|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | #include "misc.h" | 
|  | #include "ctree.h" | 
|  | #include "block-rsv.h" | 
|  | #include "space-info.h" | 
|  | #include "transaction.h" | 
|  | #include "block-group.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  |  | 
|  | /* | 
|  | * HOW DO BLOCK RESERVES WORK | 
|  | * | 
|  | *   Think of block_rsv's as buckets for logically grouped metadata | 
|  | *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is | 
|  | *   how large we want our block rsv to be, ->reserved is how much space is | 
|  | *   currently reserved for this block reserve. | 
|  | * | 
|  | *   ->failfast exists for the truncate case, and is described below. | 
|  | * | 
|  | * NORMAL OPERATION | 
|  | * | 
|  | *   -> Reserve | 
|  | *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill | 
|  | * | 
|  | *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is | 
|  | *     accounted for in space_info->bytes_may_use, and then add the bytes to | 
|  | *     ->reserved, and ->size in the case of btrfs_block_rsv_add. | 
|  | * | 
|  | *     ->size is an over-estimation of how much we may use for a particular | 
|  | *     operation. | 
|  | * | 
|  | *   -> Use | 
|  | *     Entrance: btrfs_use_block_rsv | 
|  | * | 
|  | *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() | 
|  | *     to determine the appropriate block_rsv to use, and then verify that | 
|  | *     ->reserved has enough space for our tree block allocation.  Once | 
|  | *     successful we subtract fs_info->nodesize from ->reserved. | 
|  | * | 
|  | *   -> Finish | 
|  | *     Entrance: btrfs_block_rsv_release | 
|  | * | 
|  | *     We are finished with our operation, subtract our individual reservation | 
|  | *     from ->size, and then subtract ->size from ->reserved and free up the | 
|  | *     excess if there is any. | 
|  | * | 
|  | *     There is some logic here to refill the delayed refs rsv or the global rsv | 
|  | *     as needed, otherwise the excess is subtracted from | 
|  | *     space_info->bytes_may_use. | 
|  | * | 
|  | * TYPES OF BLOCK RESERVES | 
|  | * | 
|  | * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK | 
|  | *   These behave normally, as described above, just within the confines of the | 
|  | *   lifetime of their particular operation (transaction for the whole trans | 
|  | *   handle lifetime, for example). | 
|  | * | 
|  | * BLOCK_RSV_GLOBAL | 
|  | *   It is impossible to properly account for all the space that may be required | 
|  | *   to make our extent tree updates.  This block reserve acts as an overflow | 
|  | *   buffer in case our delayed refs reserve does not reserve enough space to | 
|  | *   update the extent tree. | 
|  | * | 
|  | *   We can steal from this in some cases as well, notably on evict() or | 
|  | *   truncate() in order to help users recover from ENOSPC conditions. | 
|  | * | 
|  | * BLOCK_RSV_DELALLOC | 
|  | *   The individual item sizes are determined by the per-inode size | 
|  | *   calculations, which are described with the delalloc code.  This is pretty | 
|  | *   straightforward, it's just the calculation of ->size encodes a lot of | 
|  | *   different items, and thus it gets used when updating inodes, inserting file | 
|  | *   extents, and inserting checksums. | 
|  | * | 
|  | * BLOCK_RSV_DELREFS | 
|  | *   We keep a running tally of how many delayed refs we have on the system. | 
|  | *   We assume each one of these delayed refs are going to use a full | 
|  | *   reservation.  We use the transaction items and pre-reserve space for every | 
|  | *   operation, and use this reservation to refill any gap between ->size and | 
|  | *   ->reserved that may exist. | 
|  | * | 
|  | *   From there it's straightforward, removing a delayed ref means we remove its | 
|  | *   count from ->size and free up reservations as necessary.  Since this is | 
|  | *   the most dynamic block reserve in the system, we will try to refill this | 
|  | *   block reserve first with any excess returned by any other block reserve. | 
|  | * | 
|  | * BLOCK_RSV_EMPTY | 
|  | *   This is the fallback block reserve to make us try to reserve space if we | 
|  | *   don't have a specific bucket for this allocation.  It is mostly used for | 
|  | *   updating the device tree and such, since that is a separate pool we're | 
|  | *   content to just reserve space from the space_info on demand. | 
|  | * | 
|  | * BLOCK_RSV_TEMP | 
|  | *   This is used by things like truncate and iput.  We will temporarily | 
|  | *   allocate a block reserve, set it to some size, and then truncate bytes | 
|  | *   until we have no space left.  With ->failfast set we'll simply return | 
|  | *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try | 
|  | *   to make a new reservation.  This is because these operations are | 
|  | *   unbounded, so we want to do as much work as we can, and then back off and | 
|  | *   re-reserve. | 
|  | */ | 
|  |  | 
|  | static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | struct btrfs_block_rsv *dest, u64 num_bytes, | 
|  | u64 *qgroup_to_release_ret) | 
|  | { | 
|  | struct btrfs_space_info *space_info = block_rsv->space_info; | 
|  | u64 qgroup_to_release = 0; | 
|  | u64 ret; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (num_bytes == (u64)-1) { | 
|  | num_bytes = block_rsv->size; | 
|  | qgroup_to_release = block_rsv->qgroup_rsv_size; | 
|  | } | 
|  | block_rsv->size -= num_bytes; | 
|  | if (block_rsv->reserved >= block_rsv->size) { | 
|  | num_bytes = block_rsv->reserved - block_rsv->size; | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | block_rsv->full = true; | 
|  | } else { | 
|  | num_bytes = 0; | 
|  | } | 
|  | if (qgroup_to_release_ret && | 
|  | block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { | 
|  | qgroup_to_release = block_rsv->qgroup_rsv_reserved - | 
|  | block_rsv->qgroup_rsv_size; | 
|  | block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; | 
|  | } else { | 
|  | qgroup_to_release = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | ret = num_bytes; | 
|  | if (num_bytes > 0) { | 
|  | if (dest) { | 
|  | spin_lock(&dest->lock); | 
|  | if (!dest->full) { | 
|  | u64 bytes_to_add; | 
|  |  | 
|  | bytes_to_add = dest->size - dest->reserved; | 
|  | bytes_to_add = min(num_bytes, bytes_to_add); | 
|  | dest->reserved += bytes_to_add; | 
|  | if (dest->reserved >= dest->size) | 
|  | dest->full = true; | 
|  | num_bytes -= bytes_to_add; | 
|  | } | 
|  | spin_unlock(&dest->lock); | 
|  | } | 
|  | if (num_bytes) | 
|  | btrfs_space_info_free_bytes_may_use(space_info, num_bytes); | 
|  | } | 
|  | if (qgroup_to_release_ret) | 
|  | *qgroup_to_release_ret = qgroup_to_release; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, | 
|  | struct btrfs_block_rsv *dst, u64 num_bytes, | 
|  | bool update_size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_block_rsv_use_bytes(src, num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) | 
|  | { | 
|  | memset(rsv, 0, sizeof(*rsv)); | 
|  | spin_lock_init(&rsv->lock); | 
|  | rsv->type = type; | 
|  | } | 
|  |  | 
|  | void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *rsv, | 
|  | enum btrfs_rsv_type type) | 
|  | { | 
|  | btrfs_init_block_rsv(rsv, type); | 
|  | rsv->space_info = btrfs_find_space_info(fs_info, | 
|  | BTRFS_BLOCK_GROUP_METADATA); | 
|  | } | 
|  |  | 
|  | struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | enum btrfs_rsv_type type) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  |  | 
|  | block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); | 
|  | if (!block_rsv) | 
|  | return NULL; | 
|  |  | 
|  | btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | if (!rsv) | 
|  | return; | 
|  | btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); | 
|  | kfree(rsv); | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, u64 num_bytes, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (num_bytes == 0) | 
|  | return 0; | 
|  |  | 
|  | ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, | 
|  | num_bytes, flush); | 
|  | if (!ret) | 
|  | btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent) | 
|  | { | 
|  | u64 num_bytes = 0; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | num_bytes = mult_perc(block_rsv->size, min_percent); | 
|  | if (block_rsv->reserved >= num_bytes) | 
|  | ret = 0; | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, u64 num_bytes, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | if (!block_rsv) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (block_rsv->reserved >= num_bytes) | 
|  | ret = 0; | 
|  | else | 
|  | num_bytes -= block_rsv->reserved; | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, | 
|  | num_bytes, flush); | 
|  | if (!ret) { | 
|  | btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, u64 num_bytes, | 
|  | u64 *qgroup_to_release) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; | 
|  | struct btrfs_block_rsv *target = NULL; | 
|  |  | 
|  | /* | 
|  | * If we are a delayed block reserve then push to the global rsv, | 
|  | * otherwise dump into the global delayed reserve if it is not full. | 
|  | */ | 
|  | if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS) | 
|  | target = global_rsv; | 
|  | else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv)) | 
|  | target = delayed_rsv; | 
|  |  | 
|  | if (target && block_rsv->space_info != target->space_info) | 
|  | target = NULL; | 
|  |  | 
|  | return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, | 
|  | qgroup_to_release); | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) | 
|  | { | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (block_rsv->reserved >= num_bytes) { | 
|  | block_rsv->reserved -= num_bytes; | 
|  | if (block_rsv->reserved < block_rsv->size) | 
|  | block_rsv->full = false; | 
|  | ret = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes, bool update_size) | 
|  | { | 
|  | spin_lock(&block_rsv->lock); | 
|  | block_rsv->reserved += num_bytes; | 
|  | if (update_size) | 
|  | block_rsv->size += num_bytes; | 
|  | else if (block_rsv->reserved >= block_rsv->size) | 
|  | block_rsv->full = true; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | } | 
|  |  | 
|  | void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_space_info *sinfo = block_rsv->space_info; | 
|  | struct btrfs_root *root, *tmp; | 
|  | u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); | 
|  | unsigned int min_items = 1; | 
|  |  | 
|  | /* | 
|  | * The global block rsv is based on the size of the extent tree, the | 
|  | * checksum tree and the root tree.  If the fs is empty we want to set | 
|  | * it to a minimal amount for safety. | 
|  | * | 
|  | * We also are going to need to modify the minimum of the tree root and | 
|  | * any global roots we could touch. | 
|  | */ | 
|  | read_lock(&fs_info->global_root_lock); | 
|  | rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, | 
|  | rb_node) { | 
|  | if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID || | 
|  | btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID || | 
|  | btrfs_root_id(root) == BTRFS_FREE_SPACE_TREE_OBJECTID) { | 
|  | num_bytes += btrfs_root_used(&root->root_item); | 
|  | min_items++; | 
|  | } | 
|  | } | 
|  | read_unlock(&fs_info->global_root_lock); | 
|  |  | 
|  | if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { | 
|  | num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item); | 
|  | min_items++; | 
|  | } | 
|  |  | 
|  | if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { | 
|  | num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item); | 
|  | min_items++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * But we also want to reserve enough space so we can do the fallback | 
|  | * global reserve for an unlink, which is an additional | 
|  | * BTRFS_UNLINK_METADATA_UNITS items. | 
|  | * | 
|  | * But we also need space for the delayed ref updates from the unlink, | 
|  | * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for | 
|  | * each unlink metadata item. | 
|  | */ | 
|  | min_items += BTRFS_UNLINK_METADATA_UNITS; | 
|  |  | 
|  | num_bytes = max_t(u64, num_bytes, | 
|  | btrfs_calc_insert_metadata_size(fs_info, min_items) + | 
|  | btrfs_calc_delayed_ref_bytes(fs_info, | 
|  | BTRFS_UNLINK_METADATA_UNITS)); | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&block_rsv->lock); | 
|  |  | 
|  | block_rsv->size = min_t(u64, num_bytes, SZ_512M); | 
|  |  | 
|  | if (block_rsv->reserved < block_rsv->size) { | 
|  | num_bytes = block_rsv->size - block_rsv->reserved; | 
|  | btrfs_space_info_update_bytes_may_use(sinfo, num_bytes); | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | } else if (block_rsv->reserved > block_rsv->size) { | 
|  | num_bytes = block_rsv->reserved - block_rsv->size; | 
|  | btrfs_space_info_update_bytes_may_use(sinfo, -num_bytes); | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | btrfs_try_granting_tickets(fs_info, sinfo); | 
|  | } | 
|  |  | 
|  | block_rsv->full = (block_rsv->reserved == block_rsv->size); | 
|  |  | 
|  | if (block_rsv->size >= sinfo->total_bytes) | 
|  | sinfo->force_alloc = CHUNK_ALLOC_FORCE; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | } | 
|  |  | 
|  | void btrfs_init_root_block_rsv(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | switch (btrfs_root_id(root)) { | 
|  | case BTRFS_CSUM_TREE_OBJECTID: | 
|  | case BTRFS_EXTENT_TREE_OBJECTID: | 
|  | case BTRFS_FREE_SPACE_TREE_OBJECTID: | 
|  | case BTRFS_BLOCK_GROUP_TREE_OBJECTID: | 
|  | case BTRFS_RAID_STRIPE_TREE_OBJECTID: | 
|  | root->block_rsv = &fs_info->delayed_refs_rsv; | 
|  | break; | 
|  | case BTRFS_ROOT_TREE_OBJECTID: | 
|  | case BTRFS_DEV_TREE_OBJECTID: | 
|  | case BTRFS_QUOTA_TREE_OBJECTID: | 
|  | root->block_rsv = &fs_info->global_block_rsv; | 
|  | break; | 
|  | case BTRFS_CHUNK_TREE_OBJECTID: | 
|  | root->block_rsv = &fs_info->chunk_block_rsv; | 
|  | break; | 
|  | case BTRFS_TREE_LOG_OBJECTID: | 
|  | root->block_rsv = &fs_info->treelog_rsv; | 
|  | break; | 
|  | default: | 
|  | root->block_rsv = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  |  | 
|  | space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
|  | fs_info->chunk_block_rsv.space_info = space_info; | 
|  |  | 
|  | space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  | fs_info->global_block_rsv.space_info = space_info; | 
|  | fs_info->trans_block_rsv.space_info = space_info; | 
|  | fs_info->empty_block_rsv.space_info = space_info; | 
|  | fs_info->delayed_block_rsv.space_info = space_info; | 
|  | fs_info->delayed_refs_rsv.space_info = space_info; | 
|  |  | 
|  | /* The treelog_rsv uses a dedicated space_info on the zoned mode. */ | 
|  | if (!btrfs_is_zoned(fs_info)) { | 
|  | fs_info->treelog_rsv.space_info = space_info; | 
|  | } else { | 
|  | ASSERT(space_info->sub_group[0]->subgroup_id == BTRFS_SUB_GROUP_TREELOG); | 
|  | fs_info->treelog_rsv.space_info = space_info->sub_group[0]; | 
|  | } | 
|  |  | 
|  | btrfs_update_global_block_rsv(fs_info); | 
|  | } | 
|  |  | 
|  | void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, | 
|  | NULL); | 
|  | WARN_ON(fs_info->trans_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->trans_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->chunk_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->chunk_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->delayed_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->delayed_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->delayed_refs_rsv.size > 0); | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_rsv *get_block_rsv( | 
|  | const struct btrfs_trans_handle *trans, | 
|  | const struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_rsv *block_rsv = NULL; | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || | 
|  | (root == fs_info->uuid_root) || | 
|  | (trans->adding_csums && btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID)) | 
|  | block_rsv = trans->block_rsv; | 
|  |  | 
|  | if (!block_rsv) | 
|  | block_rsv = root->block_rsv; | 
|  |  | 
|  | if (!block_rsv) | 
|  | block_rsv = &fs_info->empty_block_rsv; | 
|  |  | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u32 blocksize) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | int ret; | 
|  | bool global_updated = false; | 
|  |  | 
|  | block_rsv = get_block_rsv(trans, root); | 
|  |  | 
|  | if (unlikely(btrfs_block_rsv_size(block_rsv) == 0)) | 
|  | goto try_reserve; | 
|  | again: | 
|  | ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); | 
|  | if (!ret) | 
|  | return block_rsv; | 
|  |  | 
|  | if (block_rsv->failfast) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { | 
|  | global_updated = true; | 
|  | btrfs_update_global_block_rsv(fs_info); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The global reserve still exists to save us from ourselves, so don't | 
|  | * warn_on if we are short on our delayed refs reserve. | 
|  | */ | 
|  | if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && | 
|  | btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { | 
|  | static DEFINE_RATELIMIT_STATE(_rs, | 
|  | DEFAULT_RATELIMIT_INTERVAL * 10, | 
|  | /*DEFAULT_RATELIMIT_BURST*/ 1); | 
|  | if (__ratelimit(&_rs)) | 
|  | WARN(1, KERN_DEBUG | 
|  | "BTRFS: block rsv %d returned %d\n", | 
|  | block_rsv->type, ret); | 
|  | } | 
|  | try_reserve: | 
|  | ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, | 
|  | blocksize, BTRFS_RESERVE_NO_FLUSH); | 
|  | if (!ret) | 
|  | return block_rsv; | 
|  | /* | 
|  | * If we couldn't reserve metadata bytes try and use some from | 
|  | * the global reserve if its space type is the same as the global | 
|  | * reservation. | 
|  | */ | 
|  | if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && | 
|  | block_rsv->space_info == global_rsv->space_info) { | 
|  | ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); | 
|  | if (!ret) | 
|  | return global_rsv; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All hope is lost, but of course our reservations are overly | 
|  | * pessimistic, so instead of possibly having an ENOSPC abort here, try | 
|  | * one last time to force a reservation if there's enough actual space | 
|  | * on disk to make the reservation. | 
|  | */ | 
|  | ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize, | 
|  | BTRFS_RESERVE_FLUSH_EMERGENCY); | 
|  | if (!ret) | 
|  | return block_rsv; | 
|  |  | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | int btrfs_check_trunc_cache_free_space(const struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | u64 needed_bytes; | 
|  | int ret; | 
|  |  | 
|  | /* 1 for slack space, 1 for updating the inode */ | 
|  | needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + | 
|  | btrfs_calc_metadata_size(fs_info, 1); | 
|  |  | 
|  | spin_lock(&rsv->lock); | 
|  | if (rsv->reserved < needed_bytes) | 
|  | ret = -ENOSPC; | 
|  | else | 
|  | ret = 0; | 
|  | spin_unlock(&rsv->lock); | 
|  | return ret; | 
|  | } |