| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Copyright (C) 2012 Regents of the University of California | 
 |  * Copyright (C) 2019 Western Digital Corporation or its affiliates. | 
 |  * Copyright (C) 2020 FORTH-ICS/CARV | 
 |  *  Nick Kossifidis <mick@ics.forth.gr> | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swiotlb.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/of_fdt.h> | 
 | #include <linux/of_reserved_mem.h> | 
 | #include <linux/libfdt.h> | 
 | #include <linux/set_memory.h> | 
 | #include <linux/dma-map-ops.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/kfence.h> | 
 | #include <linux/execmem.h> | 
 |  | 
 | #include <asm/alternative.h> | 
 | #include <asm/fixmap.h> | 
 | #include <asm/io.h> | 
 | #include <asm/kasan.h> | 
 | #include <asm/module.h> | 
 | #include <asm/numa.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/soc.h> | 
 | #include <asm/sparsemem.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include "../kernel/head.h" | 
 |  | 
 | u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1]; | 
 |  | 
 | struct kernel_mapping kernel_map __ro_after_init; | 
 | EXPORT_SYMBOL(kernel_map); | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | #define kernel_map	(*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; | 
 | #else | 
 | u64 satp_mode __ro_after_init = SATP_MODE_32; | 
 | #endif | 
 | EXPORT_SYMBOL(satp_mode); | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); | 
 | bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); | 
 | EXPORT_SYMBOL(pgtable_l4_enabled); | 
 | EXPORT_SYMBOL(pgtable_l5_enabled); | 
 | #endif | 
 |  | 
 | phys_addr_t phys_ram_base __ro_after_init; | 
 | EXPORT_SYMBOL(phys_ram_base); | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | #define VMEMMAP_ADDR_ALIGN	(1ULL << SECTION_SIZE_BITS) | 
 |  | 
 | unsigned long vmemmap_start_pfn __ro_after_init; | 
 | EXPORT_SYMBOL(vmemmap_start_pfn); | 
 | #endif | 
 |  | 
 | unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] | 
 | 							__page_aligned_bss; | 
 | EXPORT_SYMBOL(empty_zero_page); | 
 |  | 
 | extern char _start[]; | 
 | void *_dtb_early_va __initdata; | 
 | uintptr_t _dtb_early_pa __initdata; | 
 |  | 
 | phys_addr_t dma32_phys_limit __initdata; | 
 |  | 
 | static void __init zone_sizes_init(void) | 
 | { | 
 | 	unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); | 
 | #endif | 
 | 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn; | 
 |  | 
 | 	free_area_init(max_zone_pfns); | 
 | } | 
 |  | 
 | #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) | 
 |  | 
 | #define LOG2_SZ_1K  ilog2(SZ_1K) | 
 | #define LOG2_SZ_1M  ilog2(SZ_1M) | 
 | #define LOG2_SZ_1G  ilog2(SZ_1G) | 
 | #define LOG2_SZ_1T  ilog2(SZ_1T) | 
 |  | 
 | static inline void print_mlk(char *name, unsigned long b, unsigned long t) | 
 | { | 
 | 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld kB)\n", name, b, t, | 
 | 		  (((t) - (b)) >> LOG2_SZ_1K)); | 
 | } | 
 |  | 
 | static inline void print_mlm(char *name, unsigned long b, unsigned long t) | 
 | { | 
 | 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld MB)\n", name, b, t, | 
 | 		  (((t) - (b)) >> LOG2_SZ_1M)); | 
 | } | 
 |  | 
 | static inline void print_mlg(char *name, unsigned long b, unsigned long t) | 
 | { | 
 | 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld GB)\n", name, b, t, | 
 | 		   (((t) - (b)) >> LOG2_SZ_1G)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | static inline void print_mlt(char *name, unsigned long b, unsigned long t) | 
 | { | 
 | 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld TB)\n", name, b, t, | 
 | 		   (((t) - (b)) >> LOG2_SZ_1T)); | 
 | } | 
 | #else | 
 | #define print_mlt(n, b, t) do {} while (0) | 
 | #endif | 
 |  | 
 | static inline void print_ml(char *name, unsigned long b, unsigned long t) | 
 | { | 
 | 	unsigned long diff = t - b; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) | 
 | 		print_mlt(name, b, t); | 
 | 	else if ((diff >> LOG2_SZ_1G) >= 10) | 
 | 		print_mlg(name, b, t); | 
 | 	else if ((diff >> LOG2_SZ_1M) >= 10) | 
 | 		print_mlm(name, b, t); | 
 | 	else | 
 | 		print_mlk(name, b, t); | 
 | } | 
 |  | 
 | static void __init print_vm_layout(void) | 
 | { | 
 | 	pr_notice("Virtual kernel memory layout:\n"); | 
 | 	print_ml("fixmap", (unsigned long)FIXADDR_START, | 
 | 		(unsigned long)FIXADDR_TOP); | 
 | 	print_ml("pci io", (unsigned long)PCI_IO_START, | 
 | 		(unsigned long)PCI_IO_END); | 
 | 	print_ml("vmemmap", (unsigned long)VMEMMAP_START, | 
 | 		(unsigned long)VMEMMAP_END); | 
 | 	print_ml("vmalloc", (unsigned long)VMALLOC_START, | 
 | 		(unsigned long)VMALLOC_END); | 
 | #ifdef CONFIG_64BIT | 
 | 	print_ml("modules", (unsigned long)MODULES_VADDR, | 
 | 		(unsigned long)MODULES_END); | 
 | #endif | 
 | 	print_ml("lowmem", (unsigned long)PAGE_OFFSET, | 
 | 		(unsigned long)high_memory); | 
 | 	if (IS_ENABLED(CONFIG_64BIT)) { | 
 | #ifdef CONFIG_KASAN | 
 | 		print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); | 
 | #endif | 
 |  | 
 | 		print_ml("kernel", (unsigned long)kernel_map.virt_addr, | 
 | 			 (unsigned long)ADDRESS_SPACE_END); | 
 | 	} | 
 | } | 
 | #else | 
 | static void print_vm_layout(void) { } | 
 | #endif /* CONFIG_DEBUG_VM */ | 
 |  | 
 | void __init arch_mm_preinit(void) | 
 | { | 
 | 	bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit); | 
 | #ifdef CONFIG_FLATMEM | 
 | 	BUG_ON(!mem_map); | 
 | #endif /* CONFIG_FLATMEM */ | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb && | 
 | 	    dma_cache_alignment != 1) { | 
 | 		/* | 
 | 		 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb | 
 | 		 * buffer per 1GB of RAM for kmalloc() bouncing on | 
 | 		 * non-coherent platforms. | 
 | 		 */ | 
 | 		unsigned long size = | 
 | 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024); | 
 | 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); | 
 | 		swiotlb = true; | 
 | 	} | 
 |  | 
 | 	swiotlb_init(swiotlb, SWIOTLB_VERBOSE); | 
 |  | 
 | 	print_vm_layout(); | 
 | } | 
 |  | 
 | /* Limit the memory size via mem. */ | 
 | static phys_addr_t memory_limit; | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | #define memory_limit	(*(phys_addr_t *)XIP_FIXUP(&memory_limit)) | 
 | #endif /* CONFIG_XIP_KERNEL */ | 
 |  | 
 | static int __init early_mem(char *p) | 
 | { | 
 | 	u64 size; | 
 |  | 
 | 	if (!p) | 
 | 		return 1; | 
 |  | 
 | 	size = memparse(p, &p) & PAGE_MASK; | 
 | 	memory_limit = min_t(u64, size, memory_limit); | 
 |  | 
 | 	pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("mem", early_mem); | 
 |  | 
 | static void __init setup_bootmem(void) | 
 | { | 
 | 	phys_addr_t vmlinux_end = __pa_symbol(&_end); | 
 | 	phys_addr_t max_mapped_addr; | 
 | 	phys_addr_t phys_ram_end, vmlinux_start; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_XIP_KERNEL)) | 
 | 		vmlinux_start = __pa_symbol(&_sdata); | 
 | 	else | 
 | 		vmlinux_start = __pa_symbol(&_start); | 
 |  | 
 | 	memblock_enforce_memory_limit(memory_limit); | 
 |  | 
 | 	/* | 
 | 	 * Make sure we align the reservation on PMD_SIZE since we will | 
 | 	 * map the kernel in the linear mapping as read-only: we do not want | 
 | 	 * any allocation to happen between _end and the next pmd aligned page. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) | 
 | 		vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; | 
 | 	/* | 
 | 	 * Reserve from the start of the kernel to the end of the kernel | 
 | 	 */ | 
 | 	memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); | 
 |  | 
 | 	/* | 
 | 	 * Make sure we align the start of the memory on a PMD boundary so that | 
 | 	 * at worst, we map the linear mapping with PMD mappings. | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_XIP_KERNEL)) { | 
 | 		phys_ram_base = memblock_start_of_DRAM() & PMD_MASK; | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 		vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In 64-bit, any use of __va/__pa before this point is wrong as we | 
 | 	 * did not know the start of DRAM before. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) | 
 | 		kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base; | 
 |  | 
 | 	/* | 
 | 	 * The size of the linear page mapping may restrict the amount of | 
 | 	 * usable RAM. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) { | 
 | 		max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE; | 
 | 		if (memblock_end_of_DRAM() > max_mapped_addr) { | 
 | 			memblock_cap_memory_range(phys_ram_base, | 
 | 						  max_mapped_addr - phys_ram_base); | 
 | 			pr_warn("Physical memory overflows the linear mapping size: region above %pa removed", | 
 | 				&max_mapped_addr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Reserve physical address space that would be mapped to virtual | 
 | 	 * addresses greater than (void *)(-PAGE_SIZE) because: | 
 | 	 *  - This memory would overlap with ERR_PTR | 
 | 	 *  - This memory belongs to high memory, which is not supported | 
 | 	 * | 
 | 	 * This is not applicable to 64-bit kernel, because virtual addresses | 
 | 	 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are | 
 | 	 * occupied by kernel mapping. Also it is unrealistic for high memory | 
 | 	 * to exist on 64-bit platforms. | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_64BIT)) { | 
 | 		max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE); | 
 | 		memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr); | 
 | 	} | 
 |  | 
 | 	phys_ram_end = memblock_end_of_DRAM(); | 
 | 	min_low_pfn = PFN_UP(phys_ram_base); | 
 | 	max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); | 
 |  | 
 | 	dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); | 
 |  | 
 | 	reserve_initrd_mem(); | 
 |  | 
 | 	/* | 
 | 	 * No allocation should be done before reserving the memory as defined | 
 | 	 * in the device tree, otherwise the allocation could end up in a | 
 | 	 * reserved region. | 
 | 	 */ | 
 | 	early_init_fdt_scan_reserved_mem(); | 
 |  | 
 | 	/* | 
 | 	 * If DTB is built in, no need to reserve its memblock. | 
 | 	 * Otherwise, do reserve it but avoid using | 
 | 	 * early_init_fdt_reserve_self() since __pa() does | 
 | 	 * not work for DTB pointers that are fixmap addresses | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) | 
 | 		memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); | 
 |  | 
 | 	dma_contiguous_reserve(dma32_phys_limit); | 
 | 	if (IS_ENABLED(CONFIG_64BIT)) | 
 | 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); | 
 | } | 
 |  | 
 | #ifdef CONFIG_RELOCATABLE | 
 | extern unsigned long __rela_dyn_start, __rela_dyn_end; | 
 |  | 
 | static void __init relocate_kernel(void) | 
 | { | 
 | 	Elf_Rela *rela = (Elf_Rela *)&__rela_dyn_start; | 
 | 	/* | 
 | 	 * This holds the offset between the linked virtual address and the | 
 | 	 * relocated virtual address. | 
 | 	 */ | 
 | 	uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR; | 
 | 	/* | 
 | 	 * This holds the offset between kernel linked virtual address and | 
 | 	 * physical address. | 
 | 	 */ | 
 | 	uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr; | 
 |  | 
 | 	for ( ; rela < (Elf_Rela *)&__rela_dyn_end; rela++) { | 
 | 		Elf_Addr addr = (rela->r_offset - va_kernel_link_pa_offset); | 
 | 		Elf_Addr relocated_addr = rela->r_addend; | 
 |  | 
 | 		if (rela->r_info != R_RISCV_RELATIVE) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Make sure to not relocate vdso symbols like rt_sigreturn | 
 | 		 * which are linked from the address 0 in vmlinux since | 
 | 		 * vdso symbol addresses are actually used as an offset from | 
 | 		 * mm->context.vdso in VDSO_OFFSET macro. | 
 | 		 */ | 
 | 		if (relocated_addr >= KERNEL_LINK_ADDR) | 
 | 			relocated_addr += reloc_offset; | 
 |  | 
 | 		*(Elf_Addr *)addr = relocated_addr; | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_RELOCATABLE */ | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | struct pt_alloc_ops pt_ops __meminitdata; | 
 |  | 
 | pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; | 
 | pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; | 
 | static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; | 
 |  | 
 | pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | #define pt_ops			(*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) | 
 | #define trampoline_pg_dir      ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) | 
 | #define fixmap_pte             ((pte_t *)XIP_FIXUP(fixmap_pte)) | 
 | #define early_pg_dir           ((pgd_t *)XIP_FIXUP(early_pg_dir)) | 
 | #endif /* CONFIG_XIP_KERNEL */ | 
 |  | 
 | static const pgprot_t protection_map[16] = { | 
 | 	[VM_NONE]					= PAGE_NONE, | 
 | 	[VM_READ]					= PAGE_READ, | 
 | 	[VM_WRITE]					= PAGE_COPY, | 
 | 	[VM_WRITE | VM_READ]				= PAGE_COPY, | 
 | 	[VM_EXEC]					= PAGE_EXEC, | 
 | 	[VM_EXEC | VM_READ]				= PAGE_READ_EXEC, | 
 | 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC, | 
 | 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC, | 
 | 	[VM_SHARED]					= PAGE_NONE, | 
 | 	[VM_SHARED | VM_READ]				= PAGE_READ, | 
 | 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED, | 
 | 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED, | 
 | 	[VM_SHARED | VM_EXEC]				= PAGE_EXEC, | 
 | 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READ_EXEC, | 
 | 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_EXEC, | 
 | 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_EXEC | 
 | }; | 
 | DECLARE_VM_GET_PAGE_PROT | 
 |  | 
 | void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) | 
 | { | 
 | 	unsigned long addr = __fix_to_virt(idx); | 
 | 	pte_t *ptep; | 
 |  | 
 | 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); | 
 |  | 
 | 	ptep = &fixmap_pte[pte_index(addr)]; | 
 |  | 
 | 	if (pgprot_val(prot)) | 
 | 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); | 
 | 	else | 
 | 		pte_clear(&init_mm, addr, ptep); | 
 | 	local_flush_tlb_page(addr); | 
 | } | 
 |  | 
 | static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) | 
 | { | 
 | 	return (pte_t *)((uintptr_t)pa); | 
 | } | 
 |  | 
 | static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) | 
 | { | 
 | 	clear_fixmap(FIX_PTE); | 
 | 	return (pte_t *)set_fixmap_offset(FIX_PTE, pa); | 
 | } | 
 |  | 
 | static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa) | 
 | { | 
 | 	return (pte_t *) __va(pa); | 
 | } | 
 |  | 
 | static inline phys_addr_t __init alloc_pte_early(uintptr_t va) | 
 | { | 
 | 	/* | 
 | 	 * We only create PMD or PGD early mappings so we | 
 | 	 * should never reach here with MMU disabled. | 
 | 	 */ | 
 | 	BUG(); | 
 | } | 
 |  | 
 | static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) | 
 | { | 
 | 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); | 
 | } | 
 |  | 
 | static phys_addr_t __meminit alloc_pte_late(uintptr_t va) | 
 | { | 
 | 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); | 
 |  | 
 | 	/* | 
 | 	 * We do not know which mm the PTE page is associated to at this point. | 
 | 	 * Passing NULL to the ctor is the safe option, though it may result | 
 | 	 * in unnecessary work (e.g. initialising the ptlock for init_mm). | 
 | 	 */ | 
 | 	BUG_ON(!ptdesc || !pagetable_pte_ctor(NULL, ptdesc)); | 
 | 	return __pa((pte_t *)ptdesc_address(ptdesc)); | 
 | } | 
 |  | 
 | static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz, | 
 | 					 pgprot_t prot) | 
 | { | 
 | 	uintptr_t pte_idx = pte_index(va); | 
 |  | 
 | 	BUG_ON(sz != PAGE_SIZE); | 
 |  | 
 | 	if (pte_none(ptep[pte_idx])) | 
 | 		ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); | 
 | } | 
 |  | 
 | #ifndef __PAGETABLE_PMD_FOLDED | 
 |  | 
 | static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; | 
 | static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; | 
 | static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) | 
 | #define fixmap_pmd     ((pmd_t *)XIP_FIXUP(fixmap_pmd)) | 
 | #define early_pmd      ((pmd_t *)XIP_FIXUP(early_pmd)) | 
 | #endif /* CONFIG_XIP_KERNEL */ | 
 |  | 
 | static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; | 
 | static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; | 
 | static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) | 
 | #define fixmap_p4d     ((p4d_t *)XIP_FIXUP(fixmap_p4d)) | 
 | #define early_p4d      ((p4d_t *)XIP_FIXUP(early_p4d)) | 
 | #endif /* CONFIG_XIP_KERNEL */ | 
 |  | 
 | static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; | 
 | static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; | 
 | static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) | 
 | #define fixmap_pud     ((pud_t *)XIP_FIXUP(fixmap_pud)) | 
 | #define early_pud      ((pud_t *)XIP_FIXUP(early_pud)) | 
 | #endif /* CONFIG_XIP_KERNEL */ | 
 |  | 
 | static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) | 
 | { | 
 | 	/* Before MMU is enabled */ | 
 | 	return (pmd_t *)((uintptr_t)pa); | 
 | } | 
 |  | 
 | static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) | 
 | { | 
 | 	clear_fixmap(FIX_PMD); | 
 | 	return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); | 
 | } | 
 |  | 
 | static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa) | 
 | { | 
 | 	return (pmd_t *) __va(pa); | 
 | } | 
 |  | 
 | static phys_addr_t __init alloc_pmd_early(uintptr_t va) | 
 | { | 
 | 	BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); | 
 |  | 
 | 	return (uintptr_t)early_pmd; | 
 | } | 
 |  | 
 | static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) | 
 | { | 
 | 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); | 
 | } | 
 |  | 
 | static phys_addr_t __meminit alloc_pmd_late(uintptr_t va) | 
 | { | 
 | 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); | 
 |  | 
 | 	/* See comment in alloc_pte_late() regarding NULL passed the ctor */ | 
 | 	BUG_ON(!ptdesc || !pagetable_pmd_ctor(NULL, ptdesc)); | 
 | 	return __pa((pmd_t *)ptdesc_address(ptdesc)); | 
 | } | 
 |  | 
 | static void __meminit create_pmd_mapping(pmd_t *pmdp, | 
 | 					 uintptr_t va, phys_addr_t pa, | 
 | 					 phys_addr_t sz, pgprot_t prot) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	phys_addr_t pte_phys; | 
 | 	uintptr_t pmd_idx = pmd_index(va); | 
 |  | 
 | 	if (sz == PMD_SIZE) { | 
 | 		if (pmd_none(pmdp[pmd_idx])) | 
 | 			pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (pmd_none(pmdp[pmd_idx])) { | 
 | 		pte_phys = pt_ops.alloc_pte(va); | 
 | 		pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); | 
 | 		ptep = pt_ops.get_pte_virt(pte_phys); | 
 | 		memset(ptep, 0, PAGE_SIZE); | 
 | 	} else { | 
 | 		pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); | 
 | 		ptep = pt_ops.get_pte_virt(pte_phys); | 
 | 	} | 
 |  | 
 | 	create_pte_mapping(ptep, va, pa, sz, prot); | 
 | } | 
 |  | 
 | static pud_t *__init get_pud_virt_early(phys_addr_t pa) | 
 | { | 
 | 	return (pud_t *)((uintptr_t)pa); | 
 | } | 
 |  | 
 | static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) | 
 | { | 
 | 	clear_fixmap(FIX_PUD); | 
 | 	return (pud_t *)set_fixmap_offset(FIX_PUD, pa); | 
 | } | 
 |  | 
 | static pud_t *__meminit get_pud_virt_late(phys_addr_t pa) | 
 | { | 
 | 	return (pud_t *)__va(pa); | 
 | } | 
 |  | 
 | static phys_addr_t __init alloc_pud_early(uintptr_t va) | 
 | { | 
 | 	/* Only one PUD is available for early mapping */ | 
 | 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); | 
 |  | 
 | 	return (uintptr_t)early_pud; | 
 | } | 
 |  | 
 | static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) | 
 | { | 
 | 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); | 
 | } | 
 |  | 
 | static phys_addr_t __meminit alloc_pud_late(uintptr_t va) | 
 | { | 
 | 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, 0); | 
 |  | 
 | 	BUG_ON(!ptdesc); | 
 | 	pagetable_pud_ctor(ptdesc); | 
 | 	return __pa((pud_t *)ptdesc_address(ptdesc)); | 
 | } | 
 |  | 
 | static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) | 
 | { | 
 | 	return (p4d_t *)((uintptr_t)pa); | 
 | } | 
 |  | 
 | static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) | 
 | { | 
 | 	clear_fixmap(FIX_P4D); | 
 | 	return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); | 
 | } | 
 |  | 
 | static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa) | 
 | { | 
 | 	return (p4d_t *)__va(pa); | 
 | } | 
 |  | 
 | static phys_addr_t __init alloc_p4d_early(uintptr_t va) | 
 | { | 
 | 	/* Only one P4D is available for early mapping */ | 
 | 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); | 
 |  | 
 | 	return (uintptr_t)early_p4d; | 
 | } | 
 |  | 
 | static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) | 
 | { | 
 | 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); | 
 | } | 
 |  | 
 | static phys_addr_t __meminit alloc_p4d_late(uintptr_t va) | 
 | { | 
 | 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, 0); | 
 |  | 
 | 	BUG_ON(!ptdesc); | 
 | 	pagetable_p4d_ctor(ptdesc); | 
 | 	return __pa((p4d_t *)ptdesc_address(ptdesc)); | 
 | } | 
 |  | 
 | static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, | 
 | 					 pgprot_t prot) | 
 | { | 
 | 	pmd_t *nextp; | 
 | 	phys_addr_t next_phys; | 
 | 	uintptr_t pud_index = pud_index(va); | 
 |  | 
 | 	if (sz == PUD_SIZE) { | 
 | 		if (pud_val(pudp[pud_index]) == 0) | 
 | 			pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (pud_val(pudp[pud_index]) == 0) { | 
 | 		next_phys = pt_ops.alloc_pmd(va); | 
 | 		pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); | 
 | 		nextp = pt_ops.get_pmd_virt(next_phys); | 
 | 		memset(nextp, 0, PAGE_SIZE); | 
 | 	} else { | 
 | 		next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); | 
 | 		nextp = pt_ops.get_pmd_virt(next_phys); | 
 | 	} | 
 |  | 
 | 	create_pmd_mapping(nextp, va, pa, sz, prot); | 
 | } | 
 |  | 
 | static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, | 
 | 					 pgprot_t prot) | 
 | { | 
 | 	pud_t *nextp; | 
 | 	phys_addr_t next_phys; | 
 | 	uintptr_t p4d_index = p4d_index(va); | 
 |  | 
 | 	if (sz == P4D_SIZE) { | 
 | 		if (p4d_val(p4dp[p4d_index]) == 0) | 
 | 			p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (p4d_val(p4dp[p4d_index]) == 0) { | 
 | 		next_phys = pt_ops.alloc_pud(va); | 
 | 		p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); | 
 | 		nextp = pt_ops.get_pud_virt(next_phys); | 
 | 		memset(nextp, 0, PAGE_SIZE); | 
 | 	} else { | 
 | 		next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); | 
 | 		nextp = pt_ops.get_pud_virt(next_phys); | 
 | 	} | 
 |  | 
 | 	create_pud_mapping(nextp, va, pa, sz, prot); | 
 | } | 
 |  | 
 | #define pgd_next_t		p4d_t | 
 | #define alloc_pgd_next(__va)	(pgtable_l5_enabled ?			\ | 
 | 		pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ?		\ | 
 | 		pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) | 
 | #define get_pgd_next_virt(__pa)	(pgtable_l5_enabled ?			\ | 
 | 		pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ?	\ | 
 | 		pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) | 
 | #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\ | 
 | 				(pgtable_l5_enabled ?			\ | 
 | 		create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ | 
 | 				(pgtable_l4_enabled ?			\ | 
 | 		create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) :	\ | 
 | 		create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) | 
 | #define fixmap_pgd_next		(pgtable_l5_enabled ?			\ | 
 | 		(uintptr_t)fixmap_p4d : (pgtable_l4_enabled ?		\ | 
 | 		(uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) | 
 | #define trampoline_pgd_next	(pgtable_l5_enabled ?			\ | 
 | 		(uintptr_t)trampoline_p4d : (pgtable_l4_enabled ?	\ | 
 | 		(uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) | 
 | #else | 
 | #define pgd_next_t		pte_t | 
 | #define alloc_pgd_next(__va)	pt_ops.alloc_pte(__va) | 
 | #define get_pgd_next_virt(__pa)	pt_ops.get_pte_virt(__pa) | 
 | #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\ | 
 | 	create_pte_mapping(__nextp, __va, __pa, __sz, __prot) | 
 | #define fixmap_pgd_next		((uintptr_t)fixmap_pte) | 
 | #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) | 
 | #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) | 
 | #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) | 
 | #endif /* __PAGETABLE_PMD_FOLDED */ | 
 |  | 
 | void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, | 
 | 				  pgprot_t prot) | 
 | { | 
 | 	pgd_next_t *nextp; | 
 | 	phys_addr_t next_phys; | 
 | 	uintptr_t pgd_idx = pgd_index(va); | 
 |  | 
 | 	if (sz == PGDIR_SIZE) { | 
 | 		if (pgd_val(pgdp[pgd_idx]) == 0) | 
 | 			pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (pgd_val(pgdp[pgd_idx]) == 0) { | 
 | 		next_phys = alloc_pgd_next(va); | 
 | 		pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); | 
 | 		nextp = get_pgd_next_virt(next_phys); | 
 | 		memset(nextp, 0, PAGE_SIZE); | 
 | 	} else { | 
 | 		next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); | 
 | 		nextp = get_pgd_next_virt(next_phys); | 
 | 	} | 
 |  | 
 | 	create_pgd_next_mapping(nextp, va, pa, sz, prot); | 
 | } | 
 |  | 
 | static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size) | 
 | { | 
 | 	if (debug_pagealloc_enabled()) | 
 | 		return PAGE_SIZE; | 
 |  | 
 | 	if (pgtable_l5_enabled && | 
 | 	    !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE) | 
 | 		return P4D_SIZE; | 
 |  | 
 | 	if (pgtable_l4_enabled && | 
 | 	    !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE) | 
 | 		return PUD_SIZE; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_64BIT) && | 
 | 	    !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE) | 
 | 		return PMD_SIZE; | 
 |  | 
 | 	return PAGE_SIZE; | 
 | } | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | #define phys_ram_base  (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) | 
 | extern char _xiprom[], _exiprom[], __data_loc; | 
 |  | 
 | /* called from head.S with MMU off */ | 
 | asmlinkage void __init __copy_data(void) | 
 | { | 
 | 	void *from = (void *)(&__data_loc); | 
 | 	void *to = (void *)CONFIG_PHYS_RAM_BASE; | 
 | 	size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); | 
 |  | 
 | 	memcpy(to, from, sz); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_STRICT_KERNEL_RWX | 
 | static __meminit pgprot_t pgprot_from_va(uintptr_t va) | 
 | { | 
 | 	if (is_va_kernel_text(va)) | 
 | 		return PAGE_KERNEL_READ_EXEC; | 
 |  | 
 | 	/* | 
 | 	 * In 64-bit kernel, the kernel mapping is outside the linear mapping so | 
 | 	 * we must protect its linear mapping alias from being executed and | 
 | 	 * written. | 
 | 	 * And rodata section is marked readonly in mark_rodata_ro. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) | 
 | 		return PAGE_KERNEL_READ; | 
 |  | 
 | 	return PAGE_KERNEL; | 
 | } | 
 |  | 
 | void mark_rodata_ro(void) | 
 | { | 
 | 	set_kernel_memory(__start_rodata, _data, set_memory_ro); | 
 | 	if (IS_ENABLED(CONFIG_64BIT)) | 
 | 		set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), | 
 | 				  set_memory_ro); | 
 | } | 
 | #else | 
 | static __meminit pgprot_t pgprot_from_va(uintptr_t va) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) | 
 | 		return PAGE_KERNEL; | 
 |  | 
 | 	return PAGE_KERNEL_EXEC; | 
 | } | 
 | #endif /* CONFIG_STRICT_KERNEL_RWX */ | 
 |  | 
 | #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) | 
 | u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa); | 
 | u64 __pi_set_satp_mode_from_fdt(uintptr_t dtb_pa); | 
 |  | 
 | static void __init disable_pgtable_l5(void) | 
 | { | 
 | 	pgtable_l5_enabled = false; | 
 | 	kernel_map.page_offset = PAGE_OFFSET_L4; | 
 | 	satp_mode = SATP_MODE_48; | 
 | } | 
 |  | 
 | static void __init disable_pgtable_l4(void) | 
 | { | 
 | 	pgtable_l4_enabled = false; | 
 | 	kernel_map.page_offset = PAGE_OFFSET_L3; | 
 | 	satp_mode = SATP_MODE_39; | 
 | } | 
 |  | 
 | static int __init print_no4lvl(char *p) | 
 | { | 
 | 	pr_info("Disabled 4-level and 5-level paging"); | 
 | 	return 0; | 
 | } | 
 | early_param("no4lvl", print_no4lvl); | 
 |  | 
 | static int __init print_no5lvl(char *p) | 
 | { | 
 | 	pr_info("Disabled 5-level paging"); | 
 | 	return 0; | 
 | } | 
 | early_param("no5lvl", print_no5lvl); | 
 |  | 
 | static void __init set_mmap_rnd_bits_max(void) | 
 | { | 
 | 	mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3; | 
 | } | 
 |  | 
 | /* | 
 |  * There is a simple way to determine if 4-level is supported by the | 
 |  * underlying hardware: establish 1:1 mapping in 4-level page table mode | 
 |  * then read SATP to see if the configuration was taken into account | 
 |  * meaning sv48 is supported. | 
 |  * The maximum SATP mode is limited by both the command line and the "mmu-type" | 
 |  * property in the device tree, since some platforms may hang if an unsupported | 
 |  * SATP mode is attempted. | 
 |  */ | 
 | static __init void set_satp_mode(uintptr_t dtb_pa) | 
 | { | 
 | 	u64 identity_satp, hw_satp; | 
 | 	uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; | 
 | 	u64 satp_mode_limit = min_not_zero(__pi_set_satp_mode_from_cmdline(dtb_pa), | 
 | 					   __pi_set_satp_mode_from_fdt(dtb_pa)); | 
 |  | 
 | 	kernel_map.page_offset = PAGE_OFFSET_L5; | 
 |  | 
 | 	if (satp_mode_limit == SATP_MODE_48) { | 
 | 		disable_pgtable_l5(); | 
 | 	} else if (satp_mode_limit == SATP_MODE_39) { | 
 | 		disable_pgtable_l5(); | 
 | 		disable_pgtable_l4(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	create_p4d_mapping(early_p4d, | 
 | 			set_satp_mode_pmd, (uintptr_t)early_pud, | 
 | 			P4D_SIZE, PAGE_TABLE); | 
 | 	create_pud_mapping(early_pud, | 
 | 			   set_satp_mode_pmd, (uintptr_t)early_pmd, | 
 | 			   PUD_SIZE, PAGE_TABLE); | 
 | 	/* Handle the case where set_satp_mode straddles 2 PMDs */ | 
 | 	create_pmd_mapping(early_pmd, | 
 | 			   set_satp_mode_pmd, set_satp_mode_pmd, | 
 | 			   PMD_SIZE, PAGE_KERNEL_EXEC); | 
 | 	create_pmd_mapping(early_pmd, | 
 | 			   set_satp_mode_pmd + PMD_SIZE, | 
 | 			   set_satp_mode_pmd + PMD_SIZE, | 
 | 			   PMD_SIZE, PAGE_KERNEL_EXEC); | 
 | retry: | 
 | 	create_pgd_mapping(early_pg_dir, | 
 | 			   set_satp_mode_pmd, | 
 | 			   pgtable_l5_enabled ? | 
 | 				(uintptr_t)early_p4d : (uintptr_t)early_pud, | 
 | 			   PGDIR_SIZE, PAGE_TABLE); | 
 |  | 
 | 	identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; | 
 |  | 
 | 	local_flush_tlb_all(); | 
 | 	csr_write(CSR_SATP, identity_satp); | 
 | 	hw_satp = csr_swap(CSR_SATP, 0ULL); | 
 | 	local_flush_tlb_all(); | 
 |  | 
 | 	if (hw_satp != identity_satp) { | 
 | 		if (pgtable_l5_enabled) { | 
 | 			disable_pgtable_l5(); | 
 | 			memset(early_pg_dir, 0, PAGE_SIZE); | 
 | 			goto retry; | 
 | 		} | 
 | 		disable_pgtable_l4(); | 
 | 	} | 
 |  | 
 | 	memset(early_pg_dir, 0, PAGE_SIZE); | 
 | 	memset(early_p4d, 0, PAGE_SIZE); | 
 | 	memset(early_pud, 0, PAGE_SIZE); | 
 | 	memset(early_pmd, 0, PAGE_SIZE); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * setup_vm() is called from head.S with MMU-off. | 
 |  * | 
 |  * Following requirements should be honoured for setup_vm() to work | 
 |  * correctly: | 
 |  * 1) It should use PC-relative addressing for accessing kernel symbols. | 
 |  *    To achieve this we always use GCC cmodel=medany. | 
 |  * 2) The compiler instrumentation for FTRACE will not work for setup_vm() | 
 |  *    so disable compiler instrumentation when FTRACE is enabled. | 
 |  * | 
 |  * Currently, the above requirements are honoured by using custom CFLAGS | 
 |  * for init.o in mm/Makefile. | 
 |  */ | 
 |  | 
 | #ifndef __riscv_cmodel_medany | 
 | #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | static void __init create_kernel_page_table(pgd_t *pgdir, | 
 | 					    __always_unused bool early) | 
 | { | 
 | 	uintptr_t va, start_va, end_va; | 
 |  | 
 | 	/* Map the flash resident part */ | 
 | 	end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; | 
 | 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) | 
 | 		create_pgd_mapping(pgdir, va, | 
 | 				   kernel_map.xiprom + (va - kernel_map.virt_addr), | 
 | 				   PMD_SIZE, PAGE_KERNEL_EXEC); | 
 |  | 
 | 	/* Map the data in RAM */ | 
 | 	start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start; | 
 | 	end_va = kernel_map.virt_addr + kernel_map.size; | 
 | 	for (va = start_va; va < end_va; va += PMD_SIZE) | 
 | 		create_pgd_mapping(pgdir, va, | 
 | 				   kernel_map.phys_addr + (va - start_va), | 
 | 				   PMD_SIZE, PAGE_KERNEL); | 
 | } | 
 | #else | 
 | static void __init create_kernel_page_table(pgd_t *pgdir, bool early) | 
 | { | 
 | 	uintptr_t va, end_va; | 
 |  | 
 | 	end_va = kernel_map.virt_addr + kernel_map.size; | 
 | 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) | 
 | 		create_pgd_mapping(pgdir, va, | 
 | 				   kernel_map.phys_addr + (va - kernel_map.virt_addr), | 
 | 				   PMD_SIZE, | 
 | 				   early ? | 
 | 					PAGE_KERNEL_EXEC : pgprot_from_va(va)); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, | 
 |  * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR | 
 |  * entry. | 
 |  */ | 
 | static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va, | 
 | 					       uintptr_t dtb_pa) | 
 | { | 
 | #ifndef CONFIG_BUILTIN_DTB | 
 | 	uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); | 
 |  | 
 | 	/* Make sure the fdt fixmap address is always aligned on PMD size */ | 
 | 	BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE)); | 
 |  | 
 | 	/* In 32-bit only, the fdt lies in its own PGD */ | 
 | 	if (!IS_ENABLED(CONFIG_64BIT)) { | 
 | 		create_pgd_mapping(early_pg_dir, fix_fdt_va, | 
 | 				   pa, MAX_FDT_SIZE, PAGE_KERNEL); | 
 | 	} else { | 
 | 		create_pmd_mapping(fixmap_pmd, fix_fdt_va, | 
 | 				   pa, PMD_SIZE, PAGE_KERNEL); | 
 | 		create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE, | 
 | 				   pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); | 
 | 	} | 
 |  | 
 | 	dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1)); | 
 | #else | 
 | 	/* | 
 | 	 * For 64-bit kernel, __va can't be used since it would return a linear | 
 | 	 * mapping address whereas dtb_early_va will be used before | 
 | 	 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the | 
 | 	 * kernel is mapped in the linear mapping, that makes no difference. | 
 | 	 */ | 
 | 	dtb_early_va = kernel_mapping_pa_to_va(dtb_pa); | 
 | #endif | 
 |  | 
 | 	dtb_early_pa = dtb_pa; | 
 | } | 
 |  | 
 | /* | 
 |  * MMU is not enabled, the page tables are allocated directly using | 
 |  * early_pmd/pud/p4d and the address returned is the physical one. | 
 |  */ | 
 | static void __init pt_ops_set_early(void) | 
 | { | 
 | 	pt_ops.alloc_pte = alloc_pte_early; | 
 | 	pt_ops.get_pte_virt = get_pte_virt_early; | 
 | #ifndef __PAGETABLE_PMD_FOLDED | 
 | 	pt_ops.alloc_pmd = alloc_pmd_early; | 
 | 	pt_ops.get_pmd_virt = get_pmd_virt_early; | 
 | 	pt_ops.alloc_pud = alloc_pud_early; | 
 | 	pt_ops.get_pud_virt = get_pud_virt_early; | 
 | 	pt_ops.alloc_p4d = alloc_p4d_early; | 
 | 	pt_ops.get_p4d_virt = get_p4d_virt_early; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * MMU is enabled but page table setup is not complete yet. | 
 |  * fixmap page table alloc functions must be used as a means to temporarily | 
 |  * map the allocated physical pages since the linear mapping does not exist yet. | 
 |  * | 
 |  * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, | 
 |  * but it will be used as described above. | 
 |  */ | 
 | static void __init pt_ops_set_fixmap(void) | 
 | { | 
 | 	pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap); | 
 | 	pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap); | 
 | #ifndef __PAGETABLE_PMD_FOLDED | 
 | 	pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap); | 
 | 	pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap); | 
 | 	pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap); | 
 | 	pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap); | 
 | 	pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap); | 
 | 	pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * MMU is enabled and page table setup is complete, so from now, we can use | 
 |  * generic page allocation functions to setup page table. | 
 |  */ | 
 | static void __init pt_ops_set_late(void) | 
 | { | 
 | 	pt_ops.alloc_pte = alloc_pte_late; | 
 | 	pt_ops.get_pte_virt = get_pte_virt_late; | 
 | #ifndef __PAGETABLE_PMD_FOLDED | 
 | 	pt_ops.alloc_pmd = alloc_pmd_late; | 
 | 	pt_ops.get_pmd_virt = get_pmd_virt_late; | 
 | 	pt_ops.alloc_pud = alloc_pud_late; | 
 | 	pt_ops.get_pud_virt = get_pud_virt_late; | 
 | 	pt_ops.alloc_p4d = alloc_p4d_late; | 
 | 	pt_ops.get_p4d_virt = get_p4d_virt_late; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_RANDOMIZE_BASE | 
 | extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa); | 
 | extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa); | 
 | extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa); | 
 |  | 
 | static int __init print_nokaslr(char *p) | 
 | { | 
 | 	pr_info("Disabled KASLR"); | 
 | 	return 0; | 
 | } | 
 | early_param("nokaslr", print_nokaslr); | 
 |  | 
 | unsigned long kaslr_offset(void) | 
 | { | 
 | 	return kernel_map.virt_offset; | 
 | } | 
 | #endif | 
 |  | 
 | asmlinkage void __init setup_vm(uintptr_t dtb_pa) | 
 | { | 
 | 	pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; | 
 |  | 
 | #ifdef CONFIG_RANDOMIZE_BASE | 
 | 	if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) { | 
 | 		u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa); | 
 | 		u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start); | 
 | 		u32 nr_pos; | 
 |  | 
 | 		if (kaslr_seed == 0) | 
 | 			kaslr_seed = __pi_get_kaslr_seed(dtb_pa); | 
 | 		/* | 
 | 		 * Compute the number of positions available: we are limited | 
 | 		 * by the early page table that only has one PUD and we must | 
 | 		 * be aligned on PMD_SIZE. | 
 | 		 */ | 
 | 		nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE; | 
 |  | 
 | 		kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset; | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | 	kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; | 
 | 	kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); | 
 |  | 
 | 	phys_ram_base = CONFIG_PHYS_RAM_BASE; | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 	vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT; | 
 | #endif | 
 | 	kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; | 
 | 	kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start); | 
 |  | 
 | 	kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; | 
 | 	kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr | 
 | 						+ (uintptr_t)&_sdata - (uintptr_t)&_start; | 
 | #else | 
 | 	kernel_map.phys_addr = (uintptr_t)(&_start); | 
 | 	kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; | 
 | 	kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) | 
 | 	set_satp_mode(dtb_pa); | 
 | 	set_mmap_rnd_bits_max(); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem, | 
 | 	 * where we have the system memory layout: this allows us to align | 
 | 	 * the physical and virtual mappings and then make use of PUD/P4D/PGD | 
 | 	 * for the linear mapping. This is only possible because the kernel | 
 | 	 * mapping lies outside the linear mapping. | 
 | 	 * In 32-bit however, as the kernel resides in the linear mapping, | 
 | 	 * setup_vm_final can not change the mapping established here, | 
 | 	 * otherwise the same kernel addresses would get mapped to different | 
 | 	 * physical addresses (if the start of dram is different from the | 
 | 	 * kernel physical address start). | 
 | 	 */ | 
 | 	kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ? | 
 | 				0UL : PAGE_OFFSET - kernel_map.phys_addr; | 
 |  | 
 | 	memory_limit = KERN_VIRT_SIZE; | 
 |  | 
 | 	/* Sanity check alignment and size */ | 
 | 	BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); | 
 | 	BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | 	/* | 
 | 	 * The last 4K bytes of the addressable memory can not be mapped because | 
 | 	 * of IS_ERR_VALUE macro. | 
 | 	 */ | 
 | 	BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RELOCATABLE | 
 | 	/* | 
 | 	 * Early page table uses only one PUD, which makes it possible | 
 | 	 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset | 
 | 	 * makes the kernel cross over a PUD_SIZE boundary, raise a bug | 
 | 	 * since a part of the kernel would not get mapped. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_64BIT)) | 
 | 		BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size); | 
 | 	relocate_kernel(); | 
 | #endif | 
 |  | 
 | 	apply_early_boot_alternatives(); | 
 | 	pt_ops_set_early(); | 
 |  | 
 | 	/* Setup early PGD for fixmap */ | 
 | 	create_pgd_mapping(early_pg_dir, FIXADDR_START, | 
 | 			   fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); | 
 |  | 
 | #ifndef __PAGETABLE_PMD_FOLDED | 
 | 	/* Setup fixmap P4D and PUD */ | 
 | 	if (pgtable_l5_enabled) | 
 | 		create_p4d_mapping(fixmap_p4d, FIXADDR_START, | 
 | 				   (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); | 
 | 	/* Setup fixmap PUD and PMD */ | 
 | 	if (pgtable_l4_enabled) | 
 | 		create_pud_mapping(fixmap_pud, FIXADDR_START, | 
 | 				   (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); | 
 | 	create_pmd_mapping(fixmap_pmd, FIXADDR_START, | 
 | 			   (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); | 
 | 	/* Setup trampoline PGD and PMD */ | 
 | 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, | 
 | 			   trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); | 
 | 	if (pgtable_l5_enabled) | 
 | 		create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, | 
 | 				   (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); | 
 | 	if (pgtable_l4_enabled) | 
 | 		create_pud_mapping(trampoline_pud, kernel_map.virt_addr, | 
 | 				   (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, | 
 | 			   kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); | 
 | #else | 
 | 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, | 
 | 			   kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); | 
 | #endif | 
 | #else | 
 | 	/* Setup trampoline PGD */ | 
 | 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, | 
 | 			   kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Setup early PGD covering entire kernel which will allow | 
 | 	 * us to reach paging_init(). We map all memory banks later | 
 | 	 * in setup_vm_final() below. | 
 | 	 */ | 
 | 	create_kernel_page_table(early_pg_dir, true); | 
 |  | 
 | 	/* Setup early mapping for FDT early scan */ | 
 | 	create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa); | 
 |  | 
 | 	/* | 
 | 	 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap | 
 | 	 * range can not span multiple pmds. | 
 | 	 */ | 
 | 	BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) | 
 | 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); | 
 |  | 
 | #ifndef __PAGETABLE_PMD_FOLDED | 
 | 	/* | 
 | 	 * Early ioremap fixmap is already created as it lies within first 2MB | 
 | 	 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END | 
 | 	 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn | 
 | 	 * the user if not. | 
 | 	 */ | 
 | 	fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; | 
 | 	fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; | 
 | 	if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { | 
 | 		WARN_ON(1); | 
 | 		pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", | 
 | 			pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); | 
 | 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", | 
 | 			fix_to_virt(FIX_BTMAP_BEGIN)); | 
 | 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n", | 
 | 			fix_to_virt(FIX_BTMAP_END)); | 
 |  | 
 | 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END); | 
 | 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	pt_ops_set_fixmap(); | 
 | } | 
 |  | 
 | static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end, | 
 | 						  uintptr_t fixed_map_size, const pgprot_t *pgprot) | 
 | { | 
 | 	phys_addr_t pa; | 
 | 	uintptr_t va, map_size; | 
 |  | 
 | 	for (pa = start; pa < end; pa += map_size) { | 
 | 		va = (uintptr_t)__va(pa); | 
 | 		map_size = fixed_map_size ? fixed_map_size : | 
 | 					    best_map_size(pa, va, end - pa); | 
 |  | 
 | 		create_pgd_mapping(swapper_pg_dir, va, pa, map_size, | 
 | 				   pgprot ? *pgprot : pgprot_from_va(va)); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init create_linear_mapping_page_table(void) | 
 | { | 
 | 	phys_addr_t start, end; | 
 | 	phys_addr_t kfence_pool __maybe_unused; | 
 | 	u64 i; | 
 |  | 
 | #ifdef CONFIG_STRICT_KERNEL_RWX | 
 | 	phys_addr_t ktext_start = __pa_symbol(_start); | 
 | 	phys_addr_t ktext_size = __init_data_begin - _start; | 
 | 	phys_addr_t krodata_start = __pa_symbol(__start_rodata); | 
 | 	phys_addr_t krodata_size = _data - __start_rodata; | 
 |  | 
 | 	/* Isolate kernel text and rodata so they don't get mapped with a PUD */ | 
 | 	memblock_mark_nomap(ktext_start,  ktext_size); | 
 | 	memblock_mark_nomap(krodata_start, krodata_size); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_KFENCE | 
 | 	/* | 
 | 	 *  kfence pool must be backed by PAGE_SIZE mappings, so allocate it | 
 | 	 *  before we setup the linear mapping so that we avoid using hugepages | 
 | 	 *  for this region. | 
 | 	 */ | 
 | 	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); | 
 | 	BUG_ON(!kfence_pool); | 
 |  | 
 | 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); | 
 | 	__kfence_pool = __va(kfence_pool); | 
 | #endif | 
 |  | 
 | 	/* Map all memory banks in the linear mapping */ | 
 | 	for_each_mem_range(i, &start, &end) { | 
 | 		if (start >= end) | 
 | 			break; | 
 | 		if (start <= __pa(PAGE_OFFSET) && | 
 | 		    __pa(PAGE_OFFSET) < end) | 
 | 			start = __pa(PAGE_OFFSET); | 
 |  | 
 | 		create_linear_mapping_range(start, end, 0, NULL); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_STRICT_KERNEL_RWX | 
 | 	create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL); | 
 | 	create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL); | 
 |  | 
 | 	memblock_clear_nomap(ktext_start,  ktext_size); | 
 | 	memblock_clear_nomap(krodata_start, krodata_size); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_KFENCE | 
 | 	create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL); | 
 |  | 
 | 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); | 
 | #endif | 
 | } | 
 |  | 
 | static void __init setup_vm_final(void) | 
 | { | 
 | 	/* Setup swapper PGD for fixmap */ | 
 | #if !defined(CONFIG_64BIT) | 
 | 	/* | 
 | 	 * In 32-bit, the device tree lies in a pgd entry, so it must be copied | 
 | 	 * directly in swapper_pg_dir in addition to the pgd entry that points | 
 | 	 * to fixmap_pte. | 
 | 	 */ | 
 | 	unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT)); | 
 |  | 
 | 	set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]); | 
 | #endif | 
 | 	create_pgd_mapping(swapper_pg_dir, FIXADDR_START, | 
 | 			   __pa_symbol(fixmap_pgd_next), | 
 | 			   PGDIR_SIZE, PAGE_TABLE); | 
 |  | 
 | 	/* Map the linear mapping */ | 
 | 	create_linear_mapping_page_table(); | 
 |  | 
 | 	/* Map the kernel */ | 
 | 	if (IS_ENABLED(CONFIG_64BIT)) | 
 | 		create_kernel_page_table(swapper_pg_dir, false); | 
 |  | 
 | #ifdef CONFIG_KASAN | 
 | 	kasan_swapper_init(); | 
 | #endif | 
 |  | 
 | 	/* Clear fixmap PTE and PMD mappings */ | 
 | 	clear_fixmap(FIX_PTE); | 
 | 	clear_fixmap(FIX_PMD); | 
 | 	clear_fixmap(FIX_PUD); | 
 | 	clear_fixmap(FIX_P4D); | 
 |  | 
 | 	/* Move to swapper page table */ | 
 | 	csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); | 
 | 	local_flush_tlb_all(); | 
 |  | 
 | 	pt_ops_set_late(); | 
 | } | 
 | #else | 
 | asmlinkage void __init setup_vm(uintptr_t dtb_pa) | 
 | { | 
 | 	dtb_early_va = (void *)dtb_pa; | 
 | 	dtb_early_pa = dtb_pa; | 
 |  | 
 | #ifdef CONFIG_RELOCATABLE | 
 | 	kernel_map.virt_addr = (uintptr_t)_start; | 
 | 	kernel_map.phys_addr = (uintptr_t)_start; | 
 | 	relocate_kernel(); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void setup_vm_final(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | /* | 
 |  * reserve_crashkernel() - reserves memory for crash kernel | 
 |  * | 
 |  * This function reserves memory area given in "crashkernel=" kernel command | 
 |  * line parameter. The memory reserved is used by dump capture kernel when | 
 |  * primary kernel is crashing. | 
 |  */ | 
 | static void __init arch_reserve_crashkernel(void) | 
 | { | 
 | 	unsigned long long low_size = 0; | 
 | 	unsigned long long crash_base, crash_size; | 
 | 	bool high = false; | 
 | 	int ret; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) | 
 | 		return; | 
 |  | 
 | 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), | 
 | 				&crash_size, &crash_base, | 
 | 				&low_size, NULL, &high); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	reserve_crashkernel_generic(crash_size, crash_base, low_size, high); | 
 | } | 
 |  | 
 | void __init paging_init(void) | 
 | { | 
 | 	setup_bootmem(); | 
 | 	setup_vm_final(); | 
 |  | 
 | 	/* Depend on that Linear Mapping is ready */ | 
 | 	memblock_allow_resize(); | 
 | } | 
 |  | 
 | void __init misc_mem_init(void) | 
 | { | 
 | 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); | 
 | 	arch_numa_init(); | 
 | 	sparse_init(); | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 	/* The entire VMEMMAP region has been populated. Flush TLB for this region */ | 
 | 	local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END); | 
 | #endif | 
 | 	zone_sizes_init(); | 
 | 	arch_reserve_crashkernel(); | 
 | 	memblock_dump_all(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, | 
 | 			       unsigned long addr, unsigned long next) | 
 | { | 
 | 	pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL); | 
 | } | 
 |  | 
 | int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, | 
 | 				unsigned long addr, unsigned long next) | 
 | { | 
 | 	vmemmap_verify((pte_t *)pmdp, node, addr, next); | 
 | 	return 1; | 
 | } | 
 |  | 
 | int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, | 
 | 			       struct vmem_altmap *altmap) | 
 | { | 
 | 	/* | 
 | 	 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we | 
 | 	 * can't use hugepage mappings for 2-level page table because in case of | 
 | 	 * memory hotplug, we are not able to update all the page tables with | 
 | 	 * the new PMDs. | 
 | 	 */ | 
 | 	return vmemmap_populate_hugepages(start, end, node, altmap); | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_MMU) && defined(CONFIG_64BIT) | 
 | /* | 
 |  * Pre-allocates page-table pages for a specific area in the kernel | 
 |  * page-table. Only the level which needs to be synchronized between | 
 |  * all page-tables is allocated because the synchronization can be | 
 |  * expensive. | 
 |  */ | 
 | static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end, | 
 | 					       const char *area) | 
 | { | 
 | 	unsigned long addr; | 
 | 	const char *lvl; | 
 |  | 
 | 	for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) { | 
 | 		pgd_t *pgd = pgd_offset_k(addr); | 
 | 		p4d_t *p4d; | 
 | 		pud_t *pud; | 
 | 		pmd_t *pmd; | 
 |  | 
 | 		lvl = "p4d"; | 
 | 		p4d = p4d_alloc(&init_mm, pgd, addr); | 
 | 		if (!p4d) | 
 | 			goto failed; | 
 |  | 
 | 		if (pgtable_l5_enabled) | 
 | 			continue; | 
 |  | 
 | 		lvl = "pud"; | 
 | 		pud = pud_alloc(&init_mm, p4d, addr); | 
 | 		if (!pud) | 
 | 			goto failed; | 
 |  | 
 | 		if (pgtable_l4_enabled) | 
 | 			continue; | 
 |  | 
 | 		lvl = "pmd"; | 
 | 		pmd = pmd_alloc(&init_mm, pud, addr); | 
 | 		if (!pmd) | 
 | 			goto failed; | 
 | 	} | 
 | 	return; | 
 |  | 
 | failed: | 
 | 	/* | 
 | 	 * The pages have to be there now or they will be missing in | 
 | 	 * process page-tables later. | 
 | 	 */ | 
 | 	panic("Failed to pre-allocate %s pages for %s area\n", lvl, area); | 
 | } | 
 |  | 
 | #define PAGE_END KASAN_SHADOW_START | 
 |  | 
 | void __init pgtable_cache_init(void) | 
 | { | 
 | 	preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc"); | 
 | 	if (IS_ENABLED(CONFIG_MODULES)) | 
 | 		preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules"); | 
 | 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { | 
 | 		preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap"); | 
 | 		preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map"); | 
 | 		if (IS_ENABLED(CONFIG_KASAN)) | 
 | 			preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan"); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_EXECMEM | 
 | #ifdef CONFIG_MMU | 
 | static struct execmem_info execmem_info __ro_after_init; | 
 |  | 
 | struct execmem_info __init *execmem_arch_setup(void) | 
 | { | 
 | 	execmem_info = (struct execmem_info){ | 
 | 		.ranges = { | 
 | 			[EXECMEM_DEFAULT] = { | 
 | 				.start	= MODULES_VADDR, | 
 | 				.end	= MODULES_END, | 
 | 				.pgprot	= PAGE_KERNEL, | 
 | 				.alignment = 1, | 
 | 			}, | 
 | 			[EXECMEM_KPROBES] = { | 
 | 				.start	= VMALLOC_START, | 
 | 				.end	= VMALLOC_END, | 
 | 				.pgprot	= PAGE_KERNEL_READ_EXEC, | 
 | 				.alignment = 1, | 
 | 			}, | 
 | 			[EXECMEM_BPF] = { | 
 | 				.start	= BPF_JIT_REGION_START, | 
 | 				.end	= BPF_JIT_REGION_END, | 
 | 				.pgprot	= PAGE_KERNEL, | 
 | 				.alignment = PAGE_SIZE, | 
 | 			}, | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	return &execmem_info; | 
 | } | 
 | #endif /* CONFIG_MMU */ | 
 | #endif /* CONFIG_EXECMEM */ | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) | 
 | { | 
 | 	struct page *page = pmd_page(*pmd); | 
 | 	struct ptdesc *ptdesc = page_ptdesc(page); | 
 | 	pte_t *pte; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < PTRS_PER_PTE; i++) { | 
 | 		pte = pte_start + i; | 
 | 		if (!pte_none(*pte)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	pagetable_dtor(ptdesc); | 
 | 	if (PageReserved(page)) | 
 | 		free_reserved_page(page); | 
 | 	else | 
 | 		pagetable_free(ptdesc); | 
 | 	pmd_clear(pmd); | 
 | } | 
 |  | 
 | static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, bool is_vmemmap) | 
 | { | 
 | 	struct page *page = pud_page(*pud); | 
 | 	struct ptdesc *ptdesc = page_ptdesc(page); | 
 | 	pmd_t *pmd; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < PTRS_PER_PMD; i++) { | 
 | 		pmd = pmd_start + i; | 
 | 		if (!pmd_none(*pmd)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	if (!is_vmemmap) | 
 | 		pagetable_dtor(ptdesc); | 
 | 	if (PageReserved(page)) | 
 | 		free_reserved_page(page); | 
 | 	else | 
 | 		pagetable_free(ptdesc); | 
 | 	pud_clear(pud); | 
 | } | 
 |  | 
 | static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) | 
 | { | 
 | 	struct page *page = p4d_page(*p4d); | 
 | 	pud_t *pud; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < PTRS_PER_PUD; i++) { | 
 | 		pud = pud_start + i; | 
 | 		if (!pud_none(*pud)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	if (PageReserved(page)) | 
 | 		free_reserved_page(page); | 
 | 	else | 
 | 		free_pages((unsigned long)page_address(page), 0); | 
 | 	p4d_clear(p4d); | 
 | } | 
 |  | 
 | static void __meminit free_vmemmap_storage(struct page *page, size_t size, | 
 | 					   struct vmem_altmap *altmap) | 
 | { | 
 | 	int order = get_order(size); | 
 |  | 
 | 	if (altmap) { | 
 | 		vmem_altmap_free(altmap, size >> PAGE_SHIFT); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (PageReserved(page)) { | 
 | 		unsigned int nr_pages = 1 << order; | 
 |  | 
 | 		while (nr_pages--) | 
 | 			free_reserved_page(page++); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	free_pages((unsigned long)page_address(page), order); | 
 | } | 
 |  | 
 | static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end, | 
 | 					 bool is_vmemmap, struct vmem_altmap *altmap) | 
 | { | 
 | 	unsigned long next; | 
 | 	pte_t *ptep, pte; | 
 |  | 
 | 	for (; addr < end; addr = next) { | 
 | 		next = (addr + PAGE_SIZE) & PAGE_MASK; | 
 | 		if (next > end) | 
 | 			next = end; | 
 |  | 
 | 		ptep = pte_base + pte_index(addr); | 
 | 		pte = ptep_get(ptep); | 
 | 		if (!pte_present(*ptep)) | 
 | 			continue; | 
 |  | 
 | 		pte_clear(&init_mm, addr, ptep); | 
 | 		if (is_vmemmap) | 
 | 			free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap); | 
 | 	} | 
 | } | 
 |  | 
 | static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end, | 
 | 					 bool is_vmemmap, struct vmem_altmap *altmap) | 
 | { | 
 | 	unsigned long next; | 
 | 	pte_t *pte_base; | 
 | 	pmd_t *pmdp, pmd; | 
 |  | 
 | 	for (; addr < end; addr = next) { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		pmdp = pmd_base + pmd_index(addr); | 
 | 		pmd = pmdp_get(pmdp); | 
 | 		if (!pmd_present(pmd)) | 
 | 			continue; | 
 |  | 
 | 		if (pmd_leaf(pmd)) { | 
 | 			pmd_clear(pmdp); | 
 | 			if (is_vmemmap) | 
 | 				free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pte_base = (pte_t *)pmd_page_vaddr(*pmdp); | 
 | 		remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap); | 
 | 		free_pte_table(pte_base, pmdp); | 
 | 	} | 
 | } | 
 |  | 
 | static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end, | 
 | 					 bool is_vmemmap, struct vmem_altmap *altmap) | 
 | { | 
 | 	unsigned long next; | 
 | 	pud_t *pudp, pud; | 
 | 	pmd_t *pmd_base; | 
 |  | 
 | 	for (; addr < end; addr = next) { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		pudp = pud_base + pud_index(addr); | 
 | 		pud = pudp_get(pudp); | 
 | 		if (!pud_present(pud)) | 
 | 			continue; | 
 |  | 
 | 		if (pud_leaf(pud)) { | 
 | 			if (pgtable_l4_enabled) { | 
 | 				pud_clear(pudp); | 
 | 				if (is_vmemmap) | 
 | 					free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap); | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pmd_base = pmd_offset(pudp, 0); | 
 | 		remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap); | 
 |  | 
 | 		if (pgtable_l4_enabled) | 
 | 			free_pmd_table(pmd_base, pudp, is_vmemmap); | 
 | 	} | 
 | } | 
 |  | 
 | static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end, | 
 | 					 bool is_vmemmap, struct vmem_altmap *altmap) | 
 | { | 
 | 	unsigned long next; | 
 | 	p4d_t *p4dp, p4d; | 
 | 	pud_t *pud_base; | 
 |  | 
 | 	for (; addr < end; addr = next) { | 
 | 		next = p4d_addr_end(addr, end); | 
 | 		p4dp = p4d_base + p4d_index(addr); | 
 | 		p4d = p4dp_get(p4dp); | 
 | 		if (!p4d_present(p4d)) | 
 | 			continue; | 
 |  | 
 | 		if (p4d_leaf(p4d)) { | 
 | 			if (pgtable_l5_enabled) { | 
 | 				p4d_clear(p4dp); | 
 | 				if (is_vmemmap) | 
 | 					free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap); | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pud_base = pud_offset(p4dp, 0); | 
 | 		remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap); | 
 |  | 
 | 		if (pgtable_l5_enabled) | 
 | 			free_pud_table(pud_base, p4dp); | 
 | 	} | 
 | } | 
 |  | 
 | static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap, | 
 | 					 struct vmem_altmap *altmap) | 
 | { | 
 | 	unsigned long addr, next; | 
 | 	p4d_t *p4d_base; | 
 | 	pgd_t *pgd; | 
 |  | 
 | 	for (addr = va; addr < end; addr = next) { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		pgd = pgd_offset_k(addr); | 
 |  | 
 | 		if (!pgd_present(*pgd)) | 
 | 			continue; | 
 |  | 
 | 		if (pgd_leaf(*pgd)) | 
 | 			continue; | 
 |  | 
 | 		p4d_base = p4d_offset(pgd, 0); | 
 | 		remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap); | 
 | 	} | 
 |  | 
 | 	flush_tlb_all(); | 
 | } | 
 |  | 
 | static void __meminit remove_linear_mapping(phys_addr_t start, u64 size) | 
 | { | 
 | 	unsigned long va = (unsigned long)__va(start); | 
 | 	unsigned long end = (unsigned long)__va(start + size); | 
 |  | 
 | 	remove_pgd_mapping(va, end, false, NULL); | 
 | } | 
 |  | 
 | struct range arch_get_mappable_range(void) | 
 | { | 
 | 	struct range mhp_range; | 
 |  | 
 | 	mhp_range.start = __pa(PAGE_OFFSET); | 
 | 	mhp_range.end = __pa(PAGE_END - 1); | 
 | 	return mhp_range; | 
 | } | 
 |  | 
 | int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot); | 
 | 	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params); | 
 | 	if (ret) { | 
 | 		remove_linear_mapping(start, size); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	max_pfn = PFN_UP(start + size); | 
 | 	max_low_pfn = max_pfn; | 
 |  | 
 |  out: | 
 | 	flush_tlb_all(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) | 
 | { | 
 | 	__remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap); | 
 | 	remove_linear_mapping(start, size); | 
 | 	flush_tlb_all(); | 
 | } | 
 |  | 
 | void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) | 
 | { | 
 | 	remove_pgd_mapping(start, end, true, altmap); | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ |