|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  linux/fs/file.c | 
|  | * | 
|  | *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes | 
|  | * | 
|  | *  Manage the dynamic fd arrays in the process files_struct. | 
|  | */ | 
|  |  | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/close_range.h> | 
|  | #include <linux/file_ref.h> | 
|  | #include <net/sock.h> | 
|  | #include <linux/init_task.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | static noinline bool __file_ref_put_badval(file_ref_t *ref, unsigned long cnt) | 
|  | { | 
|  | /* | 
|  | * If the reference count was already in the dead zone, then this | 
|  | * put() operation is imbalanced. Warn, put the reference count back to | 
|  | * DEAD and tell the caller to not deconstruct the object. | 
|  | */ | 
|  | if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) { | 
|  | atomic_long_set(&ref->refcnt, FILE_REF_DEAD); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a put() operation on a saturated refcount. Restore the | 
|  | * mean saturation value and tell the caller to not deconstruct the | 
|  | * object. | 
|  | */ | 
|  | if (cnt > FILE_REF_MAXREF) | 
|  | atomic_long_set(&ref->refcnt, FILE_REF_SATURATED); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __file_ref_put - Slowpath of file_ref_put() | 
|  | * @ref:	Pointer to the reference count | 
|  | * @cnt:	Current reference count | 
|  | * | 
|  | * Invoked when the reference count is outside of the valid zone. | 
|  | * | 
|  | * Return: | 
|  | *	True if this was the last reference with no future references | 
|  | *	possible. This signals the caller that it can safely schedule the | 
|  | *	object, which is protected by the reference counter, for | 
|  | *	deconstruction. | 
|  | * | 
|  | *	False if there are still active references or the put() raced | 
|  | *	with a concurrent get()/put() pair. Caller is not allowed to | 
|  | *	deconstruct the protected object. | 
|  | */ | 
|  | bool __file_ref_put(file_ref_t *ref, unsigned long cnt) | 
|  | { | 
|  | /* Did this drop the last reference? */ | 
|  | if (likely(cnt == FILE_REF_NOREF)) { | 
|  | /* | 
|  | * Carefully try to set the reference count to FILE_REF_DEAD. | 
|  | * | 
|  | * This can fail if a concurrent get() operation has | 
|  | * elevated it again or the corresponding put() even marked | 
|  | * it dead already. Both are valid situations and do not | 
|  | * require a retry. If this fails the caller is not | 
|  | * allowed to deconstruct the object. | 
|  | */ | 
|  | if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The caller can safely schedule the object for | 
|  | * deconstruction. Provide acquire ordering. | 
|  | */ | 
|  | smp_acquire__after_ctrl_dep(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return __file_ref_put_badval(ref, cnt); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__file_ref_put); | 
|  |  | 
|  | unsigned int sysctl_nr_open __read_mostly = 1024*1024; | 
|  | unsigned int sysctl_nr_open_min = BITS_PER_LONG; | 
|  | /* our min() is unusable in constant expressions ;-/ */ | 
|  | #define __const_min(x, y) ((x) < (y) ? (x) : (y)) | 
|  | unsigned int sysctl_nr_open_max = | 
|  | __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; | 
|  |  | 
|  | static void __free_fdtable(struct fdtable *fdt) | 
|  | { | 
|  | kvfree(fdt->fd); | 
|  | kvfree(fdt->open_fds); | 
|  | kfree(fdt); | 
|  | } | 
|  |  | 
|  | static void free_fdtable_rcu(struct rcu_head *rcu) | 
|  | { | 
|  | __free_fdtable(container_of(rcu, struct fdtable, rcu)); | 
|  | } | 
|  |  | 
|  | #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr)) | 
|  | #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long)) | 
|  |  | 
|  | #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds | 
|  | /* | 
|  | * Copy 'count' fd bits from the old table to the new table and clear the extra | 
|  | * space if any.  This does not copy the file pointers.  Called with the files | 
|  | * spinlock held for write. | 
|  | */ | 
|  | static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, | 
|  | unsigned int copy_words) | 
|  | { | 
|  | unsigned int nwords = fdt_words(nfdt); | 
|  |  | 
|  | bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds, | 
|  | copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); | 
|  | bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec, | 
|  | copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); | 
|  | bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits, | 
|  | copy_words, nwords); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy all file descriptors from the old table to the new, expanded table and | 
|  | * clear the extra space.  Called with the files spinlock held for write. | 
|  | */ | 
|  | static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) | 
|  | { | 
|  | size_t cpy, set; | 
|  |  | 
|  | BUG_ON(nfdt->max_fds < ofdt->max_fds); | 
|  |  | 
|  | cpy = ofdt->max_fds * sizeof(struct file *); | 
|  | set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); | 
|  | memcpy(nfdt->fd, ofdt->fd, cpy); | 
|  | memset((char *)nfdt->fd + cpy, 0, set); | 
|  |  | 
|  | copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note how the fdtable bitmap allocations very much have to be a multiple of | 
|  | * BITS_PER_LONG. This is not only because we walk those things in chunks of | 
|  | * 'unsigned long' in some places, but simply because that is how the Linux | 
|  | * kernel bitmaps are defined to work: they are not "bits in an array of bytes", | 
|  | * they are very much "bits in an array of unsigned long". | 
|  | */ | 
|  | static struct fdtable *alloc_fdtable(unsigned int slots_wanted) | 
|  | { | 
|  | struct fdtable *fdt; | 
|  | unsigned int nr; | 
|  | void *data; | 
|  |  | 
|  | /* | 
|  | * Figure out how many fds we actually want to support in this fdtable. | 
|  | * Allocation steps are keyed to the size of the fdarray, since it | 
|  | * grows far faster than any of the other dynamic data. We try to fit | 
|  | * the fdarray into comfortable page-tuned chunks: starting at 1024B | 
|  | * and growing in powers of two from there on.  Since we called only | 
|  | * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab | 
|  | * already gives BITS_PER_LONG slots), the above boils down to | 
|  | * 1.  use the smallest power of two large enough to give us that many | 
|  | * slots. | 
|  | * 2.  on 32bit skip 64 and 128 - the minimal capacity we want there is | 
|  | * 256 slots (i.e. 1Kb fd array). | 
|  | * 3.  on 64bit don't skip anything, 1Kb fd array means 128 slots there | 
|  | * and we are never going to be asked for 64 or less. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256) | 
|  | nr = 256; | 
|  | else | 
|  | nr = roundup_pow_of_two(slots_wanted); | 
|  | /* | 
|  | * Note that this can drive nr *below* what we had passed if sysctl_nr_open | 
|  | * had been set lower between the check in expand_files() and here. | 
|  | * | 
|  | * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise | 
|  | * bitmaps handling below becomes unpleasant, to put it mildly... | 
|  | */ | 
|  | if (unlikely(nr > sysctl_nr_open)) { | 
|  | nr = round_down(sysctl_nr_open, BITS_PER_LONG); | 
|  | if (nr < slots_wanted) | 
|  | return ERR_PTR(-EMFILE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the allocation size would exceed INT_MAX. kvmalloc_array() | 
|  | * and kvmalloc() will warn if the allocation size is greater than | 
|  | * INT_MAX, as filp_cachep objects are not __GFP_NOWARN. | 
|  | * | 
|  | * This can happen when sysctl_nr_open is set to a very high value and | 
|  | * a process tries to use a file descriptor near that limit. For example, | 
|  | * if sysctl_nr_open is set to 1073741816 (0x3ffffff8) - which is what | 
|  | * systemd typically sets it to - then trying to use a file descriptor | 
|  | * close to that value will require allocating a file descriptor table | 
|  | * that exceeds 8GB in size. | 
|  | */ | 
|  | if (unlikely(nr > INT_MAX / sizeof(struct file *))) | 
|  | return ERR_PTR(-EMFILE); | 
|  |  | 
|  | fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); | 
|  | if (!fdt) | 
|  | goto out; | 
|  | fdt->max_fds = nr; | 
|  | data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); | 
|  | if (!data) | 
|  | goto out_fdt; | 
|  | fdt->fd = data; | 
|  |  | 
|  | data = kvmalloc(max_t(size_t, | 
|  | 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), | 
|  | GFP_KERNEL_ACCOUNT); | 
|  | if (!data) | 
|  | goto out_arr; | 
|  | fdt->open_fds = data; | 
|  | data += nr / BITS_PER_BYTE; | 
|  | fdt->close_on_exec = data; | 
|  | data += nr / BITS_PER_BYTE; | 
|  | fdt->full_fds_bits = data; | 
|  |  | 
|  | return fdt; | 
|  |  | 
|  | out_arr: | 
|  | kvfree(fdt->fd); | 
|  | out_fdt: | 
|  | kfree(fdt); | 
|  | out: | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand the file descriptor table. | 
|  | * This function will allocate a new fdtable and both fd array and fdset, of | 
|  | * the given size. | 
|  | * Return <0 error code on error; 0 on successful completion. | 
|  | * The files->file_lock should be held on entry, and will be held on exit. | 
|  | */ | 
|  | static int expand_fdtable(struct files_struct *files, unsigned int nr) | 
|  | __releases(files->file_lock) | 
|  | __acquires(files->file_lock) | 
|  | { | 
|  | struct fdtable *new_fdt, *cur_fdt; | 
|  |  | 
|  | spin_unlock(&files->file_lock); | 
|  | new_fdt = alloc_fdtable(nr + 1); | 
|  |  | 
|  | /* make sure all fd_install() have seen resize_in_progress | 
|  | * or have finished their rcu_read_lock_sched() section. | 
|  | */ | 
|  | if (atomic_read(&files->count) > 1) | 
|  | synchronize_rcu(); | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | if (IS_ERR(new_fdt)) | 
|  | return PTR_ERR(new_fdt); | 
|  | cur_fdt = files_fdtable(files); | 
|  | BUG_ON(nr < cur_fdt->max_fds); | 
|  | copy_fdtable(new_fdt, cur_fdt); | 
|  | rcu_assign_pointer(files->fdt, new_fdt); | 
|  | if (cur_fdt != &files->fdtab) | 
|  | call_rcu(&cur_fdt->rcu, free_fdtable_rcu); | 
|  | /* coupled with smp_rmb() in fd_install() */ | 
|  | smp_wmb(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand files. | 
|  | * This function will expand the file structures, if the requested size exceeds | 
|  | * the current capacity and there is room for expansion. | 
|  | * Return <0 error code on error; 0 on success. | 
|  | * The files->file_lock should be held on entry, and will be held on exit. | 
|  | */ | 
|  | static int expand_files(struct files_struct *files, unsigned int nr) | 
|  | __releases(files->file_lock) | 
|  | __acquires(files->file_lock) | 
|  | { | 
|  | struct fdtable *fdt; | 
|  | int error; | 
|  |  | 
|  | repeat: | 
|  | fdt = files_fdtable(files); | 
|  |  | 
|  | /* Do we need to expand? */ | 
|  | if (nr < fdt->max_fds) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(files->resize_in_progress)) { | 
|  | spin_unlock(&files->file_lock); | 
|  | wait_event(files->resize_wait, !files->resize_in_progress); | 
|  | spin_lock(&files->file_lock); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Can we expand? */ | 
|  | if (unlikely(nr >= sysctl_nr_open)) | 
|  | return -EMFILE; | 
|  |  | 
|  | /* All good, so we try */ | 
|  | files->resize_in_progress = true; | 
|  | error = expand_fdtable(files, nr); | 
|  | files->resize_in_progress = false; | 
|  |  | 
|  | wake_up_all(&files->resize_wait); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt, | 
|  | bool set) | 
|  | { | 
|  | if (set) { | 
|  | __set_bit(fd, fdt->close_on_exec); | 
|  | } else { | 
|  | if (test_bit(fd, fdt->close_on_exec)) | 
|  | __clear_bit(fd, fdt->close_on_exec); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set) | 
|  | { | 
|  | __set_bit(fd, fdt->open_fds); | 
|  | __set_close_on_exec(fd, fdt, set); | 
|  | fd /= BITS_PER_LONG; | 
|  | if (!~fdt->open_fds[fd]) | 
|  | __set_bit(fd, fdt->full_fds_bits); | 
|  | } | 
|  |  | 
|  | static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) | 
|  | { | 
|  | __clear_bit(fd, fdt->open_fds); | 
|  | fd /= BITS_PER_LONG; | 
|  | if (test_bit(fd, fdt->full_fds_bits)) | 
|  | __clear_bit(fd, fdt->full_fds_bits); | 
|  | } | 
|  |  | 
|  | static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) | 
|  | { | 
|  | return test_bit(fd, fdt->open_fds); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that a sane fdtable size always has to be a multiple of | 
|  | * BITS_PER_LONG, since we have bitmaps that are sized by this. | 
|  | * | 
|  | * punch_hole is optional - when close_range() is asked to unshare | 
|  | * and close, we don't need to copy descriptors in that range, so | 
|  | * a smaller cloned descriptor table might suffice if the last | 
|  | * currently opened descriptor falls into that range. | 
|  | */ | 
|  | static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole) | 
|  | { | 
|  | unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds); | 
|  |  | 
|  | if (last == fdt->max_fds) | 
|  | return NR_OPEN_DEFAULT; | 
|  | if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) { | 
|  | last = find_last_bit(fdt->open_fds, punch_hole->from); | 
|  | if (last == punch_hole->from) | 
|  | return NR_OPEN_DEFAULT; | 
|  | } | 
|  | return ALIGN(last + 1, BITS_PER_LONG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new descriptor table and copy contents from the passed in | 
|  | * instance.  Returns a pointer to cloned table on success, ERR_PTR() | 
|  | * on failure.  For 'punch_hole' see sane_fdtable_size(). | 
|  | */ | 
|  | struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole) | 
|  | { | 
|  | struct files_struct *newf; | 
|  | struct file **old_fds, **new_fds; | 
|  | unsigned int open_files, i; | 
|  | struct fdtable *old_fdt, *new_fdt; | 
|  |  | 
|  | newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); | 
|  | if (!newf) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | atomic_set(&newf->count, 1); | 
|  |  | 
|  | spin_lock_init(&newf->file_lock); | 
|  | newf->resize_in_progress = false; | 
|  | init_waitqueue_head(&newf->resize_wait); | 
|  | newf->next_fd = 0; | 
|  | new_fdt = &newf->fdtab; | 
|  | new_fdt->max_fds = NR_OPEN_DEFAULT; | 
|  | new_fdt->close_on_exec = newf->close_on_exec_init; | 
|  | new_fdt->open_fds = newf->open_fds_init; | 
|  | new_fdt->full_fds_bits = newf->full_fds_bits_init; | 
|  | new_fdt->fd = &newf->fd_array[0]; | 
|  |  | 
|  | spin_lock(&oldf->file_lock); | 
|  | old_fdt = files_fdtable(oldf); | 
|  | open_files = sane_fdtable_size(old_fdt, punch_hole); | 
|  |  | 
|  | /* | 
|  | * Check whether we need to allocate a larger fd array and fd set. | 
|  | */ | 
|  | while (unlikely(open_files > new_fdt->max_fds)) { | 
|  | spin_unlock(&oldf->file_lock); | 
|  |  | 
|  | if (new_fdt != &newf->fdtab) | 
|  | __free_fdtable(new_fdt); | 
|  |  | 
|  | new_fdt = alloc_fdtable(open_files); | 
|  | if (IS_ERR(new_fdt)) { | 
|  | kmem_cache_free(files_cachep, newf); | 
|  | return ERR_CAST(new_fdt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reacquire the oldf lock and a pointer to its fd table | 
|  | * who knows it may have a new bigger fd table. We need | 
|  | * the latest pointer. | 
|  | */ | 
|  | spin_lock(&oldf->file_lock); | 
|  | old_fdt = files_fdtable(oldf); | 
|  | open_files = sane_fdtable_size(old_fdt, punch_hole); | 
|  | } | 
|  |  | 
|  | copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG); | 
|  |  | 
|  | old_fds = old_fdt->fd; | 
|  | new_fds = new_fdt->fd; | 
|  |  | 
|  | /* | 
|  | * We may be racing against fd allocation from other threads using this | 
|  | * files_struct, despite holding ->file_lock. | 
|  | * | 
|  | * alloc_fd() might have already claimed a slot, while fd_install() | 
|  | * did not populate it yet. Note the latter operates locklessly, so | 
|  | * the file can show up as we are walking the array below. | 
|  | * | 
|  | * At the same time we know no files will disappear as all other | 
|  | * operations take the lock. | 
|  | * | 
|  | * Instead of trying to placate userspace racing with itself, we | 
|  | * ref the file if we see it and mark the fd slot as unused otherwise. | 
|  | */ | 
|  | for (i = open_files; i != 0; i--) { | 
|  | struct file *f = rcu_dereference_raw(*old_fds++); | 
|  | if (f) { | 
|  | get_file(f); | 
|  | } else { | 
|  | __clear_open_fd(open_files - i, new_fdt); | 
|  | } | 
|  | rcu_assign_pointer(*new_fds++, f); | 
|  | } | 
|  | spin_unlock(&oldf->file_lock); | 
|  |  | 
|  | /* clear the remainder */ | 
|  | memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); | 
|  |  | 
|  | rcu_assign_pointer(newf->fdt, new_fdt); | 
|  |  | 
|  | return newf; | 
|  | } | 
|  |  | 
|  | static struct fdtable *close_files(struct files_struct * files) | 
|  | { | 
|  | /* | 
|  | * It is safe to dereference the fd table without RCU or | 
|  | * ->file_lock because this is the last reference to the | 
|  | * files structure. | 
|  | */ | 
|  | struct fdtable *fdt = rcu_dereference_raw(files->fdt); | 
|  | unsigned int i, j = 0; | 
|  |  | 
|  | for (;;) { | 
|  | unsigned long set; | 
|  | i = j * BITS_PER_LONG; | 
|  | if (i >= fdt->max_fds) | 
|  | break; | 
|  | set = fdt->open_fds[j++]; | 
|  | while (set) { | 
|  | if (set & 1) { | 
|  | struct file *file = fdt->fd[i]; | 
|  | if (file) { | 
|  | filp_close(file, files); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | i++; | 
|  | set >>= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return fdt; | 
|  | } | 
|  |  | 
|  | void put_files_struct(struct files_struct *files) | 
|  | { | 
|  | if (atomic_dec_and_test(&files->count)) { | 
|  | struct fdtable *fdt = close_files(files); | 
|  |  | 
|  | /* free the arrays if they are not embedded */ | 
|  | if (fdt != &files->fdtab) | 
|  | __free_fdtable(fdt); | 
|  | kmem_cache_free(files_cachep, files); | 
|  | } | 
|  | } | 
|  |  | 
|  | void exit_files(struct task_struct *tsk) | 
|  | { | 
|  | struct files_struct * files = tsk->files; | 
|  |  | 
|  | if (files) { | 
|  | task_lock(tsk); | 
|  | tsk->files = NULL; | 
|  | task_unlock(tsk); | 
|  | put_files_struct(files); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct files_struct init_files = { | 
|  | .count		= ATOMIC_INIT(1), | 
|  | .fdt		= &init_files.fdtab, | 
|  | .fdtab		= { | 
|  | .max_fds	= NR_OPEN_DEFAULT, | 
|  | .fd		= &init_files.fd_array[0], | 
|  | .close_on_exec	= init_files.close_on_exec_init, | 
|  | .open_fds	= init_files.open_fds_init, | 
|  | .full_fds_bits	= init_files.full_fds_bits_init, | 
|  | }, | 
|  | .file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock), | 
|  | .resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), | 
|  | }; | 
|  |  | 
|  | static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) | 
|  | { | 
|  | unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */ | 
|  | unsigned int maxbit = maxfd / BITS_PER_LONG; | 
|  | unsigned int bitbit = start / BITS_PER_LONG; | 
|  | unsigned int bit; | 
|  |  | 
|  | /* | 
|  | * Try to avoid looking at the second level bitmap | 
|  | */ | 
|  | bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG, | 
|  | start & (BITS_PER_LONG - 1)); | 
|  | if (bit < BITS_PER_LONG) | 
|  | return bit + bitbit * BITS_PER_LONG; | 
|  |  | 
|  | bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; | 
|  | if (bitbit >= maxfd) | 
|  | return maxfd; | 
|  | if (bitbit > start) | 
|  | start = bitbit; | 
|  | return find_next_zero_bit(fdt->open_fds, maxfd, start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate a file descriptor, mark it busy. | 
|  | */ | 
|  | static int alloc_fd(unsigned start, unsigned end, unsigned flags) | 
|  | { | 
|  | struct files_struct *files = current->files; | 
|  | unsigned int fd; | 
|  | int error; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | repeat: | 
|  | fdt = files_fdtable(files); | 
|  | fd = start; | 
|  | if (fd < files->next_fd) | 
|  | fd = files->next_fd; | 
|  |  | 
|  | if (likely(fd < fdt->max_fds)) | 
|  | fd = find_next_fd(fdt, fd); | 
|  |  | 
|  | /* | 
|  | * N.B. For clone tasks sharing a files structure, this test | 
|  | * will limit the total number of files that can be opened. | 
|  | */ | 
|  | error = -EMFILE; | 
|  | if (unlikely(fd >= end)) | 
|  | goto out; | 
|  |  | 
|  | if (unlikely(fd >= fdt->max_fds)) { | 
|  | error = expand_files(files, fd); | 
|  | if (error < 0) | 
|  | goto out; | 
|  |  | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | if (start <= files->next_fd) | 
|  | files->next_fd = fd + 1; | 
|  |  | 
|  | __set_open_fd(fd, fdt, flags & O_CLOEXEC); | 
|  | error = fd; | 
|  | VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); | 
|  |  | 
|  | out: | 
|  | spin_unlock(&files->file_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int __get_unused_fd_flags(unsigned flags, unsigned long nofile) | 
|  | { | 
|  | return alloc_fd(0, nofile, flags); | 
|  | } | 
|  |  | 
|  | int get_unused_fd_flags(unsigned flags) | 
|  | { | 
|  | return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); | 
|  | } | 
|  | EXPORT_SYMBOL(get_unused_fd_flags); | 
|  |  | 
|  | static void __put_unused_fd(struct files_struct *files, unsigned int fd) | 
|  | { | 
|  | struct fdtable *fdt = files_fdtable(files); | 
|  | __clear_open_fd(fd, fdt); | 
|  | if (fd < files->next_fd) | 
|  | files->next_fd = fd; | 
|  | } | 
|  |  | 
|  | void put_unused_fd(unsigned int fd) | 
|  | { | 
|  | struct files_struct *files = current->files; | 
|  | spin_lock(&files->file_lock); | 
|  | __put_unused_fd(files, fd); | 
|  | spin_unlock(&files->file_lock); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(put_unused_fd); | 
|  |  | 
|  | /** | 
|  | * fd_install - install a file pointer in the fd array | 
|  | * @fd: file descriptor to install the file in | 
|  | * @file: the file to install | 
|  | * | 
|  | * This consumes the "file" refcount, so callers should treat it | 
|  | * as if they had called fput(file). | 
|  | */ | 
|  | void fd_install(unsigned int fd, struct file *file) | 
|  | { | 
|  | struct files_struct *files = current->files; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING))) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock_sched(); | 
|  |  | 
|  | if (unlikely(files->resize_in_progress)) { | 
|  | rcu_read_unlock_sched(); | 
|  | spin_lock(&files->file_lock); | 
|  | fdt = files_fdtable(files); | 
|  | VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); | 
|  | rcu_assign_pointer(fdt->fd[fd], file); | 
|  | spin_unlock(&files->file_lock); | 
|  | return; | 
|  | } | 
|  | /* coupled with smp_wmb() in expand_fdtable() */ | 
|  | smp_rmb(); | 
|  | fdt = rcu_dereference_sched(files->fdt); | 
|  | VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); | 
|  | rcu_assign_pointer(fdt->fd[fd], file); | 
|  | rcu_read_unlock_sched(); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(fd_install); | 
|  |  | 
|  | /** | 
|  | * file_close_fd_locked - return file associated with fd | 
|  | * @files: file struct to retrieve file from | 
|  | * @fd: file descriptor to retrieve file for | 
|  | * | 
|  | * Doesn't take a separate reference count. | 
|  | * | 
|  | * Context: files_lock must be held. | 
|  | * | 
|  | * Returns: The file associated with @fd (NULL if @fd is not open) | 
|  | */ | 
|  | struct file *file_close_fd_locked(struct files_struct *files, unsigned fd) | 
|  | { | 
|  | struct fdtable *fdt = files_fdtable(files); | 
|  | struct file *file; | 
|  |  | 
|  | lockdep_assert_held(&files->file_lock); | 
|  |  | 
|  | if (fd >= fdt->max_fds) | 
|  | return NULL; | 
|  |  | 
|  | fd = array_index_nospec(fd, fdt->max_fds); | 
|  | file = rcu_dereference_raw(fdt->fd[fd]); | 
|  | if (file) { | 
|  | rcu_assign_pointer(fdt->fd[fd], NULL); | 
|  | __put_unused_fd(files, fd); | 
|  | } | 
|  | return file; | 
|  | } | 
|  |  | 
|  | int close_fd(unsigned fd) | 
|  | { | 
|  | struct files_struct *files = current->files; | 
|  | struct file *file; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | file = file_close_fd_locked(files, fd); | 
|  | spin_unlock(&files->file_lock); | 
|  | if (!file) | 
|  | return -EBADF; | 
|  |  | 
|  | return filp_close(file, files); | 
|  | } | 
|  | EXPORT_SYMBOL(close_fd); | 
|  |  | 
|  | /** | 
|  | * last_fd - return last valid index into fd table | 
|  | * @fdt: File descriptor table. | 
|  | * | 
|  | * Context: Either rcu read lock or files_lock must be held. | 
|  | * | 
|  | * Returns: Last valid index into fdtable. | 
|  | */ | 
|  | static inline unsigned last_fd(struct fdtable *fdt) | 
|  | { | 
|  | return fdt->max_fds - 1; | 
|  | } | 
|  |  | 
|  | static inline void __range_cloexec(struct files_struct *cur_fds, | 
|  | unsigned int fd, unsigned int max_fd) | 
|  | { | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | /* make sure we're using the correct maximum value */ | 
|  | spin_lock(&cur_fds->file_lock); | 
|  | fdt = files_fdtable(cur_fds); | 
|  | max_fd = min(last_fd(fdt), max_fd); | 
|  | if (fd <= max_fd) | 
|  | bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1); | 
|  | spin_unlock(&cur_fds->file_lock); | 
|  | } | 
|  |  | 
|  | static inline void __range_close(struct files_struct *files, unsigned int fd, | 
|  | unsigned int max_fd) | 
|  | { | 
|  | struct file *file; | 
|  | unsigned n; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | n = last_fd(files_fdtable(files)); | 
|  | max_fd = min(max_fd, n); | 
|  |  | 
|  | for (; fd <= max_fd; fd++) { | 
|  | file = file_close_fd_locked(files, fd); | 
|  | if (file) { | 
|  | spin_unlock(&files->file_lock); | 
|  | filp_close(file, files); | 
|  | cond_resched(); | 
|  | spin_lock(&files->file_lock); | 
|  | } else if (need_resched()) { | 
|  | spin_unlock(&files->file_lock); | 
|  | cond_resched(); | 
|  | spin_lock(&files->file_lock); | 
|  | } | 
|  | } | 
|  | spin_unlock(&files->file_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_close_range() - Close all file descriptors in a given range. | 
|  | * | 
|  | * @fd:     starting file descriptor to close | 
|  | * @max_fd: last file descriptor to close | 
|  | * @flags:  CLOSE_RANGE flags. | 
|  | * | 
|  | * This closes a range of file descriptors. All file descriptors | 
|  | * from @fd up to and including @max_fd are closed. | 
|  | * Currently, errors to close a given file descriptor are ignored. | 
|  | */ | 
|  | SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd, | 
|  | unsigned int, flags) | 
|  | { | 
|  | struct task_struct *me = current; | 
|  | struct files_struct *cur_fds = me->files, *fds = NULL; | 
|  |  | 
|  | if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (fd > max_fd) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) { | 
|  | struct fd_range range = {fd, max_fd}, *punch_hole = ⦥ | 
|  |  | 
|  | /* | 
|  | * If the caller requested all fds to be made cloexec we always | 
|  | * copy all of the file descriptors since they still want to | 
|  | * use them. | 
|  | */ | 
|  | if (flags & CLOSE_RANGE_CLOEXEC) | 
|  | punch_hole = NULL; | 
|  |  | 
|  | fds = dup_fd(cur_fds, punch_hole); | 
|  | if (IS_ERR(fds)) | 
|  | return PTR_ERR(fds); | 
|  | /* | 
|  | * We used to share our file descriptor table, and have now | 
|  | * created a private one, make sure we're using it below. | 
|  | */ | 
|  | swap(cur_fds, fds); | 
|  | } | 
|  |  | 
|  | if (flags & CLOSE_RANGE_CLOEXEC) | 
|  | __range_cloexec(cur_fds, fd, max_fd); | 
|  | else | 
|  | __range_close(cur_fds, fd, max_fd); | 
|  |  | 
|  | if (fds) { | 
|  | /* | 
|  | * We're done closing the files we were supposed to. Time to install | 
|  | * the new file descriptor table and drop the old one. | 
|  | */ | 
|  | task_lock(me); | 
|  | me->files = cur_fds; | 
|  | task_unlock(me); | 
|  | put_files_struct(fds); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * file_close_fd - return file associated with fd | 
|  | * @fd: file descriptor to retrieve file for | 
|  | * | 
|  | * Doesn't take a separate reference count. | 
|  | * | 
|  | * Returns: The file associated with @fd (NULL if @fd is not open) | 
|  | */ | 
|  | struct file *file_close_fd(unsigned int fd) | 
|  | { | 
|  | struct files_struct *files = current->files; | 
|  | struct file *file; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | file = file_close_fd_locked(files, fd); | 
|  | spin_unlock(&files->file_lock); | 
|  |  | 
|  | return file; | 
|  | } | 
|  |  | 
|  | void do_close_on_exec(struct files_struct *files) | 
|  | { | 
|  | unsigned i; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | /* exec unshares first */ | 
|  | spin_lock(&files->file_lock); | 
|  | for (i = 0; ; i++) { | 
|  | unsigned long set; | 
|  | unsigned fd = i * BITS_PER_LONG; | 
|  | fdt = files_fdtable(files); | 
|  | if (fd >= fdt->max_fds) | 
|  | break; | 
|  | set = fdt->close_on_exec[i]; | 
|  | if (!set) | 
|  | continue; | 
|  | fdt->close_on_exec[i] = 0; | 
|  | for ( ; set ; fd++, set >>= 1) { | 
|  | struct file *file; | 
|  | if (!(set & 1)) | 
|  | continue; | 
|  | file = fdt->fd[fd]; | 
|  | if (!file) | 
|  | continue; | 
|  | rcu_assign_pointer(fdt->fd[fd], NULL); | 
|  | __put_unused_fd(files, fd); | 
|  | spin_unlock(&files->file_lock); | 
|  | filp_close(file, files); | 
|  | cond_resched(); | 
|  | spin_lock(&files->file_lock); | 
|  | } | 
|  |  | 
|  | } | 
|  | spin_unlock(&files->file_lock); | 
|  | } | 
|  |  | 
|  | static struct file *__get_file_rcu(struct file __rcu **f) | 
|  | { | 
|  | struct file __rcu *file; | 
|  | struct file __rcu *file_reloaded; | 
|  | struct file __rcu *file_reloaded_cmp; | 
|  |  | 
|  | file = rcu_dereference_raw(*f); | 
|  | if (!file) | 
|  | return NULL; | 
|  |  | 
|  | if (unlikely(!file_ref_get(&file->f_ref))) | 
|  | return ERR_PTR(-EAGAIN); | 
|  |  | 
|  | file_reloaded = rcu_dereference_raw(*f); | 
|  |  | 
|  | /* | 
|  | * Ensure that all accesses have a dependency on the load from | 
|  | * rcu_dereference_raw() above so we get correct ordering | 
|  | * between reuse/allocation and the pointer check below. | 
|  | */ | 
|  | file_reloaded_cmp = file_reloaded; | 
|  | OPTIMIZER_HIDE_VAR(file_reloaded_cmp); | 
|  |  | 
|  | /* | 
|  | * file_ref_get() above provided a full memory barrier when we | 
|  | * acquired a reference. | 
|  | * | 
|  | * This is paired with the write barrier from assigning to the | 
|  | * __rcu protected file pointer so that if that pointer still | 
|  | * matches the current file, we know we have successfully | 
|  | * acquired a reference to the right file. | 
|  | * | 
|  | * If the pointers don't match the file has been reallocated by | 
|  | * SLAB_TYPESAFE_BY_RCU. | 
|  | */ | 
|  | if (file == file_reloaded_cmp) | 
|  | return file_reloaded; | 
|  |  | 
|  | fput(file); | 
|  | return ERR_PTR(-EAGAIN); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_file_rcu - try go get a reference to a file under rcu | 
|  | * @f: the file to get a reference on | 
|  | * | 
|  | * This function tries to get a reference on @f carefully verifying that | 
|  | * @f hasn't been reused. | 
|  | * | 
|  | * This function should rarely have to be used and only by users who | 
|  | * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. | 
|  | * | 
|  | * Return: Returns @f with the reference count increased or NULL. | 
|  | */ | 
|  | struct file *get_file_rcu(struct file __rcu **f) | 
|  | { | 
|  | for (;;) { | 
|  | struct file __rcu *file; | 
|  |  | 
|  | file = __get_file_rcu(f); | 
|  | if (!IS_ERR(file)) | 
|  | return file; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_file_rcu); | 
|  |  | 
|  | /** | 
|  | * get_file_active - try go get a reference to a file | 
|  | * @f: the file to get a reference on | 
|  | * | 
|  | * In contast to get_file_rcu() the pointer itself isn't part of the | 
|  | * reference counting. | 
|  | * | 
|  | * This function should rarely have to be used and only by users who | 
|  | * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. | 
|  | * | 
|  | * Return: Returns @f with the reference count increased or NULL. | 
|  | */ | 
|  | struct file *get_file_active(struct file **f) | 
|  | { | 
|  | struct file __rcu *file; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | file = __get_file_rcu(f); | 
|  | rcu_read_unlock(); | 
|  | if (IS_ERR(file)) | 
|  | file = NULL; | 
|  | return file; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_file_active); | 
|  |  | 
|  | static inline struct file *__fget_files_rcu(struct files_struct *files, | 
|  | unsigned int fd, fmode_t mask) | 
|  | { | 
|  | for (;;) { | 
|  | struct file *file; | 
|  | struct fdtable *fdt = rcu_dereference_raw(files->fdt); | 
|  | struct file __rcu **fdentry; | 
|  | unsigned long nospec_mask; | 
|  |  | 
|  | /* Mask is a 0 for invalid fd's, ~0 for valid ones */ | 
|  | nospec_mask = array_index_mask_nospec(fd, fdt->max_fds); | 
|  |  | 
|  | /* | 
|  | * fdentry points to the 'fd' offset, or fdt->fd[0]. | 
|  | * Loading from fdt->fd[0] is always safe, because the | 
|  | * array always exists. | 
|  | */ | 
|  | fdentry = fdt->fd + (fd & nospec_mask); | 
|  |  | 
|  | /* Do the load, then mask any invalid result */ | 
|  | file = rcu_dereference_raw(*fdentry); | 
|  | file = (void *)(nospec_mask & (unsigned long)file); | 
|  | if (unlikely(!file)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Ok, we have a file pointer that was valid at | 
|  | * some point, but it might have become stale since. | 
|  | * | 
|  | * We need to confirm it by incrementing the refcount | 
|  | * and then check the lookup again. | 
|  | * | 
|  | * file_ref_get() gives us a full memory barrier. We | 
|  | * only really need an 'acquire' one to protect the | 
|  | * loads below, but we don't have that. | 
|  | */ | 
|  | if (unlikely(!file_ref_get(&file->f_ref))) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Such a race can take two forms: | 
|  | * | 
|  | *  (a) the file ref already went down to zero and the | 
|  | *      file hasn't been reused yet or the file count | 
|  | *      isn't zero but the file has already been reused. | 
|  | * | 
|  | *  (b) the file table entry has changed under us. | 
|  | *       Note that we don't need to re-check the 'fdt->fd' | 
|  | *       pointer having changed, because it always goes | 
|  | *       hand-in-hand with 'fdt'. | 
|  | * | 
|  | * If so, we need to put our ref and try again. | 
|  | */ | 
|  | if (unlikely(file != rcu_dereference_raw(*fdentry)) || | 
|  | unlikely(rcu_dereference_raw(files->fdt) != fdt)) { | 
|  | fput(file); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This isn't the file we're looking for or we're not | 
|  | * allowed to get a reference to it. | 
|  | */ | 
|  | if (unlikely(file->f_mode & mask)) { | 
|  | fput(file); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, we have a ref to the file, and checked that it | 
|  | * still exists. | 
|  | */ | 
|  | return file; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct file *__fget_files(struct files_struct *files, unsigned int fd, | 
|  | fmode_t mask) | 
|  | { | 
|  | struct file *file; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | file = __fget_files_rcu(files, fd, mask); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return file; | 
|  | } | 
|  |  | 
|  | static inline struct file *__fget(unsigned int fd, fmode_t mask) | 
|  | { | 
|  | return __fget_files(current->files, fd, mask); | 
|  | } | 
|  |  | 
|  | struct file *fget(unsigned int fd) | 
|  | { | 
|  | return __fget(fd, FMODE_PATH); | 
|  | } | 
|  | EXPORT_SYMBOL(fget); | 
|  |  | 
|  | struct file *fget_raw(unsigned int fd) | 
|  | { | 
|  | return __fget(fd, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(fget_raw); | 
|  |  | 
|  | struct file *fget_task(struct task_struct *task, unsigned int fd) | 
|  | { | 
|  | struct file *file = NULL; | 
|  |  | 
|  | task_lock(task); | 
|  | if (task->files) | 
|  | file = __fget_files(task->files, fd, 0); | 
|  | task_unlock(task); | 
|  |  | 
|  | return file; | 
|  | } | 
|  |  | 
|  | struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd) | 
|  | { | 
|  | /* Must be called with rcu_read_lock held */ | 
|  | struct files_struct *files; | 
|  | unsigned int fd = *ret_fd; | 
|  | struct file *file = NULL; | 
|  |  | 
|  | task_lock(task); | 
|  | files = task->files; | 
|  | if (files) { | 
|  | rcu_read_lock(); | 
|  | for (; fd < files_fdtable(files)->max_fds; fd++) { | 
|  | file = __fget_files_rcu(files, fd, 0); | 
|  | if (file) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | task_unlock(task); | 
|  | *ret_fd = fd; | 
|  | return file; | 
|  | } | 
|  | EXPORT_SYMBOL(fget_task_next); | 
|  |  | 
|  | /* | 
|  | * Lightweight file lookup - no refcnt increment if fd table isn't shared. | 
|  | * | 
|  | * You can use this instead of fget if you satisfy all of the following | 
|  | * conditions: | 
|  | * 1) You must call fput_light before exiting the syscall and returning control | 
|  | *    to userspace (i.e. you cannot remember the returned struct file * after | 
|  | *    returning to userspace). | 
|  | * 2) You must not call filp_close on the returned struct file * in between | 
|  | *    calls to fget_light and fput_light. | 
|  | * 3) You must not clone the current task in between the calls to fget_light | 
|  | *    and fput_light. | 
|  | * | 
|  | * The fput_needed flag returned by fget_light should be passed to the | 
|  | * corresponding fput_light. | 
|  | * | 
|  | * (As an exception to rule 2, you can call filp_close between fget_light and | 
|  | * fput_light provided that you capture a real refcount with get_file before | 
|  | * the call to filp_close, and ensure that this real refcount is fput *after* | 
|  | * the fput_light call.) | 
|  | * | 
|  | * See also the documentation in rust/kernel/file.rs. | 
|  | */ | 
|  | static inline struct fd __fget_light(unsigned int fd, fmode_t mask) | 
|  | { | 
|  | struct files_struct *files = current->files; | 
|  | struct file *file; | 
|  |  | 
|  | /* | 
|  | * If another thread is concurrently calling close_fd() followed | 
|  | * by put_files_struct(), we must not observe the old table | 
|  | * entry combined with the new refcount - otherwise we could | 
|  | * return a file that is concurrently being freed. | 
|  | * | 
|  | * atomic_read_acquire() pairs with atomic_dec_and_test() in | 
|  | * put_files_struct(). | 
|  | */ | 
|  | if (likely(atomic_read_acquire(&files->count) == 1)) { | 
|  | file = files_lookup_fd_raw(files, fd); | 
|  | if (!file || unlikely(file->f_mode & mask)) | 
|  | return EMPTY_FD; | 
|  | return BORROWED_FD(file); | 
|  | } else { | 
|  | file = __fget_files(files, fd, mask); | 
|  | if (!file) | 
|  | return EMPTY_FD; | 
|  | return CLONED_FD(file); | 
|  | } | 
|  | } | 
|  | struct fd fdget(unsigned int fd) | 
|  | { | 
|  | return __fget_light(fd, FMODE_PATH); | 
|  | } | 
|  | EXPORT_SYMBOL(fdget); | 
|  |  | 
|  | struct fd fdget_raw(unsigned int fd) | 
|  | { | 
|  | return __fget_light(fd, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to avoid f_pos locking. We only need it if the | 
|  | * file is marked for FMODE_ATOMIC_POS, and it can be | 
|  | * accessed multiple ways. | 
|  | * | 
|  | * Always do it for directories, because pidfd_getfd() | 
|  | * can make a file accessible even if it otherwise would | 
|  | * not be, and for directories this is a correctness | 
|  | * issue, not a "POSIX requirement". | 
|  | */ | 
|  | static inline bool file_needs_f_pos_lock(struct file *file) | 
|  | { | 
|  | if (!(file->f_mode & FMODE_ATOMIC_POS)) | 
|  | return false; | 
|  | if (__file_ref_read_raw(&file->f_ref) != FILE_REF_ONEREF) | 
|  | return true; | 
|  | if (file->f_op->iterate_shared) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool file_seek_cur_needs_f_lock(struct file *file) | 
|  | { | 
|  | if (!(file->f_mode & FMODE_ATOMIC_POS) && !file->f_op->iterate_shared) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Note that we are not guaranteed to be called after fdget_pos() on | 
|  | * this file obj, in which case the caller is expected to provide the | 
|  | * appropriate locking. | 
|  | */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | struct fd fdget_pos(unsigned int fd) | 
|  | { | 
|  | struct fd f = fdget(fd); | 
|  | struct file *file = fd_file(f); | 
|  |  | 
|  | if (likely(file) && file_needs_f_pos_lock(file)) { | 
|  | f.word |= FDPUT_POS_UNLOCK; | 
|  | mutex_lock(&file->f_pos_lock); | 
|  | } | 
|  | return f; | 
|  | } | 
|  |  | 
|  | void __f_unlock_pos(struct file *f) | 
|  | { | 
|  | mutex_unlock(&f->f_pos_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We only lock f_pos if we have threads or if the file might be | 
|  | * shared with another process. In both cases we'll have an elevated | 
|  | * file count (done either by fdget() or by fork()). | 
|  | */ | 
|  |  | 
|  | void set_close_on_exec(unsigned int fd, int flag) | 
|  | { | 
|  | struct files_struct *files = current->files; | 
|  | spin_lock(&files->file_lock); | 
|  | __set_close_on_exec(fd, files_fdtable(files), flag); | 
|  | spin_unlock(&files->file_lock); | 
|  | } | 
|  |  | 
|  | bool get_close_on_exec(unsigned int fd) | 
|  | { | 
|  | bool res; | 
|  | rcu_read_lock(); | 
|  | res = close_on_exec(fd, current->files); | 
|  | rcu_read_unlock(); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int do_dup2(struct files_struct *files, | 
|  | struct file *file, unsigned fd, unsigned flags) | 
|  | __releases(&files->file_lock) | 
|  | { | 
|  | struct file *tofree; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | /* | 
|  | * dup2() is expected to close the file installed in the target fd slot | 
|  | * (if any). However, userspace hand-picking a fd may be racing against | 
|  | * its own threads which happened to allocate it in open() et al but did | 
|  | * not populate it yet. | 
|  | * | 
|  | * Broadly speaking we may be racing against the following: | 
|  | * fd = get_unused_fd_flags();     // fd slot reserved, ->fd[fd] == NULL | 
|  | * file = hard_work_goes_here(); | 
|  | * fd_install(fd, file);           // only now ->fd[fd] == file | 
|  | * | 
|  | * It is an invariant that a successfully allocated fd has a NULL entry | 
|  | * in the array until the matching fd_install(). | 
|  | * | 
|  | * If we fit the window, we have the fd to populate, yet no target file | 
|  | * to close. Trying to ignore it and install our new file would violate | 
|  | * the invariant and make fd_install() overwrite our file. | 
|  | * | 
|  | * Things can be done(tm) to handle this. However, the issue does not | 
|  | * concern legitimate programs and we only need to make sure the kernel | 
|  | * does not trip over it. | 
|  | * | 
|  | * The simplest way out is to return an error if we find ourselves here. | 
|  | * | 
|  | * POSIX is silent on the issue, we return -EBUSY. | 
|  | */ | 
|  | fdt = files_fdtable(files); | 
|  | fd = array_index_nospec(fd, fdt->max_fds); | 
|  | tofree = rcu_dereference_raw(fdt->fd[fd]); | 
|  | if (!tofree && fd_is_open(fd, fdt)) | 
|  | goto Ebusy; | 
|  | get_file(file); | 
|  | rcu_assign_pointer(fdt->fd[fd], file); | 
|  | __set_open_fd(fd, fdt, flags & O_CLOEXEC); | 
|  | spin_unlock(&files->file_lock); | 
|  |  | 
|  | if (tofree) | 
|  | filp_close(tofree, files); | 
|  |  | 
|  | return fd; | 
|  |  | 
|  | Ebusy: | 
|  | spin_unlock(&files->file_lock); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | int replace_fd(unsigned fd, struct file *file, unsigned flags) | 
|  | { | 
|  | int err; | 
|  | struct files_struct *files = current->files; | 
|  |  | 
|  | if (!file) | 
|  | return close_fd(fd); | 
|  |  | 
|  | if (fd >= rlimit(RLIMIT_NOFILE)) | 
|  | return -EBADF; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | err = expand_files(files, fd); | 
|  | if (unlikely(err < 0)) | 
|  | goto out_unlock; | 
|  | err = do_dup2(files, file, fd, flags); | 
|  | if (err < 0) | 
|  | return err; | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&files->file_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * receive_fd() - Install received file into file descriptor table | 
|  | * @file: struct file that was received from another process | 
|  | * @ufd: __user pointer to write new fd number to | 
|  | * @o_flags: the O_* flags to apply to the new fd entry | 
|  | * | 
|  | * Installs a received file into the file descriptor table, with appropriate | 
|  | * checks and count updates. Optionally writes the fd number to userspace, if | 
|  | * @ufd is non-NULL. | 
|  | * | 
|  | * This helper handles its own reference counting of the incoming | 
|  | * struct file. | 
|  | * | 
|  | * Returns newly install fd or -ve on error. | 
|  | */ | 
|  | int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags) | 
|  | { | 
|  | int new_fd; | 
|  | int error; | 
|  |  | 
|  | error = security_file_receive(file); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | new_fd = get_unused_fd_flags(o_flags); | 
|  | if (new_fd < 0) | 
|  | return new_fd; | 
|  |  | 
|  | if (ufd) { | 
|  | error = put_user(new_fd, ufd); | 
|  | if (error) { | 
|  | put_unused_fd(new_fd); | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | fd_install(new_fd, get_file(file)); | 
|  | __receive_sock(file); | 
|  | return new_fd; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(receive_fd); | 
|  |  | 
|  | int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | error = security_file_receive(file); | 
|  | if (error) | 
|  | return error; | 
|  | error = replace_fd(new_fd, file, o_flags); | 
|  | if (error) | 
|  | return error; | 
|  | __receive_sock(file); | 
|  | return new_fd; | 
|  | } | 
|  |  | 
|  | static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) | 
|  | { | 
|  | int err = -EBADF; | 
|  | struct file *file; | 
|  | struct files_struct *files = current->files; | 
|  |  | 
|  | if ((flags & ~O_CLOEXEC) != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(oldfd == newfd)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (newfd >= rlimit(RLIMIT_NOFILE)) | 
|  | return -EBADF; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | err = expand_files(files, newfd); | 
|  | file = files_lookup_fd_locked(files, oldfd); | 
|  | if (unlikely(!file)) | 
|  | goto Ebadf; | 
|  | if (unlikely(err < 0)) { | 
|  | if (err == -EMFILE) | 
|  | goto Ebadf; | 
|  | goto out_unlock; | 
|  | } | 
|  | return do_dup2(files, file, newfd, flags); | 
|  |  | 
|  | Ebadf: | 
|  | err = -EBADF; | 
|  | out_unlock: | 
|  | spin_unlock(&files->file_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) | 
|  | { | 
|  | return ksys_dup3(oldfd, newfd, flags); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) | 
|  | { | 
|  | if (unlikely(newfd == oldfd)) { /* corner case */ | 
|  | struct files_struct *files = current->files; | 
|  | struct file *f; | 
|  | int retval = oldfd; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | f = __fget_files_rcu(files, oldfd, 0); | 
|  | if (!f) | 
|  | retval = -EBADF; | 
|  | rcu_read_unlock(); | 
|  | if (f) | 
|  | fput(f); | 
|  | return retval; | 
|  | } | 
|  | return ksys_dup3(oldfd, newfd, 0); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(dup, unsigned int, fildes) | 
|  | { | 
|  | int ret = -EBADF; | 
|  | struct file *file = fget_raw(fildes); | 
|  |  | 
|  | if (file) { | 
|  | ret = get_unused_fd_flags(0); | 
|  | if (ret >= 0) | 
|  | fd_install(ret, file); | 
|  | else | 
|  | fput(file); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int f_dupfd(unsigned int from, struct file *file, unsigned flags) | 
|  | { | 
|  | unsigned long nofile = rlimit(RLIMIT_NOFILE); | 
|  | int err; | 
|  | if (from >= nofile) | 
|  | return -EINVAL; | 
|  | err = alloc_fd(from, nofile, flags); | 
|  | if (err >= 0) { | 
|  | get_file(file); | 
|  | fd_install(err, file); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int iterate_fd(struct files_struct *files, unsigned n, | 
|  | int (*f)(const void *, struct file *, unsigned), | 
|  | const void *p) | 
|  | { | 
|  | struct fdtable *fdt; | 
|  | int res = 0; | 
|  | if (!files) | 
|  | return 0; | 
|  | spin_lock(&files->file_lock); | 
|  | for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { | 
|  | struct file *file; | 
|  | file = rcu_dereference_check_fdtable(files, fdt->fd[n]); | 
|  | if (!file) | 
|  | continue; | 
|  | res = f(p, file, n); | 
|  | if (res) | 
|  | break; | 
|  | } | 
|  | spin_unlock(&files->file_lock); | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(iterate_fd); |