|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2009 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/error-injection.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "volumes.h" | 
|  | #include "locking.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "async-thread.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "qgroup.h" | 
|  | #include "print-tree.h" | 
|  | #include "delalloc-space.h" | 
|  | #include "block-group.h" | 
|  | #include "backref.h" | 
|  | #include "misc.h" | 
|  | #include "subpage.h" | 
|  | #include "zoned.h" | 
|  | #include "inode-item.h" | 
|  | #include "space-info.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "extent-tree.h" | 
|  | #include "root-tree.h" | 
|  | #include "file-item.h" | 
|  | #include "relocation.h" | 
|  | #include "super.h" | 
|  | #include "tree-checker.h" | 
|  | #include "raid-stripe-tree.h" | 
|  |  | 
|  | /* | 
|  | * Relocation overview | 
|  | * | 
|  | * [What does relocation do] | 
|  | * | 
|  | * The objective of relocation is to relocate all extents of the target block | 
|  | * group to other block groups. | 
|  | * This is utilized by resize (shrink only), profile converting, compacting | 
|  | * space, or balance routine to spread chunks over devices. | 
|  | * | 
|  | * 		Before		|		After | 
|  | * ------------------------------------------------------------------ | 
|  | *  BG A: 10 data extents	| BG A: deleted | 
|  | *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated) | 
|  | *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated) | 
|  | * | 
|  | * [How does relocation work] | 
|  | * | 
|  | * 1.   Mark the target block group read-only | 
|  | *      New extents won't be allocated from the target block group. | 
|  | * | 
|  | * 2.1  Record each extent in the target block group | 
|  | *      To build a proper map of extents to be relocated. | 
|  | * | 
|  | * 2.2  Build data reloc tree and reloc trees | 
|  | *      Data reloc tree will contain an inode, recording all newly relocated | 
|  | *      data extents. | 
|  | *      There will be only one data reloc tree for one data block group. | 
|  | * | 
|  | *      Reloc tree will be a special snapshot of its source tree, containing | 
|  | *      relocated tree blocks. | 
|  | *      Each tree referring to a tree block in target block group will get its | 
|  | *      reloc tree built. | 
|  | * | 
|  | * 2.3  Swap source tree with its corresponding reloc tree | 
|  | *      Each involved tree only refers to new extents after swap. | 
|  | * | 
|  | * 3.   Cleanup reloc trees and data reloc tree. | 
|  | *      As old extents in the target block group are still referenced by reloc | 
|  | *      trees, we need to clean them up before really freeing the target block | 
|  | *      group. | 
|  | * | 
|  | * The main complexity is in steps 2.2 and 2.3. | 
|  | * | 
|  | * The entry point of relocation is relocate_block_group() function. | 
|  | */ | 
|  |  | 
|  | #define RELOCATION_RESERVED_NODES	256 | 
|  | /* | 
|  | * map address of tree root to tree | 
|  | */ | 
|  | struct mapping_node { | 
|  | union { | 
|  | /* Use rb_simple_node for search/insert */ | 
|  | struct { | 
|  | struct rb_node rb_node; | 
|  | u64 bytenr; | 
|  | }; | 
|  |  | 
|  | struct rb_simple_node simple_node; | 
|  | }; | 
|  | void *data; | 
|  | }; | 
|  |  | 
|  | struct mapping_tree { | 
|  | struct rb_root rb_root; | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * present a tree block to process | 
|  | */ | 
|  | struct tree_block { | 
|  | union { | 
|  | /* Use rb_simple_node for search/insert */ | 
|  | struct { | 
|  | struct rb_node rb_node; | 
|  | u64 bytenr; | 
|  | }; | 
|  |  | 
|  | struct rb_simple_node simple_node; | 
|  | }; | 
|  | u64 owner; | 
|  | struct btrfs_key key; | 
|  | u8 level; | 
|  | bool key_ready; | 
|  | }; | 
|  |  | 
|  | #define MAX_EXTENTS 128 | 
|  |  | 
|  | struct file_extent_cluster { | 
|  | u64 start; | 
|  | u64 end; | 
|  | u64 boundary[MAX_EXTENTS]; | 
|  | unsigned int nr; | 
|  | u64 owning_root; | 
|  | }; | 
|  |  | 
|  | /* Stages of data relocation. */ | 
|  | enum reloc_stage { | 
|  | MOVE_DATA_EXTENTS, | 
|  | UPDATE_DATA_PTRS | 
|  | }; | 
|  |  | 
|  | struct reloc_control { | 
|  | /* block group to relocate */ | 
|  | struct btrfs_block_group *block_group; | 
|  | /* extent tree */ | 
|  | struct btrfs_root *extent_root; | 
|  | /* inode for moving data */ | 
|  | struct inode *data_inode; | 
|  |  | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  |  | 
|  | struct btrfs_backref_cache backref_cache; | 
|  |  | 
|  | struct file_extent_cluster cluster; | 
|  | /* tree blocks have been processed */ | 
|  | struct extent_io_tree processed_blocks; | 
|  | /* map start of tree root to corresponding reloc tree */ | 
|  | struct mapping_tree reloc_root_tree; | 
|  | /* list of reloc trees */ | 
|  | struct list_head reloc_roots; | 
|  | /* list of subvolume trees that get relocated */ | 
|  | struct list_head dirty_subvol_roots; | 
|  | /* size of metadata reservation for merging reloc trees */ | 
|  | u64 merging_rsv_size; | 
|  | /* size of relocated tree nodes */ | 
|  | u64 nodes_relocated; | 
|  | /* reserved size for block group relocation*/ | 
|  | u64 reserved_bytes; | 
|  |  | 
|  | u64 search_start; | 
|  | u64 extents_found; | 
|  |  | 
|  | enum reloc_stage stage; | 
|  | bool create_reloc_tree; | 
|  | bool merge_reloc_tree; | 
|  | bool found_file_extent; | 
|  | }; | 
|  |  | 
|  | static void mark_block_processed(struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | u32 blocksize; | 
|  |  | 
|  | if (node->level == 0 || | 
|  | in_range(node->bytenr, rc->block_group->start, | 
|  | rc->block_group->length)) { | 
|  | blocksize = rc->extent_root->fs_info->nodesize; | 
|  | btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr, | 
|  | node->bytenr + blocksize - 1, EXTENT_DIRTY, | 
|  | NULL); | 
|  | } | 
|  | node->processed = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * walk up backref nodes until reach node presents tree root | 
|  | */ | 
|  | static struct btrfs_backref_node *walk_up_backref( | 
|  | struct btrfs_backref_node *node, | 
|  | struct btrfs_backref_edge *edges[], int *index) | 
|  | { | 
|  | struct btrfs_backref_edge *edge; | 
|  | int idx = *index; | 
|  |  | 
|  | while (!list_empty(&node->upper)) { | 
|  | edge = list_first_entry(&node->upper, struct btrfs_backref_edge, | 
|  | list[LOWER]); | 
|  | edges[idx++] = edge; | 
|  | node = edge->node[UPPER]; | 
|  | } | 
|  | BUG_ON(node->detached); | 
|  | *index = idx; | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * walk down backref nodes to find start of next reference path | 
|  | */ | 
|  | static struct btrfs_backref_node *walk_down_backref( | 
|  | struct btrfs_backref_edge *edges[], int *index) | 
|  | { | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct btrfs_backref_node *lower; | 
|  | int idx = *index; | 
|  |  | 
|  | while (idx > 0) { | 
|  | edge = edges[idx - 1]; | 
|  | lower = edge->node[LOWER]; | 
|  | if (list_is_last(&edge->list[LOWER], &lower->upper)) { | 
|  | idx--; | 
|  | continue; | 
|  | } | 
|  | edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge, | 
|  | list[LOWER]); | 
|  | edges[idx - 1] = edge; | 
|  | *index = idx; | 
|  | return edge->node[UPPER]; | 
|  | } | 
|  | *index = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static bool reloc_root_is_dead(const struct btrfs_root *root) | 
|  | { | 
|  | /* | 
|  | * Pair with set_bit/clear_bit in clean_dirty_subvols and | 
|  | * btrfs_update_reloc_root. We need to see the updated bit before | 
|  | * trying to access reloc_root | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if this subvolume tree has valid reloc tree. | 
|  | * | 
|  | * Reloc tree after swap is considered dead, thus not considered as valid. | 
|  | * This is enough for most callers, as they don't distinguish dead reloc root | 
|  | * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a | 
|  | * special case. | 
|  | */ | 
|  | static bool have_reloc_root(const struct btrfs_root *root) | 
|  | { | 
|  | if (reloc_root_is_dead(root)) | 
|  | return false; | 
|  | if (!root->reloc_root) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_root *reloc_root; | 
|  |  | 
|  | if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) | 
|  | return false; | 
|  |  | 
|  | /* This root has been merged with its reloc tree, we can ignore it */ | 
|  | if (reloc_root_is_dead(root)) | 
|  | return true; | 
|  |  | 
|  | reloc_root = root->reloc_root; | 
|  | if (!reloc_root) | 
|  | return false; | 
|  |  | 
|  | if (btrfs_header_generation(reloc_root->commit_root) == | 
|  | root->fs_info->running_transaction->transid) | 
|  | return false; | 
|  | /* | 
|  | * If there is reloc tree and it was created in previous transaction | 
|  | * backref lookup can find the reloc tree, so backref node for the fs | 
|  | * tree root is useless for relocation. | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find reloc tree by address of tree root | 
|  | */ | 
|  | struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct reloc_control *rc = fs_info->reloc_ctl; | 
|  | struct rb_node *rb_node; | 
|  | struct mapping_node *node; | 
|  | struct btrfs_root *root = NULL; | 
|  |  | 
|  | ASSERT(rc); | 
|  | spin_lock(&rc->reloc_root_tree.lock); | 
|  | rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); | 
|  | if (rb_node) { | 
|  | node = rb_entry(rb_node, struct mapping_node, rb_node); | 
|  | root = node->data; | 
|  | } | 
|  | spin_unlock(&rc->reloc_root_tree.lock); | 
|  | return btrfs_grab_root(root); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For useless nodes, do two major clean ups: | 
|  | * | 
|  | * - Cleanup the children edges and nodes | 
|  | *   If child node is also orphan (no parent) during cleanup, then the child | 
|  | *   node will also be cleaned up. | 
|  | * | 
|  | * - Freeing up leaves (level 0), keeps nodes detached | 
|  | *   For nodes, the node is still cached as "detached" | 
|  | * | 
|  | * Return false if @node is not in the @useless_nodes list. | 
|  | * Return true if @node is in the @useless_nodes list. | 
|  | */ | 
|  | static bool handle_useless_nodes(struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | struct btrfs_backref_cache *cache = &rc->backref_cache; | 
|  | struct list_head *useless_node = &cache->useless_node; | 
|  | bool ret = false; | 
|  |  | 
|  | while (!list_empty(useless_node)) { | 
|  | struct btrfs_backref_node *cur; | 
|  |  | 
|  | cur = list_first_entry(useless_node, struct btrfs_backref_node, | 
|  | list); | 
|  | list_del_init(&cur->list); | 
|  |  | 
|  | /* Only tree root nodes can be added to @useless_nodes */ | 
|  | ASSERT(list_empty(&cur->upper)); | 
|  |  | 
|  | if (cur == node) | 
|  | ret = true; | 
|  |  | 
|  | /* Cleanup the lower edges */ | 
|  | while (!list_empty(&cur->lower)) { | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct btrfs_backref_node *lower; | 
|  |  | 
|  | edge = list_first_entry(&cur->lower, struct btrfs_backref_edge, | 
|  | list[UPPER]); | 
|  | list_del(&edge->list[UPPER]); | 
|  | list_del(&edge->list[LOWER]); | 
|  | lower = edge->node[LOWER]; | 
|  | btrfs_backref_free_edge(cache, edge); | 
|  |  | 
|  | /* Child node is also orphan, queue for cleanup */ | 
|  | if (list_empty(&lower->upper)) | 
|  | list_add(&lower->list, useless_node); | 
|  | } | 
|  | /* Mark this block processed for relocation */ | 
|  | mark_block_processed(rc, cur); | 
|  |  | 
|  | /* | 
|  | * Backref nodes for tree leaves are deleted from the cache. | 
|  | * Backref nodes for upper level tree blocks are left in the | 
|  | * cache to avoid unnecessary backref lookup. | 
|  | */ | 
|  | if (cur->level > 0) { | 
|  | cur->detached = 1; | 
|  | } else { | 
|  | rb_erase(&cur->rb_node, &cache->rb_root); | 
|  | btrfs_backref_free_node(cache, cur); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build backref tree for a given tree block. Root of the backref tree | 
|  | * corresponds the tree block, leaves of the backref tree correspond roots of | 
|  | * b-trees that reference the tree block. | 
|  | * | 
|  | * The basic idea of this function is check backrefs of a given block to find | 
|  | * upper level blocks that reference the block, and then check backrefs of | 
|  | * these upper level blocks recursively. The recursion stops when tree root is | 
|  | * reached or backrefs for the block is cached. | 
|  | * | 
|  | * NOTE: if we find that backrefs for a block are cached, we know backrefs for | 
|  | * all upper level blocks that directly/indirectly reference the block are also | 
|  | * cached. | 
|  | */ | 
|  | static noinline_for_stack struct btrfs_backref_node *build_backref_tree( | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, struct btrfs_key *node_key, | 
|  | int level, u64 bytenr) | 
|  | { | 
|  | struct btrfs_backref_iter *iter; | 
|  | struct btrfs_backref_cache *cache = &rc->backref_cache; | 
|  | /* For searching parent of TREE_BLOCK_REF */ | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_backref_node *cur; | 
|  | struct btrfs_backref_node *node = NULL; | 
|  | struct btrfs_backref_edge *edge; | 
|  | int ret; | 
|  |  | 
|  | iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); | 
|  | if (!iter) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | node = btrfs_backref_alloc_node(cache, bytenr, level); | 
|  | if (!node) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cur = node; | 
|  |  | 
|  | /* Breadth-first search to build backref cache */ | 
|  | do { | 
|  | ret = btrfs_backref_add_tree_node(trans, cache, path, iter, | 
|  | node_key, cur); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | edge = list_first_entry_or_null(&cache->pending_edge, | 
|  | struct btrfs_backref_edge, list[UPPER]); | 
|  | /* | 
|  | * The pending list isn't empty, take the first block to | 
|  | * process | 
|  | */ | 
|  | if (edge) { | 
|  | list_del_init(&edge->list[UPPER]); | 
|  | cur = edge->node[UPPER]; | 
|  | } | 
|  | } while (edge); | 
|  |  | 
|  | /* Finish the upper linkage of newly added edges/nodes */ | 
|  | ret = btrfs_backref_finish_upper_links(cache, node); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (handle_useless_nodes(rc, node)) | 
|  | node = NULL; | 
|  | out: | 
|  | btrfs_free_path(iter->path); | 
|  | kfree(iter); | 
|  | btrfs_free_path(path); | 
|  | if (ret) { | 
|  | btrfs_backref_error_cleanup(cache, node); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | ASSERT(!node || !node->detached); | 
|  | ASSERT(list_empty(&cache->useless_node) && | 
|  | list_empty(&cache->pending_edge)); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to add 'address of tree root -> reloc tree' mapping | 
|  | */ | 
|  | static int __add_reloc_root(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct rb_node *rb_node; | 
|  | struct mapping_node *node; | 
|  | struct reloc_control *rc = fs_info->reloc_ctl; | 
|  |  | 
|  | node = kmalloc(sizeof(*node), GFP_NOFS); | 
|  | if (!node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | node->bytenr = root->commit_root->start; | 
|  | node->data = root; | 
|  |  | 
|  | spin_lock(&rc->reloc_root_tree.lock); | 
|  | rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node); | 
|  | spin_unlock(&rc->reloc_root_tree.lock); | 
|  | if (rb_node) { | 
|  | btrfs_err(fs_info, | 
|  | "Duplicate root found for start=%llu while inserting into relocation tree", | 
|  | node->bytenr); | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | list_add_tail(&root->root_list, &rc->reloc_roots); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to delete the 'address of tree root -> reloc tree' | 
|  | * mapping | 
|  | */ | 
|  | static void __del_reloc_root(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct rb_node *rb_node; | 
|  | struct mapping_node *node = NULL; | 
|  | struct reloc_control *rc = fs_info->reloc_ctl; | 
|  | bool put_ref = false; | 
|  |  | 
|  | if (rc && root->node) { | 
|  | spin_lock(&rc->reloc_root_tree.lock); | 
|  | rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, | 
|  | root->commit_root->start); | 
|  | if (rb_node) { | 
|  | node = rb_entry(rb_node, struct mapping_node, rb_node); | 
|  | rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); | 
|  | RB_CLEAR_NODE(&node->rb_node); | 
|  | } | 
|  | spin_unlock(&rc->reloc_root_tree.lock); | 
|  | ASSERT(!node || (struct btrfs_root *)node->data == root); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We only put the reloc root here if it's on the list.  There's a lot | 
|  | * of places where the pattern is to splice the rc->reloc_roots, process | 
|  | * the reloc roots, and then add the reloc root back onto | 
|  | * rc->reloc_roots.  If we call __del_reloc_root while it's off of the | 
|  | * list we don't want the reference being dropped, because the guy | 
|  | * messing with the list is in charge of the reference. | 
|  | */ | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | if (!list_empty(&root->root_list)) { | 
|  | put_ref = true; | 
|  | list_del_init(&root->root_list); | 
|  | } | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | if (put_ref) | 
|  | btrfs_put_root(root); | 
|  | kfree(node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to update the 'address of tree root -> reloc tree' | 
|  | * mapping | 
|  | */ | 
|  | static int __update_reloc_root(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct rb_node *rb_node; | 
|  | struct mapping_node *node = NULL; | 
|  | struct reloc_control *rc = fs_info->reloc_ctl; | 
|  |  | 
|  | spin_lock(&rc->reloc_root_tree.lock); | 
|  | rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, | 
|  | root->commit_root->start); | 
|  | if (rb_node) { | 
|  | node = rb_entry(rb_node, struct mapping_node, rb_node); | 
|  | rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); | 
|  | } | 
|  | spin_unlock(&rc->reloc_root_tree.lock); | 
|  |  | 
|  | if (!node) | 
|  | return 0; | 
|  | BUG_ON((struct btrfs_root *)node->data != root); | 
|  |  | 
|  | spin_lock(&rc->reloc_root_tree.lock); | 
|  | node->bytenr = root->node->start; | 
|  | rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node); | 
|  | spin_unlock(&rc->reloc_root_tree.lock); | 
|  | if (rb_node) | 
|  | btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 objectid) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *reloc_root; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_root_item *root_item; | 
|  | struct btrfs_key root_key; | 
|  | int ret = 0; | 
|  | bool must_abort = false; | 
|  |  | 
|  | root_item = kmalloc(sizeof(*root_item), GFP_NOFS); | 
|  | if (!root_item) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; | 
|  | root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root_key.offset = objectid; | 
|  |  | 
|  | if (btrfs_root_id(root) == objectid) { | 
|  | u64 commit_root_gen; | 
|  |  | 
|  | /* | 
|  | * Relocation will wait for cleaner thread, and any half-dropped | 
|  | * subvolume will be fully cleaned up at mount time. | 
|  | * So here we shouldn't hit a subvolume with non-zero drop_progress. | 
|  | * | 
|  | * If this isn't the case, error out since it can make us attempt to | 
|  | * drop references for extents that were already dropped before. | 
|  | */ | 
|  | if (unlikely(btrfs_disk_key_objectid(&root->root_item.drop_progress))) { | 
|  | struct btrfs_key cpu_key; | 
|  |  | 
|  | btrfs_disk_key_to_cpu(&cpu_key, &root->root_item.drop_progress); | 
|  | btrfs_err(fs_info, | 
|  | "cannot relocate partially dropped subvolume %llu, drop progress key (%llu %u %llu)", | 
|  | objectid, cpu_key.objectid, cpu_key.type, cpu_key.offset); | 
|  | ret = -EUCLEAN; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* called by btrfs_init_reloc_root */ | 
|  | ret = btrfs_copy_root(trans, root, root->commit_root, &eb, | 
|  | BTRFS_TREE_RELOC_OBJECTID); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * Set the last_snapshot field to the generation of the commit | 
|  | * root - like this ctree.c:btrfs_block_can_be_shared() behaves | 
|  | * correctly (returns true) when the relocation root is created | 
|  | * either inside the critical section of a transaction commit | 
|  | * (through transaction.c:qgroup_account_snapshot()) and when | 
|  | * it's created before the transaction commit is started. | 
|  | */ | 
|  | commit_root_gen = btrfs_header_generation(root->commit_root); | 
|  | btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); | 
|  | } else { | 
|  | /* | 
|  | * called by btrfs_reloc_post_snapshot_hook. | 
|  | * the source tree is a reloc tree, all tree blocks | 
|  | * modified after it was created have RELOC flag | 
|  | * set in their headers. so it's OK to not update | 
|  | * the 'last_snapshot'. | 
|  | */ | 
|  | ret = btrfs_copy_root(trans, root, root->node, &eb, | 
|  | BTRFS_TREE_RELOC_OBJECTID); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have changed references at this point, we must abort the | 
|  | * transaction if anything fails. | 
|  | */ | 
|  | must_abort = true; | 
|  |  | 
|  | memcpy(root_item, &root->root_item, sizeof(*root_item)); | 
|  | btrfs_set_root_bytenr(root_item, eb->start); | 
|  | btrfs_set_root_level(root_item, btrfs_header_level(eb)); | 
|  | btrfs_set_root_generation(root_item, trans->transid); | 
|  |  | 
|  | if (btrfs_root_id(root) == objectid) { | 
|  | btrfs_set_root_refs(root_item, 0); | 
|  | memset(&root_item->drop_progress, 0, | 
|  | sizeof(struct btrfs_disk_key)); | 
|  | btrfs_set_root_drop_level(root_item, 0); | 
|  | } | 
|  |  | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | ret = btrfs_insert_root(trans, fs_info->tree_root, | 
|  | &root_key, root_item); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | kfree(root_item); | 
|  |  | 
|  | reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); | 
|  | if (IS_ERR(reloc_root)) { | 
|  | ret = PTR_ERR(reloc_root); | 
|  | goto abort; | 
|  | } | 
|  | set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); | 
|  | btrfs_set_root_last_trans(reloc_root, trans->transid); | 
|  | return reloc_root; | 
|  | fail: | 
|  | kfree(root_item); | 
|  | abort: | 
|  | if (must_abort) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * create reloc tree for a given fs tree. reloc tree is just a | 
|  | * snapshot of the fs tree with special root objectid. | 
|  | * | 
|  | * The reloc_root comes out of here with two references, one for | 
|  | * root->reloc_root, and another for being on the rc->reloc_roots list. | 
|  | */ | 
|  | int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *reloc_root; | 
|  | struct reloc_control *rc = fs_info->reloc_ctl; | 
|  | struct btrfs_block_rsv *rsv; | 
|  | int clear_rsv = 0; | 
|  | int ret; | 
|  |  | 
|  | if (!rc) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The subvolume has reloc tree but the swap is finished, no need to | 
|  | * create/update the dead reloc tree | 
|  | */ | 
|  | if (reloc_root_is_dead(root)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * This is subtle but important.  We do not do | 
|  | * record_root_in_transaction for reloc roots, instead we record their | 
|  | * corresponding fs root, and then here we update the last trans for the | 
|  | * reloc root.  This means that we have to do this for the entire life | 
|  | * of the reloc root, regardless of which stage of the relocation we are | 
|  | * in. | 
|  | */ | 
|  | if (root->reloc_root) { | 
|  | reloc_root = root->reloc_root; | 
|  | btrfs_set_root_last_trans(reloc_root, trans->transid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are merging reloc roots, we do not need new reloc trees.  Also | 
|  | * reloc trees never need their own reloc tree. | 
|  | */ | 
|  | if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) | 
|  | return 0; | 
|  |  | 
|  | if (!trans->reloc_reserved) { | 
|  | rsv = trans->block_rsv; | 
|  | trans->block_rsv = rc->block_rsv; | 
|  | clear_rsv = 1; | 
|  | } | 
|  | reloc_root = create_reloc_root(trans, root, btrfs_root_id(root)); | 
|  | if (clear_rsv) | 
|  | trans->block_rsv = rsv; | 
|  | if (IS_ERR(reloc_root)) | 
|  | return PTR_ERR(reloc_root); | 
|  |  | 
|  | ret = __add_reloc_root(reloc_root); | 
|  | ASSERT(ret != -EEXIST); | 
|  | if (ret) { | 
|  | /* Pairs with create_reloc_root */ | 
|  | btrfs_put_root(reloc_root); | 
|  | return ret; | 
|  | } | 
|  | root->reloc_root = btrfs_grab_root(reloc_root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update root item of reloc tree | 
|  | */ | 
|  | int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *reloc_root; | 
|  | struct btrfs_root_item *root_item; | 
|  | int ret; | 
|  |  | 
|  | if (!have_reloc_root(root)) | 
|  | return 0; | 
|  |  | 
|  | reloc_root = root->reloc_root; | 
|  | root_item = &reloc_root->root_item; | 
|  |  | 
|  | /* | 
|  | * We are probably ok here, but __del_reloc_root() will drop its ref of | 
|  | * the root.  We have the ref for root->reloc_root, but just in case | 
|  | * hold it while we update the reloc root. | 
|  | */ | 
|  | btrfs_grab_root(reloc_root); | 
|  |  | 
|  | /* root->reloc_root will stay until current relocation finished */ | 
|  | if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree && | 
|  | btrfs_root_refs(root_item) == 0) { | 
|  | set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); | 
|  | /* | 
|  | * Mark the tree as dead before we change reloc_root so | 
|  | * have_reloc_root will not touch it from now on. | 
|  | */ | 
|  | smp_wmb(); | 
|  | __del_reloc_root(reloc_root); | 
|  | } | 
|  |  | 
|  | if (reloc_root->commit_root != reloc_root->node) { | 
|  | __update_reloc_root(reloc_root); | 
|  | btrfs_set_root_node(root_item, reloc_root->node); | 
|  | free_extent_buffer(reloc_root->commit_root); | 
|  | reloc_root->commit_root = btrfs_root_node(reloc_root); | 
|  | } | 
|  |  | 
|  | ret = btrfs_update_root(trans, fs_info->tree_root, | 
|  | &reloc_root->root_key, root_item); | 
|  | btrfs_put_root(reloc_root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get new location of data | 
|  | */ | 
|  | static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, | 
|  | u64 bytenr, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(reloc_inode)->root; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_buffer *leaf; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start; | 
|  | ret = btrfs_lookup_file_extent(NULL, root, path, | 
|  | btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | BUG_ON(btrfs_file_extent_offset(leaf, fi) || | 
|  | btrfs_file_extent_compression(leaf, fi) || | 
|  | btrfs_file_extent_encryption(leaf, fi) || | 
|  | btrfs_file_extent_other_encoding(leaf, fi)); | 
|  |  | 
|  | if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) | 
|  | return -EINVAL; | 
|  |  | 
|  | *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update file extent items in the tree leaf to point to | 
|  | * the new locations. | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int replace_file_extents(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *leaf) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_inode *inode = NULL; | 
|  | u64 parent; | 
|  | u64 bytenr; | 
|  | u64 new_bytenr = 0; | 
|  | u64 num_bytes; | 
|  | u64 end; | 
|  | u32 nritems; | 
|  | u32 i; | 
|  | int ret = 0; | 
|  | int first = 1; | 
|  |  | 
|  | if (rc->stage != UPDATE_DATA_PTRS) | 
|  | return 0; | 
|  |  | 
|  | /* reloc trees always use full backref */ | 
|  | if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) | 
|  | parent = leaf->start; | 
|  | else | 
|  | parent = 0; | 
|  |  | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | for (i = 0; i < nritems; i++) { | 
|  | struct btrfs_ref ref = { 0 }; | 
|  |  | 
|  | cond_resched(); | 
|  | btrfs_item_key_to_cpu(leaf, &key, i); | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(leaf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | if (bytenr == 0) | 
|  | continue; | 
|  | if (!in_range(bytenr, rc->block_group->start, | 
|  | rc->block_group->length)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * if we are modifying block in fs tree, wait for read_folio | 
|  | * to complete and drop the extent cache | 
|  | */ | 
|  | if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) { | 
|  | if (first) { | 
|  | inode = btrfs_find_first_inode(root, key.objectid); | 
|  | first = 0; | 
|  | } else if (inode && btrfs_ino(inode) < key.objectid) { | 
|  | btrfs_add_delayed_iput(inode); | 
|  | inode = btrfs_find_first_inode(root, key.objectid); | 
|  | } | 
|  | if (inode && btrfs_ino(inode) == key.objectid) { | 
|  | struct extent_state *cached_state = NULL; | 
|  |  | 
|  | end = key.offset + | 
|  | btrfs_file_extent_num_bytes(leaf, fi); | 
|  | WARN_ON(!IS_ALIGNED(key.offset, | 
|  | fs_info->sectorsize)); | 
|  | WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); | 
|  | end--; | 
|  | /* Take mmap lock to serialize with reflinks. */ | 
|  | if (!down_read_trylock(&inode->i_mmap_lock)) | 
|  | continue; | 
|  | ret = btrfs_try_lock_extent(&inode->io_tree, key.offset, | 
|  | end, &cached_state); | 
|  | if (!ret) { | 
|  | up_read(&inode->i_mmap_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_drop_extent_map_range(inode, key.offset, end, true); | 
|  | btrfs_unlock_extent(&inode->io_tree, key.offset, end, | 
|  | &cached_state); | 
|  | up_read(&inode->i_mmap_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = get_new_location(rc->data_inode, &new_bytenr, | 
|  | bytenr, num_bytes); | 
|  | if (ret) { | 
|  | /* | 
|  | * Don't have to abort since we've not changed anything | 
|  | * in the file extent yet. | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); | 
|  |  | 
|  | key.offset -= btrfs_file_extent_offset(leaf, fi); | 
|  | ref.action = BTRFS_ADD_DELAYED_REF; | 
|  | ref.bytenr = new_bytenr; | 
|  | ref.num_bytes = num_bytes; | 
|  | ref.parent = parent; | 
|  | ref.owning_root = btrfs_root_id(root); | 
|  | ref.ref_root = btrfs_header_owner(leaf); | 
|  | btrfs_init_data_ref(&ref, key.objectid, key.offset, | 
|  | btrfs_root_id(root), false); | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ref.action = BTRFS_DROP_DELAYED_REF; | 
|  | ref.bytenr = bytenr; | 
|  | ref.num_bytes = num_bytes; | 
|  | ref.parent = parent; | 
|  | ref.owning_root = btrfs_root_id(root); | 
|  | ref.ref_root = btrfs_header_owner(leaf); | 
|  | btrfs_init_data_ref(&ref, key.objectid, key.offset, | 
|  | btrfs_root_id(root), false); | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (inode) | 
|  | btrfs_add_delayed_iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb, | 
|  | int slot, const struct btrfs_path *path, | 
|  | int level) | 
|  | { | 
|  | struct btrfs_disk_key key1; | 
|  | struct btrfs_disk_key key2; | 
|  | btrfs_node_key(eb, &key1, slot); | 
|  | btrfs_node_key(path->nodes[level], &key2, path->slots[level]); | 
|  | return memcmp(&key1, &key2, sizeof(key1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * try to replace tree blocks in fs tree with the new blocks | 
|  | * in reloc tree. tree blocks haven't been modified since the | 
|  | * reloc tree was create can be replaced. | 
|  | * | 
|  | * if a block was replaced, level of the block + 1 is returned. | 
|  | * if no block got replaced, 0 is returned. if there are other | 
|  | * errors, a negative error number is returned. | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, | 
|  | struct btrfs_root *dest, struct btrfs_root *src, | 
|  | struct btrfs_path *path, struct btrfs_key *next_key, | 
|  | int lowest_level, int max_level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = dest->fs_info; | 
|  | struct extent_buffer *eb; | 
|  | struct extent_buffer *parent; | 
|  | struct btrfs_ref ref = { 0 }; | 
|  | struct btrfs_key key; | 
|  | u64 old_bytenr; | 
|  | u64 new_bytenr; | 
|  | u64 old_ptr_gen; | 
|  | u64 new_ptr_gen; | 
|  | u64 last_snapshot; | 
|  | u32 blocksize; | 
|  | int cow = 0; | 
|  | int level; | 
|  | int ret; | 
|  | int slot; | 
|  |  | 
|  | ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID); | 
|  | ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID); | 
|  |  | 
|  | last_snapshot = btrfs_root_last_snapshot(&src->root_item); | 
|  | again: | 
|  | slot = path->slots[lowest_level]; | 
|  | btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); | 
|  |  | 
|  | eb = btrfs_lock_root_node(dest); | 
|  | level = btrfs_header_level(eb); | 
|  |  | 
|  | if (level < lowest_level) { | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (cow) { | 
|  | ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, | 
|  | BTRFS_NESTING_COW); | 
|  | if (ret) { | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (next_key) { | 
|  | next_key->objectid = (u64)-1; | 
|  | next_key->type = (u8)-1; | 
|  | next_key->offset = (u64)-1; | 
|  | } | 
|  |  | 
|  | parent = eb; | 
|  | while (1) { | 
|  | level = btrfs_header_level(parent); | 
|  | ASSERT(level >= lowest_level); | 
|  |  | 
|  | ret = btrfs_bin_search(parent, 0, &key, &slot); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret && slot > 0) | 
|  | slot--; | 
|  |  | 
|  | if (next_key && slot + 1 < btrfs_header_nritems(parent)) | 
|  | btrfs_node_key_to_cpu(parent, next_key, slot + 1); | 
|  |  | 
|  | old_bytenr = btrfs_node_blockptr(parent, slot); | 
|  | blocksize = fs_info->nodesize; | 
|  | old_ptr_gen = btrfs_node_ptr_generation(parent, slot); | 
|  |  | 
|  | if (level <= max_level) { | 
|  | eb = path->nodes[level]; | 
|  | new_bytenr = btrfs_node_blockptr(eb, | 
|  | path->slots[level]); | 
|  | new_ptr_gen = btrfs_node_ptr_generation(eb, | 
|  | path->slots[level]); | 
|  | } else { | 
|  | new_bytenr = 0; | 
|  | new_ptr_gen = 0; | 
|  | } | 
|  |  | 
|  | if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { | 
|  | ret = level; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (new_bytenr == 0 || old_ptr_gen > last_snapshot || | 
|  | memcmp_node_keys(parent, slot, path, level)) { | 
|  | if (level <= lowest_level) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | eb = btrfs_read_node_slot(parent, slot); | 
|  | if (IS_ERR(eb)) { | 
|  | ret = PTR_ERR(eb); | 
|  | break; | 
|  | } | 
|  | btrfs_tree_lock(eb); | 
|  | if (cow) { | 
|  | ret = btrfs_cow_block(trans, dest, eb, parent, | 
|  | slot, &eb, | 
|  | BTRFS_NESTING_COW); | 
|  | if (ret) { | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_tree_unlock(parent); | 
|  | free_extent_buffer(parent); | 
|  |  | 
|  | parent = eb; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!cow) { | 
|  | btrfs_tree_unlock(parent); | 
|  | free_extent_buffer(parent); | 
|  | cow = 1; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &key, | 
|  | path->slots[level]); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | path->lowest_level = level; | 
|  | set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); | 
|  | ret = btrfs_search_slot(trans, src, &key, path, 0, 1); | 
|  | clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); | 
|  | path->lowest_level = 0; | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Info qgroup to trace both subtrees. | 
|  | * | 
|  | * We must trace both trees. | 
|  | * 1) Tree reloc subtree | 
|  | *    If not traced, we will leak data numbers | 
|  | * 2) Fs subtree | 
|  | *    If not traced, we will double count old data | 
|  | * | 
|  | * We don't scan the subtree right now, but only record | 
|  | * the swapped tree blocks. | 
|  | * The real subtree rescan is delayed until we have new | 
|  | * CoW on the subtree root node before transaction commit. | 
|  | */ | 
|  | ret = btrfs_qgroup_add_swapped_blocks(dest, | 
|  | rc->block_group, parent, slot, | 
|  | path->nodes[level], path->slots[level], | 
|  | last_snapshot); | 
|  | if (ret < 0) | 
|  | break; | 
|  | /* | 
|  | * swap blocks in fs tree and reloc tree. | 
|  | */ | 
|  | btrfs_set_node_blockptr(parent, slot, new_bytenr); | 
|  | btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); | 
|  |  | 
|  | btrfs_set_node_blockptr(path->nodes[level], | 
|  | path->slots[level], old_bytenr); | 
|  | btrfs_set_node_ptr_generation(path->nodes[level], | 
|  | path->slots[level], old_ptr_gen); | 
|  |  | 
|  | ref.action = BTRFS_ADD_DELAYED_REF; | 
|  | ref.bytenr = old_bytenr; | 
|  | ref.num_bytes = blocksize; | 
|  | ref.parent = path->nodes[level]->start; | 
|  | ref.owning_root = btrfs_root_id(src); | 
|  | ref.ref_root = btrfs_root_id(src); | 
|  | btrfs_init_tree_ref(&ref, level - 1, 0, true); | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ref.action = BTRFS_ADD_DELAYED_REF; | 
|  | ref.bytenr = new_bytenr; | 
|  | ref.num_bytes = blocksize; | 
|  | ref.parent = 0; | 
|  | ref.owning_root = btrfs_root_id(dest); | 
|  | ref.ref_root = btrfs_root_id(dest); | 
|  | btrfs_init_tree_ref(&ref, level - 1, 0, true); | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We don't know the real owning_root, use 0. */ | 
|  | ref.action = BTRFS_DROP_DELAYED_REF; | 
|  | ref.bytenr = new_bytenr; | 
|  | ref.num_bytes = blocksize; | 
|  | ref.parent = path->nodes[level]->start; | 
|  | ref.owning_root = 0; | 
|  | ref.ref_root = btrfs_root_id(src); | 
|  | btrfs_init_tree_ref(&ref, level - 1, 0, true); | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We don't know the real owning_root, use 0. */ | 
|  | ref.action = BTRFS_DROP_DELAYED_REF; | 
|  | ref.bytenr = old_bytenr; | 
|  | ref.num_bytes = blocksize; | 
|  | ref.parent = 0; | 
|  | ref.owning_root = 0; | 
|  | ref.ref_root = btrfs_root_id(dest); | 
|  | btrfs_init_tree_ref(&ref, level - 1, 0, true); | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_unlock_up_safe(path, 0); | 
|  |  | 
|  | ret = level; | 
|  | break; | 
|  | } | 
|  | btrfs_tree_unlock(parent); | 
|  | free_extent_buffer(parent); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to find next relocated block in reloc tree | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, | 
|  | int *level) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | int i; | 
|  | u64 last_snapshot; | 
|  | u32 nritems; | 
|  |  | 
|  | last_snapshot = btrfs_root_last_snapshot(&root->root_item); | 
|  |  | 
|  | for (i = 0; i < *level; i++) { | 
|  | free_extent_buffer(path->nodes[i]); | 
|  | path->nodes[i] = NULL; | 
|  | } | 
|  |  | 
|  | for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { | 
|  | eb = path->nodes[i]; | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | while (path->slots[i] + 1 < nritems) { | 
|  | path->slots[i]++; | 
|  | if (btrfs_node_ptr_generation(eb, path->slots[i]) <= | 
|  | last_snapshot) | 
|  | continue; | 
|  |  | 
|  | *level = i; | 
|  | return 0; | 
|  | } | 
|  | free_extent_buffer(path->nodes[i]); | 
|  | path->nodes[i] = NULL; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * walk down reloc tree to find relocated block of lowest level | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, | 
|  | int *level) | 
|  | { | 
|  | struct extent_buffer *eb = NULL; | 
|  | int i; | 
|  | u64 ptr_gen = 0; | 
|  | u64 last_snapshot; | 
|  | u32 nritems; | 
|  |  | 
|  | last_snapshot = btrfs_root_last_snapshot(&root->root_item); | 
|  |  | 
|  | for (i = *level; i > 0; i--) { | 
|  | eb = path->nodes[i]; | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | while (path->slots[i] < nritems) { | 
|  | ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); | 
|  | if (ptr_gen > last_snapshot) | 
|  | break; | 
|  | path->slots[i]++; | 
|  | } | 
|  | if (path->slots[i] >= nritems) { | 
|  | if (i == *level) | 
|  | break; | 
|  | *level = i + 1; | 
|  | return 0; | 
|  | } | 
|  | if (i == 1) { | 
|  | *level = i; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | eb = btrfs_read_node_slot(eb, path->slots[i]); | 
|  | if (IS_ERR(eb)) | 
|  | return PTR_ERR(eb); | 
|  | BUG_ON(btrfs_header_level(eb) != i - 1); | 
|  | path->nodes[i - 1] = eb; | 
|  | path->slots[i - 1] = 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * invalidate extent cache for file extents whose key in range of | 
|  | * [min_key, max_key) | 
|  | */ | 
|  | static int invalidate_extent_cache(struct btrfs_root *root, | 
|  | const struct btrfs_key *min_key, | 
|  | const struct btrfs_key *max_key) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_inode *inode = NULL; | 
|  | u64 objectid; | 
|  | u64 start, end; | 
|  | u64 ino; | 
|  |  | 
|  | objectid = min_key->objectid; | 
|  | while (1) { | 
|  | struct extent_state *cached_state = NULL; | 
|  |  | 
|  | cond_resched(); | 
|  | if (inode) | 
|  | iput(&inode->vfs_inode); | 
|  |  | 
|  | if (objectid > max_key->objectid) | 
|  | break; | 
|  |  | 
|  | inode = btrfs_find_first_inode(root, objectid); | 
|  | if (!inode) | 
|  | break; | 
|  | ino = btrfs_ino(inode); | 
|  |  | 
|  | if (ino > max_key->objectid) { | 
|  | iput(&inode->vfs_inode); | 
|  | break; | 
|  | } | 
|  |  | 
|  | objectid = ino + 1; | 
|  | if (!S_ISREG(inode->vfs_inode.i_mode)) | 
|  | continue; | 
|  |  | 
|  | if (unlikely(min_key->objectid == ino)) { | 
|  | if (min_key->type > BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | if (min_key->type < BTRFS_EXTENT_DATA_KEY) | 
|  | start = 0; | 
|  | else { | 
|  | start = min_key->offset; | 
|  | WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); | 
|  | } | 
|  | } else { | 
|  | start = 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(max_key->objectid == ino)) { | 
|  | if (max_key->type < BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | if (max_key->type > BTRFS_EXTENT_DATA_KEY) { | 
|  | end = (u64)-1; | 
|  | } else { | 
|  | if (max_key->offset == 0) | 
|  | continue; | 
|  | end = max_key->offset; | 
|  | WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); | 
|  | end--; | 
|  | } | 
|  | } else { | 
|  | end = (u64)-1; | 
|  | } | 
|  |  | 
|  | /* the lock_extent waits for read_folio to complete */ | 
|  | btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); | 
|  | btrfs_drop_extent_map_range(inode, start, end, true); | 
|  | btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key) | 
|  |  | 
|  | { | 
|  | while (level < BTRFS_MAX_LEVEL) { | 
|  | if (!path->nodes[level]) | 
|  | break; | 
|  | if (path->slots[level] + 1 < | 
|  | btrfs_header_nritems(path->nodes[level])) { | 
|  | btrfs_node_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | return 0; | 
|  | } | 
|  | level++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert current subvolume into reloc_control::dirty_subvol_roots | 
|  | */ | 
|  | static int insert_dirty_subvol(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_root *reloc_root = root->reloc_root; | 
|  | struct btrfs_root_item *reloc_root_item; | 
|  | int ret; | 
|  |  | 
|  | /* @root must be a subvolume tree root with a valid reloc tree */ | 
|  | ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); | 
|  | ASSERT(reloc_root); | 
|  |  | 
|  | reloc_root_item = &reloc_root->root_item; | 
|  | memset(&reloc_root_item->drop_progress, 0, | 
|  | sizeof(reloc_root_item->drop_progress)); | 
|  | btrfs_set_root_drop_level(reloc_root_item, 0); | 
|  | btrfs_set_root_refs(reloc_root_item, 0); | 
|  | ret = btrfs_update_reloc_root(trans, root); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (list_empty(&root->reloc_dirty_list)) { | 
|  | btrfs_grab_root(root); | 
|  | list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int clean_dirty_subvols(struct reloc_control *rc) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_root *next; | 
|  | int ret = 0; | 
|  | int ret2; | 
|  |  | 
|  | list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, | 
|  | reloc_dirty_list) { | 
|  | if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) { | 
|  | /* Merged subvolume, cleanup its reloc root */ | 
|  | struct btrfs_root *reloc_root = root->reloc_root; | 
|  |  | 
|  | list_del_init(&root->reloc_dirty_list); | 
|  | root->reloc_root = NULL; | 
|  | /* | 
|  | * Need barrier to ensure clear_bit() only happens after | 
|  | * root->reloc_root = NULL. Pairs with have_reloc_root. | 
|  | */ | 
|  | smp_wmb(); | 
|  | clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); | 
|  | if (reloc_root) { | 
|  | /* | 
|  | * btrfs_drop_snapshot drops our ref we hold for | 
|  | * ->reloc_root.  If it fails however we must | 
|  | * drop the ref ourselves. | 
|  | */ | 
|  | ret2 = btrfs_drop_snapshot(reloc_root, false, true); | 
|  | if (ret2 < 0) { | 
|  | btrfs_put_root(reloc_root); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  | } | 
|  | } | 
|  | btrfs_put_root(root); | 
|  | } else { | 
|  | /* Orphan reloc tree, just clean it up */ | 
|  | ret2 = btrfs_drop_snapshot(root, false, true); | 
|  | if (ret2 < 0) { | 
|  | btrfs_put_root(root); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  | } | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * merge the relocated tree blocks in reloc tree with corresponding | 
|  | * fs tree. | 
|  | */ | 
|  | static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key next_key; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_root *reloc_root; | 
|  | struct btrfs_root_item *root_item; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | int reserve_level; | 
|  | int level; | 
|  | int max_level; | 
|  | int replaced = 0; | 
|  | int ret = 0; | 
|  | u32 min_reserved; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | reloc_root = root->reloc_root; | 
|  | root_item = &reloc_root->root_item; | 
|  |  | 
|  | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { | 
|  | level = btrfs_root_level(root_item); | 
|  | refcount_inc(&reloc_root->node->refs); | 
|  | path->nodes[level] = reloc_root->node; | 
|  | path->slots[level] = 0; | 
|  | } else { | 
|  | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); | 
|  |  | 
|  | level = btrfs_root_drop_level(root_item); | 
|  | BUG_ON(level == 0); | 
|  | path->lowest_level = level; | 
|  | ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); | 
|  | path->lowest_level = 0; | 
|  | if (ret < 0) { | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &next_key, | 
|  | path->slots[level]); | 
|  | WARN_ON(memcmp(&key, &next_key, sizeof(key))); | 
|  |  | 
|  | btrfs_unlock_up_safe(path, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In merge_reloc_root(), we modify the upper level pointer to swap the | 
|  | * tree blocks between reloc tree and subvolume tree.  Thus for tree | 
|  | * block COW, we COW at most from level 1 to root level for each tree. | 
|  | * | 
|  | * Thus the needed metadata size is at most root_level * nodesize, | 
|  | * and * 2 since we have two trees to COW. | 
|  | */ | 
|  | reserve_level = max_t(int, 1, btrfs_root_level(root_item)); | 
|  | min_reserved = fs_info->nodesize * reserve_level * 2; | 
|  | memset(&next_key, 0, sizeof(next_key)); | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, | 
|  | min_reserved, | 
|  | BTRFS_RESERVE_FLUSH_LIMIT); | 
|  | if (ret) | 
|  | goto out; | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point we no longer have a reloc_control, so we can't | 
|  | * depend on btrfs_init_reloc_root to update our last_trans. | 
|  | * | 
|  | * But that's ok, we started the trans handle on our | 
|  | * corresponding fs_root, which means it's been added to the | 
|  | * dirty list.  At commit time we'll still call | 
|  | * btrfs_update_reloc_root() and update our root item | 
|  | * appropriately. | 
|  | */ | 
|  | btrfs_set_root_last_trans(reloc_root, trans->transid); | 
|  | trans->block_rsv = rc->block_rsv; | 
|  |  | 
|  | replaced = 0; | 
|  | max_level = level; | 
|  |  | 
|  | ret = walk_down_reloc_tree(reloc_root, path, &level); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | if (!find_next_key(path, level, &key) && | 
|  | btrfs_comp_cpu_keys(&next_key, &key) >= 0) { | 
|  | ret = 0; | 
|  | } else { | 
|  | ret = replace_path(trans, rc, root, reloc_root, path, | 
|  | &next_key, level, max_level); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | level = ret; | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &key, | 
|  | path->slots[level]); | 
|  | replaced = 1; | 
|  | } | 
|  |  | 
|  | ret = walk_up_reloc_tree(reloc_root, path, &level); | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | BUG_ON(level == 0); | 
|  | /* | 
|  | * save the merging progress in the drop_progress. | 
|  | * this is OK since root refs == 1 in this case. | 
|  | */ | 
|  | btrfs_node_key(path->nodes[level], &root_item->drop_progress, | 
|  | path->slots[level]); | 
|  | btrfs_set_root_drop_level(root_item, level); | 
|  |  | 
|  | btrfs_end_transaction_throttle(trans); | 
|  | trans = NULL; | 
|  |  | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  |  | 
|  | if (replaced && rc->stage == UPDATE_DATA_PTRS) | 
|  | invalidate_extent_cache(root, &key, &next_key); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * handle the case only one block in the fs tree need to be | 
|  | * relocated and the block is tree root. | 
|  | */ | 
|  | leaf = btrfs_lock_root_node(root); | 
|  | ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, | 
|  | BTRFS_NESTING_COW); | 
|  | btrfs_tree_unlock(leaf); | 
|  | free_extent_buffer(leaf); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | if (ret == 0) { | 
|  | ret = insert_dirty_subvol(trans, rc, root); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } | 
|  |  | 
|  | if (trans) | 
|  | btrfs_end_transaction_throttle(trans); | 
|  |  | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  |  | 
|  | if (replaced && rc->stage == UPDATE_DATA_PTRS) | 
|  | invalidate_extent_cache(root, &key, &next_key); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int prepare_to_merge(struct reloc_control *rc, int err) | 
|  | { | 
|  | struct btrfs_root *root = rc->extent_root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *reloc_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | LIST_HEAD(reloc_roots); | 
|  | u64 num_bytes = 0; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&fs_info->reloc_mutex); | 
|  | rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; | 
|  | rc->merging_rsv_size += rc->nodes_relocated * 2; | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  |  | 
|  | again: | 
|  | if (!err) { | 
|  | num_bytes = rc->merging_rsv_size; | 
|  | ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, | 
|  | BTRFS_RESERVE_FLUSH_ALL); | 
|  | if (ret) | 
|  | err = ret; | 
|  | } | 
|  |  | 
|  | trans = btrfs_join_transaction(rc->extent_root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (!err) | 
|  | btrfs_block_rsv_release(fs_info, rc->block_rsv, | 
|  | num_bytes, NULL); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | if (!err) { | 
|  | if (num_bytes != rc->merging_rsv_size) { | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_block_rsv_release(fs_info, rc->block_rsv, | 
|  | num_bytes, NULL); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | rc->merge_reloc_tree = true; | 
|  |  | 
|  | while (!list_empty(&rc->reloc_roots)) { | 
|  | reloc_root = list_first_entry(&rc->reloc_roots, | 
|  | struct btrfs_root, root_list); | 
|  | list_del_init(&reloc_root->root_list); | 
|  |  | 
|  | root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, | 
|  | false); | 
|  | if (IS_ERR(root)) { | 
|  | /* | 
|  | * Even if we have an error we need this reloc root | 
|  | * back on our list so we can clean up properly. | 
|  | */ | 
|  | list_add(&reloc_root->root_list, &reloc_roots); | 
|  | btrfs_abort_transaction(trans, (int)PTR_ERR(root)); | 
|  | if (!err) | 
|  | err = PTR_ERR(root); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(root->reloc_root != reloc_root)) { | 
|  | if (root->reloc_root) { | 
|  | btrfs_err(fs_info, | 
|  | "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", | 
|  | btrfs_root_id(root), | 
|  | btrfs_root_id(root->reloc_root), | 
|  | root->reloc_root->root_key.type, | 
|  | root->reloc_root->root_key.offset, | 
|  | btrfs_root_generation( | 
|  | &root->reloc_root->root_item), | 
|  | btrfs_root_id(reloc_root), | 
|  | reloc_root->root_key.type, | 
|  | reloc_root->root_key.offset, | 
|  | btrfs_root_generation( | 
|  | &reloc_root->root_item)); | 
|  | } else { | 
|  | btrfs_err(fs_info, | 
|  | "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", | 
|  | btrfs_root_id(root), | 
|  | btrfs_root_id(reloc_root), | 
|  | reloc_root->root_key.type, | 
|  | reloc_root->root_key.offset, | 
|  | btrfs_root_generation( | 
|  | &reloc_root->root_item)); | 
|  | } | 
|  | list_add(&reloc_root->root_list, &reloc_roots); | 
|  | btrfs_put_root(root); | 
|  | btrfs_abort_transaction(trans, -EUCLEAN); | 
|  | if (!err) | 
|  | err = -EUCLEAN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set reference count to 1, so btrfs_recover_relocation | 
|  | * knows it should resumes merging | 
|  | */ | 
|  | if (!err) | 
|  | btrfs_set_root_refs(&reloc_root->root_item, 1); | 
|  | ret = btrfs_update_reloc_root(trans, root); | 
|  |  | 
|  | /* | 
|  | * Even if we have an error we need this reloc root back on our | 
|  | * list so we can clean up properly. | 
|  | */ | 
|  | list_add(&reloc_root->root_list, &reloc_roots); | 
|  | btrfs_put_root(root); | 
|  |  | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | if (!err) | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_splice(&reloc_roots, &rc->reloc_roots); | 
|  |  | 
|  | if (!err) | 
|  | err = btrfs_commit_transaction(trans); | 
|  | else | 
|  | btrfs_end_transaction(trans); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | void free_reloc_roots(struct list_head *list) | 
|  | { | 
|  | struct btrfs_root *reloc_root, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(reloc_root, tmp, list, root_list) | 
|  | __del_reloc_root(reloc_root); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | void merge_reloc_roots(struct reloc_control *rc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_root *reloc_root; | 
|  | LIST_HEAD(reloc_roots); | 
|  | int found = 0; | 
|  | int ret = 0; | 
|  | again: | 
|  | root = rc->extent_root; | 
|  |  | 
|  | /* | 
|  | * this serializes us with btrfs_record_root_in_transaction, | 
|  | * we have to make sure nobody is in the middle of | 
|  | * adding their roots to the list while we are | 
|  | * doing this splice | 
|  | */ | 
|  | mutex_lock(&fs_info->reloc_mutex); | 
|  | list_splice_init(&rc->reloc_roots, &reloc_roots); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  |  | 
|  | while (!list_empty(&reloc_roots)) { | 
|  | found = 1; | 
|  | reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list); | 
|  |  | 
|  | root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, | 
|  | false); | 
|  | if (btrfs_root_refs(&reloc_root->root_item) > 0) { | 
|  | if (WARN_ON(IS_ERR(root))) { | 
|  | /* | 
|  | * For recovery we read the fs roots on mount, | 
|  | * and if we didn't find the root then we marked | 
|  | * the reloc root as a garbage root.  For normal | 
|  | * relocation obviously the root should exist in | 
|  | * memory.  However there's no reason we can't | 
|  | * handle the error properly here just in case. | 
|  | */ | 
|  | ret = PTR_ERR(root); | 
|  | goto out; | 
|  | } | 
|  | if (WARN_ON(root->reloc_root != reloc_root)) { | 
|  | /* | 
|  | * This can happen if on-disk metadata has some | 
|  | * corruption, e.g. bad reloc tree key offset. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | ret = merge_reloc_root(rc, root); | 
|  | btrfs_put_root(root); | 
|  | if (ret) { | 
|  | if (list_empty(&reloc_root->root_list)) | 
|  | list_add_tail(&reloc_root->root_list, | 
|  | &reloc_roots); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | if (!IS_ERR(root)) { | 
|  | if (root->reloc_root == reloc_root) { | 
|  | root->reloc_root = NULL; | 
|  | btrfs_put_root(reloc_root); | 
|  | } | 
|  | clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, | 
|  | &root->state); | 
|  | btrfs_put_root(root); | 
|  | } | 
|  |  | 
|  | list_del_init(&reloc_root->root_list); | 
|  | /* Don't forget to queue this reloc root for cleanup */ | 
|  | list_add_tail(&reloc_root->reloc_dirty_list, | 
|  | &rc->dirty_subvol_roots); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (found) { | 
|  | found = 0; | 
|  | goto again; | 
|  | } | 
|  | out: | 
|  | if (ret) { | 
|  | btrfs_handle_fs_error(fs_info, ret, NULL); | 
|  | free_reloc_roots(&reloc_roots); | 
|  |  | 
|  | /* new reloc root may be added */ | 
|  | mutex_lock(&fs_info->reloc_mutex); | 
|  | list_splice_init(&rc->reloc_roots, &reloc_roots); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | free_reloc_roots(&reloc_roots); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We used to have | 
|  | * | 
|  | * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); | 
|  | * | 
|  | * here, but it's wrong.  If we fail to start the transaction in | 
|  | * prepare_to_merge() we will have only 0 ref reloc roots, none of which | 
|  | * have actually been removed from the reloc_root_tree rb tree.  This is | 
|  | * fine because we're bailing here, and we hold a reference on the root | 
|  | * for the list that holds it, so these roots will be cleaned up when we | 
|  | * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root | 
|  | * will be cleaned up on unmount. | 
|  | * | 
|  | * The remaining nodes will be cleaned up by free_reloc_control. | 
|  | */ | 
|  | } | 
|  |  | 
|  | static void free_block_list(struct rb_root *blocks) | 
|  | { | 
|  | struct tree_block *block; | 
|  | struct rb_node *rb_node; | 
|  | while ((rb_node = rb_first(blocks))) { | 
|  | block = rb_entry(rb_node, struct tree_block, rb_node); | 
|  | rb_erase(rb_node, blocks); | 
|  | kfree(block); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *reloc_root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = reloc_root->fs_info; | 
|  | struct btrfs_root *root; | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_get_root_last_trans(reloc_root) == trans->transid) | 
|  | return 0; | 
|  |  | 
|  | root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); | 
|  |  | 
|  | /* | 
|  | * This should succeed, since we can't have a reloc root without having | 
|  | * already looked up the actual root and created the reloc root for this | 
|  | * root. | 
|  | * | 
|  | * However if there's some sort of corruption where we have a ref to a | 
|  | * reloc root without a corresponding root this could return ENOENT. | 
|  | */ | 
|  | if (IS_ERR(root)) { | 
|  | DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root)); | 
|  | return PTR_ERR(root); | 
|  | } | 
|  | if (unlikely(root->reloc_root != reloc_root)) { | 
|  | DEBUG_WARN("unexpected reloc root found"); | 
|  | btrfs_err(fs_info, | 
|  | "root %llu has two reloc roots associated with it", | 
|  | reloc_root->root_key.offset); | 
|  | btrfs_put_root(root); | 
|  | return -EUCLEAN; | 
|  | } | 
|  | ret = btrfs_record_root_in_trans(trans, root); | 
|  | btrfs_put_root(root); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node, | 
|  | struct btrfs_backref_edge *edges[]) | 
|  | { | 
|  | struct btrfs_backref_node *next; | 
|  | struct btrfs_root *root; | 
|  | int index = 0; | 
|  | int ret; | 
|  |  | 
|  | next = walk_up_backref(node, edges, &index); | 
|  | root = next->root; | 
|  |  | 
|  | /* | 
|  | * If there is no root, then our references for this block are | 
|  | * incomplete, as we should be able to walk all the way up to a block | 
|  | * that is owned by a root. | 
|  | * | 
|  | * This path is only for SHAREABLE roots, so if we come upon a | 
|  | * non-SHAREABLE root then we have backrefs that resolve improperly. | 
|  | * | 
|  | * Both of these cases indicate file system corruption, or a bug in the | 
|  | * backref walking code. | 
|  | */ | 
|  | if (unlikely(!root)) { | 
|  | btrfs_err(trans->fs_info, | 
|  | "bytenr %llu doesn't have a backref path ending in a root", | 
|  | node->bytenr); | 
|  | return ERR_PTR(-EUCLEAN); | 
|  | } | 
|  | if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { | 
|  | btrfs_err(trans->fs_info, | 
|  | "bytenr %llu has multiple refs with one ending in a non-shareable root", | 
|  | node->bytenr); | 
|  | return ERR_PTR(-EUCLEAN); | 
|  | } | 
|  |  | 
|  | if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { | 
|  | ret = record_reloc_root_in_trans(trans, root); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | ret = btrfs_record_root_in_trans(trans, root); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  | root = root->reloc_root; | 
|  |  | 
|  | /* | 
|  | * We could have raced with another thread which failed, so | 
|  | * root->reloc_root may not be set, return ENOENT in this case. | 
|  | */ | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | if (unlikely(next->new_bytenr)) { | 
|  | /* | 
|  | * We just created the reloc root, so we shouldn't have | 
|  | * ->new_bytenr set yet. If it is then we have multiple roots | 
|  | *  pointing at the same bytenr which indicates corruption, or | 
|  | *  we've made a mistake in the backref walking code. | 
|  | */ | 
|  | ASSERT(next->new_bytenr == 0); | 
|  | btrfs_err(trans->fs_info, | 
|  | "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", | 
|  | node->bytenr, next->bytenr); | 
|  | return ERR_PTR(-EUCLEAN); | 
|  | } | 
|  |  | 
|  | next->new_bytenr = root->node->start; | 
|  | btrfs_put_root(next->root); | 
|  | next->root = btrfs_grab_root(root); | 
|  | ASSERT(next->root); | 
|  | mark_block_processed(rc, next); | 
|  | found: | 
|  | next = node; | 
|  | /* setup backref node path for btrfs_reloc_cow_block */ | 
|  | while (1) { | 
|  | rc->backref_cache.path[next->level] = next; | 
|  | if (--index < 0) | 
|  | break; | 
|  | next = edges[index]->node[UPPER]; | 
|  | } | 
|  | return root; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select a tree root for relocation. | 
|  | * | 
|  | * Return NULL if the block is not shareable. We should use do_relocation() in | 
|  | * this case. | 
|  | * | 
|  | * Return a tree root pointer if the block is shareable. | 
|  | * Return -ENOENT if the block is root of reloc tree. | 
|  | */ | 
|  | static noinline_for_stack | 
|  | struct btrfs_root *select_one_root(struct btrfs_backref_node *node) | 
|  | { | 
|  | struct btrfs_backref_node *next; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_root *fs_root = NULL; | 
|  | struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; | 
|  | int index = 0; | 
|  |  | 
|  | next = node; | 
|  | while (1) { | 
|  | cond_resched(); | 
|  | next = walk_up_backref(next, edges, &index); | 
|  | root = next->root; | 
|  |  | 
|  | /* | 
|  | * This can occur if we have incomplete extent refs leading all | 
|  | * the way up a particular path, in this case return -EUCLEAN. | 
|  | */ | 
|  | if (unlikely(!root)) | 
|  | return ERR_PTR(-EUCLEAN); | 
|  |  | 
|  | /* No other choice for non-shareable tree */ | 
|  | if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) | 
|  | return root; | 
|  |  | 
|  | if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) | 
|  | fs_root = root; | 
|  |  | 
|  | if (next != node) | 
|  | return NULL; | 
|  |  | 
|  | next = walk_down_backref(edges, &index); | 
|  | if (!next || next->level <= node->level) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!fs_root) | 
|  | return ERR_PTR(-ENOENT); | 
|  | return fs_root; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  | struct btrfs_backref_node *next = node; | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; | 
|  | u64 num_bytes = 0; | 
|  | int index = 0; | 
|  |  | 
|  | BUG_ON(node->processed); | 
|  |  | 
|  | while (next) { | 
|  | cond_resched(); | 
|  | while (1) { | 
|  | if (next->processed) | 
|  | break; | 
|  |  | 
|  | num_bytes += fs_info->nodesize; | 
|  |  | 
|  | if (list_empty(&next->upper)) | 
|  | break; | 
|  |  | 
|  | edge = list_first_entry(&next->upper, struct btrfs_backref_edge, | 
|  | list[LOWER]); | 
|  | edges[index++] = edge; | 
|  | next = edge->node[UPPER]; | 
|  | } | 
|  | next = walk_down_backref(edges, &index); | 
|  | } | 
|  | return num_bytes; | 
|  | } | 
|  |  | 
|  | static int refill_metadata_space(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  |  | 
|  | trans->block_rsv = rc->block_rsv; | 
|  | rc->reserved_bytes += num_bytes; | 
|  |  | 
|  | /* | 
|  | * We are under a transaction here so we can only do limited flushing. | 
|  | * If we get an enospc just kick back -EAGAIN so we know to drop the | 
|  | * transaction and try to refill when we can flush all the things. | 
|  | */ | 
|  | ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, | 
|  | BTRFS_RESERVE_FLUSH_LIMIT); | 
|  | if (ret) { | 
|  | u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; | 
|  |  | 
|  | while (tmp <= rc->reserved_bytes) | 
|  | tmp <<= 1; | 
|  | /* | 
|  | * only one thread can access block_rsv at this point, | 
|  | * so we don't need hold lock to protect block_rsv. | 
|  | * we expand more reservation size here to allow enough | 
|  | * space for relocation and we will return earlier in | 
|  | * enospc case. | 
|  | */ | 
|  | rc->block_rsv->size = tmp + fs_info->nodesize * | 
|  | RELOCATION_RESERVED_NODES; | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int reserve_metadata_space(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | u64 num_bytes; | 
|  |  | 
|  | num_bytes = calcu_metadata_size(rc, node) * 2; | 
|  | return refill_metadata_space(trans, rc, num_bytes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * relocate a block tree, and then update pointers in upper level | 
|  | * blocks that reference the block to point to the new location. | 
|  | * | 
|  | * if called by link_to_upper, the block has already been relocated. | 
|  | * in that case this function just updates pointers. | 
|  | */ | 
|  | static int do_relocation(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node, | 
|  | struct btrfs_key *key, | 
|  | struct btrfs_path *path, int lowest) | 
|  | { | 
|  | struct btrfs_backref_node *upper; | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; | 
|  | struct btrfs_root *root; | 
|  | struct extent_buffer *eb; | 
|  | u32 blocksize; | 
|  | u64 bytenr; | 
|  | int slot; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If we are lowest then this is the first time we're processing this | 
|  | * block, and thus shouldn't have an eb associated with it yet. | 
|  | */ | 
|  | ASSERT(!lowest || !node->eb); | 
|  |  | 
|  | path->lowest_level = node->level + 1; | 
|  | rc->backref_cache.path[node->level] = node; | 
|  | list_for_each_entry(edge, &node->upper, list[LOWER]) { | 
|  | cond_resched(); | 
|  |  | 
|  | upper = edge->node[UPPER]; | 
|  | root = select_reloc_root(trans, rc, upper, edges); | 
|  | if (IS_ERR(root)) { | 
|  | ret = PTR_ERR(root); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (upper->eb && !upper->locked) { | 
|  | if (!lowest) { | 
|  | ret = btrfs_bin_search(upper->eb, 0, key, &slot); | 
|  | if (ret < 0) | 
|  | goto next; | 
|  | BUG_ON(ret); | 
|  | bytenr = btrfs_node_blockptr(upper->eb, slot); | 
|  | if (node->eb->start == bytenr) | 
|  | goto next; | 
|  | } | 
|  | btrfs_backref_drop_node_buffer(upper); | 
|  | } | 
|  |  | 
|  | if (!upper->eb) { | 
|  | ret = btrfs_search_slot(trans, root, key, path, 0, 1); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!upper->eb) { | 
|  | upper->eb = path->nodes[upper->level]; | 
|  | path->nodes[upper->level] = NULL; | 
|  | } else { | 
|  | BUG_ON(upper->eb != path->nodes[upper->level]); | 
|  | } | 
|  |  | 
|  | upper->locked = 1; | 
|  | path->locks[upper->level] = 0; | 
|  |  | 
|  | slot = path->slots[upper->level]; | 
|  | btrfs_release_path(path); | 
|  | } else { | 
|  | ret = btrfs_bin_search(upper->eb, 0, key, &slot); | 
|  | if (ret < 0) | 
|  | goto next; | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | bytenr = btrfs_node_blockptr(upper->eb, slot); | 
|  | if (lowest) { | 
|  | if (unlikely(bytenr != node->bytenr)) { | 
|  | btrfs_err(root->fs_info, | 
|  | "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", | 
|  | bytenr, node->bytenr, slot, | 
|  | upper->eb->start); | 
|  | ret = -EIO; | 
|  | goto next; | 
|  | } | 
|  | } else { | 
|  | if (node->eb->start == bytenr) | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | blocksize = root->fs_info->nodesize; | 
|  | eb = btrfs_read_node_slot(upper->eb, slot); | 
|  | if (IS_ERR(eb)) { | 
|  | ret = PTR_ERR(eb); | 
|  | goto next; | 
|  | } | 
|  | btrfs_tree_lock(eb); | 
|  |  | 
|  | if (!node->eb) { | 
|  | ret = btrfs_cow_block(trans, root, eb, upper->eb, | 
|  | slot, &eb, BTRFS_NESTING_COW); | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  | if (ret < 0) | 
|  | goto next; | 
|  | /* | 
|  | * We've just COWed this block, it should have updated | 
|  | * the correct backref node entry. | 
|  | */ | 
|  | ASSERT(node->eb == eb); | 
|  | } else { | 
|  | struct btrfs_ref ref = { | 
|  | .action = BTRFS_ADD_DELAYED_REF, | 
|  | .bytenr = node->eb->start, | 
|  | .num_bytes = blocksize, | 
|  | .parent = upper->eb->start, | 
|  | .owning_root = btrfs_header_owner(upper->eb), | 
|  | .ref_root = btrfs_header_owner(upper->eb), | 
|  | }; | 
|  |  | 
|  | btrfs_set_node_blockptr(upper->eb, slot, | 
|  | node->eb->start); | 
|  | btrfs_set_node_ptr_generation(upper->eb, slot, | 
|  | trans->transid); | 
|  | btrfs_mark_buffer_dirty(trans, upper->eb); | 
|  |  | 
|  | btrfs_init_tree_ref(&ref, node->level, | 
|  | btrfs_root_id(root), false); | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | if (!ret) | 
|  | ret = btrfs_drop_subtree(trans, root, eb, | 
|  | upper->eb); | 
|  | if (unlikely(ret)) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } | 
|  | next: | 
|  | if (!upper->pending) | 
|  | btrfs_backref_drop_node_buffer(upper); | 
|  | else | 
|  | btrfs_backref_unlock_node_buffer(upper); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!ret && node->pending) { | 
|  | btrfs_backref_drop_node_buffer(node); | 
|  | list_del_init(&node->list); | 
|  | node->pending = 0; | 
|  | } | 
|  |  | 
|  | path->lowest_level = 0; | 
|  |  | 
|  | /* | 
|  | * We should have allocated all of our space in the block rsv and thus | 
|  | * shouldn't ENOSPC. | 
|  | */ | 
|  | ASSERT(ret != -ENOSPC); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int link_to_upper(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_key key; | 
|  |  | 
|  | btrfs_node_key_to_cpu(node->eb, &key, 0); | 
|  | return do_relocation(trans, rc, node, &key, path, 0); | 
|  | } | 
|  |  | 
|  | static int finish_pending_nodes(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, | 
|  | struct btrfs_path *path, int err) | 
|  | { | 
|  | LIST_HEAD(list); | 
|  | struct btrfs_backref_cache *cache = &rc->backref_cache; | 
|  | struct btrfs_backref_node *node; | 
|  | int level; | 
|  | int ret; | 
|  |  | 
|  | for (level = 0; level < BTRFS_MAX_LEVEL; level++) { | 
|  | while (!list_empty(&cache->pending[level])) { | 
|  | node = list_first_entry(&cache->pending[level], | 
|  | struct btrfs_backref_node, list); | 
|  | list_move_tail(&node->list, &list); | 
|  | BUG_ON(!node->pending); | 
|  |  | 
|  | if (!err) { | 
|  | ret = link_to_upper(trans, rc, node, path); | 
|  | if (ret < 0) | 
|  | err = ret; | 
|  | } | 
|  | } | 
|  | list_splice_init(&list, &cache->pending[level]); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mark a block and all blocks directly/indirectly reference the block | 
|  | * as processed. | 
|  | */ | 
|  | static void update_processed_blocks(struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node) | 
|  | { | 
|  | struct btrfs_backref_node *next = node; | 
|  | struct btrfs_backref_edge *edge; | 
|  | struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; | 
|  | int index = 0; | 
|  |  | 
|  | while (next) { | 
|  | cond_resched(); | 
|  | while (1) { | 
|  | if (next->processed) | 
|  | break; | 
|  |  | 
|  | mark_block_processed(rc, next); | 
|  |  | 
|  | if (list_empty(&next->upper)) | 
|  | break; | 
|  |  | 
|  | edge = list_first_entry(&next->upper, struct btrfs_backref_edge, | 
|  | list[LOWER]); | 
|  | edges[index++] = edge; | 
|  | next = edge->node[UPPER]; | 
|  | } | 
|  | next = walk_down_backref(edges, &index); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int tree_block_processed(u64 bytenr, struct reloc_control *rc) | 
|  | { | 
|  | u32 blocksize = rc->extent_root->fs_info->nodesize; | 
|  |  | 
|  | if (btrfs_test_range_bit(&rc->processed_blocks, bytenr, | 
|  | bytenr + blocksize - 1, EXTENT_DIRTY, NULL)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_tree_block_key(struct btrfs_fs_info *fs_info, | 
|  | struct tree_block *block) | 
|  | { | 
|  | struct btrfs_tree_parent_check check = { | 
|  | .level = block->level, | 
|  | .owner_root = block->owner, | 
|  | .transid = block->key.offset | 
|  | }; | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | eb = read_tree_block(fs_info, block->bytenr, &check); | 
|  | if (IS_ERR(eb)) | 
|  | return PTR_ERR(eb); | 
|  | if (unlikely(!extent_buffer_uptodate(eb))) { | 
|  | free_extent_buffer(eb); | 
|  | return -EIO; | 
|  | } | 
|  | if (block->level == 0) | 
|  | btrfs_item_key_to_cpu(eb, &block->key, 0); | 
|  | else | 
|  | btrfs_node_key_to_cpu(eb, &block->key, 0); | 
|  | free_extent_buffer(eb); | 
|  | block->key_ready = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to relocate a tree block | 
|  | */ | 
|  | static int relocate_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, | 
|  | struct btrfs_backref_node *node, | 
|  | struct btrfs_key *key, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!node) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we fail here we want to drop our backref_node because we are going | 
|  | * to start over and regenerate the tree for it. | 
|  | */ | 
|  | ret = reserve_metadata_space(trans, rc, node); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | BUG_ON(node->processed); | 
|  | root = select_one_root(node); | 
|  | if (IS_ERR(root)) { | 
|  | ret = PTR_ERR(root); | 
|  |  | 
|  | /* See explanation in select_one_root for the -EUCLEAN case. */ | 
|  | ASSERT(ret == -ENOENT); | 
|  | if (ret == -ENOENT) { | 
|  | ret = 0; | 
|  | update_processed_blocks(rc, node); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (root) { | 
|  | if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { | 
|  | /* | 
|  | * This block was the root block of a root, and this is | 
|  | * the first time we're processing the block and thus it | 
|  | * should not have had the ->new_bytenr modified. | 
|  | * | 
|  | * However in the case of corruption we could have | 
|  | * multiple refs pointing to the same block improperly, | 
|  | * and thus we would trip over these checks.  ASSERT() | 
|  | * for the developer case, because it could indicate a | 
|  | * bug in the backref code, however error out for a | 
|  | * normal user in the case of corruption. | 
|  | */ | 
|  | ASSERT(node->new_bytenr == 0); | 
|  | if (unlikely(node->new_bytenr)) { | 
|  | btrfs_err(root->fs_info, | 
|  | "bytenr %llu has improper references to it", | 
|  | node->bytenr); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | ret = btrfs_record_root_in_trans(trans, root); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * Another thread could have failed, need to check if we | 
|  | * have reloc_root actually set. | 
|  | */ | 
|  | if (!root->reloc_root) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | root = root->reloc_root; | 
|  | node->new_bytenr = root->node->start; | 
|  | btrfs_put_root(node->root); | 
|  | node->root = btrfs_grab_root(root); | 
|  | ASSERT(node->root); | 
|  | } else { | 
|  | btrfs_err(root->fs_info, | 
|  | "bytenr %llu resolved to a non-shareable root", | 
|  | node->bytenr); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | if (!ret) | 
|  | update_processed_blocks(rc, node); | 
|  | } else { | 
|  | ret = do_relocation(trans, rc, node, key, path, 1); | 
|  | } | 
|  | out: | 
|  | if (ret || node->level == 0) | 
|  | btrfs_backref_cleanup_node(&rc->backref_cache, node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int relocate_cowonly_block(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, struct tree_block *block, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root; | 
|  | u64 num_bytes; | 
|  | int nr_levels; | 
|  | int ret; | 
|  |  | 
|  | root = btrfs_get_fs_root(fs_info, block->owner, true); | 
|  | if (IS_ERR(root)) | 
|  | return PTR_ERR(root); | 
|  |  | 
|  | nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1; | 
|  |  | 
|  | num_bytes = fs_info->nodesize * nr_levels; | 
|  | ret = refill_metadata_space(trans, rc, num_bytes); | 
|  | if (ret) { | 
|  | btrfs_put_root(root); | 
|  | return ret; | 
|  | } | 
|  | path->lowest_level = block->level; | 
|  | if (root == root->fs_info->chunk_root) | 
|  | btrfs_reserve_chunk_metadata(trans, false); | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1); | 
|  | path->lowest_level = 0; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (root == root->fs_info->chunk_root) | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | btrfs_put_root(root); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * relocate a list of blocks | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int relocate_tree_blocks(struct btrfs_trans_handle *trans, | 
|  | struct reloc_control *rc, struct rb_root *blocks) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  | struct btrfs_backref_node *node; | 
|  | struct btrfs_path *path; | 
|  | struct tree_block *block; | 
|  | struct tree_block *next; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_blocks; | 
|  | } | 
|  |  | 
|  | /* Kick in readahead for tree blocks with missing keys */ | 
|  | rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { | 
|  | if (!block->key_ready) | 
|  | btrfs_readahead_tree_block(fs_info, block->bytenr, | 
|  | block->owner, 0, | 
|  | block->level); | 
|  | } | 
|  |  | 
|  | /* Get first keys */ | 
|  | rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { | 
|  | if (!block->key_ready) { | 
|  | ret = get_tree_block_key(fs_info, block); | 
|  | if (ret) | 
|  | goto out_free_path; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do tree relocation */ | 
|  | rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { | 
|  | /* | 
|  | * For COWonly blocks, or the data reloc tree, we only need to | 
|  | * COW down to the block, there's no need to generate a backref | 
|  | * tree. | 
|  | */ | 
|  | if (block->owner && | 
|  | (!btrfs_is_fstree(block->owner) || | 
|  | block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { | 
|  | ret = relocate_cowonly_block(trans, rc, block, path); | 
|  | if (ret) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | node = build_backref_tree(trans, rc, &block->key, | 
|  | block->level, block->bytenr); | 
|  | if (IS_ERR(node)) { | 
|  | ret = PTR_ERR(node); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = relocate_tree_block(trans, rc, node, &block->key, | 
|  | path); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | ret = finish_pending_nodes(trans, rc, path, ret); | 
|  |  | 
|  | out_free_path: | 
|  | btrfs_free_path(path); | 
|  | out_free_blocks: | 
|  | free_block_list(blocks); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc) | 
|  | { | 
|  | const struct file_extent_cluster *cluster = &rc->cluster; | 
|  | struct btrfs_inode *inode = BTRFS_I(rc->data_inode); | 
|  | u64 alloc_hint = 0; | 
|  | u64 start; | 
|  | u64 end; | 
|  | u64 offset = inode->reloc_block_group_start; | 
|  | u64 num_bytes; | 
|  | int nr; | 
|  | int ret = 0; | 
|  | u64 prealloc_start = cluster->start - offset; | 
|  | u64 prealloc_end = cluster->end - offset; | 
|  | u64 cur_offset = prealloc_start; | 
|  |  | 
|  | /* | 
|  | * For blocksize < folio size case (either bs < page size or large folios), | 
|  | * beyond i_size, all blocks are filled with zero. | 
|  | * | 
|  | * If the current cluster covers the above range, btrfs_do_readpage() | 
|  | * will skip the read, and relocate_one_folio() will later writeback | 
|  | * the padding zeros as new data, causing data corruption. | 
|  | * | 
|  | * Here we have to invalidate the cache covering our cluster. | 
|  | */ | 
|  | ret = filemap_invalidate_inode(&inode->vfs_inode, true, prealloc_start, | 
|  | prealloc_end); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | BUG_ON(cluster->start != cluster->boundary[0]); | 
|  | ret = btrfs_alloc_data_chunk_ondemand(inode, | 
|  | prealloc_end + 1 - prealloc_start); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | btrfs_inode_lock(inode, 0); | 
|  | for (nr = 0; nr < cluster->nr; nr++) { | 
|  | struct extent_state *cached_state = NULL; | 
|  |  | 
|  | start = cluster->boundary[nr] - offset; | 
|  | if (nr + 1 < cluster->nr) | 
|  | end = cluster->boundary[nr + 1] - 1 - offset; | 
|  | else | 
|  | end = cluster->end - offset; | 
|  |  | 
|  | btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); | 
|  | num_bytes = end + 1 - start; | 
|  | ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, | 
|  | num_bytes, num_bytes, | 
|  | end + 1, &alloc_hint); | 
|  | cur_offset = end + 1; | 
|  | btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | btrfs_inode_unlock(inode, 0); | 
|  |  | 
|  | if (cur_offset < prealloc_end) | 
|  | btrfs_free_reserved_data_space_noquota(inode, | 
|  | prealloc_end + 1 - cur_offset); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(rc->data_inode); | 
|  | struct extent_map *em; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 offset = inode->reloc_block_group_start; | 
|  | u64 start = rc->cluster.start - offset; | 
|  | u64 end = rc->cluster.end - offset; | 
|  | int ret = 0; | 
|  |  | 
|  | em = btrfs_alloc_extent_map(); | 
|  | if (!em) | 
|  | return -ENOMEM; | 
|  |  | 
|  | em->start = start; | 
|  | em->len = end + 1 - start; | 
|  | em->disk_bytenr = rc->cluster.start; | 
|  | em->disk_num_bytes = em->len; | 
|  | em->ram_bytes = em->len; | 
|  | em->flags |= EXTENT_FLAG_PINNED; | 
|  |  | 
|  | btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); | 
|  | ret = btrfs_replace_extent_map_range(inode, em, false); | 
|  | btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); | 
|  | btrfs_free_extent_map(em); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow error injection to test balance/relocation cancellation | 
|  | */ | 
|  | noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | return atomic_read(&fs_info->balance_cancel_req) || | 
|  | atomic_read(&fs_info->reloc_cancel_req) || | 
|  | fatal_signal_pending(current); | 
|  | } | 
|  | ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); | 
|  |  | 
|  | static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster, | 
|  | int cluster_nr) | 
|  | { | 
|  | /* Last extent, use cluster end directly */ | 
|  | if (cluster_nr >= cluster->nr - 1) | 
|  | return cluster->end; | 
|  |  | 
|  | /* Use next boundary start*/ | 
|  | return cluster->boundary[cluster_nr + 1] - 1; | 
|  | } | 
|  |  | 
|  | static int relocate_one_folio(struct reloc_control *rc, | 
|  | struct file_ra_state *ra, | 
|  | int *cluster_nr, u64 *file_offset_ret) | 
|  | { | 
|  | const struct file_extent_cluster *cluster = &rc->cluster; | 
|  | struct inode *inode = rc->data_inode; | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
|  | const u64 orig_file_offset = *file_offset_ret; | 
|  | u64 offset = BTRFS_I(inode)->reloc_block_group_start; | 
|  | const pgoff_t last_index = (cluster->end - offset) >> PAGE_SHIFT; | 
|  | const pgoff_t index = orig_file_offset >> PAGE_SHIFT; | 
|  | gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); | 
|  | struct folio *folio; | 
|  | u64 folio_start; | 
|  | u64 folio_end; | 
|  | u64 cur; | 
|  | int ret; | 
|  | const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags); | 
|  |  | 
|  | ASSERT(index <= last_index); | 
|  | again: | 
|  | folio = filemap_lock_folio(inode->i_mapping, index); | 
|  | if (IS_ERR(folio)) { | 
|  |  | 
|  | /* | 
|  | * On relocation we're doing readahead on the relocation inode, | 
|  | * but if the filesystem is backed by a RAID stripe tree we can | 
|  | * get ENOENT (e.g. due to preallocated extents not being | 
|  | * mapped in the RST) from the lookup. | 
|  | * | 
|  | * But readahead doesn't handle the error and submits invalid | 
|  | * reads to the device, causing a assertion failures. | 
|  | */ | 
|  | if (!use_rst) | 
|  | page_cache_sync_readahead(inode->i_mapping, ra, NULL, | 
|  | index, last_index + 1 - index); | 
|  | folio = __filemap_get_folio(inode->i_mapping, index, | 
|  | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, | 
|  | mask); | 
|  | if (IS_ERR(folio)) | 
|  | return PTR_ERR(folio); | 
|  | } | 
|  |  | 
|  | if (folio_test_readahead(folio) && !use_rst) | 
|  | page_cache_async_readahead(inode->i_mapping, ra, NULL, | 
|  | folio, last_index + 1 - index); | 
|  |  | 
|  | if (!folio_test_uptodate(folio)) { | 
|  | btrfs_read_folio(NULL, folio); | 
|  | folio_lock(folio); | 
|  | if (unlikely(!folio_test_uptodate(folio))) { | 
|  | ret = -EIO; | 
|  | goto release_folio; | 
|  | } | 
|  | if (folio->mapping != inode->i_mapping) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We could have lost folio private when we dropped the lock to read the | 
|  | * folio above, make sure we set_folio_extent_mapped() here so we have any | 
|  | * of the subpage blocksize stuff we need in place. | 
|  | */ | 
|  | ret = set_folio_extent_mapped(folio); | 
|  | if (ret < 0) | 
|  | goto release_folio; | 
|  |  | 
|  | folio_start = folio_pos(folio); | 
|  | folio_end = folio_start + folio_size(folio) - 1; | 
|  |  | 
|  | /* | 
|  | * Start from the cluster, as for subpage case, the cluster can start | 
|  | * inside the folio. | 
|  | */ | 
|  | cur = max(folio_start, cluster->boundary[*cluster_nr] - offset); | 
|  | while (cur <= folio_end) { | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 extent_start = cluster->boundary[*cluster_nr] - offset; | 
|  | u64 extent_end = get_cluster_boundary_end(cluster, | 
|  | *cluster_nr) - offset; | 
|  | u64 clamped_start = max(folio_start, extent_start); | 
|  | u64 clamped_end = min(folio_end, extent_end); | 
|  | u32 clamped_len = clamped_end + 1 - clamped_start; | 
|  |  | 
|  | /* Reserve metadata for this range */ | 
|  | ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), | 
|  | clamped_len, clamped_len, | 
|  | false); | 
|  | if (ret) | 
|  | goto release_folio; | 
|  |  | 
|  | /* Mark the range delalloc and dirty for later writeback */ | 
|  | btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, | 
|  | clamped_end, &cached_state); | 
|  | ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, | 
|  | clamped_end, 0, &cached_state); | 
|  | if (ret) { | 
|  | btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, | 
|  | clamped_start, clamped_end, | 
|  | EXTENT_LOCKED | EXTENT_BOUNDARY, | 
|  | &cached_state); | 
|  | btrfs_delalloc_release_metadata(BTRFS_I(inode), | 
|  | clamped_len, true); | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), | 
|  | clamped_len); | 
|  | goto release_folio; | 
|  | } | 
|  | btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len); | 
|  |  | 
|  | /* | 
|  | * Set the boundary if it's inside the folio. | 
|  | * Data relocation requires the destination extents to have the | 
|  | * same size as the source. | 
|  | * EXTENT_BOUNDARY bit prevents current extent from being merged | 
|  | * with previous extent. | 
|  | */ | 
|  | if (in_range(cluster->boundary[*cluster_nr] - offset, | 
|  | folio_start, folio_size(folio))) { | 
|  | u64 boundary_start = cluster->boundary[*cluster_nr] - | 
|  | offset; | 
|  | u64 boundary_end = boundary_start + | 
|  | fs_info->sectorsize - 1; | 
|  |  | 
|  | btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree, | 
|  | boundary_start, boundary_end, | 
|  | EXTENT_BOUNDARY, NULL); | 
|  | } | 
|  | btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, | 
|  | &cached_state); | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); | 
|  | cur += clamped_len; | 
|  |  | 
|  | /* Crossed extent end, go to next extent */ | 
|  | if (cur >= extent_end) { | 
|  | (*cluster_nr)++; | 
|  | /* Just finished the last extent of the cluster, exit. */ | 
|  | if (*cluster_nr >= cluster->nr) | 
|  | break; | 
|  | } | 
|  | } | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | balance_dirty_pages_ratelimited(inode->i_mapping); | 
|  | btrfs_throttle(fs_info); | 
|  | if (btrfs_should_cancel_balance(fs_info)) | 
|  | ret = -ECANCELED; | 
|  | *file_offset_ret = folio_end + 1; | 
|  | return ret; | 
|  |  | 
|  | release_folio: | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int relocate_file_extent_cluster(struct reloc_control *rc) | 
|  | { | 
|  | struct inode *inode = rc->data_inode; | 
|  | const struct file_extent_cluster *cluster = &rc->cluster; | 
|  | u64 offset = BTRFS_I(inode)->reloc_block_group_start; | 
|  | u64 cur_file_offset = cluster->start - offset; | 
|  | struct file_ra_state *ra; | 
|  | int cluster_nr = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!cluster->nr) | 
|  | return 0; | 
|  |  | 
|  | ra = kzalloc(sizeof(*ra), GFP_NOFS); | 
|  | if (!ra) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = prealloc_file_extent_cluster(rc); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | file_ra_state_init(ra, inode->i_mapping); | 
|  |  | 
|  | ret = setup_relocation_extent_mapping(rc); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | while (cur_file_offset < cluster->end - offset) { | 
|  | ret = relocate_one_folio(rc, ra, &cluster_nr, &cur_file_offset); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | if (ret == 0) | 
|  | WARN_ON(cluster_nr != cluster->nr); | 
|  | out: | 
|  | kfree(ra); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int relocate_data_extent(struct reloc_control *rc, | 
|  | const struct btrfs_key *extent_key) | 
|  | { | 
|  | struct inode *inode = rc->data_inode; | 
|  | struct file_extent_cluster *cluster = &rc->cluster; | 
|  | int ret; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  |  | 
|  | if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { | 
|  | ret = relocate_file_extent_cluster(rc); | 
|  | if (ret) | 
|  | return ret; | 
|  | cluster->nr = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Under simple quotas, we set root->relocation_src_root when we find | 
|  | * the extent. If adjacent extents have different owners, we can't merge | 
|  | * them while relocating. Handle this by storing the owning root that | 
|  | * started a cluster and if we see an extent from a different root break | 
|  | * cluster formation (just like the above case of non-adjacent extents). | 
|  | * | 
|  | * Without simple quotas, relocation_src_root is always 0, so we should | 
|  | * never see a mismatch, and it should have no effect on relocation | 
|  | * clusters. | 
|  | */ | 
|  | if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) { | 
|  | u64 tmp = root->relocation_src_root; | 
|  |  | 
|  | /* | 
|  | * root->relocation_src_root is the state that actually affects | 
|  | * the preallocation we do here, so set it to the root owning | 
|  | * the cluster we need to relocate. | 
|  | */ | 
|  | root->relocation_src_root = cluster->owning_root; | 
|  | ret = relocate_file_extent_cluster(rc); | 
|  | if (ret) | 
|  | return ret; | 
|  | cluster->nr = 0; | 
|  | /* And reset it back for the current extent's owning root. */ | 
|  | root->relocation_src_root = tmp; | 
|  | } | 
|  |  | 
|  | if (!cluster->nr) { | 
|  | cluster->start = extent_key->objectid; | 
|  | cluster->owning_root = root->relocation_src_root; | 
|  | } | 
|  | else | 
|  | BUG_ON(cluster->nr >= MAX_EXTENTS); | 
|  | cluster->end = extent_key->objectid + extent_key->offset - 1; | 
|  | cluster->boundary[cluster->nr] = extent_key->objectid; | 
|  | cluster->nr++; | 
|  |  | 
|  | if (cluster->nr >= MAX_EXTENTS) { | 
|  | ret = relocate_file_extent_cluster(rc); | 
|  | if (ret) | 
|  | return ret; | 
|  | cluster->nr = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to add a tree block to the list. | 
|  | * the major work is getting the generation and level of the block | 
|  | */ | 
|  | static int add_tree_block(struct reloc_control *rc, | 
|  | const struct btrfs_key *extent_key, | 
|  | struct btrfs_path *path, | 
|  | struct rb_root *blocks) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_tree_block_info *bi; | 
|  | struct tree_block *block; | 
|  | struct rb_node *rb_node; | 
|  | u32 item_size; | 
|  | int level = -1; | 
|  | u64 generation; | 
|  | u64 owner = 0; | 
|  |  | 
|  | eb =  path->nodes[0]; | 
|  | item_size = btrfs_item_size(eb, path->slots[0]); | 
|  |  | 
|  | if (extent_key->type == BTRFS_METADATA_ITEM_KEY || | 
|  | item_size >= sizeof(*ei) + sizeof(*bi)) { | 
|  | unsigned long ptr = 0, end; | 
|  |  | 
|  | ei = btrfs_item_ptr(eb, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | end = (unsigned long)ei + item_size; | 
|  | if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | level = btrfs_tree_block_level(eb, bi); | 
|  | ptr = (unsigned long)(bi + 1); | 
|  | } else { | 
|  | level = (int)extent_key->offset; | 
|  | ptr = (unsigned long)(ei + 1); | 
|  | } | 
|  | generation = btrfs_extent_generation(eb, ei); | 
|  |  | 
|  | /* | 
|  | * We're reading random blocks without knowing their owner ahead | 
|  | * of time.  This is ok most of the time, as all reloc roots and | 
|  | * fs roots have the same lock type.  However normal trees do | 
|  | * not, and the only way to know ahead of time is to read the | 
|  | * inline ref offset.  We know it's an fs root if | 
|  | * | 
|  | * 1. There's more than one ref. | 
|  | * 2. There's a SHARED_DATA_REF_KEY set. | 
|  | * 3. FULL_BACKREF is set on the flags. | 
|  | * | 
|  | * Otherwise it's safe to assume that the ref offset == the | 
|  | * owner of this block, so we can use that when calling | 
|  | * read_tree_block. | 
|  | */ | 
|  | if (btrfs_extent_refs(eb, ei) == 1 && | 
|  | !(btrfs_extent_flags(eb, ei) & | 
|  | BTRFS_BLOCK_FLAG_FULL_BACKREF) && | 
|  | ptr < end) { | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int type; | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | type = btrfs_get_extent_inline_ref_type(eb, iref, | 
|  | BTRFS_REF_TYPE_BLOCK); | 
|  | if (type == BTRFS_REF_TYPE_INVALID) | 
|  | return -EINVAL; | 
|  | if (type == BTRFS_TREE_BLOCK_REF_KEY) | 
|  | owner = btrfs_extent_inline_ref_offset(eb, iref); | 
|  | } | 
|  | } else { | 
|  | btrfs_print_leaf(eb); | 
|  | btrfs_err(rc->block_group->fs_info, | 
|  | "unrecognized tree backref at tree block %llu slot %u", | 
|  | eb->start, path->slots[0]); | 
|  | btrfs_release_path(path); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | BUG_ON(level == -1); | 
|  |  | 
|  | block = kmalloc(sizeof(*block), GFP_NOFS); | 
|  | if (!block) | 
|  | return -ENOMEM; | 
|  |  | 
|  | block->bytenr = extent_key->objectid; | 
|  | block->key.objectid = rc->extent_root->fs_info->nodesize; | 
|  | block->key.offset = generation; | 
|  | block->level = level; | 
|  | block->key_ready = false; | 
|  | block->owner = owner; | 
|  |  | 
|  | rb_node = rb_simple_insert(blocks, &block->simple_node); | 
|  | if (rb_node) | 
|  | btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, | 
|  | -EEXIST); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY | 
|  | */ | 
|  | static int __add_tree_block(struct reloc_control *rc, | 
|  | u64 bytenr, u32 blocksize, | 
|  | struct rb_root *blocks) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  | bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); | 
|  |  | 
|  | if (tree_block_processed(bytenr, rc)) | 
|  | return 0; | 
|  |  | 
|  | if (rb_simple_search(blocks, bytenr)) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | again: | 
|  | key.objectid = bytenr; | 
|  | if (skinny) { | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = blocksize; | 
|  | } | 
|  |  | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  | ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret > 0 && skinny) { | 
|  | if (path->slots[0]) { | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == bytenr && | 
|  | (key.type == BTRFS_METADATA_ITEM_KEY || | 
|  | (key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == blocksize))) | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | skinny = false; | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | if (ret) { | 
|  | ASSERT(ret == 1); | 
|  | btrfs_print_leaf(path->nodes[0]); | 
|  | btrfs_err(fs_info, | 
|  | "tree block extent item (%llu) is not found in extent tree", | 
|  | bytenr); | 
|  | WARN_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return add_tree_block(rc, &key, path, blocks); | 
|  | } | 
|  |  | 
|  | static int delete_block_group_cache(struct btrfs_block_group *block_group, | 
|  | struct inode *inode, | 
|  | u64 ino) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_inode *btrfs_inode; | 
|  | int ret = 0; | 
|  |  | 
|  | if (inode) | 
|  | goto truncate; | 
|  |  | 
|  | btrfs_inode = btrfs_iget(ino, root); | 
|  | if (IS_ERR(btrfs_inode)) | 
|  | return -ENOENT; | 
|  | inode = &btrfs_inode->vfs_inode; | 
|  |  | 
|  | truncate: | 
|  | ret = btrfs_check_trunc_cache_free_space(fs_info, | 
|  | &fs_info->global_block_rsv); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_truncate_free_space_cache(trans, block_group, inode); | 
|  |  | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | out: | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locate the free space cache EXTENT_DATA in root tree leaf and delete the | 
|  | * cache inode, to avoid free space cache data extent blocking data relocation. | 
|  | */ | 
|  | static int delete_v1_space_cache(struct extent_buffer *leaf, | 
|  | struct btrfs_block_group *block_group, | 
|  | u64 data_bytenr) | 
|  | { | 
|  | u64 space_cache_ino; | 
|  | struct btrfs_file_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  | bool found = false; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < btrfs_header_nritems(leaf); i++) { | 
|  | u8 type; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, i); | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); | 
|  | type = btrfs_file_extent_type(leaf, ei); | 
|  |  | 
|  | if ((type == BTRFS_FILE_EXTENT_REG || | 
|  | type == BTRFS_FILE_EXTENT_PREALLOC) && | 
|  | btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { | 
|  | found = true; | 
|  | space_cache_ino = key.objectid; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) | 
|  | return -ENOENT; | 
|  | ret = delete_block_group_cache(block_group, NULL, space_cache_ino); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to find all tree blocks that reference a given data extent | 
|  | */ | 
|  | static noinline_for_stack int add_data_references(struct reloc_control *rc, | 
|  | const struct btrfs_key *extent_key, | 
|  | struct btrfs_path *path, | 
|  | struct rb_root *blocks) | 
|  | { | 
|  | struct btrfs_backref_walk_ctx ctx = { 0 }; | 
|  | struct ulist_iterator leaf_uiter; | 
|  | struct ulist_node *ref_node = NULL; | 
|  | const u32 blocksize = rc->extent_root->fs_info->nodesize; | 
|  | int ret = 0; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ctx.bytenr = extent_key->objectid; | 
|  | ctx.skip_inode_ref_list = true; | 
|  | ctx.fs_info = rc->extent_root->fs_info; | 
|  |  | 
|  | ret = btrfs_find_all_leafs(&ctx); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ULIST_ITER_INIT(&leaf_uiter); | 
|  | while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { | 
|  | struct btrfs_tree_parent_check check = { 0 }; | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | eb = read_tree_block(ctx.fs_info, ref_node->val, &check); | 
|  | if (IS_ERR(eb)) { | 
|  | ret = PTR_ERR(eb); | 
|  | break; | 
|  | } | 
|  | ret = delete_v1_space_cache(eb, rc->block_group, | 
|  | extent_key->objectid); | 
|  | free_extent_buffer(eb); | 
|  | if (ret < 0) | 
|  | break; | 
|  | ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  | if (ret < 0) | 
|  | free_block_list(blocks); | 
|  | ulist_free(ctx.refs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to find next unprocessed extent | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, | 
|  | struct btrfs_key *extent_key) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | u64 start, end, last; | 
|  | int ret; | 
|  |  | 
|  | last = rc->block_group->start + rc->block_group->length; | 
|  | while (1) { | 
|  | bool block_found; | 
|  |  | 
|  | cond_resched(); | 
|  | if (rc->search_start >= last) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | key.objectid = rc->search_start; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  | ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, | 
|  | 0, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  | next: | 
|  | leaf = path->nodes[0]; | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(rc->extent_root, path); | 
|  | if (ret != 0) | 
|  | break; | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid >= last) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (key.type != BTRFS_EXTENT_ITEM_KEY && | 
|  | key.type != BTRFS_METADATA_ITEM_KEY) { | 
|  | path->slots[0]++; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.objectid + key.offset <= rc->search_start) { | 
|  | path->slots[0]++; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (key.type == BTRFS_METADATA_ITEM_KEY && | 
|  | key.objectid + fs_info->nodesize <= | 
|  | rc->search_start) { | 
|  | path->slots[0]++; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | block_found = btrfs_find_first_extent_bit(&rc->processed_blocks, | 
|  | key.objectid, &start, &end, | 
|  | EXTENT_DIRTY, NULL); | 
|  |  | 
|  | if (block_found && start <= key.objectid) { | 
|  | btrfs_release_path(path); | 
|  | rc->search_start = end + 1; | 
|  | } else { | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY) | 
|  | rc->search_start = key.objectid + key.offset; | 
|  | else | 
|  | rc->search_start = key.objectid + | 
|  | fs_info->nodesize; | 
|  | memcpy(extent_key, &key, sizeof(key)); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void set_reloc_control(struct reloc_control *rc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  |  | 
|  | mutex_lock(&fs_info->reloc_mutex); | 
|  | fs_info->reloc_ctl = rc; | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | } | 
|  |  | 
|  | static void unset_reloc_control(struct reloc_control *rc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  |  | 
|  | mutex_lock(&fs_info->reloc_mutex); | 
|  | fs_info->reloc_ctl = NULL; | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int prepare_to_relocate(struct reloc_control *rc) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret; | 
|  |  | 
|  | rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, | 
|  | BTRFS_BLOCK_RSV_TEMP); | 
|  | if (!rc->block_rsv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(&rc->cluster, 0, sizeof(rc->cluster)); | 
|  | rc->search_start = rc->block_group->start; | 
|  | rc->extents_found = 0; | 
|  | rc->nodes_relocated = 0; | 
|  | rc->merging_rsv_size = 0; | 
|  | rc->reserved_bytes = 0; | 
|  | rc->block_rsv->size = rc->extent_root->fs_info->nodesize * | 
|  | RELOCATION_RESERVED_NODES; | 
|  | ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, | 
|  | rc->block_rsv, rc->block_rsv->size, | 
|  | BTRFS_RESERVE_FLUSH_ALL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | rc->create_reloc_tree = true; | 
|  | set_reloc_control(rc); | 
|  |  | 
|  | trans = btrfs_join_transaction(rc->extent_root); | 
|  | if (IS_ERR(trans)) { | 
|  | unset_reloc_control(rc); | 
|  | /* | 
|  | * extent tree is not a ref_cow tree and has no reloc_root to | 
|  | * cleanup.  And callers are responsible to free the above | 
|  | * block rsv. | 
|  | */ | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) | 
|  | unset_reloc_control(rc); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int relocate_block_group(struct reloc_control *rc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; | 
|  | struct rb_root blocks = RB_ROOT; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_extent_item *ei; | 
|  | u64 flags; | 
|  | int ret; | 
|  | int err = 0; | 
|  | int progress = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | ret = prepare_to_relocate(rc); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | rc->reserved_bytes = 0; | 
|  | ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, | 
|  | rc->block_rsv->size, | 
|  | BTRFS_RESERVE_FLUSH_ALL); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  | progress++; | 
|  | trans = btrfs_start_transaction(rc->extent_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | break; | 
|  | } | 
|  | restart: | 
|  | if (rc->backref_cache.last_trans != trans->transid) | 
|  | btrfs_backref_release_cache(&rc->backref_cache); | 
|  | rc->backref_cache.last_trans = trans->transid; | 
|  |  | 
|  | ret = find_next_extent(rc, path, &key); | 
|  | if (ret < 0) | 
|  | err = ret; | 
|  | if (ret != 0) | 
|  | break; | 
|  |  | 
|  | rc->extents_found++; | 
|  |  | 
|  | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(path->nodes[0], ei); | 
|  |  | 
|  | /* | 
|  | * If we are relocating a simple quota owned extent item, we | 
|  | * need to note the owner on the reloc data root so that when | 
|  | * we allocate the replacement item, we can attribute it to the | 
|  | * correct eventual owner (rather than the reloc data root). | 
|  | */ | 
|  | if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) { | 
|  | struct btrfs_root *root = BTRFS_I(rc->data_inode)->root; | 
|  | u64 owning_root_id = btrfs_get_extent_owner_root(fs_info, | 
|  | path->nodes[0], | 
|  | path->slots[0]); | 
|  |  | 
|  | root->relocation_src_root = owning_root_id; | 
|  | } | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | ret = add_tree_block(rc, &key, path, &blocks); | 
|  | } else if (rc->stage == UPDATE_DATA_PTRS && | 
|  | (flags & BTRFS_EXTENT_FLAG_DATA)) { | 
|  | ret = add_data_references(rc, &key, path, &blocks); | 
|  | } else { | 
|  | btrfs_release_path(path); | 
|  | ret = 0; | 
|  | } | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!RB_EMPTY_ROOT(&blocks)) { | 
|  | ret = relocate_tree_blocks(trans, rc, &blocks); | 
|  | if (ret < 0) { | 
|  | if (ret != -EAGAIN) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  | rc->extents_found--; | 
|  | rc->search_start = key.objectid; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_end_transaction_throttle(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | trans = NULL; | 
|  |  | 
|  | if (rc->stage == MOVE_DATA_EXTENTS && | 
|  | (flags & BTRFS_EXTENT_FLAG_DATA)) { | 
|  | rc->found_file_extent = true; | 
|  | ret = relocate_data_extent(rc, &key); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (btrfs_should_cancel_balance(fs_info)) { | 
|  | err = -ECANCELED; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (trans && progress && err == -ENOSPC) { | 
|  | ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); | 
|  | if (ret == 1) { | 
|  | err = 0; | 
|  | progress = 0; | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | btrfs_clear_extent_bit(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, NULL); | 
|  |  | 
|  | if (trans) { | 
|  | btrfs_end_transaction_throttle(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | } | 
|  |  | 
|  | if (!err) { | 
|  | ret = relocate_file_extent_cluster(rc); | 
|  | if (ret < 0) | 
|  | err = ret; | 
|  | } | 
|  |  | 
|  | rc->create_reloc_tree = false; | 
|  | set_reloc_control(rc); | 
|  |  | 
|  | btrfs_backref_release_cache(&rc->backref_cache); | 
|  | btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); | 
|  |  | 
|  | /* | 
|  | * Even in the case when the relocation is cancelled, we should all go | 
|  | * through prepare_to_merge() and merge_reloc_roots(). | 
|  | * | 
|  | * For error (including cancelled balance), prepare_to_merge() will | 
|  | * mark all reloc trees orphan, then queue them for cleanup in | 
|  | * merge_reloc_roots() | 
|  | */ | 
|  | err = prepare_to_merge(rc, err); | 
|  |  | 
|  | merge_reloc_roots(rc); | 
|  |  | 
|  | rc->merge_reloc_tree = false; | 
|  | unset_reloc_control(rc); | 
|  | btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); | 
|  |  | 
|  | /* get rid of pinned extents */ | 
|  | trans = btrfs_join_transaction(rc->extent_root); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | goto out_free; | 
|  | } | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret && !err) | 
|  | err = ret; | 
|  | out_free: | 
|  | ret = clean_dirty_subvols(rc); | 
|  | if (ret < 0 && !err) | 
|  | err = ret; | 
|  | btrfs_free_block_rsv(fs_info, rc->block_rsv); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __insert_orphan_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 objectid) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_inode_item *item; | 
|  | struct extent_buffer *leaf; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = btrfs_insert_empty_inode(trans, root, path, objectid); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); | 
|  | memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); | 
|  | btrfs_set_inode_generation(leaf, item, 1); | 
|  | btrfs_set_inode_size(leaf, item, 0); | 
|  | btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); | 
|  | btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | | 
|  | BTRFS_INODE_PREALLOC); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void delete_orphan_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 objectid) | 
|  | { | 
|  | BTRFS_PATH_AUTO_FREE(path); | 
|  | struct btrfs_key key; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | out: | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to create inode for data relocation. | 
|  | * the inode is in data relocation tree and its link count is 0 | 
|  | */ | 
|  | static noinline_for_stack struct inode *create_reloc_inode( | 
|  | const struct btrfs_block_group *group) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = group->fs_info; | 
|  | struct btrfs_inode *inode = NULL; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root; | 
|  | u64 objectid; | 
|  | int ret = 0; | 
|  |  | 
|  | root = btrfs_grab_root(fs_info->data_reloc_root); | 
|  | trans = btrfs_start_transaction(root, 6); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_put_root(root); | 
|  | return ERR_CAST(trans); | 
|  | } | 
|  |  | 
|  | ret = btrfs_get_free_objectid(root, &objectid); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = __insert_orphan_inode(trans, root, objectid); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | inode = btrfs_iget(objectid, root); | 
|  | if (IS_ERR(inode)) { | 
|  | delete_orphan_inode(trans, root, objectid); | 
|  | ret = PTR_ERR(inode); | 
|  | inode = NULL; | 
|  | goto out; | 
|  | } | 
|  | inode->reloc_block_group_start = group->start; | 
|  |  | 
|  | ret = btrfs_orphan_add(trans, inode); | 
|  | out: | 
|  | btrfs_put_root(root); | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | if (ret) { | 
|  | if (inode) | 
|  | iput(&inode->vfs_inode); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return &inode->vfs_inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark start of chunk relocation that is cancellable. Check if the cancellation | 
|  | * has been requested meanwhile and don't start in that case. | 
|  | * | 
|  | * Return: | 
|  | *   0             success | 
|  | *   -EINPROGRESS  operation is already in progress, that's probably a bug | 
|  | *   -ECANCELED    cancellation request was set before the operation started | 
|  | */ | 
|  | static int reloc_chunk_start(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { | 
|  | /* This should not happen */ | 
|  | btrfs_err(fs_info, "reloc already running, cannot start"); | 
|  | return -EINPROGRESS; | 
|  | } | 
|  |  | 
|  | if (atomic_read(&fs_info->reloc_cancel_req) > 0) { | 
|  | btrfs_info(fs_info, "chunk relocation canceled on start"); | 
|  | /* | 
|  | * On cancel, clear all requests but let the caller mark | 
|  | * the end after cleanup operations. | 
|  | */ | 
|  | atomic_set(&fs_info->reloc_cancel_req, 0); | 
|  | return -ECANCELED; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark end of chunk relocation that is cancellable and wake any waiters. | 
|  | */ | 
|  | static void reloc_chunk_end(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | /* Requested after start, clear bit first so any waiters can continue */ | 
|  | if (atomic_read(&fs_info->reloc_cancel_req) > 0) | 
|  | btrfs_info(fs_info, "chunk relocation canceled during operation"); | 
|  | clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); | 
|  | atomic_set(&fs_info->reloc_cancel_req, 0); | 
|  | } | 
|  |  | 
|  | static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct reloc_control *rc; | 
|  |  | 
|  | rc = kzalloc(sizeof(*rc), GFP_NOFS); | 
|  | if (!rc) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&rc->reloc_roots); | 
|  | INIT_LIST_HEAD(&rc->dirty_subvol_roots); | 
|  | btrfs_backref_init_cache(fs_info, &rc->backref_cache, true); | 
|  | rc->reloc_root_tree.rb_root = RB_ROOT; | 
|  | spin_lock_init(&rc->reloc_root_tree.lock); | 
|  | btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void free_reloc_control(struct reloc_control *rc) | 
|  | { | 
|  | struct mapping_node *node, *tmp; | 
|  |  | 
|  | free_reloc_roots(&rc->reloc_roots); | 
|  | rbtree_postorder_for_each_entry_safe(node, tmp, | 
|  | &rc->reloc_root_tree.rb_root, rb_node) | 
|  | kfree(node); | 
|  |  | 
|  | kfree(rc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print the block group being relocated | 
|  | */ | 
|  | static void describe_relocation(struct btrfs_block_group *block_group) | 
|  | { | 
|  | char buf[128] = "NONE"; | 
|  |  | 
|  | btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); | 
|  |  | 
|  | btrfs_info(block_group->fs_info, "relocating block group %llu flags %s", | 
|  | block_group->start, buf); | 
|  | } | 
|  |  | 
|  | static const char *stage_to_string(enum reloc_stage stage) | 
|  | { | 
|  | if (stage == MOVE_DATA_EXTENTS) | 
|  | return "move data extents"; | 
|  | if (stage == UPDATE_DATA_PTRS) | 
|  | return "update data pointers"; | 
|  | return "unknown"; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * function to relocate all extents in a block group. | 
|  | */ | 
|  | int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start, | 
|  | bool verbose) | 
|  | { | 
|  | struct btrfs_block_group *bg; | 
|  | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); | 
|  | struct reloc_control *rc; | 
|  | struct inode *inode; | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | int rw = 0; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * This only gets set if we had a half-deleted snapshot on mount.  We | 
|  | * cannot allow relocation to start while we're still trying to clean up | 
|  | * these pending deletions. | 
|  | */ | 
|  | ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* We may have been woken up by close_ctree, so bail if we're closing. */ | 
|  | if (btrfs_fs_closing(fs_info)) | 
|  | return -EINTR; | 
|  |  | 
|  | bg = btrfs_lookup_block_group(fs_info, group_start); | 
|  | if (!bg) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * Relocation of a data block group creates ordered extents.  Without | 
|  | * sb_start_write(), we can freeze the filesystem while unfinished | 
|  | * ordered extents are left. Such ordered extents can cause a deadlock | 
|  | * e.g. when syncfs() is waiting for their completion but they can't | 
|  | * finish because they block when joining a transaction, due to the | 
|  | * fact that the freeze locks are being held in write mode. | 
|  | */ | 
|  | if (bg->flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | ASSERT(sb_write_started(fs_info->sb)); | 
|  |  | 
|  | if (btrfs_pinned_by_swapfile(fs_info, bg)) { | 
|  | btrfs_put_block_group(bg); | 
|  | return -ETXTBSY; | 
|  | } | 
|  |  | 
|  | rc = alloc_reloc_control(fs_info); | 
|  | if (!rc) { | 
|  | btrfs_put_block_group(bg); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = reloc_chunk_start(fs_info); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_put_bg; | 
|  | } | 
|  |  | 
|  | rc->extent_root = extent_root; | 
|  | rc->block_group = bg; | 
|  |  | 
|  | ret = btrfs_inc_block_group_ro(rc->block_group, true); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | rw = 1; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode = lookup_free_space_inode(rc->block_group, path); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | if (!IS_ERR(inode)) | 
|  | ret = delete_block_group_cache(rc->block_group, inode, 0); | 
|  | else | 
|  | ret = PTR_ERR(inode); | 
|  |  | 
|  | if (ret && ret != -ENOENT) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc->data_inode = create_reloc_inode(rc->block_group); | 
|  | if (IS_ERR(rc->data_inode)) { | 
|  | err = PTR_ERR(rc->data_inode); | 
|  | rc->data_inode = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (verbose) | 
|  | describe_relocation(rc->block_group); | 
|  |  | 
|  | btrfs_wait_block_group_reservations(rc->block_group); | 
|  | btrfs_wait_nocow_writers(rc->block_group); | 
|  | btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group); | 
|  |  | 
|  | ret = btrfs_zone_finish(rc->block_group); | 
|  | WARN_ON(ret && ret != -EAGAIN); | 
|  |  | 
|  | while (1) { | 
|  | enum reloc_stage finishes_stage; | 
|  |  | 
|  | mutex_lock(&fs_info->cleaner_mutex); | 
|  | ret = relocate_block_group(rc); | 
|  | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | if (ret < 0) | 
|  | err = ret; | 
|  |  | 
|  | finishes_stage = rc->stage; | 
|  | /* | 
|  | * We may have gotten ENOSPC after we already dirtied some | 
|  | * extents.  If writeout happens while we're relocating a | 
|  | * different block group we could end up hitting the | 
|  | * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in | 
|  | * btrfs_reloc_cow_block.  Make sure we write everything out | 
|  | * properly so we don't trip over this problem, and then break | 
|  | * out of the loop if we hit an error. | 
|  | */ | 
|  | if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { | 
|  | ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0, | 
|  | (u64)-1); | 
|  | if (ret) | 
|  | err = ret; | 
|  | invalidate_mapping_pages(rc->data_inode->i_mapping, | 
|  | 0, -1); | 
|  | rc->stage = UPDATE_DATA_PTRS; | 
|  | } | 
|  |  | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | if (rc->extents_found == 0) | 
|  | break; | 
|  |  | 
|  | if (verbose) | 
|  | btrfs_info(fs_info, "found %llu extents, stage: %s", | 
|  | rc->extents_found, | 
|  | stage_to_string(finishes_stage)); | 
|  | } | 
|  |  | 
|  | WARN_ON(rc->block_group->pinned > 0); | 
|  | WARN_ON(rc->block_group->reserved > 0); | 
|  | WARN_ON(rc->block_group->used > 0); | 
|  | out: | 
|  | if (err && rw) | 
|  | btrfs_dec_block_group_ro(rc->block_group); | 
|  | iput(rc->data_inode); | 
|  | out_put_bg: | 
|  | btrfs_put_block_group(bg); | 
|  | reloc_chunk_end(fs_info); | 
|  | free_reloc_control(rc); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret, err; | 
|  |  | 
|  | trans = btrfs_start_transaction(fs_info->tree_root, 0); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | memset(&root->root_item.drop_progress, 0, | 
|  | sizeof(root->root_item.drop_progress)); | 
|  | btrfs_set_root_drop_level(&root->root_item, 0); | 
|  | btrfs_set_root_refs(&root->root_item, 0); | 
|  | ret = btrfs_update_root(trans, fs_info->tree_root, | 
|  | &root->root_key, &root->root_item); | 
|  |  | 
|  | err = btrfs_end_transaction(trans); | 
|  | if (err) | 
|  | return err; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * recover relocation interrupted by system crash. | 
|  | * | 
|  | * this function resumes merging reloc trees with corresponding fs trees. | 
|  | * this is important for keeping the sharing of tree blocks | 
|  | */ | 
|  | int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | LIST_HEAD(reloc_roots); | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root *fs_root; | 
|  | struct btrfs_root *reloc_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct reloc_control *rc = NULL; | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret2; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = READA_BACK; | 
|  |  | 
|  | key.objectid = BTRFS_TREE_RELOC_OBJECTID; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, | 
|  | path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  | ret = 0; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || | 
|  | key.type != BTRFS_ROOT_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); | 
|  | if (IS_ERR(reloc_root)) { | 
|  | ret = PTR_ERR(reloc_root); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); | 
|  | list_add(&reloc_root->root_list, &reloc_roots); | 
|  |  | 
|  | if (btrfs_root_refs(&reloc_root->root_item) > 0) { | 
|  | fs_root = btrfs_get_fs_root(fs_info, | 
|  | reloc_root->root_key.offset, false); | 
|  | if (IS_ERR(fs_root)) { | 
|  | ret = PTR_ERR(fs_root); | 
|  | if (ret != -ENOENT) | 
|  | goto out; | 
|  | ret = mark_garbage_root(reloc_root); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = 0; | 
|  | } else { | 
|  | btrfs_put_root(fs_root); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (key.offset == 0) | 
|  | break; | 
|  |  | 
|  | key.offset--; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (list_empty(&reloc_roots)) | 
|  | goto out; | 
|  |  | 
|  | rc = alloc_reloc_control(fs_info); | 
|  | if (!rc) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = reloc_chunk_start(fs_info); | 
|  | if (ret < 0) | 
|  | goto out_end; | 
|  |  | 
|  | rc->extent_root = btrfs_extent_root(fs_info, 0); | 
|  |  | 
|  | set_reloc_control(rc); | 
|  |  | 
|  | trans = btrfs_join_transaction(rc->extent_root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out_unset; | 
|  | } | 
|  |  | 
|  | rc->merge_reloc_tree = true; | 
|  |  | 
|  | while (!list_empty(&reloc_roots)) { | 
|  | reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list); | 
|  | list_del(&reloc_root->root_list); | 
|  |  | 
|  | if (btrfs_root_refs(&reloc_root->root_item) == 0) { | 
|  | list_add_tail(&reloc_root->root_list, | 
|  | &rc->reloc_roots); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, | 
|  | false); | 
|  | if (IS_ERR(fs_root)) { | 
|  | ret = PTR_ERR(fs_root); | 
|  | list_add_tail(&reloc_root->root_list, &reloc_roots); | 
|  | btrfs_end_transaction(trans); | 
|  | goto out_unset; | 
|  | } | 
|  |  | 
|  | ret = __add_reloc_root(reloc_root); | 
|  | ASSERT(ret != -EEXIST); | 
|  | if (ret) { | 
|  | list_add_tail(&reloc_root->root_list, &reloc_roots); | 
|  | btrfs_put_root(fs_root); | 
|  | btrfs_end_transaction(trans); | 
|  | goto out_unset; | 
|  | } | 
|  | fs_root->reloc_root = btrfs_grab_root(reloc_root); | 
|  | btrfs_put_root(fs_root); | 
|  | } | 
|  |  | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) | 
|  | goto out_unset; | 
|  |  | 
|  | merge_reloc_roots(rc); | 
|  |  | 
|  | unset_reloc_control(rc); | 
|  |  | 
|  | trans = btrfs_join_transaction(rc->extent_root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out_clean; | 
|  | } | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | out_clean: | 
|  | ret2 = clean_dirty_subvols(rc); | 
|  | if (ret2 < 0 && !ret) | 
|  | ret = ret2; | 
|  | out_unset: | 
|  | unset_reloc_control(rc); | 
|  | out_end: | 
|  | reloc_chunk_end(fs_info); | 
|  | free_reloc_control(rc); | 
|  | out: | 
|  | free_reloc_roots(&reloc_roots); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | if (ret == 0) { | 
|  | /* cleanup orphan inode in data relocation tree */ | 
|  | fs_root = btrfs_grab_root(fs_info->data_reloc_root); | 
|  | ASSERT(fs_root); | 
|  | ret = btrfs_orphan_cleanup(fs_root); | 
|  | btrfs_put_root(fs_root); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to add ordered checksum for data relocation. | 
|  | * | 
|  | * cloning checksum properly handles the nodatasum extents. | 
|  | * it also saves CPU time to re-calculate the checksum. | 
|  | */ | 
|  | int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered) | 
|  | { | 
|  | struct btrfs_inode *inode = ordered->inode; | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start; | 
|  | struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr); | 
|  | LIST_HEAD(list); | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, | 
|  | disk_bytenr + ordered->num_bytes - 1, | 
|  | &list, false); | 
|  | if (ret < 0) { | 
|  | btrfs_mark_ordered_extent_error(ordered); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | while (!list_empty(&list)) { | 
|  | struct btrfs_ordered_sum *sums = | 
|  | list_first_entry(&list, struct btrfs_ordered_sum, list); | 
|  |  | 
|  | list_del_init(&sums->list); | 
|  |  | 
|  | /* | 
|  | * We need to offset the new_bytenr based on where the csum is. | 
|  | * We need to do this because we will read in entire prealloc | 
|  | * extents but we may have written to say the middle of the | 
|  | * prealloc extent, so we need to make sure the csum goes with | 
|  | * the right disk offset. | 
|  | * | 
|  | * We can do this because the data reloc inode refers strictly | 
|  | * to the on disk bytes, so we don't have to worry about | 
|  | * disk_len vs real len like with real inodes since it's all | 
|  | * disk length. | 
|  | */ | 
|  | sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr; | 
|  | btrfs_add_ordered_sum(ordered, sums); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | const struct extent_buffer *buf, | 
|  | struct extent_buffer *cow) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct reloc_control *rc; | 
|  | struct btrfs_backref_node *node; | 
|  | int first_cow = 0; | 
|  | int level; | 
|  | int ret = 0; | 
|  |  | 
|  | rc = fs_info->reloc_ctl; | 
|  | if (!rc) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); | 
|  |  | 
|  | level = btrfs_header_level(buf); | 
|  | if (btrfs_header_generation(buf) <= | 
|  | btrfs_root_last_snapshot(&root->root_item)) | 
|  | first_cow = 1; | 
|  |  | 
|  | if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) { | 
|  | WARN_ON(!first_cow && level == 0); | 
|  |  | 
|  | node = rc->backref_cache.path[level]; | 
|  |  | 
|  | /* | 
|  | * If node->bytenr != buf->start and node->new_bytenr != | 
|  | * buf->start then we've got the wrong backref node for what we | 
|  | * expected to see here and the cache is incorrect. | 
|  | */ | 
|  | if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) { | 
|  | btrfs_err(fs_info, | 
|  | "bytenr %llu was found but our backref cache was expecting %llu or %llu", | 
|  | buf->start, node->bytenr, node->new_bytenr); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | btrfs_backref_drop_node_buffer(node); | 
|  | refcount_inc(&cow->refs); | 
|  | node->eb = cow; | 
|  | node->new_bytenr = cow->start; | 
|  |  | 
|  | if (!node->pending) { | 
|  | list_move_tail(&node->list, | 
|  | &rc->backref_cache.pending[level]); | 
|  | node->pending = 1; | 
|  | } | 
|  |  | 
|  | if (first_cow) | 
|  | mark_block_processed(rc, node); | 
|  |  | 
|  | if (first_cow && level > 0) | 
|  | rc->nodes_relocated += buf->len; | 
|  | } | 
|  |  | 
|  | if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) | 
|  | ret = replace_file_extents(trans, rc, root, cow); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called before creating snapshot. it calculates metadata reservation | 
|  | * required for relocating tree blocks in the snapshot | 
|  | */ | 
|  | void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, | 
|  | u64 *bytes_to_reserve) | 
|  | { | 
|  | struct btrfs_root *root = pending->root; | 
|  | struct reloc_control *rc = root->fs_info->reloc_ctl; | 
|  |  | 
|  | if (!rc || !have_reloc_root(root)) | 
|  | return; | 
|  |  | 
|  | if (!rc->merge_reloc_tree) | 
|  | return; | 
|  |  | 
|  | root = root->reloc_root; | 
|  | BUG_ON(btrfs_root_refs(&root->root_item) == 0); | 
|  | /* | 
|  | * relocation is in the stage of merging trees. the space | 
|  | * used by merging a reloc tree is twice the size of | 
|  | * relocated tree nodes in the worst case. half for cowing | 
|  | * the reloc tree, half for cowing the fs tree. the space | 
|  | * used by cowing the reloc tree will be freed after the | 
|  | * tree is dropped. if we create snapshot, cowing the fs | 
|  | * tree may use more space than it frees. so we need | 
|  | * reserve extra space. | 
|  | */ | 
|  | *bytes_to_reserve += rc->nodes_relocated; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called after snapshot is created. migrate block reservation | 
|  | * and create reloc root for the newly created snapshot | 
|  | * | 
|  | * This is similar to btrfs_init_reloc_root(), we come out of here with two | 
|  | * references held on the reloc_root, one for root->reloc_root and one for | 
|  | * rc->reloc_roots. | 
|  | */ | 
|  | int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_pending_snapshot *pending) | 
|  | { | 
|  | struct btrfs_root *root = pending->root; | 
|  | struct btrfs_root *reloc_root; | 
|  | struct btrfs_root *new_root; | 
|  | struct reloc_control *rc = root->fs_info->reloc_ctl; | 
|  | int ret; | 
|  |  | 
|  | if (!rc || !have_reloc_root(root)) | 
|  | return 0; | 
|  |  | 
|  | rc = root->fs_info->reloc_ctl; | 
|  | rc->merging_rsv_size += rc->nodes_relocated; | 
|  |  | 
|  | if (rc->merge_reloc_tree) { | 
|  | ret = btrfs_block_rsv_migrate(&pending->block_rsv, | 
|  | rc->block_rsv, | 
|  | rc->nodes_relocated, true); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | new_root = pending->snap; | 
|  | reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root)); | 
|  | if (IS_ERR(reloc_root)) | 
|  | return PTR_ERR(reloc_root); | 
|  |  | 
|  | ret = __add_reloc_root(reloc_root); | 
|  | ASSERT(ret != -EEXIST); | 
|  | if (ret) { | 
|  | /* Pairs with create_reloc_root */ | 
|  | btrfs_put_root(reloc_root); | 
|  | return ret; | 
|  | } | 
|  | new_root->reloc_root = btrfs_grab_root(reloc_root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the current bytenr for the block group which is being relocated. | 
|  | * | 
|  | * Return U64_MAX if no running relocation. | 
|  | */ | 
|  | u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u64 logical = U64_MAX; | 
|  |  | 
|  | lockdep_assert_held(&fs_info->reloc_mutex); | 
|  |  | 
|  | if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group) | 
|  | logical = fs_info->reloc_ctl->block_group->start; | 
|  | return logical; | 
|  | } |