|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> | 
|  | * | 
|  | * Based on former do_div() implementation from asm-parisc/div64.h: | 
|  | *	Copyright (C) 1999 Hewlett-Packard Co | 
|  | *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | * | 
|  | * | 
|  | * Generic C version of 64bit/32bit division and modulo, with | 
|  | * 64bit result and 32bit remainder. | 
|  | * | 
|  | * The fast case for (n>>32 == 0) is handled inline by do_div(). | 
|  | * | 
|  | * Code generated for this function might be very inefficient | 
|  | * for some CPUs. __div64_32() can be overridden by linking arch-specific | 
|  | * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S | 
|  | * or by defining a preprocessor macro in arch/include/asm/div64.h. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/math.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/minmax.h> | 
|  | #include <linux/log2.h> | 
|  |  | 
|  | /* Not needed on 64bit architectures */ | 
|  | #if BITS_PER_LONG == 32 | 
|  |  | 
|  | #ifndef __div64_32 | 
|  | uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) | 
|  | { | 
|  | uint64_t rem = *n; | 
|  | uint64_t b = base; | 
|  | uint64_t res, d = 1; | 
|  | uint32_t high = rem >> 32; | 
|  |  | 
|  | /* Reduce the thing a bit first */ | 
|  | res = 0; | 
|  | if (high >= base) { | 
|  | high /= base; | 
|  | res = (uint64_t) high << 32; | 
|  | rem -= (uint64_t) (high*base) << 32; | 
|  | } | 
|  |  | 
|  | while ((int64_t)b > 0 && b < rem) { | 
|  | b = b+b; | 
|  | d = d+d; | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (rem >= b) { | 
|  | rem -= b; | 
|  | res += d; | 
|  | } | 
|  | b >>= 1; | 
|  | d >>= 1; | 
|  | } while (d); | 
|  |  | 
|  | *n = res; | 
|  | return rem; | 
|  | } | 
|  | EXPORT_SYMBOL(__div64_32); | 
|  | #endif | 
|  |  | 
|  | #ifndef div_s64_rem | 
|  | s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) | 
|  | { | 
|  | u64 quotient; | 
|  |  | 
|  | if (dividend < 0) { | 
|  | quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); | 
|  | *remainder = -*remainder; | 
|  | if (divisor > 0) | 
|  | quotient = -quotient; | 
|  | } else { | 
|  | quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); | 
|  | if (divisor < 0) | 
|  | quotient = -quotient; | 
|  | } | 
|  | return quotient; | 
|  | } | 
|  | EXPORT_SYMBOL(div_s64_rem); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder | 
|  | * @dividend:	64bit dividend | 
|  | * @divisor:	64bit divisor | 
|  | * @remainder:  64bit remainder | 
|  | * | 
|  | * This implementation is a comparable to algorithm used by div64_u64. | 
|  | * But this operation, which includes math for calculating the remainder, | 
|  | * is kept distinct to avoid slowing down the div64_u64 operation on 32bit | 
|  | * systems. | 
|  | */ | 
|  | #ifndef div64_u64_rem | 
|  | u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) | 
|  | { | 
|  | u32 high = divisor >> 32; | 
|  | u64 quot; | 
|  |  | 
|  | if (high == 0) { | 
|  | u32 rem32; | 
|  | quot = div_u64_rem(dividend, divisor, &rem32); | 
|  | *remainder = rem32; | 
|  | } else { | 
|  | int n = fls(high); | 
|  | quot = div_u64(dividend >> n, divisor >> n); | 
|  |  | 
|  | if (quot != 0) | 
|  | quot--; | 
|  |  | 
|  | *remainder = dividend - quot * divisor; | 
|  | if (*remainder >= divisor) { | 
|  | quot++; | 
|  | *remainder -= divisor; | 
|  | } | 
|  | } | 
|  |  | 
|  | return quot; | 
|  | } | 
|  | EXPORT_SYMBOL(div64_u64_rem); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * div64_u64 - unsigned 64bit divide with 64bit divisor | 
|  | * @dividend:	64bit dividend | 
|  | * @divisor:	64bit divisor | 
|  | * | 
|  | * This implementation is a modified version of the algorithm proposed | 
|  | * by the book 'Hacker's Delight'.  The original source and full proof | 
|  | * can be found here and is available for use without restriction. | 
|  | * | 
|  | * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' | 
|  | */ | 
|  | #ifndef div64_u64 | 
|  | u64 div64_u64(u64 dividend, u64 divisor) | 
|  | { | 
|  | u32 high = divisor >> 32; | 
|  | u64 quot; | 
|  |  | 
|  | if (high == 0) { | 
|  | quot = div_u64(dividend, divisor); | 
|  | } else { | 
|  | int n = fls(high); | 
|  | quot = div_u64(dividend >> n, divisor >> n); | 
|  |  | 
|  | if (quot != 0) | 
|  | quot--; | 
|  | if ((dividend - quot * divisor) >= divisor) | 
|  | quot++; | 
|  | } | 
|  |  | 
|  | return quot; | 
|  | } | 
|  | EXPORT_SYMBOL(div64_u64); | 
|  | #endif | 
|  |  | 
|  | #ifndef div64_s64 | 
|  | s64 div64_s64(s64 dividend, s64 divisor) | 
|  | { | 
|  | s64 quot, t; | 
|  |  | 
|  | quot = div64_u64(abs(dividend), abs(divisor)); | 
|  | t = (dividend ^ divisor) >> 63; | 
|  |  | 
|  | return (quot ^ t) - t; | 
|  | } | 
|  | EXPORT_SYMBOL(div64_s64); | 
|  | #endif | 
|  |  | 
|  | #endif /* BITS_PER_LONG == 32 */ | 
|  |  | 
|  | /* | 
|  | * Iterative div/mod for use when dividend is not expected to be much | 
|  | * bigger than divisor. | 
|  | */ | 
|  | u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) | 
|  | { | 
|  | return __iter_div_u64_rem(dividend, divisor, remainder); | 
|  | } | 
|  | EXPORT_SYMBOL(iter_div_u64_rem); | 
|  |  | 
|  | #ifndef mul_u64_u64_div_u64 | 
|  | u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) | 
|  | { | 
|  | if (ilog2(a) + ilog2(b) <= 62) | 
|  | return div64_u64(a * b, c); | 
|  |  | 
|  | #if defined(__SIZEOF_INT128__) | 
|  |  | 
|  | /* native 64x64=128 bits multiplication */ | 
|  | u128 prod = (u128)a * b; | 
|  | u64 n_lo = prod, n_hi = prod >> 64; | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* perform a 64x64=128 bits multiplication manually */ | 
|  | u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32; | 
|  | u64 x, y, z; | 
|  |  | 
|  | x = (u64)a_lo * b_lo; | 
|  | y = (u64)a_lo * b_hi + (u32)(x >> 32); | 
|  | z = (u64)a_hi * b_hi + (u32)(y >> 32); | 
|  | y = (u64)a_hi * b_lo + (u32)y; | 
|  | z += (u32)(y >> 32); | 
|  | x = (y << 32) + (u32)x; | 
|  |  | 
|  | u64 n_lo = x, n_hi = z; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* make sure c is not zero, trigger runtime exception otherwise */ | 
|  | if (unlikely(c == 0)) { | 
|  | unsigned long zero = 0; | 
|  |  | 
|  | OPTIMIZER_HIDE_VAR(zero); | 
|  | return ~0UL/zero; | 
|  | } | 
|  |  | 
|  | int shift = __builtin_ctzll(c); | 
|  |  | 
|  | /* try reducing the fraction in case the dividend becomes <= 64 bits */ | 
|  | if ((n_hi >> shift) == 0) { | 
|  | u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo; | 
|  |  | 
|  | return div64_u64(n, c >> shift); | 
|  | /* | 
|  | * The remainder value if needed would be: | 
|  | *   res = div64_u64_rem(n, c >> shift, &rem); | 
|  | *   rem = (rem << shift) + (n_lo - (n << shift)); | 
|  | */ | 
|  | } | 
|  |  | 
|  | if (n_hi >= c) { | 
|  | /* overflow: result is unrepresentable in a u64 */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Do the full 128 by 64 bits division */ | 
|  |  | 
|  | shift = __builtin_clzll(c); | 
|  | c <<= shift; | 
|  |  | 
|  | int p = 64 + shift; | 
|  | u64 res = 0; | 
|  | bool carry; | 
|  |  | 
|  | do { | 
|  | carry = n_hi >> 63; | 
|  | shift = carry ? 1 : __builtin_clzll(n_hi); | 
|  | if (p < shift) | 
|  | break; | 
|  | p -= shift; | 
|  | n_hi <<= shift; | 
|  | n_hi |= n_lo >> (64 - shift); | 
|  | n_lo <<= shift; | 
|  | if (carry || (n_hi >= c)) { | 
|  | n_hi -= c; | 
|  | res |= 1ULL << p; | 
|  | } | 
|  | } while (n_hi); | 
|  | /* The remainder value if needed would be n_hi << p */ | 
|  |  | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(mul_u64_u64_div_u64); | 
|  | #endif |