuristic_collect_sample(&inode->vfs_inode, start, end, ws); | 
 |  | 
 | 	if (sample_repeated_patterns(ws)) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); | 
 |  | 
 | 	for (i = 0; i < ws->sample_size; i++) { | 
 | 		byte = ws->sample[i]; | 
 | 		ws->bucket[byte].count++; | 
 | 	} | 
 |  | 
 | 	i = byte_set_size(ws); | 
 | 	if (i < BYTE_SET_THRESHOLD) { | 
 | 		ret = 2; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	i = byte_core_set_size(ws); | 
 | 	if (i <= BYTE_CORE_SET_LOW) { | 
 | 		ret = 3; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (i >= BYTE_CORE_SET_HIGH) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	i = shannon_entropy(ws); | 
 | 	if (i <= ENTROPY_LVL_ACEPTABLE) { | 
 | 		ret = 4; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be | 
 | 	 * needed to give green light to compression. | 
 | 	 * | 
 | 	 * For now just assume that compression at that level is not worth the | 
 | 	 * resources because: | 
 | 	 * | 
 | 	 * 1. it is possible to defrag the data later | 
 | 	 * | 
 | 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte | 
 | 	 * values, every bucket has counter at level ~54. The heuristic would | 
 | 	 * be confused. This can happen when data have some internal repeated | 
 | 	 * patterns like "abbacbbc...". This can be detected by analyzing | 
 | 	 * pairs of bytes, which is too costly. | 
 | 	 */ | 
 | 	if (i < ENTROPY_LVL_HIGH) { | 
 | 		ret = 5; | 
 | 		goto out; | 
 | 	} else { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	put_workspace(fs_info, 0, ws_list); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert the compression suffix (eg. after "zlib" starting with ":") to level. | 
 |  * | 
 |  * If the resulting level exceeds the algo's supported levels, it will be clamped. | 
 |  * | 
 |  * Return <0 if no valid string can be found. | 
 |  * Return 0 if everything is fine. | 
 |  */ | 
 | int btrfs_compress_str2level(unsigned int type, const char *str, int *level_ret) | 
 | { | 
 | 	int level = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (!type) { | 
 | 		*level_ret = btrfs_compress_set_level(type, level); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (str[0] == ':') { | 
 | 		ret = kstrtoint(str + 1, 10, &level); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	*level_ret = btrfs_compress_set_level(type, level); | 
 | 	return 0; | 
 | } |