|  | /* | 
|  | *	An async IO implementation for Linux | 
|  | *	Written by Benjamin LaHaise <bcrl@kvack.org> | 
|  | * | 
|  | *	Implements an efficient asynchronous io interface. | 
|  | * | 
|  | *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved. | 
|  | *	Copyright 2018 Christoph Hellwig. | 
|  | * | 
|  | *	See ../COPYING for licensing terms. | 
|  | */ | 
|  | #define pr_fmt(fmt) "%s: " fmt, __func__ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/aio_abi.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/refcount.h> | 
|  | #include <linux/uio.h> | 
|  |  | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/aio.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/eventfd.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/ramfs.h> | 
|  | #include <linux/percpu-refcount.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/pseudo_fs.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/nospec.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #define KIOCB_KEY		0 | 
|  |  | 
|  | #define AIO_RING_MAGIC			0xa10a10a1 | 
|  | #define AIO_RING_COMPAT_FEATURES	1 | 
|  | #define AIO_RING_INCOMPAT_FEATURES	0 | 
|  | struct aio_ring { | 
|  | unsigned	id;	/* kernel internal index number */ | 
|  | unsigned	nr;	/* number of io_events */ | 
|  | unsigned	head;	/* Written to by userland or under ring_lock | 
|  | * mutex by aio_read_events_ring(). */ | 
|  | unsigned	tail; | 
|  |  | 
|  | unsigned	magic; | 
|  | unsigned	compat_features; | 
|  | unsigned	incompat_features; | 
|  | unsigned	header_length;	/* size of aio_ring */ | 
|  |  | 
|  |  | 
|  | struct io_event		io_events[]; | 
|  | }; /* 128 bytes + ring size */ | 
|  |  | 
|  | /* | 
|  | * Plugging is meant to work with larger batches of IOs. If we don't | 
|  | * have more than the below, then don't bother setting up a plug. | 
|  | */ | 
|  | #define AIO_PLUG_THRESHOLD	2 | 
|  |  | 
|  | #define AIO_RING_PAGES	8 | 
|  |  | 
|  | struct kioctx_table { | 
|  | struct rcu_head		rcu; | 
|  | unsigned		nr; | 
|  | struct kioctx __rcu	*table[] __counted_by(nr); | 
|  | }; | 
|  |  | 
|  | struct kioctx_cpu { | 
|  | unsigned		reqs_available; | 
|  | }; | 
|  |  | 
|  | struct ctx_rq_wait { | 
|  | struct completion comp; | 
|  | atomic_t count; | 
|  | }; | 
|  |  | 
|  | struct kioctx { | 
|  | struct percpu_ref	users; | 
|  | atomic_t		dead; | 
|  |  | 
|  | struct percpu_ref	reqs; | 
|  |  | 
|  | unsigned long		user_id; | 
|  |  | 
|  | struct kioctx_cpu __percpu *cpu; | 
|  |  | 
|  | /* | 
|  | * For percpu reqs_available, number of slots we move to/from global | 
|  | * counter at a time: | 
|  | */ | 
|  | unsigned		req_batch; | 
|  | /* | 
|  | * This is what userspace passed to io_setup(), it's not used for | 
|  | * anything but counting against the global max_reqs quota. | 
|  | * | 
|  | * The real limit is nr_events - 1, which will be larger (see | 
|  | * aio_setup_ring()) | 
|  | */ | 
|  | unsigned		max_reqs; | 
|  |  | 
|  | /* Size of ringbuffer, in units of struct io_event */ | 
|  | unsigned		nr_events; | 
|  |  | 
|  | unsigned long		mmap_base; | 
|  | unsigned long		mmap_size; | 
|  |  | 
|  | struct folio		**ring_folios; | 
|  | long			nr_pages; | 
|  |  | 
|  | struct rcu_work		free_rwork;	/* see free_ioctx() */ | 
|  |  | 
|  | /* | 
|  | * signals when all in-flight requests are done | 
|  | */ | 
|  | struct ctx_rq_wait	*rq_wait; | 
|  |  | 
|  | struct { | 
|  | /* | 
|  | * This counts the number of available slots in the ringbuffer, | 
|  | * so we avoid overflowing it: it's decremented (if positive) | 
|  | * when allocating a kiocb and incremented when the resulting | 
|  | * io_event is pulled off the ringbuffer. | 
|  | * | 
|  | * We batch accesses to it with a percpu version. | 
|  | */ | 
|  | atomic_t	reqs_available; | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct { | 
|  | spinlock_t	ctx_lock; | 
|  | struct list_head active_reqs;	/* used for cancellation */ | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct { | 
|  | struct mutex	ring_lock; | 
|  | wait_queue_head_t wait; | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct { | 
|  | unsigned	tail; | 
|  | unsigned	completed_events; | 
|  | spinlock_t	completion_lock; | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct folio		*internal_folios[AIO_RING_PAGES]; | 
|  | struct file		*aio_ring_file; | 
|  |  | 
|  | unsigned		id; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * First field must be the file pointer in all the | 
|  | * iocb unions! See also 'struct kiocb' in <linux/fs.h> | 
|  | */ | 
|  | struct fsync_iocb { | 
|  | struct file		*file; | 
|  | struct work_struct	work; | 
|  | bool			datasync; | 
|  | struct cred		*creds; | 
|  | }; | 
|  |  | 
|  | struct poll_iocb { | 
|  | struct file		*file; | 
|  | struct wait_queue_head	*head; | 
|  | __poll_t		events; | 
|  | bool			cancelled; | 
|  | bool			work_scheduled; | 
|  | bool			work_need_resched; | 
|  | struct wait_queue_entry	wait; | 
|  | struct work_struct	work; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * NOTE! Each of the iocb union members has the file pointer | 
|  | * as the first entry in their struct definition. So you can | 
|  | * access the file pointer through any of the sub-structs, | 
|  | * or directly as just 'ki_filp' in this struct. | 
|  | */ | 
|  | struct aio_kiocb { | 
|  | union { | 
|  | struct file		*ki_filp; | 
|  | struct kiocb		rw; | 
|  | struct fsync_iocb	fsync; | 
|  | struct poll_iocb	poll; | 
|  | }; | 
|  |  | 
|  | struct kioctx		*ki_ctx; | 
|  | kiocb_cancel_fn		*ki_cancel; | 
|  |  | 
|  | struct io_event		ki_res; | 
|  |  | 
|  | struct list_head	ki_list;	/* the aio core uses this | 
|  | * for cancellation */ | 
|  | refcount_t		ki_refcnt; | 
|  |  | 
|  | /* | 
|  | * If the aio_resfd field of the userspace iocb is not zero, | 
|  | * this is the underlying eventfd context to deliver events to. | 
|  | */ | 
|  | struct eventfd_ctx	*ki_eventfd; | 
|  | }; | 
|  |  | 
|  | /*------ sysctl variables----*/ | 
|  | static DEFINE_SPINLOCK(aio_nr_lock); | 
|  | static unsigned long aio_nr;		/* current system wide number of aio requests */ | 
|  | static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ | 
|  | /*----end sysctl variables---*/ | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static const struct ctl_table aio_sysctls[] = { | 
|  | { | 
|  | .procname	= "aio-nr", | 
|  | .data		= &aio_nr, | 
|  | .maxlen		= sizeof(aio_nr), | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_doulongvec_minmax, | 
|  | }, | 
|  | { | 
|  | .procname	= "aio-max-nr", | 
|  | .data		= &aio_max_nr, | 
|  | .maxlen		= sizeof(aio_max_nr), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_doulongvec_minmax, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void __init aio_sysctl_init(void) | 
|  | { | 
|  | register_sysctl_init("fs", aio_sysctls); | 
|  | } | 
|  | #else | 
|  | #define aio_sysctl_init() do { } while (0) | 
|  | #endif | 
|  |  | 
|  | static struct kmem_cache	*kiocb_cachep; | 
|  | static struct kmem_cache	*kioctx_cachep; | 
|  |  | 
|  | static struct vfsmount *aio_mnt; | 
|  |  | 
|  | static const struct file_operations aio_ring_fops; | 
|  | static const struct address_space_operations aio_ctx_aops; | 
|  |  | 
|  | static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) | 
|  | { | 
|  | struct file *file; | 
|  | struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); | 
|  | if (IS_ERR(inode)) | 
|  | return ERR_CAST(inode); | 
|  |  | 
|  | inode->i_mapping->a_ops = &aio_ctx_aops; | 
|  | inode->i_mapping->i_private_data = ctx; | 
|  | inode->i_size = PAGE_SIZE * nr_pages; | 
|  |  | 
|  | file = alloc_file_pseudo(inode, aio_mnt, "[aio]", | 
|  | O_RDWR, &aio_ring_fops); | 
|  | if (IS_ERR(file)) | 
|  | iput(inode); | 
|  | return file; | 
|  | } | 
|  |  | 
|  | static int aio_init_fs_context(struct fs_context *fc) | 
|  | { | 
|  | if (!init_pseudo(fc, AIO_RING_MAGIC)) | 
|  | return -ENOMEM; | 
|  | fc->s_iflags |= SB_I_NOEXEC; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* aio_setup | 
|  | *	Creates the slab caches used by the aio routines, panic on | 
|  | *	failure as this is done early during the boot sequence. | 
|  | */ | 
|  | static int __init aio_setup(void) | 
|  | { | 
|  | static struct file_system_type aio_fs = { | 
|  | .name		= "aio", | 
|  | .init_fs_context = aio_init_fs_context, | 
|  | .kill_sb	= kill_anon_super, | 
|  | }; | 
|  | aio_mnt = kern_mount(&aio_fs); | 
|  | if (IS_ERR(aio_mnt)) | 
|  | panic("Failed to create aio fs mount."); | 
|  |  | 
|  | kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
|  | kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
|  | aio_sysctl_init(); | 
|  | return 0; | 
|  | } | 
|  | __initcall(aio_setup); | 
|  |  | 
|  | static void put_aio_ring_file(struct kioctx *ctx) | 
|  | { | 
|  | struct file *aio_ring_file = ctx->aio_ring_file; | 
|  | struct address_space *i_mapping; | 
|  |  | 
|  | if (aio_ring_file) { | 
|  | truncate_setsize(file_inode(aio_ring_file), 0); | 
|  |  | 
|  | /* Prevent further access to the kioctx from migratepages */ | 
|  | i_mapping = aio_ring_file->f_mapping; | 
|  | spin_lock(&i_mapping->i_private_lock); | 
|  | i_mapping->i_private_data = NULL; | 
|  | ctx->aio_ring_file = NULL; | 
|  | spin_unlock(&i_mapping->i_private_lock); | 
|  |  | 
|  | fput(aio_ring_file); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aio_free_ring(struct kioctx *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Disconnect the kiotx from the ring file.  This prevents future | 
|  | * accesses to the kioctx from page migration. | 
|  | */ | 
|  | put_aio_ring_file(ctx); | 
|  |  | 
|  | for (i = 0; i < ctx->nr_pages; i++) { | 
|  | struct folio *folio = ctx->ring_folios[i]; | 
|  |  | 
|  | if (!folio) | 
|  | continue; | 
|  |  | 
|  | pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i, | 
|  | folio_ref_count(folio)); | 
|  | ctx->ring_folios[i] = NULL; | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) { | 
|  | kfree(ctx->ring_folios); | 
|  | ctx->ring_folios = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int aio_ring_mremap(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file = vma->vm_file; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct kioctx_table *table; | 
|  | int i, res = -EINVAL; | 
|  |  | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | rcu_read_lock(); | 
|  | table = rcu_dereference(mm->ioctx_table); | 
|  | if (!table) | 
|  | goto out_unlock; | 
|  |  | 
|  | for (i = 0; i < table->nr; i++) { | 
|  | struct kioctx *ctx; | 
|  |  | 
|  | ctx = rcu_dereference(table->table[i]); | 
|  | if (ctx && ctx->aio_ring_file == file) { | 
|  | if (!atomic_read(&ctx->dead)) { | 
|  | ctx->user_id = ctx->mmap_base = vma->vm_start; | 
|  | res = 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct aio_ring_vm_ops = { | 
|  | .mremap		= aio_ring_mremap, | 
|  | #if IS_ENABLED(CONFIG_MMU) | 
|  | .fault		= filemap_fault, | 
|  | .map_pages	= filemap_map_pages, | 
|  | .page_mkwrite	= filemap_page_mkwrite, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static int aio_ring_mmap_prepare(struct vm_area_desc *desc) | 
|  | { | 
|  | desc->vm_flags |= VM_DONTEXPAND; | 
|  | desc->vm_ops = &aio_ring_vm_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations aio_ring_fops = { | 
|  | .mmap_prepare = aio_ring_mmap_prepare, | 
|  | }; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_MIGRATION) | 
|  | static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, | 
|  | struct folio *src, enum migrate_mode mode) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  | unsigned long flags; | 
|  | pgoff_t idx; | 
|  | int rc = 0; | 
|  |  | 
|  | /* mapping->i_private_lock here protects against the kioctx teardown.  */ | 
|  | spin_lock(&mapping->i_private_lock); | 
|  | ctx = mapping->i_private_data; | 
|  | if (!ctx) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* The ring_lock mutex.  The prevents aio_read_events() from writing | 
|  | * to the ring's head, and prevents page migration from mucking in | 
|  | * a partially initialized kiotx. | 
|  | */ | 
|  | if (!mutex_trylock(&ctx->ring_lock)) { | 
|  | rc = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | idx = src->index; | 
|  | if (idx < (pgoff_t)ctx->nr_pages) { | 
|  | /* Make sure the old folio hasn't already been changed */ | 
|  | if (ctx->ring_folios[idx] != src) | 
|  | rc = -EAGAIN; | 
|  | } else | 
|  | rc = -EINVAL; | 
|  |  | 
|  | if (rc != 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Writeback must be complete */ | 
|  | BUG_ON(folio_test_writeback(src)); | 
|  | folio_get(dst); | 
|  |  | 
|  | rc = folio_migrate_mapping(mapping, dst, src, 1); | 
|  | if (rc != MIGRATEPAGE_SUCCESS) { | 
|  | folio_put(dst); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Take completion_lock to prevent other writes to the ring buffer | 
|  | * while the old folio is copied to the new.  This prevents new | 
|  | * events from being lost. | 
|  | */ | 
|  | spin_lock_irqsave(&ctx->completion_lock, flags); | 
|  | folio_copy(dst, src); | 
|  | folio_migrate_flags(dst, src); | 
|  | BUG_ON(ctx->ring_folios[idx] != src); | 
|  | ctx->ring_folios[idx] = dst; | 
|  | spin_unlock_irqrestore(&ctx->completion_lock, flags); | 
|  |  | 
|  | /* The old folio is no longer accessible. */ | 
|  | folio_put(src); | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&ctx->ring_lock); | 
|  | out: | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  | return rc; | 
|  | } | 
|  | #else | 
|  | #define aio_migrate_folio NULL | 
|  | #endif | 
|  |  | 
|  | static const struct address_space_operations aio_ctx_aops = { | 
|  | .dirty_folio	= noop_dirty_folio, | 
|  | .migrate_folio	= aio_migrate_folio, | 
|  | }; | 
|  |  | 
|  | static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) | 
|  | { | 
|  | struct aio_ring *ring; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long size, unused; | 
|  | int nr_pages; | 
|  | int i; | 
|  | struct file *file; | 
|  |  | 
|  | /* Compensate for the ring buffer's head/tail overlap entry */ | 
|  | nr_events += 2;	/* 1 is required, 2 for good luck */ | 
|  |  | 
|  | size = sizeof(struct aio_ring); | 
|  | size += sizeof(struct io_event) * nr_events; | 
|  |  | 
|  | nr_pages = PFN_UP(size); | 
|  | if (nr_pages < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | file = aio_private_file(ctx, nr_pages); | 
|  | if (IS_ERR(file)) { | 
|  | ctx->aio_ring_file = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ctx->aio_ring_file = file; | 
|  | nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) | 
|  | / sizeof(struct io_event); | 
|  |  | 
|  | ctx->ring_folios = ctx->internal_folios; | 
|  | if (nr_pages > AIO_RING_PAGES) { | 
|  | ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *), | 
|  | GFP_KERNEL); | 
|  | if (!ctx->ring_folios) { | 
|  | put_aio_ring_file(ctx); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = __filemap_get_folio(file->f_mapping, i, | 
|  | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, | 
|  | GFP_USER | __GFP_ZERO); | 
|  | if (IS_ERR(folio)) | 
|  | break; | 
|  |  | 
|  | pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i, | 
|  | folio_ref_count(folio)); | 
|  | folio_end_read(folio, true); | 
|  |  | 
|  | ctx->ring_folios[i] = folio; | 
|  | } | 
|  | ctx->nr_pages = i; | 
|  |  | 
|  | if (unlikely(i != nr_pages)) { | 
|  | aio_free_ring(ctx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ctx->mmap_size = nr_pages * PAGE_SIZE; | 
|  | pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); | 
|  |  | 
|  | if (mmap_write_lock_killable(mm)) { | 
|  | ctx->mmap_size = 0; | 
|  | aio_free_ring(ctx); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, | 
|  | PROT_READ | PROT_WRITE, | 
|  | MAP_SHARED, 0, 0, &unused, NULL); | 
|  | mmap_write_unlock(mm); | 
|  | if (IS_ERR((void *)ctx->mmap_base)) { | 
|  | ctx->mmap_size = 0; | 
|  | aio_free_ring(ctx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); | 
|  |  | 
|  | ctx->user_id = ctx->mmap_base; | 
|  | ctx->nr_events = nr_events; /* trusted copy */ | 
|  |  | 
|  | ring = folio_address(ctx->ring_folios[0]); | 
|  | ring->nr = nr_events;	/* user copy */ | 
|  | ring->id = ~0U; | 
|  | ring->head = ring->tail = 0; | 
|  | ring->magic = AIO_RING_MAGIC; | 
|  | ring->compat_features = AIO_RING_COMPAT_FEATURES; | 
|  | ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; | 
|  | ring->header_length = sizeof(struct aio_ring); | 
|  | flush_dcache_folio(ctx->ring_folios[0]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event)) | 
|  | #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) | 
|  | #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) | 
|  |  | 
|  | void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) | 
|  | { | 
|  | struct aio_kiocb *req; | 
|  | struct kioctx *ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * kiocb didn't come from aio or is neither a read nor a write, hence | 
|  | * ignore it. | 
|  | */ | 
|  | if (!(iocb->ki_flags & IOCB_AIO_RW)) | 
|  | return; | 
|  |  | 
|  | req = container_of(iocb, struct aio_kiocb, rw); | 
|  |  | 
|  | if (WARN_ON_ONCE(!list_empty(&req->ki_list))) | 
|  | return; | 
|  |  | 
|  | ctx = req->ki_ctx; | 
|  |  | 
|  | spin_lock_irqsave(&ctx->ctx_lock, flags); | 
|  | list_add_tail(&req->ki_list, &ctx->active_reqs); | 
|  | req->ki_cancel = cancel; | 
|  | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(kiocb_set_cancel_fn); | 
|  |  | 
|  | /* | 
|  | * free_ioctx() should be RCU delayed to synchronize against the RCU | 
|  | * protected lookup_ioctx() and also needs process context to call | 
|  | * aio_free_ring().  Use rcu_work. | 
|  | */ | 
|  | static void free_ioctx(struct work_struct *work) | 
|  | { | 
|  | struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, | 
|  | free_rwork); | 
|  | pr_debug("freeing %p\n", ctx); | 
|  |  | 
|  | aio_free_ring(ctx); | 
|  | free_percpu(ctx->cpu); | 
|  | percpu_ref_exit(&ctx->reqs); | 
|  | percpu_ref_exit(&ctx->users); | 
|  | kmem_cache_free(kioctx_cachep, ctx); | 
|  | } | 
|  |  | 
|  | static void free_ioctx_reqs(struct percpu_ref *ref) | 
|  | { | 
|  | struct kioctx *ctx = container_of(ref, struct kioctx, reqs); | 
|  |  | 
|  | /* At this point we know that there are no any in-flight requests */ | 
|  | if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) | 
|  | complete(&ctx->rq_wait->comp); | 
|  |  | 
|  | /* Synchronize against RCU protected table->table[] dereferences */ | 
|  | INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); | 
|  | queue_rcu_work(system_percpu_wq, &ctx->free_rwork); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When this function runs, the kioctx has been removed from the "hash table" | 
|  | * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - | 
|  | * now it's safe to cancel any that need to be. | 
|  | */ | 
|  | static void free_ioctx_users(struct percpu_ref *ref) | 
|  | { | 
|  | struct kioctx *ctx = container_of(ref, struct kioctx, users); | 
|  | struct aio_kiocb *req; | 
|  |  | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | while (!list_empty(&ctx->active_reqs)) { | 
|  | req = list_first_entry(&ctx->active_reqs, | 
|  | struct aio_kiocb, ki_list); | 
|  | req->ki_cancel(&req->rw); | 
|  | list_del_init(&req->ki_list); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | percpu_ref_kill(&ctx->reqs); | 
|  | percpu_ref_put(&ctx->reqs); | 
|  | } | 
|  |  | 
|  | static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) | 
|  | { | 
|  | unsigned i, new_nr; | 
|  | struct kioctx_table *table, *old; | 
|  | struct aio_ring *ring; | 
|  |  | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | table = rcu_dereference_raw(mm->ioctx_table); | 
|  |  | 
|  | while (1) { | 
|  | if (table) | 
|  | for (i = 0; i < table->nr; i++) | 
|  | if (!rcu_access_pointer(table->table[i])) { | 
|  | ctx->id = i; | 
|  | rcu_assign_pointer(table->table[i], ctx); | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  |  | 
|  | /* While kioctx setup is in progress, | 
|  | * we are protected from page migration | 
|  | * changes ring_folios by ->ring_lock. | 
|  | */ | 
|  | ring = folio_address(ctx->ring_folios[0]); | 
|  | ring->id = ctx->id; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | new_nr = (table ? table->nr : 1) * 4; | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  |  | 
|  | table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); | 
|  | if (!table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | table->nr = new_nr; | 
|  |  | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | old = rcu_dereference_raw(mm->ioctx_table); | 
|  |  | 
|  | if (!old) { | 
|  | rcu_assign_pointer(mm->ioctx_table, table); | 
|  | } else if (table->nr > old->nr) { | 
|  | memcpy(table->table, old->table, | 
|  | old->nr * sizeof(struct kioctx *)); | 
|  |  | 
|  | rcu_assign_pointer(mm->ioctx_table, table); | 
|  | kfree_rcu(old, rcu); | 
|  | } else { | 
|  | kfree(table); | 
|  | table = old; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aio_nr_sub(unsigned nr) | 
|  | { | 
|  | spin_lock(&aio_nr_lock); | 
|  | if (WARN_ON(aio_nr - nr > aio_nr)) | 
|  | aio_nr = 0; | 
|  | else | 
|  | aio_nr -= nr; | 
|  | spin_unlock(&aio_nr_lock); | 
|  | } | 
|  |  | 
|  | /* ioctx_alloc | 
|  | *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed. | 
|  | */ | 
|  | static struct kioctx *ioctx_alloc(unsigned nr_events) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct kioctx *ctx; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Store the original nr_events -- what userspace passed to io_setup(), | 
|  | * for counting against the global limit -- before it changes. | 
|  | */ | 
|  | unsigned int max_reqs = nr_events; | 
|  |  | 
|  | /* | 
|  | * We keep track of the number of available ringbuffer slots, to prevent | 
|  | * overflow (reqs_available), and we also use percpu counters for this. | 
|  | * | 
|  | * So since up to half the slots might be on other cpu's percpu counters | 
|  | * and unavailable, double nr_events so userspace sees what they | 
|  | * expected: additionally, we move req_batch slots to/from percpu | 
|  | * counters at a time, so make sure that isn't 0: | 
|  | */ | 
|  | nr_events = max(nr_events, num_possible_cpus() * 4); | 
|  | nr_events *= 2; | 
|  |  | 
|  | /* Prevent overflows */ | 
|  | if (nr_events > (0x10000000U / sizeof(struct io_event))) { | 
|  | pr_debug("ENOMEM: nr_events too high\n"); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (!nr_events || (unsigned long)max_reqs > aio_max_nr) | 
|  | return ERR_PTR(-EAGAIN); | 
|  |  | 
|  | ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ctx->max_reqs = max_reqs; | 
|  |  | 
|  | spin_lock_init(&ctx->ctx_lock); | 
|  | spin_lock_init(&ctx->completion_lock); | 
|  | mutex_init(&ctx->ring_lock); | 
|  | /* Protect against page migration throughout kiotx setup by keeping | 
|  | * the ring_lock mutex held until setup is complete. */ | 
|  | mutex_lock(&ctx->ring_lock); | 
|  | init_waitqueue_head(&ctx->wait); | 
|  |  | 
|  | INIT_LIST_HEAD(&ctx->active_reqs); | 
|  |  | 
|  | if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) | 
|  | goto err; | 
|  |  | 
|  | if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) | 
|  | goto err; | 
|  |  | 
|  | ctx->cpu = alloc_percpu(struct kioctx_cpu); | 
|  | if (!ctx->cpu) | 
|  | goto err; | 
|  |  | 
|  | err = aio_setup_ring(ctx, nr_events); | 
|  | if (err < 0) | 
|  | goto err; | 
|  |  | 
|  | atomic_set(&ctx->reqs_available, ctx->nr_events - 1); | 
|  | ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); | 
|  | if (ctx->req_batch < 1) | 
|  | ctx->req_batch = 1; | 
|  |  | 
|  | /* limit the number of system wide aios */ | 
|  | spin_lock(&aio_nr_lock); | 
|  | if (aio_nr + ctx->max_reqs > aio_max_nr || | 
|  | aio_nr + ctx->max_reqs < aio_nr) { | 
|  | spin_unlock(&aio_nr_lock); | 
|  | err = -EAGAIN; | 
|  | goto err_ctx; | 
|  | } | 
|  | aio_nr += ctx->max_reqs; | 
|  | spin_unlock(&aio_nr_lock); | 
|  |  | 
|  | percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */ | 
|  | percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */ | 
|  |  | 
|  | err = ioctx_add_table(ctx, mm); | 
|  | if (err) | 
|  | goto err_cleanup; | 
|  |  | 
|  | /* Release the ring_lock mutex now that all setup is complete. */ | 
|  | mutex_unlock(&ctx->ring_lock); | 
|  |  | 
|  | pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", | 
|  | ctx, ctx->user_id, mm, ctx->nr_events); | 
|  | return ctx; | 
|  |  | 
|  | err_cleanup: | 
|  | aio_nr_sub(ctx->max_reqs); | 
|  | err_ctx: | 
|  | atomic_set(&ctx->dead, 1); | 
|  | if (ctx->mmap_size) | 
|  | vm_munmap(ctx->mmap_base, ctx->mmap_size); | 
|  | aio_free_ring(ctx); | 
|  | err: | 
|  | mutex_unlock(&ctx->ring_lock); | 
|  | free_percpu(ctx->cpu); | 
|  | percpu_ref_exit(&ctx->reqs); | 
|  | percpu_ref_exit(&ctx->users); | 
|  | kmem_cache_free(kioctx_cachep, ctx); | 
|  | pr_debug("error allocating ioctx %d\n", err); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* kill_ioctx | 
|  | *	Cancels all outstanding aio requests on an aio context.  Used | 
|  | *	when the processes owning a context have all exited to encourage | 
|  | *	the rapid destruction of the kioctx. | 
|  | */ | 
|  | static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, | 
|  | struct ctx_rq_wait *wait) | 
|  | { | 
|  | struct kioctx_table *table; | 
|  |  | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | if (atomic_xchg(&ctx->dead, 1)) { | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | table = rcu_dereference_raw(mm->ioctx_table); | 
|  | WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); | 
|  | RCU_INIT_POINTER(table->table[ctx->id], NULL); | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  |  | 
|  | /* free_ioctx_reqs() will do the necessary RCU synchronization */ | 
|  | wake_up_all(&ctx->wait); | 
|  |  | 
|  | /* | 
|  | * It'd be more correct to do this in free_ioctx(), after all | 
|  | * the outstanding kiocbs have finished - but by then io_destroy | 
|  | * has already returned, so io_setup() could potentially return | 
|  | * -EAGAIN with no ioctxs actually in use (as far as userspace | 
|  | *  could tell). | 
|  | */ | 
|  | aio_nr_sub(ctx->max_reqs); | 
|  |  | 
|  | if (ctx->mmap_size) | 
|  | vm_munmap(ctx->mmap_base, ctx->mmap_size); | 
|  |  | 
|  | ctx->rq_wait = wait; | 
|  | percpu_ref_kill(&ctx->users); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * exit_aio: called when the last user of mm goes away.  At this point, there is | 
|  | * no way for any new requests to be submited or any of the io_* syscalls to be | 
|  | * called on the context. | 
|  | * | 
|  | * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on | 
|  | * them. | 
|  | */ | 
|  | void exit_aio(struct mm_struct *mm) | 
|  | { | 
|  | struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); | 
|  | struct ctx_rq_wait wait; | 
|  | int i, skipped; | 
|  |  | 
|  | if (!table) | 
|  | return; | 
|  |  | 
|  | atomic_set(&wait.count, table->nr); | 
|  | init_completion(&wait.comp); | 
|  |  | 
|  | skipped = 0; | 
|  | for (i = 0; i < table->nr; ++i) { | 
|  | struct kioctx *ctx = | 
|  | rcu_dereference_protected(table->table[i], true); | 
|  |  | 
|  | if (!ctx) { | 
|  | skipped++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't need to bother with munmap() here - exit_mmap(mm) | 
|  | * is coming and it'll unmap everything. And we simply can't, | 
|  | * this is not necessarily our ->mm. | 
|  | * Since kill_ioctx() uses non-zero ->mmap_size as indicator | 
|  | * that it needs to unmap the area, just set it to 0. | 
|  | */ | 
|  | ctx->mmap_size = 0; | 
|  | kill_ioctx(mm, ctx, &wait); | 
|  | } | 
|  |  | 
|  | if (!atomic_sub_and_test(skipped, &wait.count)) { | 
|  | /* Wait until all IO for the context are done. */ | 
|  | wait_for_completion(&wait.comp); | 
|  | } | 
|  |  | 
|  | RCU_INIT_POINTER(mm->ioctx_table, NULL); | 
|  | kfree(table); | 
|  | } | 
|  |  | 
|  | static void put_reqs_available(struct kioctx *ctx, unsigned nr) | 
|  | { | 
|  | struct kioctx_cpu *kcpu; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | kcpu = this_cpu_ptr(ctx->cpu); | 
|  | kcpu->reqs_available += nr; | 
|  |  | 
|  | while (kcpu->reqs_available >= ctx->req_batch * 2) { | 
|  | kcpu->reqs_available -= ctx->req_batch; | 
|  | atomic_add(ctx->req_batch, &ctx->reqs_available); | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static bool __get_reqs_available(struct kioctx *ctx) | 
|  | { | 
|  | struct kioctx_cpu *kcpu; | 
|  | bool ret = false; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | kcpu = this_cpu_ptr(ctx->cpu); | 
|  | if (!kcpu->reqs_available) { | 
|  | int avail = atomic_read(&ctx->reqs_available); | 
|  |  | 
|  | do { | 
|  | if (avail < ctx->req_batch) | 
|  | goto out; | 
|  | } while (!atomic_try_cmpxchg(&ctx->reqs_available, | 
|  | &avail, avail - ctx->req_batch)); | 
|  |  | 
|  | kcpu->reqs_available += ctx->req_batch; | 
|  | } | 
|  |  | 
|  | ret = true; | 
|  | kcpu->reqs_available--; | 
|  | out: | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* refill_reqs_available | 
|  | *	Updates the reqs_available reference counts used for tracking the | 
|  | *	number of free slots in the completion ring.  This can be called | 
|  | *	from aio_complete() (to optimistically update reqs_available) or | 
|  | *	from aio_get_req() (the we're out of events case).  It must be | 
|  | *	called holding ctx->completion_lock. | 
|  | */ | 
|  | static void refill_reqs_available(struct kioctx *ctx, unsigned head, | 
|  | unsigned tail) | 
|  | { | 
|  | unsigned events_in_ring, completed; | 
|  |  | 
|  | /* Clamp head since userland can write to it. */ | 
|  | head %= ctx->nr_events; | 
|  | if (head <= tail) | 
|  | events_in_ring = tail - head; | 
|  | else | 
|  | events_in_ring = ctx->nr_events - (head - tail); | 
|  |  | 
|  | completed = ctx->completed_events; | 
|  | if (events_in_ring < completed) | 
|  | completed -= events_in_ring; | 
|  | else | 
|  | completed = 0; | 
|  |  | 
|  | if (!completed) | 
|  | return; | 
|  |  | 
|  | ctx->completed_events -= completed; | 
|  | put_reqs_available(ctx, completed); | 
|  | } | 
|  |  | 
|  | /* user_refill_reqs_available | 
|  | *	Called to refill reqs_available when aio_get_req() encounters an | 
|  | *	out of space in the completion ring. | 
|  | */ | 
|  | static void user_refill_reqs_available(struct kioctx *ctx) | 
|  | { | 
|  | spin_lock_irq(&ctx->completion_lock); | 
|  | if (ctx->completed_events) { | 
|  | struct aio_ring *ring; | 
|  | unsigned head; | 
|  |  | 
|  | /* Access of ring->head may race with aio_read_events_ring() | 
|  | * here, but that's okay since whether we read the old version | 
|  | * or the new version, and either will be valid.  The important | 
|  | * part is that head cannot pass tail since we prevent | 
|  | * aio_complete() from updating tail by holding | 
|  | * ctx->completion_lock.  Even if head is invalid, the check | 
|  | * against ctx->completed_events below will make sure we do the | 
|  | * safe/right thing. | 
|  | */ | 
|  | ring = folio_address(ctx->ring_folios[0]); | 
|  | head = ring->head; | 
|  |  | 
|  | refill_reqs_available(ctx, head, ctx->tail); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&ctx->completion_lock); | 
|  | } | 
|  |  | 
|  | static bool get_reqs_available(struct kioctx *ctx) | 
|  | { | 
|  | if (__get_reqs_available(ctx)) | 
|  | return true; | 
|  | user_refill_reqs_available(ctx); | 
|  | return __get_reqs_available(ctx); | 
|  | } | 
|  |  | 
|  | /* aio_get_req | 
|  | *	Allocate a slot for an aio request. | 
|  | * Returns NULL if no requests are free. | 
|  | * | 
|  | * The refcount is initialized to 2 - one for the async op completion, | 
|  | * one for the synchronous code that does this. | 
|  | */ | 
|  | static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) | 
|  | { | 
|  | struct aio_kiocb *req; | 
|  |  | 
|  | req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); | 
|  | if (unlikely(!req)) | 
|  | return NULL; | 
|  |  | 
|  | if (unlikely(!get_reqs_available(ctx))) { | 
|  | kmem_cache_free(kiocb_cachep, req); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | percpu_ref_get(&ctx->reqs); | 
|  | req->ki_ctx = ctx; | 
|  | INIT_LIST_HEAD(&req->ki_list); | 
|  | refcount_set(&req->ki_refcnt, 2); | 
|  | req->ki_eventfd = NULL; | 
|  | return req; | 
|  | } | 
|  |  | 
|  | static struct kioctx *lookup_ioctx(unsigned long ctx_id) | 
|  | { | 
|  | struct aio_ring __user *ring  = (void __user *)ctx_id; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct kioctx *ctx, *ret = NULL; | 
|  | struct kioctx_table *table; | 
|  | unsigned id; | 
|  |  | 
|  | if (get_user(id, &ring->id)) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | table = rcu_dereference(mm->ioctx_table); | 
|  |  | 
|  | if (!table || id >= table->nr) | 
|  | goto out; | 
|  |  | 
|  | id = array_index_nospec(id, table->nr); | 
|  | ctx = rcu_dereference(table->table[id]); | 
|  | if (ctx && ctx->user_id == ctx_id) { | 
|  | if (percpu_ref_tryget_live(&ctx->users)) | 
|  | ret = ctx; | 
|  | } | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void iocb_destroy(struct aio_kiocb *iocb) | 
|  | { | 
|  | if (iocb->ki_eventfd) | 
|  | eventfd_ctx_put(iocb->ki_eventfd); | 
|  | if (iocb->ki_filp) | 
|  | fput(iocb->ki_filp); | 
|  | percpu_ref_put(&iocb->ki_ctx->reqs); | 
|  | kmem_cache_free(kiocb_cachep, iocb); | 
|  | } | 
|  |  | 
|  | struct aio_waiter { | 
|  | struct wait_queue_entry	w; | 
|  | size_t			min_nr; | 
|  | }; | 
|  |  | 
|  | /* aio_complete | 
|  | *	Called when the io request on the given iocb is complete. | 
|  | */ | 
|  | static void aio_complete(struct aio_kiocb *iocb) | 
|  | { | 
|  | struct kioctx	*ctx = iocb->ki_ctx; | 
|  | struct aio_ring	*ring; | 
|  | struct io_event	*ev_page, *event; | 
|  | unsigned tail, pos, head, avail; | 
|  | unsigned long	flags; | 
|  |  | 
|  | /* | 
|  | * Add a completion event to the ring buffer. Must be done holding | 
|  | * ctx->completion_lock to prevent other code from messing with the tail | 
|  | * pointer since we might be called from irq context. | 
|  | */ | 
|  | spin_lock_irqsave(&ctx->completion_lock, flags); | 
|  |  | 
|  | tail = ctx->tail; | 
|  | pos = tail + AIO_EVENTS_OFFSET; | 
|  |  | 
|  | if (++tail >= ctx->nr_events) | 
|  | tail = 0; | 
|  |  | 
|  | ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]); | 
|  | event = ev_page + pos % AIO_EVENTS_PER_PAGE; | 
|  |  | 
|  | *event = iocb->ki_res; | 
|  |  | 
|  | flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]); | 
|  |  | 
|  | pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, | 
|  | (void __user *)(unsigned long)iocb->ki_res.obj, | 
|  | iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); | 
|  |  | 
|  | /* after flagging the request as done, we | 
|  | * must never even look at it again | 
|  | */ | 
|  | smp_wmb();	/* make event visible before updating tail */ | 
|  |  | 
|  | ctx->tail = tail; | 
|  |  | 
|  | ring = folio_address(ctx->ring_folios[0]); | 
|  | head = ring->head; | 
|  | ring->tail = tail; | 
|  | flush_dcache_folio(ctx->ring_folios[0]); | 
|  |  | 
|  | ctx->completed_events++; | 
|  | if (ctx->completed_events > 1) | 
|  | refill_reqs_available(ctx, head, tail); | 
|  |  | 
|  | avail = tail > head | 
|  | ? tail - head | 
|  | : tail + ctx->nr_events - head; | 
|  | spin_unlock_irqrestore(&ctx->completion_lock, flags); | 
|  |  | 
|  | pr_debug("added to ring %p at [%u]\n", iocb, tail); | 
|  |  | 
|  | /* | 
|  | * Check if the user asked us to deliver the result through an | 
|  | * eventfd. The eventfd_signal() function is safe to be called | 
|  | * from IRQ context. | 
|  | */ | 
|  | if (iocb->ki_eventfd) | 
|  | eventfd_signal(iocb->ki_eventfd); | 
|  |  | 
|  | /* | 
|  | * We have to order our ring_info tail store above and test | 
|  | * of the wait list below outside the wait lock.  This is | 
|  | * like in wake_up_bit() where clearing a bit has to be | 
|  | * ordered with the unlocked test. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (waitqueue_active(&ctx->wait)) { | 
|  | struct aio_waiter *curr, *next; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ctx->wait.lock, flags); | 
|  | list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry) | 
|  | if (avail >= curr->min_nr) { | 
|  | wake_up_process(curr->w.private); | 
|  | list_del_init_careful(&curr->w.entry); | 
|  | } | 
|  | spin_unlock_irqrestore(&ctx->wait.lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void iocb_put(struct aio_kiocb *iocb) | 
|  | { | 
|  | if (refcount_dec_and_test(&iocb->ki_refcnt)) { | 
|  | aio_complete(iocb); | 
|  | iocb_destroy(iocb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* aio_read_events_ring | 
|  | *	Pull an event off of the ioctx's event ring.  Returns the number of | 
|  | *	events fetched | 
|  | */ | 
|  | static long aio_read_events_ring(struct kioctx *ctx, | 
|  | struct io_event __user *event, long nr) | 
|  | { | 
|  | struct aio_ring *ring; | 
|  | unsigned head, tail, pos; | 
|  | long ret = 0; | 
|  | int copy_ret; | 
|  |  | 
|  | /* | 
|  | * The mutex can block and wake us up and that will cause | 
|  | * wait_event_interruptible_hrtimeout() to schedule without sleeping | 
|  | * and repeat. This should be rare enough that it doesn't cause | 
|  | * peformance issues. See the comment in read_events() for more detail. | 
|  | */ | 
|  | sched_annotate_sleep(); | 
|  | mutex_lock(&ctx->ring_lock); | 
|  |  | 
|  | /* Access to ->ring_folios here is protected by ctx->ring_lock. */ | 
|  | ring = folio_address(ctx->ring_folios[0]); | 
|  | head = ring->head; | 
|  | tail = ring->tail; | 
|  |  | 
|  | /* | 
|  | * Ensure that once we've read the current tail pointer, that | 
|  | * we also see the events that were stored up to the tail. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); | 
|  |  | 
|  | if (head == tail) | 
|  | goto out; | 
|  |  | 
|  | head %= ctx->nr_events; | 
|  | tail %= ctx->nr_events; | 
|  |  | 
|  | while (ret < nr) { | 
|  | long avail; | 
|  | struct io_event *ev; | 
|  | struct folio *folio; | 
|  |  | 
|  | avail = (head <= tail ?  tail : ctx->nr_events) - head; | 
|  | if (head == tail) | 
|  | break; | 
|  |  | 
|  | pos = head + AIO_EVENTS_OFFSET; | 
|  | folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]; | 
|  | pos %= AIO_EVENTS_PER_PAGE; | 
|  |  | 
|  | avail = min(avail, nr - ret); | 
|  | avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); | 
|  |  | 
|  | ev = folio_address(folio); | 
|  | copy_ret = copy_to_user(event + ret, ev + pos, | 
|  | sizeof(*ev) * avail); | 
|  |  | 
|  | if (unlikely(copy_ret)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret += avail; | 
|  | head += avail; | 
|  | head %= ctx->nr_events; | 
|  | } | 
|  |  | 
|  | ring = folio_address(ctx->ring_folios[0]); | 
|  | ring->head = head; | 
|  | flush_dcache_folio(ctx->ring_folios[0]); | 
|  |  | 
|  | pr_debug("%li  h%u t%u\n", ret, head, tail); | 
|  | out: | 
|  | mutex_unlock(&ctx->ring_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, | 
|  | struct io_event __user *event, long *i) | 
|  | { | 
|  | long ret = aio_read_events_ring(ctx, event + *i, nr - *i); | 
|  |  | 
|  | if (ret > 0) | 
|  | *i += ret; | 
|  |  | 
|  | if (unlikely(atomic_read(&ctx->dead))) | 
|  | ret = -EINVAL; | 
|  |  | 
|  | if (!*i) | 
|  | *i = ret; | 
|  |  | 
|  | return ret < 0 || *i >= min_nr; | 
|  | } | 
|  |  | 
|  | static long read_events(struct kioctx *ctx, long min_nr, long nr, | 
|  | struct io_event __user *event, | 
|  | ktime_t until) | 
|  | { | 
|  | struct hrtimer_sleeper	t; | 
|  | struct aio_waiter	w; | 
|  | long ret = 0, ret2 = 0; | 
|  |  | 
|  | /* | 
|  | * Note that aio_read_events() is being called as the conditional - i.e. | 
|  | * we're calling it after prepare_to_wait() has set task state to | 
|  | * TASK_INTERRUPTIBLE. | 
|  | * | 
|  | * But aio_read_events() can block, and if it blocks it's going to flip | 
|  | * the task state back to TASK_RUNNING. | 
|  | * | 
|  | * This should be ok, provided it doesn't flip the state back to | 
|  | * TASK_RUNNING and return 0 too much - that causes us to spin. That | 
|  | * will only happen if the mutex_lock() call blocks, and we then find | 
|  | * the ringbuffer empty. So in practice we should be ok, but it's | 
|  | * something to be aware of when touching this code. | 
|  | */ | 
|  | aio_read_events(ctx, min_nr, nr, event, &ret); | 
|  | if (until == 0 || ret < 0 || ret >= min_nr) | 
|  | return ret; | 
|  |  | 
|  | hrtimer_setup_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | if (until != KTIME_MAX) { | 
|  | hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns); | 
|  | hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL); | 
|  | } | 
|  |  | 
|  | init_wait(&w.w); | 
|  |  | 
|  | while (1) { | 
|  | unsigned long nr_got = ret; | 
|  |  | 
|  | w.min_nr = min_nr - ret; | 
|  |  | 
|  | ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE); | 
|  | if (!ret2 && !t.task) | 
|  | ret2 = -ETIME; | 
|  |  | 
|  | if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2) | 
|  | break; | 
|  |  | 
|  | if (nr_got == ret) | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | finish_wait(&ctx->wait, &w.w); | 
|  | hrtimer_cancel(&t.timer); | 
|  | destroy_hrtimer_on_stack(&t.timer); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* sys_io_setup: | 
|  | *	Create an aio_context capable of receiving at least nr_events. | 
|  | *	ctxp must not point to an aio_context that already exists, and | 
|  | *	must be initialized to 0 prior to the call.  On successful | 
|  | *	creation of the aio_context, *ctxp is filled in with the resulting | 
|  | *	handle.  May fail with -EINVAL if *ctxp is not initialized, | 
|  | *	if the specified nr_events exceeds internal limits.  May fail | 
|  | *	with -EAGAIN if the specified nr_events exceeds the user's limit | 
|  | *	of available events.  May fail with -ENOMEM if insufficient kernel | 
|  | *	resources are available.  May fail with -EFAULT if an invalid | 
|  | *	pointer is passed for ctxp.  Will fail with -ENOSYS if not | 
|  | *	implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) | 
|  | { | 
|  | struct kioctx *ioctx = NULL; | 
|  | unsigned long ctx; | 
|  | long ret; | 
|  |  | 
|  | ret = get_user(ctx, ctxp); | 
|  | if (unlikely(ret)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (unlikely(ctx || nr_events == 0)) { | 
|  | pr_debug("EINVAL: ctx %lu nr_events %u\n", | 
|  | ctx, nr_events); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ioctx = ioctx_alloc(nr_events); | 
|  | ret = PTR_ERR(ioctx); | 
|  | if (!IS_ERR(ioctx)) { | 
|  | ret = put_user(ioctx->user_id, ctxp); | 
|  | if (ret) | 
|  | kill_ioctx(current->mm, ioctx, NULL); | 
|  | percpu_ref_put(&ioctx->users); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) | 
|  | { | 
|  | struct kioctx *ioctx = NULL; | 
|  | unsigned long ctx; | 
|  | long ret; | 
|  |  | 
|  | ret = get_user(ctx, ctx32p); | 
|  | if (unlikely(ret)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (unlikely(ctx || nr_events == 0)) { | 
|  | pr_debug("EINVAL: ctx %lu nr_events %u\n", | 
|  | ctx, nr_events); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ioctx = ioctx_alloc(nr_events); | 
|  | ret = PTR_ERR(ioctx); | 
|  | if (!IS_ERR(ioctx)) { | 
|  | /* truncating is ok because it's a user address */ | 
|  | ret = put_user((u32)ioctx->user_id, ctx32p); | 
|  | if (ret) | 
|  | kill_ioctx(current->mm, ioctx, NULL); | 
|  | percpu_ref_put(&ioctx->users); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* sys_io_destroy: | 
|  | *	Destroy the aio_context specified.  May cancel any outstanding | 
|  | *	AIOs and block on completion.  Will fail with -ENOSYS if not | 
|  | *	implemented.  May fail with -EINVAL if the context pointed to | 
|  | *	is invalid. | 
|  | */ | 
|  | SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) | 
|  | { | 
|  | struct kioctx *ioctx = lookup_ioctx(ctx); | 
|  | if (likely(NULL != ioctx)) { | 
|  | struct ctx_rq_wait wait; | 
|  | int ret; | 
|  |  | 
|  | init_completion(&wait.comp); | 
|  | atomic_set(&wait.count, 1); | 
|  |  | 
|  | /* Pass requests_done to kill_ioctx() where it can be set | 
|  | * in a thread-safe way. If we try to set it here then we have | 
|  | * a race condition if two io_destroy() called simultaneously. | 
|  | */ | 
|  | ret = kill_ioctx(current->mm, ioctx, &wait); | 
|  | percpu_ref_put(&ioctx->users); | 
|  |  | 
|  | /* Wait until all IO for the context are done. Otherwise kernel | 
|  | * keep using user-space buffers even if user thinks the context | 
|  | * is destroyed. | 
|  | */ | 
|  | if (!ret) | 
|  | wait_for_completion(&wait.comp); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | pr_debug("EINVAL: invalid context id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void aio_remove_iocb(struct aio_kiocb *iocb) | 
|  | { | 
|  | struct kioctx *ctx = iocb->ki_ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ctx->ctx_lock, flags); | 
|  | list_del(&iocb->ki_list); | 
|  | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
|  | } | 
|  |  | 
|  | static void aio_complete_rw(struct kiocb *kiocb, long res) | 
|  | { | 
|  | struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); | 
|  |  | 
|  | if (!list_empty_careful(&iocb->ki_list)) | 
|  | aio_remove_iocb(iocb); | 
|  |  | 
|  | if (kiocb->ki_flags & IOCB_WRITE) { | 
|  | struct inode *inode = file_inode(kiocb->ki_filp); | 
|  |  | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | kiocb_end_write(kiocb); | 
|  | } | 
|  |  | 
|  | iocb->ki_res.res = res; | 
|  | iocb->ki_res.res2 = 0; | 
|  | iocb_put(iocb); | 
|  | } | 
|  |  | 
|  | static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb, int rw_type) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | req->ki_write_stream = 0; | 
|  | req->ki_complete = aio_complete_rw; | 
|  | req->private = NULL; | 
|  | req->ki_pos = iocb->aio_offset; | 
|  | req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW; | 
|  | if (iocb->aio_flags & IOCB_FLAG_RESFD) | 
|  | req->ki_flags |= IOCB_EVENTFD; | 
|  | if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { | 
|  | /* | 
|  | * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then | 
|  | * aio_reqprio is interpreted as an I/O scheduling | 
|  | * class and priority. | 
|  | */ | 
|  | ret = ioprio_check_cap(iocb->aio_reqprio); | 
|  | if (ret) { | 
|  | pr_debug("aio ioprio check cap error: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | req->ki_ioprio = iocb->aio_reqprio; | 
|  | } else | 
|  | req->ki_ioprio = get_current_ioprio(); | 
|  |  | 
|  | ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags, rw_type); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, | 
|  | struct iovec **iovec, bool vectored, bool compat, | 
|  | struct iov_iter *iter) | 
|  | { | 
|  | void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; | 
|  | size_t len = iocb->aio_nbytes; | 
|  |  | 
|  | if (!vectored) { | 
|  | ssize_t ret = import_ubuf(rw, buf, len, iter); | 
|  | *iovec = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); | 
|  | } | 
|  |  | 
|  | static inline void aio_rw_done(struct kiocb *req, ssize_t ret) | 
|  | { | 
|  | switch (ret) { | 
|  | case -EIOCBQUEUED: | 
|  | break; | 
|  | case -ERESTARTSYS: | 
|  | case -ERESTARTNOINTR: | 
|  | case -ERESTARTNOHAND: | 
|  | case -ERESTART_RESTARTBLOCK: | 
|  | /* | 
|  | * There's no easy way to restart the syscall since other AIO's | 
|  | * may be already running. Just fail this IO with EINTR. | 
|  | */ | 
|  | ret = -EINTR; | 
|  | fallthrough; | 
|  | default: | 
|  | req->ki_complete(req, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int aio_read(struct kiocb *req, const struct iocb *iocb, | 
|  | bool vectored, bool compat) | 
|  | { | 
|  | struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; | 
|  | struct iov_iter iter; | 
|  | struct file *file; | 
|  | int ret; | 
|  |  | 
|  | ret = aio_prep_rw(req, iocb, READ); | 
|  | if (ret) | 
|  | return ret; | 
|  | file = req->ki_filp; | 
|  | if (unlikely(!(file->f_mode & FMODE_READ))) | 
|  | return -EBADF; | 
|  | if (unlikely(!file->f_op->read_iter)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); | 
|  | if (!ret) | 
|  | aio_rw_done(req, file->f_op->read_iter(req, &iter)); | 
|  | kfree(iovec); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int aio_write(struct kiocb *req, const struct iocb *iocb, | 
|  | bool vectored, bool compat) | 
|  | { | 
|  | struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; | 
|  | struct iov_iter iter; | 
|  | struct file *file; | 
|  | int ret; | 
|  |  | 
|  | ret = aio_prep_rw(req, iocb, WRITE); | 
|  | if (ret) | 
|  | return ret; | 
|  | file = req->ki_filp; | 
|  |  | 
|  | if (unlikely(!(file->f_mode & FMODE_WRITE))) | 
|  | return -EBADF; | 
|  | if (unlikely(!file->f_op->write_iter)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); | 
|  | if (!ret) { | 
|  | if (S_ISREG(file_inode(file)->i_mode)) | 
|  | kiocb_start_write(req); | 
|  | req->ki_flags |= IOCB_WRITE; | 
|  | aio_rw_done(req, file->f_op->write_iter(req, &iter)); | 
|  | } | 
|  | kfree(iovec); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void aio_fsync_work(struct work_struct *work) | 
|  | { | 
|  | struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); | 
|  | const struct cred *old_cred = override_creds(iocb->fsync.creds); | 
|  |  | 
|  | iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); | 
|  | revert_creds(old_cred); | 
|  | put_cred(iocb->fsync.creds); | 
|  | iocb_put(iocb); | 
|  | } | 
|  |  | 
|  | static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, | 
|  | bool datasync) | 
|  | { | 
|  | if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || | 
|  | iocb->aio_rw_flags)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(!req->file->f_op->fsync)) | 
|  | return -EINVAL; | 
|  |  | 
|  | req->creds = prepare_creds(); | 
|  | if (!req->creds) | 
|  | return -ENOMEM; | 
|  |  | 
|  | req->datasync = datasync; | 
|  | INIT_WORK(&req->work, aio_fsync_work); | 
|  | schedule_work(&req->work); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void aio_poll_put_work(struct work_struct *work) | 
|  | { | 
|  | struct poll_iocb *req = container_of(work, struct poll_iocb, work); | 
|  | struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); | 
|  |  | 
|  | iocb_put(iocb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Safely lock the waitqueue which the request is on, synchronizing with the | 
|  | * case where the ->poll() provider decides to free its waitqueue early. | 
|  | * | 
|  | * Returns true on success, meaning that req->head->lock was locked, req->wait | 
|  | * is on req->head, and an RCU read lock was taken.  Returns false if the | 
|  | * request was already removed from its waitqueue (which might no longer exist). | 
|  | */ | 
|  | static bool poll_iocb_lock_wq(struct poll_iocb *req) | 
|  | { | 
|  | wait_queue_head_t *head; | 
|  |  | 
|  | /* | 
|  | * While we hold the waitqueue lock and the waitqueue is nonempty, | 
|  | * wake_up_pollfree() will wait for us.  However, taking the waitqueue | 
|  | * lock in the first place can race with the waitqueue being freed. | 
|  | * | 
|  | * We solve this as eventpoll does: by taking advantage of the fact that | 
|  | * all users of wake_up_pollfree() will RCU-delay the actual free.  If | 
|  | * we enter rcu_read_lock() and see that the pointer to the queue is | 
|  | * non-NULL, we can then lock it without the memory being freed out from | 
|  | * under us, then check whether the request is still on the queue. | 
|  | * | 
|  | * Keep holding rcu_read_lock() as long as we hold the queue lock, in | 
|  | * case the caller deletes the entry from the queue, leaving it empty. | 
|  | * In that case, only RCU prevents the queue memory from being freed. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | head = smp_load_acquire(&req->head); | 
|  | if (head) { | 
|  | spin_lock(&head->lock); | 
|  | if (!list_empty(&req->wait.entry)) | 
|  | return true; | 
|  | spin_unlock(&head->lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void poll_iocb_unlock_wq(struct poll_iocb *req) | 
|  | { | 
|  | spin_unlock(&req->head->lock); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void aio_poll_complete_work(struct work_struct *work) | 
|  | { | 
|  | struct poll_iocb *req = container_of(work, struct poll_iocb, work); | 
|  | struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); | 
|  | struct poll_table_struct pt = { ._key = req->events }; | 
|  | struct kioctx *ctx = iocb->ki_ctx; | 
|  | __poll_t mask = 0; | 
|  |  | 
|  | if (!READ_ONCE(req->cancelled)) | 
|  | mask = vfs_poll(req->file, &pt) & req->events; | 
|  |  | 
|  | /* | 
|  | * Note that ->ki_cancel callers also delete iocb from active_reqs after | 
|  | * calling ->ki_cancel.  We need the ctx_lock roundtrip here to | 
|  | * synchronize with them.  In the cancellation case the list_del_init | 
|  | * itself is not actually needed, but harmless so we keep it in to | 
|  | * avoid further branches in the fast path. | 
|  | */ | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | if (poll_iocb_lock_wq(req)) { | 
|  | if (!mask && !READ_ONCE(req->cancelled)) { | 
|  | /* | 
|  | * The request isn't actually ready to be completed yet. | 
|  | * Reschedule completion if another wakeup came in. | 
|  | */ | 
|  | if (req->work_need_resched) { | 
|  | schedule_work(&req->work); | 
|  | req->work_need_resched = false; | 
|  | } else { | 
|  | req->work_scheduled = false; | 
|  | } | 
|  | poll_iocb_unlock_wq(req); | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | return; | 
|  | } | 
|  | list_del_init(&req->wait.entry); | 
|  | poll_iocb_unlock_wq(req); | 
|  | } /* else, POLLFREE has freed the waitqueue, so we must complete */ | 
|  | list_del_init(&iocb->ki_list); | 
|  | iocb->ki_res.res = mangle_poll(mask); | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | iocb_put(iocb); | 
|  | } | 
|  |  | 
|  | /* assumes we are called with irqs disabled */ | 
|  | static int aio_poll_cancel(struct kiocb *iocb) | 
|  | { | 
|  | struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); | 
|  | struct poll_iocb *req = &aiocb->poll; | 
|  |  | 
|  | if (poll_iocb_lock_wq(req)) { | 
|  | WRITE_ONCE(req->cancelled, true); | 
|  | if (!req->work_scheduled) { | 
|  | schedule_work(&aiocb->poll.work); | 
|  | req->work_scheduled = true; | 
|  | } | 
|  | poll_iocb_unlock_wq(req); | 
|  | } /* else, the request was force-cancelled by POLLFREE already */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, | 
|  | void *key) | 
|  | { | 
|  | struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); | 
|  | struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); | 
|  | __poll_t mask = key_to_poll(key); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* for instances that support it check for an event match first: */ | 
|  | if (mask && !(mask & req->events)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Complete the request inline if possible.  This requires that three | 
|  | * conditions be met: | 
|  | *   1. An event mask must have been passed.  If a plain wakeup was done | 
|  | *	instead, then mask == 0 and we have to call vfs_poll() to get | 
|  | *	the events, so inline completion isn't possible. | 
|  | *   2. The completion work must not have already been scheduled. | 
|  | *   3. ctx_lock must not be busy.  We have to use trylock because we | 
|  | *	already hold the waitqueue lock, so this inverts the normal | 
|  | *	locking order.  Use irqsave/irqrestore because not all | 
|  | *	filesystems (e.g. fuse) call this function with IRQs disabled, | 
|  | *	yet IRQs have to be disabled before ctx_lock is obtained. | 
|  | */ | 
|  | if (mask && !req->work_scheduled && | 
|  | spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { | 
|  | struct kioctx *ctx = iocb->ki_ctx; | 
|  |  | 
|  | list_del_init(&req->wait.entry); | 
|  | list_del(&iocb->ki_list); | 
|  | iocb->ki_res.res = mangle_poll(mask); | 
|  | if (iocb->ki_eventfd && !eventfd_signal_allowed()) { | 
|  | iocb = NULL; | 
|  | INIT_WORK(&req->work, aio_poll_put_work); | 
|  | schedule_work(&req->work); | 
|  | } | 
|  | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
|  | if (iocb) | 
|  | iocb_put(iocb); | 
|  | } else { | 
|  | /* | 
|  | * Schedule the completion work if needed.  If it was already | 
|  | * scheduled, record that another wakeup came in. | 
|  | * | 
|  | * Don't remove the request from the waitqueue here, as it might | 
|  | * not actually be complete yet (we won't know until vfs_poll() | 
|  | * is called), and we must not miss any wakeups.  POLLFREE is an | 
|  | * exception to this; see below. | 
|  | */ | 
|  | if (req->work_scheduled) { | 
|  | req->work_need_resched = true; | 
|  | } else { | 
|  | schedule_work(&req->work); | 
|  | req->work_scheduled = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the waitqueue is being freed early but we can't complete | 
|  | * the request inline, we have to tear down the request as best | 
|  | * we can.  That means immediately removing the request from its | 
|  | * waitqueue and preventing all further accesses to the | 
|  | * waitqueue via the request.  We also need to schedule the | 
|  | * completion work (done above).  Also mark the request as | 
|  | * cancelled, to potentially skip an unneeded call to ->poll(). | 
|  | */ | 
|  | if (mask & POLLFREE) { | 
|  | WRITE_ONCE(req->cancelled, true); | 
|  | list_del_init(&req->wait.entry); | 
|  |  | 
|  | /* | 
|  | * Careful: this *must* be the last step, since as soon | 
|  | * as req->head is NULL'ed out, the request can be | 
|  | * completed and freed, since aio_poll_complete_work() | 
|  | * will no longer need to take the waitqueue lock. | 
|  | */ | 
|  | smp_store_release(&req->head, NULL); | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct aio_poll_table { | 
|  | struct poll_table_struct	pt; | 
|  | struct aio_kiocb		*iocb; | 
|  | bool				queued; | 
|  | int				error; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, | 
|  | struct poll_table_struct *p) | 
|  | { | 
|  | struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); | 
|  |  | 
|  | /* multiple wait queues per file are not supported */ | 
|  | if (unlikely(pt->queued)) { | 
|  | pt->error = -EINVAL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | pt->queued = true; | 
|  | pt->error = 0; | 
|  | pt->iocb->poll.head = head; | 
|  | add_wait_queue(head, &pt->iocb->poll.wait); | 
|  | } | 
|  |  | 
|  | static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) | 
|  | { | 
|  | struct kioctx *ctx = aiocb->ki_ctx; | 
|  | struct poll_iocb *req = &aiocb->poll; | 
|  | struct aio_poll_table apt; | 
|  | bool cancel = false; | 
|  | __poll_t mask; | 
|  |  | 
|  | /* reject any unknown events outside the normal event mask. */ | 
|  | if ((u16)iocb->aio_buf != iocb->aio_buf) | 
|  | return -EINVAL; | 
|  | /* reject fields that are not defined for poll */ | 
|  | if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | INIT_WORK(&req->work, aio_poll_complete_work); | 
|  | req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; | 
|  |  | 
|  | req->head = NULL; | 
|  | req->cancelled = false; | 
|  | req->work_scheduled = false; | 
|  | req->work_need_resched = false; | 
|  |  | 
|  | apt.pt._qproc = aio_poll_queue_proc; | 
|  | apt.pt._key = req->events; | 
|  | apt.iocb = aiocb; | 
|  | apt.queued = false; | 
|  | apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ | 
|  |  | 
|  | /* initialized the list so that we can do list_empty checks */ | 
|  | INIT_LIST_HEAD(&req->wait.entry); | 
|  | init_waitqueue_func_entry(&req->wait, aio_poll_wake); | 
|  |  | 
|  | mask = vfs_poll(req->file, &apt.pt) & req->events; | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | if (likely(apt.queued)) { | 
|  | bool on_queue = poll_iocb_lock_wq(req); | 
|  |  | 
|  | if (!on_queue || req->work_scheduled) { | 
|  | /* | 
|  | * aio_poll_wake() already either scheduled the async | 
|  | * completion work, or completed the request inline. | 
|  | */ | 
|  | if (apt.error) /* unsupported case: multiple queues */ | 
|  | cancel = true; | 
|  | apt.error = 0; | 
|  | mask = 0; | 
|  | } | 
|  | if (mask || apt.error) { | 
|  | /* Steal to complete synchronously. */ | 
|  | list_del_init(&req->wait.entry); | 
|  | } else if (cancel) { | 
|  | /* Cancel if possible (may be too late though). */ | 
|  | WRITE_ONCE(req->cancelled, true); | 
|  | } else if (on_queue) { | 
|  | /* | 
|  | * Actually waiting for an event, so add the request to | 
|  | * active_reqs so that it can be cancelled if needed. | 
|  | */ | 
|  | list_add_tail(&aiocb->ki_list, &ctx->active_reqs); | 
|  | aiocb->ki_cancel = aio_poll_cancel; | 
|  | } | 
|  | if (on_queue) | 
|  | poll_iocb_unlock_wq(req); | 
|  | } | 
|  | if (mask) { /* no async, we'd stolen it */ | 
|  | aiocb->ki_res.res = mangle_poll(mask); | 
|  | apt.error = 0; | 
|  | } | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  | if (mask) | 
|  | iocb_put(aiocb); | 
|  | return apt.error; | 
|  | } | 
|  |  | 
|  | static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, | 
|  | struct iocb __user *user_iocb, struct aio_kiocb *req, | 
|  | bool compat) | 
|  | { | 
|  | req->ki_filp = fget(iocb->aio_fildes); | 
|  | if (unlikely(!req->ki_filp)) | 
|  | return -EBADF; | 
|  |  | 
|  | if (iocb->aio_flags & IOCB_FLAG_RESFD) { | 
|  | struct eventfd_ctx *eventfd; | 
|  | /* | 
|  | * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an | 
|  | * instance of the file* now. The file descriptor must be | 
|  | * an eventfd() fd, and will be signaled for each completed | 
|  | * event using the eventfd_signal() function. | 
|  | */ | 
|  | eventfd = eventfd_ctx_fdget(iocb->aio_resfd); | 
|  | if (IS_ERR(eventfd)) | 
|  | return PTR_ERR(eventfd); | 
|  |  | 
|  | req->ki_eventfd = eventfd; | 
|  | } | 
|  |  | 
|  | if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { | 
|  | pr_debug("EFAULT: aio_key\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | req->ki_res.obj = (u64)(unsigned long)user_iocb; | 
|  | req->ki_res.data = iocb->aio_data; | 
|  | req->ki_res.res = 0; | 
|  | req->ki_res.res2 = 0; | 
|  |  | 
|  | switch (iocb->aio_lio_opcode) { | 
|  | case IOCB_CMD_PREAD: | 
|  | return aio_read(&req->rw, iocb, false, compat); | 
|  | case IOCB_CMD_PWRITE: | 
|  | return aio_write(&req->rw, iocb, false, compat); | 
|  | case IOCB_CMD_PREADV: | 
|  | return aio_read(&req->rw, iocb, true, compat); | 
|  | case IOCB_CMD_PWRITEV: | 
|  | return aio_write(&req->rw, iocb, true, compat); | 
|  | case IOCB_CMD_FSYNC: | 
|  | return aio_fsync(&req->fsync, iocb, false); | 
|  | case IOCB_CMD_FDSYNC: | 
|  | return aio_fsync(&req->fsync, iocb, true); | 
|  | case IOCB_CMD_POLL: | 
|  | return aio_poll(req, iocb); | 
|  | default: | 
|  | pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, | 
|  | bool compat) | 
|  | { | 
|  | struct aio_kiocb *req; | 
|  | struct iocb iocb; | 
|  | int err; | 
|  |  | 
|  | if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* enforce forwards compatibility on users */ | 
|  | if (unlikely(iocb.aio_reserved2)) { | 
|  | pr_debug("EINVAL: reserve field set\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* prevent overflows */ | 
|  | if (unlikely( | 
|  | (iocb.aio_buf != (unsigned long)iocb.aio_buf) || | 
|  | (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || | 
|  | ((ssize_t)iocb.aio_nbytes < 0) | 
|  | )) { | 
|  | pr_debug("EINVAL: overflow check\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | req = aio_get_req(ctx); | 
|  | if (unlikely(!req)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); | 
|  |  | 
|  | /* Done with the synchronous reference */ | 
|  | iocb_put(req); | 
|  |  | 
|  | /* | 
|  | * If err is 0, we'd either done aio_complete() ourselves or have | 
|  | * arranged for that to be done asynchronously.  Anything non-zero | 
|  | * means that we need to destroy req ourselves. | 
|  | */ | 
|  | if (unlikely(err)) { | 
|  | iocb_destroy(req); | 
|  | put_reqs_available(ctx, 1); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* sys_io_submit: | 
|  | *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns | 
|  | *	the number of iocbs queued.  May return -EINVAL if the aio_context | 
|  | *	specified by ctx_id is invalid, if nr is < 0, if the iocb at | 
|  | *	*iocbpp[0] is not properly initialized, if the operation specified | 
|  | *	is invalid for the file descriptor in the iocb.  May fail with | 
|  | *	-EFAULT if any of the data structures point to invalid data.  May | 
|  | *	fail with -EBADF if the file descriptor specified in the first | 
|  | *	iocb is invalid.  May fail with -EAGAIN if insufficient resources | 
|  | *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will | 
|  | *	fail with -ENOSYS if not implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, | 
|  | struct iocb __user * __user *, iocbpp) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  | long ret = 0; | 
|  | int i = 0; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | if (unlikely(nr < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx = lookup_ioctx(ctx_id); | 
|  | if (unlikely(!ctx)) { | 
|  | pr_debug("EINVAL: invalid context id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (nr > ctx->nr_events) | 
|  | nr = ctx->nr_events; | 
|  |  | 
|  | if (nr > AIO_PLUG_THRESHOLD) | 
|  | blk_start_plug(&plug); | 
|  | for (i = 0; i < nr; i++) { | 
|  | struct iocb __user *user_iocb; | 
|  |  | 
|  | if (unlikely(get_user(user_iocb, iocbpp + i))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = io_submit_one(ctx, user_iocb, false); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | if (nr > AIO_PLUG_THRESHOLD) | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | percpu_ref_put(&ctx->users); | 
|  | return i ? i : ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, | 
|  | int, nr, compat_uptr_t __user *, iocbpp) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  | long ret = 0; | 
|  | int i = 0; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | if (unlikely(nr < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx = lookup_ioctx(ctx_id); | 
|  | if (unlikely(!ctx)) { | 
|  | pr_debug("EINVAL: invalid context id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (nr > ctx->nr_events) | 
|  | nr = ctx->nr_events; | 
|  |  | 
|  | if (nr > AIO_PLUG_THRESHOLD) | 
|  | blk_start_plug(&plug); | 
|  | for (i = 0; i < nr; i++) { | 
|  | compat_uptr_t user_iocb; | 
|  |  | 
|  | if (unlikely(get_user(user_iocb, iocbpp + i))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = io_submit_one(ctx, compat_ptr(user_iocb), true); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | if (nr > AIO_PLUG_THRESHOLD) | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | percpu_ref_put(&ctx->users); | 
|  | return i ? i : ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* sys_io_cancel: | 
|  | *	Attempts to cancel an iocb previously passed to io_submit.  If | 
|  | *	the operation is successfully cancelled, the resulting event is | 
|  | *	copied into the memory pointed to by result without being placed | 
|  | *	into the completion queue and 0 is returned.  May fail with | 
|  | *	-EFAULT if any of the data structures pointed to are invalid. | 
|  | *	May fail with -EINVAL if aio_context specified by ctx_id is | 
|  | *	invalid.  May fail with -EAGAIN if the iocb specified was not | 
|  | *	cancelled.  Will fail with -ENOSYS if not implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, | 
|  | struct io_event __user *, result) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  | struct aio_kiocb *kiocb; | 
|  | int ret = -EINVAL; | 
|  | u32 key; | 
|  | u64 obj = (u64)(unsigned long)iocb; | 
|  |  | 
|  | if (unlikely(get_user(key, &iocb->aio_key))) | 
|  | return -EFAULT; | 
|  | if (unlikely(key != KIOCB_KEY)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx = lookup_ioctx(ctx_id); | 
|  | if (unlikely(!ctx)) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  | list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { | 
|  | if (kiocb->ki_res.obj == obj) { | 
|  | ret = kiocb->ki_cancel(&kiocb->rw); | 
|  | list_del_init(&kiocb->ki_list); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | if (!ret) { | 
|  | /* | 
|  | * The result argument is no longer used - the io_event is | 
|  | * always delivered via the ring buffer. -EINPROGRESS indicates | 
|  | * cancellation is progress: | 
|  | */ | 
|  | ret = -EINPROGRESS; | 
|  | } | 
|  |  | 
|  | percpu_ref_put(&ctx->users); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long do_io_getevents(aio_context_t ctx_id, | 
|  | long min_nr, | 
|  | long nr, | 
|  | struct io_event __user *events, | 
|  | struct timespec64 *ts) | 
|  | { | 
|  | ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; | 
|  | struct kioctx *ioctx = lookup_ioctx(ctx_id); | 
|  | long ret = -EINVAL; | 
|  |  | 
|  | if (likely(ioctx)) { | 
|  | if (likely(min_nr <= nr && min_nr >= 0)) | 
|  | ret = read_events(ioctx, min_nr, nr, events, until); | 
|  | percpu_ref_put(&ioctx->users); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* io_getevents: | 
|  | *	Attempts to read at least min_nr events and up to nr events from | 
|  | *	the completion queue for the aio_context specified by ctx_id. If | 
|  | *	it succeeds, the number of read events is returned. May fail with | 
|  | *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is | 
|  | *	out of range, if timeout is out of range.  May fail with -EFAULT | 
|  | *	if any of the memory specified is invalid.  May return 0 or | 
|  | *	< min_nr if the timeout specified by timeout has elapsed | 
|  | *	before sufficient events are available, where timeout == NULL | 
|  | *	specifies an infinite timeout. Note that the timeout pointed to by | 
|  | *	timeout is relative.  Will fail with -ENOSYS if not implemented. | 
|  | */ | 
|  | #ifdef CONFIG_64BIT | 
|  |  | 
|  | SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, | 
|  | long, min_nr, | 
|  | long, nr, | 
|  | struct io_event __user *, events, | 
|  | struct __kernel_timespec __user *, timeout) | 
|  | { | 
|  | struct timespec64	ts; | 
|  | int			ret; | 
|  |  | 
|  | if (timeout && unlikely(get_timespec64(&ts, timeout))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); | 
|  | if (!ret && signal_pending(current)) | 
|  | ret = -EINTR; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | struct __aio_sigset { | 
|  | const sigset_t __user	*sigmask; | 
|  | size_t		sigsetsize; | 
|  | }; | 
|  |  | 
|  | SYSCALL_DEFINE6(io_pgetevents, | 
|  | aio_context_t, ctx_id, | 
|  | long, min_nr, | 
|  | long, nr, | 
|  | struct io_event __user *, events, | 
|  | struct __kernel_timespec __user *, timeout, | 
|  | const struct __aio_sigset __user *, usig) | 
|  | { | 
|  | struct __aio_sigset	ksig = { NULL, }; | 
|  | struct timespec64	ts; | 
|  | bool interrupted; | 
|  | int ret; | 
|  |  | 
|  | if (timeout && unlikely(get_timespec64(&ts, timeout))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); | 
|  |  | 
|  | interrupted = signal_pending(current); | 
|  | restore_saved_sigmask_unless(interrupted); | 
|  | if (interrupted && !ret) | 
|  | ret = -ERESTARTNOHAND; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) | 
|  |  | 
|  | SYSCALL_DEFINE6(io_pgetevents_time32, | 
|  | aio_context_t, ctx_id, | 
|  | long, min_nr, | 
|  | long, nr, | 
|  | struct io_event __user *, events, | 
|  | struct old_timespec32 __user *, timeout, | 
|  | const struct __aio_sigset __user *, usig) | 
|  | { | 
|  | struct __aio_sigset	ksig = { NULL, }; | 
|  | struct timespec64	ts; | 
|  | bool interrupted; | 
|  | int ret; | 
|  |  | 
|  | if (timeout && unlikely(get_old_timespec32(&ts, timeout))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) | 
|  | return -EFAULT; | 
|  |  | 
|  |  | 
|  | ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); | 
|  |  | 
|  | interrupted = signal_pending(current); | 
|  | restore_saved_sigmask_unless(interrupted); | 
|  | if (interrupted && !ret) | 
|  | ret = -ERESTARTNOHAND; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_COMPAT_32BIT_TIME) | 
|  |  | 
|  | SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, | 
|  | __s32, min_nr, | 
|  | __s32, nr, | 
|  | struct io_event __user *, events, | 
|  | struct old_timespec32 __user *, timeout) | 
|  | { | 
|  | struct timespec64 t; | 
|  | int ret; | 
|  |  | 
|  | if (timeout && get_old_timespec32(&t, timeout)) | 
|  | return -EFAULT; | 
|  |  | 
|  | ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); | 
|  | if (!ret && signal_pending(current)) | 
|  | ret = -EINTR; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  |  | 
|  | struct __compat_aio_sigset { | 
|  | compat_uptr_t		sigmask; | 
|  | compat_size_t		sigsetsize; | 
|  | }; | 
|  |  | 
|  | #if defined(CONFIG_COMPAT_32BIT_TIME) | 
|  |  | 
|  | COMPAT_SYSCALL_DEFINE6(io_pgetevents, | 
|  | compat_aio_context_t, ctx_id, | 
|  | compat_long_t, min_nr, | 
|  | compat_long_t, nr, | 
|  | struct io_event __user *, events, | 
|  | struct old_timespec32 __user *, timeout, | 
|  | const struct __compat_aio_sigset __user *, usig) | 
|  | { | 
|  | struct __compat_aio_sigset ksig = { 0, }; | 
|  | struct timespec64 t; | 
|  | bool interrupted; | 
|  | int ret; | 
|  |  | 
|  | if (timeout && get_old_timespec32(&t, timeout)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); | 
|  |  | 
|  | interrupted = signal_pending(current); | 
|  | restore_saved_sigmask_unless(interrupted); | 
|  | if (interrupted && !ret) | 
|  | ret = -ERESTARTNOHAND; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, | 
|  | compat_aio_context_t, ctx_id, | 
|  | compat_long_t, min_nr, | 
|  | compat_long_t, nr, | 
|  | struct io_event __user *, events, | 
|  | struct __kernel_timespec __user *, timeout, | 
|  | const struct __compat_aio_sigset __user *, usig) | 
|  | { | 
|  | struct __compat_aio_sigset ksig = { 0, }; | 
|  | struct timespec64 t; | 
|  | bool interrupted; | 
|  | int ret; | 
|  |  | 
|  | if (timeout && get_timespec64(&t, timeout)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); | 
|  |  | 
|  | interrupted = signal_pending(current); | 
|  | restore_saved_sigmask_unless(interrupted); | 
|  | if (interrupted && !ret) | 
|  | ret = -ERESTARTNOHAND; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif |