|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/memfd.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/secretmem.h> | 
|  |  | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/rwsem.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/shmem_fs.h> | 
|  |  | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "swap.h" | 
|  |  | 
|  | struct follow_page_context { | 
|  | struct dev_pagemap *pgmap; | 
|  | unsigned int page_mask; | 
|  | }; | 
|  |  | 
|  | static inline void sanity_check_pinned_pages(struct page **pages, | 
|  | unsigned long npages) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_DEBUG_VM)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We only pin anonymous pages if they are exclusive. Once pinned, we | 
|  | * can no longer turn them possibly shared and PageAnonExclusive() will | 
|  | * stick around until the page is freed. | 
|  | * | 
|  | * We'd like to verify that our pinned anonymous pages are still mapped | 
|  | * exclusively. The issue with anon THP is that we don't know how | 
|  | * they are/were mapped when pinning them. However, for anon | 
|  | * THP we can assume that either the given page (PTE-mapped THP) or | 
|  | * the head page (PMD-mapped THP) should be PageAnonExclusive(). If | 
|  | * neither is the case, there is certainly something wrong. | 
|  | */ | 
|  | for (; npages; npages--, pages++) { | 
|  | struct page *page = *pages; | 
|  | struct folio *folio; | 
|  |  | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | folio = page_folio(page); | 
|  |  | 
|  | if (is_zero_page(page) || | 
|  | !folio_test_anon(folio)) | 
|  | continue; | 
|  | if (!folio_test_large(folio) || folio_test_hugetlb(folio)) | 
|  | VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio); | 
|  | else | 
|  | /* Either a PTE-mapped or a PMD-mapped THP. */ | 
|  | VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) && | 
|  | !PageAnonExclusive(page), page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the folio with ref appropriately incremented, | 
|  | * or NULL if that failed. | 
|  | */ | 
|  | static inline struct folio *try_get_folio(struct page *page, int refs) | 
|  | { | 
|  | struct folio *folio; | 
|  |  | 
|  | retry: | 
|  | folio = page_folio(page); | 
|  | if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) | 
|  | return NULL; | 
|  | if (unlikely(!folio_ref_try_add(folio, refs))) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * At this point we have a stable reference to the folio; but it | 
|  | * could be that between calling page_folio() and the refcount | 
|  | * increment, the folio was split, in which case we'd end up | 
|  | * holding a reference on a folio that has nothing to do with the page | 
|  | * we were given anymore. | 
|  | * So now that the folio is stable, recheck that the page still | 
|  | * belongs to this folio. | 
|  | */ | 
|  | if (unlikely(page_folio(page) != folio)) { | 
|  | folio_put_refs(folio, refs); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) | 
|  | { | 
|  | if (flags & FOLL_PIN) { | 
|  | if (is_zero_folio(folio)) | 
|  | return; | 
|  | node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); | 
|  | if (folio_has_pincount(folio)) | 
|  | atomic_sub(refs, &folio->_pincount); | 
|  | else | 
|  | refs *= GUP_PIN_COUNTING_BIAS; | 
|  | } | 
|  |  | 
|  | folio_put_refs(folio, refs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_grab_folio() - add a folio's refcount by a flag-dependent amount | 
|  | * @folio:    pointer to folio to be grabbed | 
|  | * @refs:     the value to (effectively) add to the folio's refcount | 
|  | * @flags:    gup flags: these are the FOLL_* flag values | 
|  | * | 
|  | * This might not do anything at all, depending on the flags argument. | 
|  | * | 
|  | * "grab" names in this file mean, "look at flags to decide whether to use | 
|  | * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. | 
|  | * | 
|  | * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same | 
|  | * time. | 
|  | * | 
|  | * Return: 0 for success, or if no action was required (if neither FOLL_PIN | 
|  | * nor FOLL_GET was set, nothing is done). A negative error code for failure: | 
|  | * | 
|  | *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not | 
|  | *			be grabbed. | 
|  | * | 
|  | * It is called when we have a stable reference for the folio, typically in | 
|  | * GUP slow path. | 
|  | */ | 
|  | int __must_check try_grab_folio(struct folio *folio, int refs, | 
|  | unsigned int flags) | 
|  | { | 
|  | if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) | 
|  | return -EREMOTEIO; | 
|  |  | 
|  | if (flags & FOLL_GET) | 
|  | folio_ref_add(folio, refs); | 
|  | else if (flags & FOLL_PIN) { | 
|  | /* | 
|  | * Don't take a pin on the zero page - it's not going anywhere | 
|  | * and it is used in a *lot* of places. | 
|  | */ | 
|  | if (is_zero_folio(folio)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Increment the normal page refcount field at least once, | 
|  | * so that the page really is pinned. | 
|  | */ | 
|  | if (folio_has_pincount(folio)) { | 
|  | folio_ref_add(folio, refs); | 
|  | atomic_add(refs, &folio->_pincount); | 
|  | } else { | 
|  | folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); | 
|  | } | 
|  |  | 
|  | node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unpin_user_page() - release a dma-pinned page | 
|  | * @page:            pointer to page to be released | 
|  | * | 
|  | * Pages that were pinned via pin_user_pages*() must be released via either | 
|  | * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so | 
|  | * that such pages can be separately tracked and uniquely handled. In | 
|  | * particular, interactions with RDMA and filesystems need special handling. | 
|  | */ | 
|  | void unpin_user_page(struct page *page) | 
|  | { | 
|  | sanity_check_pinned_pages(&page, 1); | 
|  | gup_put_folio(page_folio(page), 1, FOLL_PIN); | 
|  | } | 
|  | EXPORT_SYMBOL(unpin_user_page); | 
|  |  | 
|  | /** | 
|  | * unpin_folio() - release a dma-pinned folio | 
|  | * @folio:         pointer to folio to be released | 
|  | * | 
|  | * Folios that were pinned via memfd_pin_folios() or other similar routines | 
|  | * must be released either using unpin_folio() or unpin_folios(). | 
|  | */ | 
|  | void unpin_folio(struct folio *folio) | 
|  | { | 
|  | gup_put_folio(folio, 1, FOLL_PIN); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unpin_folio); | 
|  |  | 
|  | /** | 
|  | * folio_add_pin - Try to get an additional pin on a pinned folio | 
|  | * @folio: The folio to be pinned | 
|  | * | 
|  | * Get an additional pin on a folio we already have a pin on.  Makes no change | 
|  | * if the folio is a zero_page. | 
|  | */ | 
|  | void folio_add_pin(struct folio *folio) | 
|  | { | 
|  | if (is_zero_folio(folio)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Similar to try_grab_folio(): be sure to *also* increment the normal | 
|  | * page refcount field at least once, so that the page really is | 
|  | * pinned. | 
|  | */ | 
|  | if (folio_has_pincount(folio)) { | 
|  | WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); | 
|  | folio_ref_inc(folio); | 
|  | atomic_inc(&folio->_pincount); | 
|  | } else { | 
|  | WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); | 
|  | folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline struct folio *gup_folio_range_next(struct page *start, | 
|  | unsigned long npages, unsigned long i, unsigned int *ntails) | 
|  | { | 
|  | struct page *next = nth_page(start, i); | 
|  | struct folio *folio = page_folio(next); | 
|  | unsigned int nr = 1; | 
|  |  | 
|  | if (folio_test_large(folio)) | 
|  | nr = min_t(unsigned int, npages - i, | 
|  | folio_nr_pages(folio) - folio_page_idx(folio, next)); | 
|  |  | 
|  | *ntails = nr; | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | static inline struct folio *gup_folio_next(struct page **list, | 
|  | unsigned long npages, unsigned long i, unsigned int *ntails) | 
|  | { | 
|  | struct folio *folio = page_folio(list[i]); | 
|  | unsigned int nr; | 
|  |  | 
|  | for (nr = i + 1; nr < npages; nr++) { | 
|  | if (page_folio(list[nr]) != folio) | 
|  | break; | 
|  | } | 
|  |  | 
|  | *ntails = nr - i; | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages | 
|  | * @pages:  array of pages to be maybe marked dirty, and definitely released. | 
|  | * @npages: number of pages in the @pages array. | 
|  | * @make_dirty: whether to mark the pages dirty | 
|  | * | 
|  | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | 
|  | * variants called on that page. | 
|  | * | 
|  | * For each page in the @pages array, make that page (or its head page, if a | 
|  | * compound page) dirty, if @make_dirty is true, and if the page was previously | 
|  | * listed as clean. In any case, releases all pages using unpin_user_page(), | 
|  | * possibly via unpin_user_pages(), for the non-dirty case. | 
|  | * | 
|  | * Please see the unpin_user_page() documentation for details. | 
|  | * | 
|  | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is | 
|  | * required, then the caller should a) verify that this is really correct, | 
|  | * because _lock() is usually required, and b) hand code it: | 
|  | * set_page_dirty_lock(), unpin_user_page(). | 
|  | * | 
|  | */ | 
|  | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, | 
|  | bool make_dirty) | 
|  | { | 
|  | unsigned long i; | 
|  | struct folio *folio; | 
|  | unsigned int nr; | 
|  |  | 
|  | if (!make_dirty) { | 
|  | unpin_user_pages(pages, npages); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sanity_check_pinned_pages(pages, npages); | 
|  | for (i = 0; i < npages; i += nr) { | 
|  | folio = gup_folio_next(pages, npages, i, &nr); | 
|  | /* | 
|  | * Checking PageDirty at this point may race with | 
|  | * clear_page_dirty_for_io(), but that's OK. Two key | 
|  | * cases: | 
|  | * | 
|  | * 1) This code sees the page as already dirty, so it | 
|  | * skips the call to set_page_dirty(). That could happen | 
|  | * because clear_page_dirty_for_io() called | 
|  | * folio_mkclean(), followed by set_page_dirty(). | 
|  | * However, now the page is going to get written back, | 
|  | * which meets the original intention of setting it | 
|  | * dirty, so all is well: clear_page_dirty_for_io() goes | 
|  | * on to call TestClearPageDirty(), and write the page | 
|  | * back. | 
|  | * | 
|  | * 2) This code sees the page as clean, so it calls | 
|  | * set_page_dirty(). The page stays dirty, despite being | 
|  | * written back, so it gets written back again in the | 
|  | * next writeback cycle. This is harmless. | 
|  | */ | 
|  | if (!folio_test_dirty(folio)) { | 
|  | folio_lock(folio); | 
|  | folio_mark_dirty(folio); | 
|  | folio_unlock(folio); | 
|  | } | 
|  | gup_put_folio(folio, nr, FOLL_PIN); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); | 
|  |  | 
|  | /** | 
|  | * unpin_user_page_range_dirty_lock() - release and optionally dirty | 
|  | * gup-pinned page range | 
|  | * | 
|  | * @page:  the starting page of a range maybe marked dirty, and definitely released. | 
|  | * @npages: number of consecutive pages to release. | 
|  | * @make_dirty: whether to mark the pages dirty | 
|  | * | 
|  | * "gup-pinned page range" refers to a range of pages that has had one of the | 
|  | * pin_user_pages() variants called on that page. | 
|  | * | 
|  | * For the page ranges defined by [page .. page+npages], make that range (or | 
|  | * its head pages, if a compound page) dirty, if @make_dirty is true, and if the | 
|  | * page range was previously listed as clean. | 
|  | * | 
|  | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is | 
|  | * required, then the caller should a) verify that this is really correct, | 
|  | * because _lock() is usually required, and b) hand code it: | 
|  | * set_page_dirty_lock(), unpin_user_page(). | 
|  | * | 
|  | */ | 
|  | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, | 
|  | bool make_dirty) | 
|  | { | 
|  | unsigned long i; | 
|  | struct folio *folio; | 
|  | unsigned int nr; | 
|  |  | 
|  | for (i = 0; i < npages; i += nr) { | 
|  | folio = gup_folio_range_next(page, npages, i, &nr); | 
|  | if (make_dirty && !folio_test_dirty(folio)) { | 
|  | folio_lock(folio); | 
|  | folio_mark_dirty(folio); | 
|  | folio_unlock(folio); | 
|  | } | 
|  | gup_put_folio(folio, nr, FOLL_PIN); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); | 
|  |  | 
|  | static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) | 
|  | { | 
|  | unsigned long i; | 
|  | struct folio *folio; | 
|  | unsigned int nr; | 
|  |  | 
|  | /* | 
|  | * Don't perform any sanity checks because we might have raced with | 
|  | * fork() and some anonymous pages might now actually be shared -- | 
|  | * which is why we're unpinning after all. | 
|  | */ | 
|  | for (i = 0; i < npages; i += nr) { | 
|  | folio = gup_folio_next(pages, npages, i, &nr); | 
|  | gup_put_folio(folio, nr, FOLL_PIN); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unpin_user_pages() - release an array of gup-pinned pages. | 
|  | * @pages:  array of pages to be marked dirty and released. | 
|  | * @npages: number of pages in the @pages array. | 
|  | * | 
|  | * For each page in the @pages array, release the page using unpin_user_page(). | 
|  | * | 
|  | * Please see the unpin_user_page() documentation for details. | 
|  | */ | 
|  | void unpin_user_pages(struct page **pages, unsigned long npages) | 
|  | { | 
|  | unsigned long i; | 
|  | struct folio *folio; | 
|  | unsigned int nr; | 
|  |  | 
|  | /* | 
|  | * If this WARN_ON() fires, then the system *might* be leaking pages (by | 
|  | * leaving them pinned), but probably not. More likely, gup/pup returned | 
|  | * a hard -ERRNO error to the caller, who erroneously passed it here. | 
|  | */ | 
|  | if (WARN_ON(IS_ERR_VALUE(npages))) | 
|  | return; | 
|  |  | 
|  | sanity_check_pinned_pages(pages, npages); | 
|  | for (i = 0; i < npages; i += nr) { | 
|  | if (!pages[i]) { | 
|  | nr = 1; | 
|  | continue; | 
|  | } | 
|  | folio = gup_folio_next(pages, npages, i, &nr); | 
|  | gup_put_folio(folio, nr, FOLL_PIN); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(unpin_user_pages); | 
|  |  | 
|  | /** | 
|  | * unpin_user_folio() - release pages of a folio | 
|  | * @folio:  pointer to folio to be released | 
|  | * @npages: number of pages of same folio | 
|  | * | 
|  | * Release npages of the folio | 
|  | */ | 
|  | void unpin_user_folio(struct folio *folio, unsigned long npages) | 
|  | { | 
|  | gup_put_folio(folio, npages, FOLL_PIN); | 
|  | } | 
|  | EXPORT_SYMBOL(unpin_user_folio); | 
|  |  | 
|  | /** | 
|  | * unpin_folios() - release an array of gup-pinned folios. | 
|  | * @folios:  array of folios to be marked dirty and released. | 
|  | * @nfolios: number of folios in the @folios array. | 
|  | * | 
|  | * For each folio in the @folios array, release the folio using gup_put_folio. | 
|  | * | 
|  | * Please see the unpin_folio() documentation for details. | 
|  | */ | 
|  | void unpin_folios(struct folio **folios, unsigned long nfolios) | 
|  | { | 
|  | unsigned long i = 0, j; | 
|  |  | 
|  | /* | 
|  | * If this WARN_ON() fires, then the system *might* be leaking folios | 
|  | * (by leaving them pinned), but probably not. More likely, gup/pup | 
|  | * returned a hard -ERRNO error to the caller, who erroneously passed | 
|  | * it here. | 
|  | */ | 
|  | if (WARN_ON(IS_ERR_VALUE(nfolios))) | 
|  | return; | 
|  |  | 
|  | while (i < nfolios) { | 
|  | for (j = i + 1; j < nfolios; j++) | 
|  | if (folios[i] != folios[j]) | 
|  | break; | 
|  |  | 
|  | if (folios[i]) | 
|  | gup_put_folio(folios[i], j - i, FOLL_PIN); | 
|  | i = j; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unpin_folios); | 
|  |  | 
|  | /* | 
|  | * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's | 
|  | * lifecycle.  Avoid setting the bit unless necessary, or it might cause write | 
|  | * cache bouncing on large SMP machines for concurrent pinned gups. | 
|  | */ | 
|  | static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) | 
|  | { | 
|  | if (!test_bit(MMF_HAS_PINNED, mm_flags)) | 
|  | set_bit(MMF_HAS_PINNED, mm_flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | #ifdef CONFIG_HAVE_GUP_FAST | 
|  | static int record_subpages(struct page *page, unsigned long sz, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct page **pages) | 
|  | { | 
|  | struct page *start_page; | 
|  | int nr; | 
|  |  | 
|  | start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); | 
|  | for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) | 
|  | pages[nr] = nth_page(start_page, nr); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. | 
|  | * @page:  pointer to page to be grabbed | 
|  | * @refs:  the value to (effectively) add to the folio's refcount | 
|  | * @flags: gup flags: these are the FOLL_* flag values. | 
|  | * | 
|  | * "grab" names in this file mean, "look at flags to decide whether to use | 
|  | * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. | 
|  | * | 
|  | * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the | 
|  | * same time. (That's true throughout the get_user_pages*() and | 
|  | * pin_user_pages*() APIs.) Cases: | 
|  | * | 
|  | *    FOLL_GET: folio's refcount will be incremented by @refs. | 
|  | * | 
|  | *    FOLL_PIN on large folios: folio's refcount will be incremented by | 
|  | *    @refs, and its pincount will be incremented by @refs. | 
|  | * | 
|  | *    FOLL_PIN on single-page folios: folio's refcount will be incremented by | 
|  | *    @refs * GUP_PIN_COUNTING_BIAS. | 
|  | * | 
|  | * Return: The folio containing @page (with refcount appropriately | 
|  | * incremented) for success, or NULL upon failure. If neither FOLL_GET | 
|  | * nor FOLL_PIN was set, that's considered failure, and furthermore, | 
|  | * a likely bug in the caller, so a warning is also emitted. | 
|  | * | 
|  | * It uses add ref unless zero to elevate the folio refcount and must be called | 
|  | * in fast path only. | 
|  | */ | 
|  | static struct folio *try_grab_folio_fast(struct page *page, int refs, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct folio *folio; | 
|  |  | 
|  | /* Raise warn if it is not called in fast GUP */ | 
|  | VM_WARN_ON_ONCE(!irqs_disabled()); | 
|  |  | 
|  | if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) | 
|  | return NULL; | 
|  |  | 
|  | if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) | 
|  | return NULL; | 
|  |  | 
|  | if (flags & FOLL_GET) | 
|  | return try_get_folio(page, refs); | 
|  |  | 
|  | /* FOLL_PIN is set */ | 
|  |  | 
|  | /* | 
|  | * Don't take a pin on the zero page - it's not going anywhere | 
|  | * and it is used in a *lot* of places. | 
|  | */ | 
|  | if (is_zero_page(page)) | 
|  | return page_folio(page); | 
|  |  | 
|  | folio = try_get_folio(page, refs); | 
|  | if (!folio) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a | 
|  | * right zone, so fail and let the caller fall back to the slow | 
|  | * path. | 
|  | */ | 
|  | if (unlikely((flags & FOLL_LONGTERM) && | 
|  | !folio_is_longterm_pinnable(folio))) { | 
|  | folio_put_refs(folio, refs); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When pinning a large folio, use an exact count to track it. | 
|  | * | 
|  | * However, be sure to *also* increment the normal folio | 
|  | * refcount field at least once, so that the folio really | 
|  | * is pinned.  That's why the refcount from the earlier | 
|  | * try_get_folio() is left intact. | 
|  | */ | 
|  | if (folio_has_pincount(folio)) | 
|  | atomic_add(refs, &folio->_pincount); | 
|  | else | 
|  | folio_ref_add(folio, | 
|  | refs * (GUP_PIN_COUNTING_BIAS - 1)); | 
|  | /* | 
|  | * Adjust the pincount before re-checking the PTE for changes. | 
|  | * This is essentially a smp_mb() and is paired with a memory | 
|  | * barrier in folio_try_share_anon_rmap_*(). | 
|  | */ | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); | 
|  |  | 
|  | return folio; | 
|  | } | 
|  | #endif	/* CONFIG_HAVE_GUP_FAST */ | 
|  |  | 
|  | /* Common code for can_follow_write_* */ | 
|  | static inline bool can_follow_write_common(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned int flags) | 
|  | { | 
|  | /* Maybe FOLL_FORCE is set to override it? */ | 
|  | if (!(flags & FOLL_FORCE)) | 
|  | return false; | 
|  |  | 
|  | /* But FOLL_FORCE has no effect on shared mappings */ | 
|  | if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) | 
|  | return false; | 
|  |  | 
|  | /* ... or read-only private ones */ | 
|  | if (!(vma->vm_flags & VM_MAYWRITE)) | 
|  | return false; | 
|  |  | 
|  | /* ... or already writable ones that just need to take a write fault */ | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * See can_change_pte_writable(): we broke COW and could map the page | 
|  | * writable if we have an exclusive anonymous page ... | 
|  | */ | 
|  | return page && PageAnon(page) && PageAnonExclusive(page); | 
|  | } | 
|  |  | 
|  | static struct page *no_page_table(struct vm_area_struct *vma, | 
|  | unsigned int flags, unsigned long address) | 
|  | { | 
|  | if (!(flags & FOLL_DUMP)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * When core dumping, we don't want to allocate unnecessary pages or | 
|  | * page tables.  Return error instead of NULL to skip handle_mm_fault, | 
|  | * then get_dump_page() will return NULL to leave a hole in the dump. | 
|  | * But we can only make this optimization where a hole would surely | 
|  | * be zero-filled if handle_mm_fault() actually did handle it. | 
|  | */ | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  |  | 
|  | if (!hugetlbfs_pagecache_present(h, vma, address)) | 
|  | return ERR_PTR(-EFAULT); | 
|  | } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { | 
|  | return ERR_PTR(-EFAULT); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES | 
|  | /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */ | 
|  | static inline bool can_follow_write_pud(pud_t pud, struct page *page, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned int flags) | 
|  | { | 
|  | /* If the pud is writable, we can write to the page. */ | 
|  | if (pud_write(pud)) | 
|  | return true; | 
|  |  | 
|  | return can_follow_write_common(page, vma, flags); | 
|  | } | 
|  |  | 
|  | static struct page *follow_huge_pud(struct vm_area_struct *vma, | 
|  | unsigned long addr, pud_t *pudp, | 
|  | int flags, struct follow_page_context *ctx) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page *page; | 
|  | pud_t pud = *pudp; | 
|  | unsigned long pfn = pud_pfn(pud); | 
|  | int ret; | 
|  |  | 
|  | assert_spin_locked(pud_lockptr(mm, pudp)); | 
|  |  | 
|  | if (!pud_present(pud)) | 
|  | return NULL; | 
|  |  | 
|  | if ((flags & FOLL_WRITE) && | 
|  | !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags)) | 
|  | return NULL; | 
|  |  | 
|  | pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | if (!pud_write(pud) && gup_must_unshare(vma, flags, page)) | 
|  | return ERR_PTR(-EMLINK); | 
|  |  | 
|  | ret = try_grab_folio(page_folio(page), 1, flags); | 
|  | if (ret) | 
|  | page = ERR_PTR(ret); | 
|  | else | 
|  | ctx->page_mask = HPAGE_PUD_NR - 1; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ | 
|  | static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned int flags) | 
|  | { | 
|  | /* If the pmd is writable, we can write to the page. */ | 
|  | if (pmd_write(pmd)) | 
|  | return true; | 
|  |  | 
|  | if (!can_follow_write_common(page, vma, flags)) | 
|  | return false; | 
|  |  | 
|  | /* ... and a write-fault isn't required for other reasons. */ | 
|  | if (pmd_needs_soft_dirty_wp(vma, pmd)) | 
|  | return false; | 
|  | return !userfaultfd_huge_pmd_wp(vma, pmd); | 
|  | } | 
|  |  | 
|  | static struct page *follow_huge_pmd(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t *pmd, | 
|  | unsigned int flags, | 
|  | struct follow_page_context *ctx) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pmd_t pmdval = *pmd; | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | assert_spin_locked(pmd_lockptr(mm, pmd)); | 
|  |  | 
|  | page = pmd_page(pmdval); | 
|  | if ((flags & FOLL_WRITE) && | 
|  | !can_follow_write_pmd(pmdval, page, vma, flags)) | 
|  | return NULL; | 
|  |  | 
|  | /* Avoid dumping huge zero page */ | 
|  | if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) | 
|  | return NULL; | 
|  |  | 
|  | if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) | 
|  | return ERR_PTR(-EMLINK); | 
|  |  | 
|  | VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) && | 
|  | !PageAnonExclusive(page), page); | 
|  |  | 
|  | ret = try_grab_folio(page_folio(page), 1, flags); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) | 
|  | touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); | 
|  | #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; | 
|  | ctx->page_mask = HPAGE_PMD_NR - 1; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ | 
|  | static struct page *follow_huge_pud(struct vm_area_struct *vma, | 
|  | unsigned long addr, pud_t *pudp, | 
|  | int flags, struct follow_page_context *ctx) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct page *follow_huge_pmd(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t *pmd, | 
|  | unsigned int flags, | 
|  | struct follow_page_context *ctx) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ | 
|  |  | 
|  | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, | 
|  | pte_t *pte, unsigned int flags) | 
|  | { | 
|  | if (flags & FOLL_TOUCH) { | 
|  | pte_t orig_entry = ptep_get(pte); | 
|  | pte_t entry = orig_entry; | 
|  |  | 
|  | if (flags & FOLL_WRITE) | 
|  | entry = pte_mkdirty(entry); | 
|  | entry = pte_mkyoung(entry); | 
|  |  | 
|  | if (!pte_same(orig_entry, entry)) { | 
|  | set_pte_at(vma->vm_mm, address, pte, entry); | 
|  | update_mmu_cache(vma, address, pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Proper page table entry exists, but no corresponding struct page */ | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ | 
|  | static inline bool can_follow_write_pte(pte_t pte, struct page *page, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned int flags) | 
|  | { | 
|  | /* If the pte is writable, we can write to the page. */ | 
|  | if (pte_write(pte)) | 
|  | return true; | 
|  |  | 
|  | if (!can_follow_write_common(page, vma, flags)) | 
|  | return false; | 
|  |  | 
|  | /* ... and a write-fault isn't required for other reasons. */ | 
|  | if (pte_needs_soft_dirty_wp(vma, pte)) | 
|  | return false; | 
|  | return !userfaultfd_pte_wp(vma, pte); | 
|  | } | 
|  |  | 
|  | static struct page *follow_page_pte(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmd, unsigned int flags, | 
|  | struct dev_pagemap **pgmap) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct folio *folio; | 
|  | struct page *page; | 
|  | spinlock_t *ptl; | 
|  | pte_t *ptep, pte; | 
|  | int ret; | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (!ptep) | 
|  | return no_page_table(vma, flags, address); | 
|  | pte = ptep_get(ptep); | 
|  | if (!pte_present(pte)) | 
|  | goto no_page; | 
|  | if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) | 
|  | goto no_page; | 
|  |  | 
|  | page = vm_normal_page(vma, address, pte); | 
|  |  | 
|  | /* | 
|  | * We only care about anon pages in can_follow_write_pte(). | 
|  | */ | 
|  | if ((flags & FOLL_WRITE) && | 
|  | !can_follow_write_pte(pte, page, vma, flags)) { | 
|  | page = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(!page)) { | 
|  | if (flags & FOLL_DUMP) { | 
|  | /* Avoid special (like zero) pages in core dumps */ | 
|  | page = ERR_PTR(-EFAULT); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (is_zero_pfn(pte_pfn(pte))) { | 
|  | page = pte_page(pte); | 
|  | } else { | 
|  | ret = follow_pfn_pte(vma, address, ptep, flags); | 
|  | page = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | folio = page_folio(page); | 
|  |  | 
|  | if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { | 
|  | page = ERR_PTR(-EMLINK); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) && | 
|  | !PageAnonExclusive(page), page); | 
|  |  | 
|  | /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ | 
|  | ret = try_grab_folio(folio, 1, flags); | 
|  | if (unlikely(ret)) { | 
|  | page = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to make the page accessible if and only if we are going | 
|  | * to access its content (the FOLL_PIN case).  Please see | 
|  | * Documentation/core-api/pin_user_pages.rst for details. | 
|  | */ | 
|  | if (flags & FOLL_PIN) { | 
|  | ret = arch_make_folio_accessible(folio); | 
|  | if (ret) { | 
|  | unpin_user_page(page); | 
|  | page = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (flags & FOLL_TOUCH) { | 
|  | if ((flags & FOLL_WRITE) && | 
|  | !pte_dirty(pte) && !folio_test_dirty(folio)) | 
|  | folio_mark_dirty(folio); | 
|  | /* | 
|  | * pte_mkyoung() would be more correct here, but atomic care | 
|  | * is needed to avoid losing the dirty bit: it is easier to use | 
|  | * folio_mark_accessed(). | 
|  | */ | 
|  | folio_mark_accessed(folio); | 
|  | } | 
|  | out: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | return page; | 
|  | no_page: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | if (!pte_none(pte)) | 
|  | return NULL; | 
|  | return no_page_table(vma, flags, address); | 
|  | } | 
|  |  | 
|  | static struct page *follow_pmd_mask(struct vm_area_struct *vma, | 
|  | unsigned long address, pud_t *pudp, | 
|  | unsigned int flags, | 
|  | struct follow_page_context *ctx) | 
|  | { | 
|  | pmd_t *pmd, pmdval; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | pmd = pmd_offset(pudp, address); | 
|  | pmdval = pmdp_get_lockless(pmd); | 
|  | if (pmd_none(pmdval)) | 
|  | return no_page_table(vma, flags, address); | 
|  | if (!pmd_present(pmdval)) | 
|  | return no_page_table(vma, flags, address); | 
|  | if (likely(!pmd_leaf(pmdval))) | 
|  | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
|  |  | 
|  | if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) | 
|  | return no_page_table(vma, flags, address); | 
|  |  | 
|  | ptl = pmd_lock(mm, pmd); | 
|  | pmdval = *pmd; | 
|  | if (unlikely(!pmd_present(pmdval))) { | 
|  | spin_unlock(ptl); | 
|  | return no_page_table(vma, flags, address); | 
|  | } | 
|  | if (unlikely(!pmd_leaf(pmdval))) { | 
|  | spin_unlock(ptl); | 
|  | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
|  | } | 
|  | if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { | 
|  | spin_unlock(ptl); | 
|  | split_huge_pmd(vma, pmd, address); | 
|  | /* If pmd was left empty, stuff a page table in there quickly */ | 
|  | return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : | 
|  | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
|  | } | 
|  | page = follow_huge_pmd(vma, address, pmd, flags, ctx); | 
|  | spin_unlock(ptl); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *follow_pud_mask(struct vm_area_struct *vma, | 
|  | unsigned long address, p4d_t *p4dp, | 
|  | unsigned int flags, | 
|  | struct follow_page_context *ctx) | 
|  | { | 
|  | pud_t *pudp, pud; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | pudp = pud_offset(p4dp, address); | 
|  | pud = READ_ONCE(*pudp); | 
|  | if (!pud_present(pud)) | 
|  | return no_page_table(vma, flags, address); | 
|  | if (pud_leaf(pud)) { | 
|  | ptl = pud_lock(mm, pudp); | 
|  | page = follow_huge_pud(vma, address, pudp, flags, ctx); | 
|  | spin_unlock(ptl); | 
|  | if (page) | 
|  | return page; | 
|  | return no_page_table(vma, flags, address); | 
|  | } | 
|  | if (unlikely(pud_bad(pud))) | 
|  | return no_page_table(vma, flags, address); | 
|  |  | 
|  | return follow_pmd_mask(vma, address, pudp, flags, ctx); | 
|  | } | 
|  |  | 
|  | static struct page *follow_p4d_mask(struct vm_area_struct *vma, | 
|  | unsigned long address, pgd_t *pgdp, | 
|  | unsigned int flags, | 
|  | struct follow_page_context *ctx) | 
|  | { | 
|  | p4d_t *p4dp, p4d; | 
|  |  | 
|  | p4dp = p4d_offset(pgdp, address); | 
|  | p4d = READ_ONCE(*p4dp); | 
|  | BUILD_BUG_ON(p4d_leaf(p4d)); | 
|  |  | 
|  | if (!p4d_present(p4d) || p4d_bad(p4d)) | 
|  | return no_page_table(vma, flags, address); | 
|  |  | 
|  | return follow_pud_mask(vma, address, p4dp, flags, ctx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * follow_page_mask - look up a page descriptor from a user-virtual address | 
|  | * @vma: vm_area_struct mapping @address | 
|  | * @address: virtual address to look up | 
|  | * @flags: flags modifying lookup behaviour | 
|  | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a | 
|  | *       pointer to output page_mask | 
|  | * | 
|  | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | 
|  | * | 
|  | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches | 
|  | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | 
|  | * | 
|  | * When getting an anonymous page and the caller has to trigger unsharing | 
|  | * of a shared anonymous page first, -EMLINK is returned. The caller should | 
|  | * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only | 
|  | * relevant with FOLL_PIN and !FOLL_WRITE. | 
|  | * | 
|  | * On output, the @ctx->page_mask is set according to the size of the page. | 
|  | * | 
|  | * Return: the mapped (struct page *), %NULL if no mapping exists, or | 
|  | * an error pointer if there is a mapping to something not represented | 
|  | * by a page descriptor (see also vm_normal_page()). | 
|  | */ | 
|  | static struct page *follow_page_mask(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags, | 
|  | struct follow_page_context *ctx) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page *page; | 
|  |  | 
|  | vma_pgtable_walk_begin(vma); | 
|  |  | 
|  | ctx->page_mask = 0; | 
|  | pgd = pgd_offset(mm, address); | 
|  |  | 
|  | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
|  | page = no_page_table(vma, flags, address); | 
|  | else | 
|  | page = follow_p4d_mask(vma, address, pgd, flags, ctx); | 
|  |  | 
|  | vma_pgtable_walk_end(vma); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static int get_gate_page(struct mm_struct *mm, unsigned long address, | 
|  | unsigned int gup_flags, struct vm_area_struct **vma, | 
|  | struct page **page) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | pte_t entry; | 
|  | int ret = -EFAULT; | 
|  |  | 
|  | /* user gate pages are read-only */ | 
|  | if (gup_flags & FOLL_WRITE) | 
|  | return -EFAULT; | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (pgd_none(*pgd)) | 
|  | return -EFAULT; | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (p4d_none(*p4d)) | 
|  | return -EFAULT; | 
|  | pud = pud_offset(p4d, address); | 
|  | if (pud_none(*pud)) | 
|  | return -EFAULT; | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (!pmd_present(*pmd)) | 
|  | return -EFAULT; | 
|  | pte = pte_offset_map(pmd, address); | 
|  | if (!pte) | 
|  | return -EFAULT; | 
|  | entry = ptep_get(pte); | 
|  | if (pte_none(entry)) | 
|  | goto unmap; | 
|  | *vma = get_gate_vma(mm); | 
|  | if (!page) | 
|  | goto out; | 
|  | *page = vm_normal_page(*vma, address, entry); | 
|  | if (!*page) { | 
|  | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) | 
|  | goto unmap; | 
|  | *page = pte_page(entry); | 
|  | } | 
|  | ret = try_grab_folio(page_folio(*page), 1, gup_flags); | 
|  | if (unlikely(ret)) | 
|  | goto unmap; | 
|  | out: | 
|  | ret = 0; | 
|  | unmap: | 
|  | pte_unmap(pte); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not | 
|  | * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set | 
|  | * to 0 and -EBUSY returned. | 
|  | */ | 
|  | static int faultin_page(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags, bool unshare, | 
|  | int *locked) | 
|  | { | 
|  | unsigned int fault_flags = 0; | 
|  | vm_fault_t ret; | 
|  |  | 
|  | if (flags & FOLL_NOFAULT) | 
|  | return -EFAULT; | 
|  | if (flags & FOLL_WRITE) | 
|  | fault_flags |= FAULT_FLAG_WRITE; | 
|  | if (flags & FOLL_REMOTE) | 
|  | fault_flags |= FAULT_FLAG_REMOTE; | 
|  | if (flags & FOLL_UNLOCKABLE) { | 
|  | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
|  | /* | 
|  | * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set | 
|  | * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. | 
|  | * That's because some callers may not be prepared to | 
|  | * handle early exits caused by non-fatal signals. | 
|  | */ | 
|  | if (flags & FOLL_INTERRUPTIBLE) | 
|  | fault_flags |= FAULT_FLAG_INTERRUPTIBLE; | 
|  | } | 
|  | if (flags & FOLL_NOWAIT) | 
|  | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | 
|  | if (flags & FOLL_TRIED) { | 
|  | /* | 
|  | * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED | 
|  | * can co-exist | 
|  | */ | 
|  | fault_flags |= FAULT_FLAG_TRIED; | 
|  | } | 
|  | if (unshare) { | 
|  | fault_flags |= FAULT_FLAG_UNSHARE; | 
|  | /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ | 
|  | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE); | 
|  | } | 
|  |  | 
|  | ret = handle_mm_fault(vma, address, fault_flags, NULL); | 
|  |  | 
|  | if (ret & VM_FAULT_COMPLETED) { | 
|  | /* | 
|  | * With FAULT_FLAG_RETRY_NOWAIT we'll never release the | 
|  | * mmap lock in the page fault handler. Sanity check this. | 
|  | */ | 
|  | WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); | 
|  | *locked = 0; | 
|  |  | 
|  | /* | 
|  | * We should do the same as VM_FAULT_RETRY, but let's not | 
|  | * return -EBUSY since that's not reflecting the reality of | 
|  | * what has happened - we've just fully completed a page | 
|  | * fault, with the mmap lock released.  Use -EAGAIN to show | 
|  | * that we want to take the mmap lock _again_. | 
|  | */ | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (ret & VM_FAULT_ERROR) { | 
|  | int err = vm_fault_to_errno(ret, flags); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (ret & VM_FAULT_RETRY) { | 
|  | if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) | 
|  | *locked = 0; | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writing to file-backed mappings which require folio dirty tracking using GUP | 
|  | * is a fundamentally broken operation, as kernel write access to GUP mappings | 
|  | * do not adhere to the semantics expected by a file system. | 
|  | * | 
|  | * Consider the following scenario:- | 
|  | * | 
|  | * 1. A folio is written to via GUP which write-faults the memory, notifying | 
|  | *    the file system and dirtying the folio. | 
|  | * 2. Later, writeback is triggered, resulting in the folio being cleaned and | 
|  | *    the PTE being marked read-only. | 
|  | * 3. The GUP caller writes to the folio, as it is mapped read/write via the | 
|  | *    direct mapping. | 
|  | * 4. The GUP caller, now done with the page, unpins it and sets it dirty | 
|  | *    (though it does not have to). | 
|  | * | 
|  | * This results in both data being written to a folio without writenotify, and | 
|  | * the folio being dirtied unexpectedly (if the caller decides to do so). | 
|  | */ | 
|  | static bool writable_file_mapping_allowed(struct vm_area_struct *vma, | 
|  | unsigned long gup_flags) | 
|  | { | 
|  | /* | 
|  | * If we aren't pinning then no problematic write can occur. A long term | 
|  | * pin is the most egregious case so this is the case we disallow. | 
|  | */ | 
|  | if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != | 
|  | (FOLL_PIN | FOLL_LONGTERM)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * If the VMA does not require dirty tracking then no problematic write | 
|  | * can occur either. | 
|  | */ | 
|  | return !vma_needs_dirty_tracking(vma); | 
|  | } | 
|  |  | 
|  | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) | 
|  | { | 
|  | vm_flags_t vm_flags = vma->vm_flags; | 
|  | int write = (gup_flags & FOLL_WRITE); | 
|  | int foreign = (gup_flags & FOLL_REMOTE); | 
|  | bool vma_anon = vma_is_anonymous(vma); | 
|  |  | 
|  | if (vm_flags & (VM_IO | VM_PFNMAP)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if ((gup_flags & FOLL_ANON) && !vma_anon) | 
|  | return -EFAULT; | 
|  |  | 
|  | if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (vma_is_secretmem(vma)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (write) { | 
|  | if (!vma_anon && | 
|  | !writable_file_mapping_allowed(vma, gup_flags)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { | 
|  | if (!(gup_flags & FOLL_FORCE)) | 
|  | return -EFAULT; | 
|  | /* | 
|  | * We used to let the write,force case do COW in a | 
|  | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | 
|  | * set a breakpoint in a read-only mapping of an | 
|  | * executable, without corrupting the file (yet only | 
|  | * when that file had been opened for writing!). | 
|  | * Anon pages in shared mappings are surprising: now | 
|  | * just reject it. | 
|  | */ | 
|  | if (!is_cow_mapping(vm_flags)) | 
|  | return -EFAULT; | 
|  | } | 
|  | } else if (!(vm_flags & VM_READ)) { | 
|  | if (!(gup_flags & FOLL_FORCE)) | 
|  | return -EFAULT; | 
|  | /* | 
|  | * Is there actually any vma we can reach here which does not | 
|  | * have VM_MAYREAD set? | 
|  | */ | 
|  | if (!(vm_flags & VM_MAYREAD)) | 
|  | return -EFAULT; | 
|  | } | 
|  | /* | 
|  | * gups are always data accesses, not instruction | 
|  | * fetches, so execute=false here | 
|  | */ | 
|  | if (!arch_vma_access_permitted(vma, write, false, foreign)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is "vma_lookup()", but with a warning if we would have | 
|  | * historically expanded the stack in the GUP code. | 
|  | */ | 
|  | static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, | 
|  | unsigned long addr) | 
|  | { | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | return vma_lookup(mm, addr); | 
|  | #else | 
|  | static volatile unsigned long next_warn; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long now, next; | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma || (addr >= vma->vm_start)) | 
|  | return vma; | 
|  |  | 
|  | /* Only warn for half-way relevant accesses */ | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | return NULL; | 
|  | if (vma->vm_start - addr > 65536) | 
|  | return NULL; | 
|  |  | 
|  | /* Let's not warn more than once an hour.. */ | 
|  | now = jiffies; next = next_warn; | 
|  | if (next && time_before(now, next)) | 
|  | return NULL; | 
|  | next_warn = now + 60*60*HZ; | 
|  |  | 
|  | /* Let people know things may have changed. */ | 
|  | pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", | 
|  | current->comm, task_pid_nr(current), | 
|  | vma->vm_start, vma->vm_end, addr); | 
|  | dump_stack(); | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __get_user_pages() - pin user pages in memory | 
|  | * @mm:		mm_struct of target mm | 
|  | * @start:	starting user address | 
|  | * @nr_pages:	number of pages from start to pin | 
|  | * @gup_flags:	flags modifying pin behaviour | 
|  | * @pages:	array that receives pointers to the pages pinned. | 
|  | *		Should be at least nr_pages long. Or NULL, if caller | 
|  | *		only intends to ensure the pages are faulted in. | 
|  | * @locked:     whether we're still with the mmap_lock held | 
|  | * | 
|  | * Returns either number of pages pinned (which may be less than the | 
|  | * number requested), or an error. Details about the return value: | 
|  | * | 
|  | * -- If nr_pages is 0, returns 0. | 
|  | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | 
|  | * -- If nr_pages is >0, and some pages were pinned, returns the number of | 
|  | *    pages pinned. Again, this may be less than nr_pages. | 
|  | * -- 0 return value is possible when the fault would need to be retried. | 
|  | * | 
|  | * The caller is responsible for releasing returned @pages, via put_page(). | 
|  | * | 
|  | * Must be called with mmap_lock held.  It may be released.  See below. | 
|  | * | 
|  | * __get_user_pages walks a process's page tables and takes a reference to | 
|  | * each struct page that each user address corresponds to at a given | 
|  | * instant. That is, it takes the page that would be accessed if a user | 
|  | * thread accesses the given user virtual address at that instant. | 
|  | * | 
|  | * This does not guarantee that the page exists in the user mappings when | 
|  | * __get_user_pages returns, and there may even be a completely different | 
|  | * page there in some cases (eg. if mmapped pagecache has been invalidated | 
|  | * and subsequently re-faulted). However it does guarantee that the page | 
|  | * won't be freed completely. And mostly callers simply care that the page | 
|  | * contains data that was valid *at some point in time*. Typically, an IO | 
|  | * or similar operation cannot guarantee anything stronger anyway because | 
|  | * locks can't be held over the syscall boundary. | 
|  | * | 
|  | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | 
|  | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | 
|  | * appropriate) must be called after the page is finished with, and | 
|  | * before put_page is called. | 
|  | * | 
|  | * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may | 
|  | * be released. If this happens *@locked will be set to 0 on return. | 
|  | * | 
|  | * A caller using such a combination of @gup_flags must therefore hold the | 
|  | * mmap_lock for reading only, and recognize when it's been released. Otherwise, | 
|  | * it must be held for either reading or writing and will not be released. | 
|  | * | 
|  | * In most cases, get_user_pages or get_user_pages_fast should be used | 
|  | * instead of __get_user_pages. __get_user_pages should be used only if | 
|  | * you need some special @gup_flags. | 
|  | */ | 
|  | static long __get_user_pages(struct mm_struct *mm, | 
|  | unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages, | 
|  | int *locked) | 
|  | { | 
|  | long ret = 0, i = 0; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | struct follow_page_context ctx = { NULL }; | 
|  |  | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | start = untagged_addr_remote(mm, start); | 
|  |  | 
|  | VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); | 
|  |  | 
|  | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | 
|  | VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == | 
|  | (FOLL_PIN | FOLL_GET)); | 
|  |  | 
|  | do { | 
|  | struct page *page; | 
|  | unsigned int page_increm; | 
|  |  | 
|  | /* first iteration or cross vma bound */ | 
|  | if (!vma || start >= vma->vm_end) { | 
|  | /* | 
|  | * MADV_POPULATE_(READ|WRITE) wants to handle VMA | 
|  | * lookups+error reporting differently. | 
|  | */ | 
|  | if (gup_flags & FOLL_MADV_POPULATE) { | 
|  | vma = vma_lookup(mm, start); | 
|  | if (!vma) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | if (check_vma_flags(vma, gup_flags)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | goto retry; | 
|  | } | 
|  | vma = gup_vma_lookup(mm, start); | 
|  | if (!vma && in_gate_area(mm, start)) { | 
|  | ret = get_gate_page(mm, start & PAGE_MASK, | 
|  | gup_flags, &vma, | 
|  | pages ? &page : NULL); | 
|  | if (ret) | 
|  | goto out; | 
|  | ctx.page_mask = 0; | 
|  | goto next_page; | 
|  | } | 
|  |  | 
|  | if (!vma) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | ret = check_vma_flags(vma, gup_flags); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | retry: | 
|  | /* | 
|  | * If we have a pending SIGKILL, don't keep faulting pages and | 
|  | * potentially allocating memory. | 
|  | */ | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | goto out; | 
|  | } | 
|  | cond_resched(); | 
|  |  | 
|  | page = follow_page_mask(vma, start, gup_flags, &ctx); | 
|  | if (!page || PTR_ERR(page) == -EMLINK) { | 
|  | ret = faultin_page(vma, start, gup_flags, | 
|  | PTR_ERR(page) == -EMLINK, locked); | 
|  | switch (ret) { | 
|  | case 0: | 
|  | goto retry; | 
|  | case -EBUSY: | 
|  | case -EAGAIN: | 
|  | ret = 0; | 
|  | fallthrough; | 
|  | case -EFAULT: | 
|  | case -ENOMEM: | 
|  | case -EHWPOISON: | 
|  | goto out; | 
|  | } | 
|  | BUG(); | 
|  | } else if (PTR_ERR(page) == -EEXIST) { | 
|  | /* | 
|  | * Proper page table entry exists, but no corresponding | 
|  | * struct page. If the caller expects **pages to be | 
|  | * filled in, bail out now, because that can't be done | 
|  | * for this page. | 
|  | */ | 
|  | if (pages) { | 
|  | ret = PTR_ERR(page); | 
|  | goto out; | 
|  | } | 
|  | } else if (IS_ERR(page)) { | 
|  | ret = PTR_ERR(page); | 
|  | goto out; | 
|  | } | 
|  | next_page: | 
|  | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); | 
|  | if (page_increm > nr_pages) | 
|  | page_increm = nr_pages; | 
|  |  | 
|  | if (pages) { | 
|  | struct page *subpage; | 
|  | unsigned int j; | 
|  |  | 
|  | /* | 
|  | * This must be a large folio (and doesn't need to | 
|  | * be the whole folio; it can be part of it), do | 
|  | * the refcount work for all the subpages too. | 
|  | * | 
|  | * NOTE: here the page may not be the head page | 
|  | * e.g. when start addr is not thp-size aligned. | 
|  | * try_grab_folio() should have taken care of tail | 
|  | * pages. | 
|  | */ | 
|  | if (page_increm > 1) { | 
|  | struct folio *folio = page_folio(page); | 
|  |  | 
|  | /* | 
|  | * Since we already hold refcount on the | 
|  | * large folio, this should never fail. | 
|  | */ | 
|  | if (try_grab_folio(folio, page_increm - 1, | 
|  | gup_flags)) { | 
|  | /* | 
|  | * Release the 1st page ref if the | 
|  | * folio is problematic, fail hard. | 
|  | */ | 
|  | gup_put_folio(folio, 1, gup_flags); | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (j = 0; j < page_increm; j++) { | 
|  | subpage = nth_page(page, j); | 
|  | pages[i + j] = subpage; | 
|  | flush_anon_page(vma, subpage, start + j * PAGE_SIZE); | 
|  | flush_dcache_page(subpage); | 
|  | } | 
|  | } | 
|  |  | 
|  | i += page_increm; | 
|  | start += page_increm * PAGE_SIZE; | 
|  | nr_pages -= page_increm; | 
|  | } while (nr_pages); | 
|  | out: | 
|  | if (ctx.pgmap) | 
|  | put_dev_pagemap(ctx.pgmap); | 
|  | return i ? i : ret; | 
|  | } | 
|  |  | 
|  | static bool vma_permits_fault(struct vm_area_struct *vma, | 
|  | unsigned int fault_flags) | 
|  | { | 
|  | bool write   = !!(fault_flags & FAULT_FLAG_WRITE); | 
|  | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | 
|  | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; | 
|  |  | 
|  | if (!(vm_flags & vma->vm_flags)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The architecture might have a hardware protection | 
|  | * mechanism other than read/write that can deny access. | 
|  | * | 
|  | * gup always represents data access, not instruction | 
|  | * fetches, so execute=false here: | 
|  | */ | 
|  | if (!arch_vma_access_permitted(vma, write, false, foreign)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fixup_user_fault() - manually resolve a user page fault | 
|  | * @mm:		mm_struct of target mm | 
|  | * @address:	user address | 
|  | * @fault_flags:flags to pass down to handle_mm_fault() | 
|  | * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller | 
|  | *		does not allow retry. If NULL, the caller must guarantee | 
|  | *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. | 
|  | * | 
|  | * This is meant to be called in the specific scenario where for locking reasons | 
|  | * we try to access user memory in atomic context (within a pagefault_disable() | 
|  | * section), this returns -EFAULT, and we want to resolve the user fault before | 
|  | * trying again. | 
|  | * | 
|  | * Typically this is meant to be used by the futex code. | 
|  | * | 
|  | * The main difference with get_user_pages() is that this function will | 
|  | * unconditionally call handle_mm_fault() which will in turn perform all the | 
|  | * necessary SW fixup of the dirty and young bits in the PTE, while | 
|  | * get_user_pages() only guarantees to update these in the struct page. | 
|  | * | 
|  | * This is important for some architectures where those bits also gate the | 
|  | * access permission to the page because they are maintained in software.  On | 
|  | * such architectures, gup() will not be enough to make a subsequent access | 
|  | * succeed. | 
|  | * | 
|  | * This function will not return with an unlocked mmap_lock. So it has not the | 
|  | * same semantics wrt the @mm->mmap_lock as does filemap_fault(). | 
|  | */ | 
|  | int fixup_user_fault(struct mm_struct *mm, | 
|  | unsigned long address, unsigned int fault_flags, | 
|  | bool *unlocked) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | vm_fault_t ret; | 
|  |  | 
|  | address = untagged_addr_remote(mm, address); | 
|  |  | 
|  | if (unlocked) | 
|  | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
|  |  | 
|  | retry: | 
|  | vma = gup_vma_lookup(mm, address); | 
|  | if (!vma) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!vma_permits_fault(vma, fault_flags)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if ((fault_flags & FAULT_FLAG_KILLABLE) && | 
|  | fatal_signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | ret = handle_mm_fault(vma, address, fault_flags, NULL); | 
|  |  | 
|  | if (ret & VM_FAULT_COMPLETED) { | 
|  | /* | 
|  | * NOTE: it's a pity that we need to retake the lock here | 
|  | * to pair with the unlock() in the callers. Ideally we | 
|  | * could tell the callers so they do not need to unlock. | 
|  | */ | 
|  | mmap_read_lock(mm); | 
|  | *unlocked = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ret & VM_FAULT_ERROR) { | 
|  | int err = vm_fault_to_errno(ret, 0); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (ret & VM_FAULT_RETRY) { | 
|  | mmap_read_lock(mm); | 
|  | *unlocked = true; | 
|  | fault_flags |= FAULT_FLAG_TRIED; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fixup_user_fault); | 
|  |  | 
|  | /* | 
|  | * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is | 
|  | * specified, it'll also respond to generic signals.  The caller of GUP | 
|  | * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. | 
|  | */ | 
|  | static bool gup_signal_pending(unsigned int flags) | 
|  | { | 
|  | if (fatal_signal_pending(current)) | 
|  | return true; | 
|  |  | 
|  | if (!(flags & FOLL_INTERRUPTIBLE)) | 
|  | return false; | 
|  |  | 
|  | return signal_pending(current); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locking: (*locked == 1) means that the mmap_lock has already been acquired by | 
|  | * the caller. This function may drop the mmap_lock. If it does so, then it will | 
|  | * set (*locked = 0). | 
|  | * | 
|  | * (*locked == 0) means that the caller expects this function to acquire and | 
|  | * drop the mmap_lock. Therefore, the value of *locked will still be zero when | 
|  | * the function returns, even though it may have changed temporarily during | 
|  | * function execution. | 
|  | * | 
|  | * Please note that this function, unlike __get_user_pages(), will not return 0 | 
|  | * for nr_pages > 0, unless FOLL_NOWAIT is used. | 
|  | */ | 
|  | static __always_inline long __get_user_pages_locked(struct mm_struct *mm, | 
|  | unsigned long start, | 
|  | unsigned long nr_pages, | 
|  | struct page **pages, | 
|  | int *locked, | 
|  | unsigned int flags) | 
|  | { | 
|  | long ret, pages_done; | 
|  | bool must_unlock = false; | 
|  |  | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The internal caller expects GUP to manage the lock internally and the | 
|  | * lock must be released when this returns. | 
|  | */ | 
|  | if (!*locked) { | 
|  | if (mmap_read_lock_killable(mm)) | 
|  | return -EAGAIN; | 
|  | must_unlock = true; | 
|  | *locked = 1; | 
|  | } | 
|  | else | 
|  | mmap_assert_locked(mm); | 
|  |  | 
|  | if (flags & FOLL_PIN) | 
|  | mm_set_has_pinned_flag(&mm->flags); | 
|  |  | 
|  | /* | 
|  | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | 
|  | * is to set FOLL_GET if the caller wants pages[] filled in (but has | 
|  | * carelessly failed to specify FOLL_GET), so keep doing that, but only | 
|  | * for FOLL_GET, not for the newer FOLL_PIN. | 
|  | * | 
|  | * FOLL_PIN always expects pages to be non-null, but no need to assert | 
|  | * that here, as any failures will be obvious enough. | 
|  | */ | 
|  | if (pages && !(flags & FOLL_PIN)) | 
|  | flags |= FOLL_GET; | 
|  |  | 
|  | pages_done = 0; | 
|  | for (;;) { | 
|  | ret = __get_user_pages(mm, start, nr_pages, flags, pages, | 
|  | locked); | 
|  | if (!(flags & FOLL_UNLOCKABLE)) { | 
|  | /* VM_FAULT_RETRY couldn't trigger, bypass */ | 
|  | pages_done = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ | 
|  | VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages)); | 
|  |  | 
|  | if (ret > 0) { | 
|  | nr_pages -= ret; | 
|  | pages_done += ret; | 
|  | if (!nr_pages) | 
|  | break; | 
|  | } | 
|  | if (*locked) { | 
|  | /* | 
|  | * VM_FAULT_RETRY didn't trigger or it was a | 
|  | * FOLL_NOWAIT. | 
|  | */ | 
|  | if (!pages_done) | 
|  | pages_done = ret; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | 
|  | * For the prefault case (!pages) we only update counts. | 
|  | */ | 
|  | if (likely(pages)) | 
|  | pages += ret; | 
|  | start += ret << PAGE_SHIFT; | 
|  |  | 
|  | /* The lock was temporarily dropped, so we must unlock later */ | 
|  | must_unlock = true; | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Repeat on the address that fired VM_FAULT_RETRY | 
|  | * with both FAULT_FLAG_ALLOW_RETRY and | 
|  | * FAULT_FLAG_TRIED.  Note that GUP can be interrupted | 
|  | * by fatal signals of even common signals, depending on | 
|  | * the caller's request. So we need to check it before we | 
|  | * start trying again otherwise it can loop forever. | 
|  | */ | 
|  | if (gup_signal_pending(flags)) { | 
|  | if (!pages_done) | 
|  | pages_done = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = mmap_read_lock_killable(mm); | 
|  | if (ret) { | 
|  | if (!pages_done) | 
|  | pages_done = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | *locked = 1; | 
|  | ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, | 
|  | pages, locked); | 
|  | if (!*locked) { | 
|  | /* Continue to retry until we succeeded */ | 
|  | VM_WARN_ON_ONCE(ret != 0); | 
|  | goto retry; | 
|  | } | 
|  | if (ret != 1) { | 
|  | VM_WARN_ON_ONCE(ret > 1); | 
|  | if (!pages_done) | 
|  | pages_done = ret; | 
|  | break; | 
|  | } | 
|  | nr_pages--; | 
|  | pages_done++; | 
|  | if (!nr_pages) | 
|  | break; | 
|  | if (likely(pages)) | 
|  | pages++; | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  | if (must_unlock && *locked) { | 
|  | /* | 
|  | * We either temporarily dropped the lock, or the caller | 
|  | * requested that we both acquire and drop the lock. Either way, | 
|  | * we must now unlock, and notify the caller of that state. | 
|  | */ | 
|  | mmap_read_unlock(mm); | 
|  | *locked = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Failing to pin anything implies something has gone wrong (except when | 
|  | * FOLL_NOWAIT is specified). | 
|  | */ | 
|  | if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return pages_done; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * populate_vma_page_range() -  populate a range of pages in the vma. | 
|  | * @vma:   target vma | 
|  | * @start: start address | 
|  | * @end:   end address | 
|  | * @locked: whether the mmap_lock is still held | 
|  | * | 
|  | * This takes care of mlocking the pages too if VM_LOCKED is set. | 
|  | * | 
|  | * Return either number of pages pinned in the vma, or a negative error | 
|  | * code on error. | 
|  | * | 
|  | * vma->vm_mm->mmap_lock must be held. | 
|  | * | 
|  | * If @locked is NULL, it may be held for read or write and will | 
|  | * be unperturbed. | 
|  | * | 
|  | * If @locked is non-NULL, it must held for read only and may be | 
|  | * released.  If it's released, *@locked will be set to 0. | 
|  | */ | 
|  | long populate_vma_page_range(struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, int *locked) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long nr_pages = (end - start) / PAGE_SIZE; | 
|  | int local_locked = 1; | 
|  | int gup_flags; | 
|  | long ret; | 
|  |  | 
|  | VM_WARN_ON_ONCE(!PAGE_ALIGNED(start)); | 
|  | VM_WARN_ON_ONCE(!PAGE_ALIGNED(end)); | 
|  | VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma); | 
|  | VM_WARN_ON_ONCE_VMA(end   > vma->vm_end, vma); | 
|  | mmap_assert_locked(mm); | 
|  |  | 
|  | /* | 
|  | * Rightly or wrongly, the VM_LOCKONFAULT case has never used | 
|  | * faultin_page() to break COW, so it has no work to do here. | 
|  | */ | 
|  | if (vma->vm_flags & VM_LOCKONFAULT) | 
|  | return nr_pages; | 
|  |  | 
|  | /* ... similarly, we've never faulted in PROT_NONE pages */ | 
|  | if (!vma_is_accessible(vma)) | 
|  | return -EFAULT; | 
|  |  | 
|  | gup_flags = FOLL_TOUCH; | 
|  | /* | 
|  | * We want to touch writable mappings with a write fault in order | 
|  | * to break COW, except for shared mappings because these don't COW | 
|  | * and we would not want to dirty them for nothing. | 
|  | * | 
|  | * Otherwise, do a read fault, and use FOLL_FORCE in case it's not | 
|  | * readable (ie write-only or executable). | 
|  | */ | 
|  | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | 
|  | gup_flags |= FOLL_WRITE; | 
|  | else | 
|  | gup_flags |= FOLL_FORCE; | 
|  |  | 
|  | if (locked) | 
|  | gup_flags |= FOLL_UNLOCKABLE; | 
|  |  | 
|  | /* | 
|  | * We made sure addr is within a VMA, so the following will | 
|  | * not result in a stack expansion that recurses back here. | 
|  | */ | 
|  | ret = __get_user_pages(mm, start, nr_pages, gup_flags, | 
|  | NULL, locked ? locked : &local_locked); | 
|  | lru_add_drain(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * faultin_page_range() - populate (prefault) page tables inside the | 
|  | *			  given range readable/writable | 
|  | * | 
|  | * This takes care of mlocking the pages, too, if VM_LOCKED is set. | 
|  | * | 
|  | * @mm: the mm to populate page tables in | 
|  | * @start: start address | 
|  | * @end: end address | 
|  | * @write: whether to prefault readable or writable | 
|  | * @locked: whether the mmap_lock is still held | 
|  | * | 
|  | * Returns either number of processed pages in the MM, or a negative error | 
|  | * code on error (see __get_user_pages()). Note that this function reports | 
|  | * errors related to VMAs, such as incompatible mappings, as expected by | 
|  | * MADV_POPULATE_(READ|WRITE). | 
|  | * | 
|  | * The range must be page-aligned. | 
|  | * | 
|  | * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. | 
|  | */ | 
|  | long faultin_page_range(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long end, bool write, int *locked) | 
|  | { | 
|  | unsigned long nr_pages = (end - start) / PAGE_SIZE; | 
|  | int gup_flags; | 
|  | long ret; | 
|  |  | 
|  | VM_WARN_ON_ONCE(!PAGE_ALIGNED(start)); | 
|  | VM_WARN_ON_ONCE(!PAGE_ALIGNED(end)); | 
|  | mmap_assert_locked(mm); | 
|  |  | 
|  | /* | 
|  | * FOLL_TOUCH: Mark page accessed and thereby young; will also mark | 
|  | *	       the page dirty with FOLL_WRITE -- which doesn't make a | 
|  | *	       difference with !FOLL_FORCE, because the page is writable | 
|  | *	       in the page table. | 
|  | * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit | 
|  | *		  a poisoned page. | 
|  | * !FOLL_FORCE: Require proper access permissions. | 
|  | */ | 
|  | gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | | 
|  | FOLL_MADV_POPULATE; | 
|  | if (write) | 
|  | gup_flags |= FOLL_WRITE; | 
|  |  | 
|  | ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, | 
|  | gup_flags); | 
|  | lru_add_drain(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __mm_populate - populate and/or mlock pages within a range of address space. | 
|  | * | 
|  | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | 
|  | * flags. VMAs must be already marked with the desired vm_flags, and | 
|  | * mmap_lock must not be held. | 
|  | */ | 
|  | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long end, nstart, nend; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | int locked = 0; | 
|  | long ret = 0; | 
|  |  | 
|  | end = start + len; | 
|  |  | 
|  | for (nstart = start; nstart < end; nstart = nend) { | 
|  | /* | 
|  | * We want to fault in pages for [nstart; end) address range. | 
|  | * Find first corresponding VMA. | 
|  | */ | 
|  | if (!locked) { | 
|  | locked = 1; | 
|  | mmap_read_lock(mm); | 
|  | vma = find_vma_intersection(mm, nstart, end); | 
|  | } else if (nstart >= vma->vm_end) | 
|  | vma = find_vma_intersection(mm, vma->vm_end, end); | 
|  |  | 
|  | if (!vma) | 
|  | break; | 
|  | /* | 
|  | * Set [nstart; nend) to intersection of desired address | 
|  | * range with the first VMA. Also, skip undesirable VMA types. | 
|  | */ | 
|  | nend = min(end, vma->vm_end); | 
|  | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 
|  | continue; | 
|  | if (nstart < vma->vm_start) | 
|  | nstart = vma->vm_start; | 
|  | /* | 
|  | * Now fault in a range of pages. populate_vma_page_range() | 
|  | * double checks the vma flags, so that it won't mlock pages | 
|  | * if the vma was already munlocked. | 
|  | */ | 
|  | ret = populate_vma_page_range(vma, nstart, nend, &locked); | 
|  | if (ret < 0) { | 
|  | if (ignore_errors) { | 
|  | ret = 0; | 
|  | continue;	/* continue at next VMA */ | 
|  | } | 
|  | break; | 
|  | } | 
|  | nend = nstart + ret * PAGE_SIZE; | 
|  | ret = 0; | 
|  | } | 
|  | if (locked) | 
|  | mmap_read_unlock(mm); | 
|  | return ret;	/* 0 or negative error code */ | 
|  | } | 
|  | #else /* CONFIG_MMU */ | 
|  | static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long nr_pages, struct page **pages, | 
|  | int *locked, unsigned int foll_flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | bool must_unlock = false; | 
|  | vm_flags_t vm_flags; | 
|  | long i; | 
|  |  | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The internal caller expects GUP to manage the lock internally and the | 
|  | * lock must be released when this returns. | 
|  | */ | 
|  | if (!*locked) { | 
|  | if (mmap_read_lock_killable(mm)) | 
|  | return -EAGAIN; | 
|  | must_unlock = true; | 
|  | *locked = 1; | 
|  | } | 
|  |  | 
|  | /* calculate required read or write permissions. | 
|  | * If FOLL_FORCE is set, we only require the "MAY" flags. | 
|  | */ | 
|  | vm_flags  = (foll_flags & FOLL_WRITE) ? | 
|  | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
|  | vm_flags &= (foll_flags & FOLL_FORCE) ? | 
|  | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | vma = find_vma(mm, start); | 
|  | if (!vma) | 
|  | break; | 
|  |  | 
|  | /* protect what we can, including chardevs */ | 
|  | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | 
|  | !(vm_flags & vma->vm_flags)) | 
|  | break; | 
|  |  | 
|  | if (pages) { | 
|  | pages[i] = virt_to_page((void *)start); | 
|  | if (pages[i]) | 
|  | get_page(pages[i]); | 
|  | } | 
|  |  | 
|  | start = (start + PAGE_SIZE) & PAGE_MASK; | 
|  | } | 
|  |  | 
|  | if (must_unlock && *locked) { | 
|  | mmap_read_unlock(mm); | 
|  | *locked = 0; | 
|  | } | 
|  |  | 
|  | return i ? : -EFAULT; | 
|  | } | 
|  | #endif /* !CONFIG_MMU */ | 
|  |  | 
|  | /** | 
|  | * fault_in_writeable - fault in userspace address range for writing | 
|  | * @uaddr: start of address range | 
|  | * @size: size of address range | 
|  | * | 
|  | * Returns the number of bytes not faulted in (like copy_to_user() and | 
|  | * copy_from_user()). | 
|  | */ | 
|  | size_t fault_in_writeable(char __user *uaddr, size_t size) | 
|  | { | 
|  | const unsigned long start = (unsigned long)uaddr; | 
|  | const unsigned long end = start + size; | 
|  | unsigned long cur; | 
|  |  | 
|  | if (unlikely(size == 0)) | 
|  | return 0; | 
|  | if (!user_write_access_begin(uaddr, size)) | 
|  | return size; | 
|  |  | 
|  | /* Stop once we overflow to 0. */ | 
|  | for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) | 
|  | unsafe_put_user(0, (char __user *)cur, out); | 
|  | out: | 
|  | user_write_access_end(); | 
|  | if (size > cur - start) | 
|  | return size - (cur - start); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(fault_in_writeable); | 
|  |  | 
|  | /** | 
|  | * fault_in_subpage_writeable - fault in an address range for writing | 
|  | * @uaddr: start of address range | 
|  | * @size: size of address range | 
|  | * | 
|  | * Fault in a user address range for writing while checking for permissions at | 
|  | * sub-page granularity (e.g. arm64 MTE). This function should be used when | 
|  | * the caller cannot guarantee forward progress of a copy_to_user() loop. | 
|  | * | 
|  | * Returns the number of bytes not faulted in (like copy_to_user() and | 
|  | * copy_from_user()). | 
|  | */ | 
|  | size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) | 
|  | { | 
|  | size_t faulted_in; | 
|  |  | 
|  | /* | 
|  | * Attempt faulting in at page granularity first for page table | 
|  | * permission checking. The arch-specific probe_subpage_writeable() | 
|  | * functions may not check for this. | 
|  | */ | 
|  | faulted_in = size - fault_in_writeable(uaddr, size); | 
|  | if (faulted_in) | 
|  | faulted_in -= probe_subpage_writeable(uaddr, faulted_in); | 
|  |  | 
|  | return size - faulted_in; | 
|  | } | 
|  | EXPORT_SYMBOL(fault_in_subpage_writeable); | 
|  |  | 
|  | /* | 
|  | * fault_in_safe_writeable - fault in an address range for writing | 
|  | * @uaddr: start of address range | 
|  | * @size: length of address range | 
|  | * | 
|  | * Faults in an address range for writing.  This is primarily useful when we | 
|  | * already know that some or all of the pages in the address range aren't in | 
|  | * memory. | 
|  | * | 
|  | * Unlike fault_in_writeable(), this function is non-destructive. | 
|  | * | 
|  | * Note that we don't pin or otherwise hold the pages referenced that we fault | 
|  | * in.  There's no guarantee that they'll stay in memory for any duration of | 
|  | * time. | 
|  | * | 
|  | * Returns the number of bytes not faulted in, like copy_to_user() and | 
|  | * copy_from_user(). | 
|  | */ | 
|  | size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) | 
|  | { | 
|  | const unsigned long start = (unsigned long)uaddr; | 
|  | const unsigned long end = start + size; | 
|  | unsigned long cur; | 
|  | struct mm_struct *mm = current->mm; | 
|  | bool unlocked = false; | 
|  |  | 
|  | if (unlikely(size == 0)) | 
|  | return 0; | 
|  |  | 
|  | mmap_read_lock(mm); | 
|  | /* Stop once we overflow to 0. */ | 
|  | for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) | 
|  | if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked)) | 
|  | break; | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | if (size > cur - start) | 
|  | return size - (cur - start); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(fault_in_safe_writeable); | 
|  |  | 
|  | /** | 
|  | * fault_in_readable - fault in userspace address range for reading | 
|  | * @uaddr: start of user address range | 
|  | * @size: size of user address range | 
|  | * | 
|  | * Returns the number of bytes not faulted in (like copy_to_user() and | 
|  | * copy_from_user()). | 
|  | */ | 
|  | size_t fault_in_readable(const char __user *uaddr, size_t size) | 
|  | { | 
|  | const unsigned long start = (unsigned long)uaddr; | 
|  | const unsigned long end = start + size; | 
|  | unsigned long cur; | 
|  | volatile char c; | 
|  |  | 
|  | if (unlikely(size == 0)) | 
|  | return 0; | 
|  | if (!user_read_access_begin(uaddr, size)) | 
|  | return size; | 
|  |  | 
|  | /* Stop once we overflow to 0. */ | 
|  | for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) | 
|  | unsafe_get_user(c, (const char __user *)cur, out); | 
|  | out: | 
|  | user_read_access_end(); | 
|  | (void)c; | 
|  | if (size > cur - start) | 
|  | return size - (cur - start); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(fault_in_readable); | 
|  |  | 
|  | /** | 
|  | * get_dump_page() - pin user page in memory while writing it to core dump | 
|  | * @addr: user address | 
|  | * @locked: a pointer to an int denoting whether the mmap sem is held | 
|  | * | 
|  | * Returns struct page pointer of user page pinned for dump, | 
|  | * to be freed afterwards by put_page(). | 
|  | * | 
|  | * Returns NULL on any kind of failure - a hole must then be inserted into | 
|  | * the corefile, to preserve alignment with its headers; and also returns | 
|  | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | 
|  | * allowing a hole to be left in the corefile to save disk space. | 
|  | * | 
|  | * Called without mmap_lock (takes and releases the mmap_lock by itself). | 
|  | */ | 
|  | #ifdef CONFIG_ELF_CORE | 
|  | struct page *get_dump_page(unsigned long addr, int *locked) | 
|  | { | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked, | 
|  | FOLL_FORCE | FOLL_DUMP | FOLL_GET); | 
|  | return (ret == 1) ? page : NULL; | 
|  | } | 
|  | #endif /* CONFIG_ELF_CORE */ | 
|  |  | 
|  | #ifdef CONFIG_MIGRATION | 
|  |  | 
|  | /* | 
|  | * An array of either pages or folios ("pofs"). Although it may seem tempting to | 
|  | * avoid this complication, by simply interpreting a list of folios as a list of | 
|  | * pages, that approach won't work in the longer term, because eventually the | 
|  | * layouts of struct page and struct folio will become completely different. | 
|  | * Furthermore, this pof approach avoids excessive page_folio() calls. | 
|  | */ | 
|  | struct pages_or_folios { | 
|  | union { | 
|  | struct page **pages; | 
|  | struct folio **folios; | 
|  | void **entries; | 
|  | }; | 
|  | bool has_folios; | 
|  | long nr_entries; | 
|  | }; | 
|  |  | 
|  | static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i) | 
|  | { | 
|  | if (pofs->has_folios) | 
|  | return pofs->folios[i]; | 
|  | return page_folio(pofs->pages[i]); | 
|  | } | 
|  |  | 
|  | static void pofs_clear_entry(struct pages_or_folios *pofs, long i) | 
|  | { | 
|  | pofs->entries[i] = NULL; | 
|  | } | 
|  |  | 
|  | static void pofs_unpin(struct pages_or_folios *pofs) | 
|  | { | 
|  | if (pofs->has_folios) | 
|  | unpin_folios(pofs->folios, pofs->nr_entries); | 
|  | else | 
|  | unpin_user_pages(pofs->pages, pofs->nr_entries); | 
|  | } | 
|  |  | 
|  | static struct folio *pofs_next_folio(struct folio *folio, | 
|  | struct pages_or_folios *pofs, long *index_ptr) | 
|  | { | 
|  | long i = *index_ptr + 1; | 
|  |  | 
|  | if (!pofs->has_folios && folio_test_large(folio)) { | 
|  | const unsigned long start_pfn = folio_pfn(folio); | 
|  | const unsigned long end_pfn = start_pfn + folio_nr_pages(folio); | 
|  |  | 
|  | for (; i < pofs->nr_entries; i++) { | 
|  | unsigned long pfn = page_to_pfn(pofs->pages[i]); | 
|  |  | 
|  | /* Is this page part of this folio? */ | 
|  | if (pfn < start_pfn || pfn >= end_pfn) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(i == pofs->nr_entries)) | 
|  | return NULL; | 
|  | *index_ptr = i; | 
|  |  | 
|  | return pofs_get_folio(pofs, i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the number of collected folios. Return value is always >= 0. | 
|  | */ | 
|  | static unsigned long collect_longterm_unpinnable_folios( | 
|  | struct list_head *movable_folio_list, | 
|  | struct pages_or_folios *pofs) | 
|  | { | 
|  | unsigned long collected = 0; | 
|  | bool drain_allow = true; | 
|  | struct folio *folio; | 
|  | long i = 0; | 
|  |  | 
|  | for (folio = pofs_get_folio(pofs, i); folio; | 
|  | folio = pofs_next_folio(folio, pofs, &i)) { | 
|  |  | 
|  | if (folio_is_longterm_pinnable(folio)) | 
|  | continue; | 
|  |  | 
|  | collected++; | 
|  |  | 
|  | if (folio_is_device_coherent(folio)) | 
|  | continue; | 
|  |  | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | folio_isolate_hugetlb(folio, movable_folio_list); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!folio_test_lru(folio) && drain_allow) { | 
|  | lru_add_drain_all(); | 
|  | drain_allow = false; | 
|  | } | 
|  |  | 
|  | if (!folio_isolate_lru(folio)) | 
|  | continue; | 
|  |  | 
|  | list_add_tail(&folio->lru, movable_folio_list); | 
|  | node_stat_mod_folio(folio, | 
|  | NR_ISOLATED_ANON + folio_is_file_lru(folio), | 
|  | folio_nr_pages(folio)); | 
|  | } | 
|  |  | 
|  | return collected; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unpins all folios and migrates device coherent folios and movable_folio_list. | 
|  | * Returns -EAGAIN if all folios were successfully migrated or -errno for | 
|  | * failure (or partial success). | 
|  | */ | 
|  | static int | 
|  | migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list, | 
|  | struct pages_or_folios *pofs) | 
|  | { | 
|  | int ret; | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < pofs->nr_entries; i++) { | 
|  | struct folio *folio = pofs_get_folio(pofs, i); | 
|  |  | 
|  | if (folio_is_device_coherent(folio)) { | 
|  | /* | 
|  | * Migration will fail if the folio is pinned, so | 
|  | * convert the pin on the source folio to a normal | 
|  | * reference. | 
|  | */ | 
|  | pofs_clear_entry(pofs, i); | 
|  | folio_get(folio); | 
|  | gup_put_folio(folio, 1, FOLL_PIN); | 
|  |  | 
|  | if (migrate_device_coherent_folio(folio)) { | 
|  | ret = -EBUSY; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't migrate folios with unexpected references, so drop | 
|  | * the reference obtained by __get_user_pages_locked(). | 
|  | * Migrating folios have been added to movable_folio_list after | 
|  | * calling folio_isolate_lru() which takes a reference so the | 
|  | * folio won't be freed if it's migrating. | 
|  | */ | 
|  | unpin_folio(folio); | 
|  | pofs_clear_entry(pofs, i); | 
|  | } | 
|  |  | 
|  | if (!list_empty(movable_folio_list)) { | 
|  | struct migration_target_control mtc = { | 
|  | .nid = NUMA_NO_NODE, | 
|  | .gfp_mask = GFP_USER | __GFP_NOWARN, | 
|  | .reason = MR_LONGTERM_PIN, | 
|  | }; | 
|  |  | 
|  | if (migrate_pages(movable_folio_list, alloc_migration_target, | 
|  | NULL, (unsigned long)&mtc, MIGRATE_SYNC, | 
|  | MR_LONGTERM_PIN, NULL)) { | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | putback_movable_pages(movable_folio_list); | 
|  |  | 
|  | return -EAGAIN; | 
|  |  | 
|  | err: | 
|  | pofs_unpin(pofs); | 
|  | putback_movable_pages(movable_folio_list); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long | 
|  | check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs) | 
|  | { | 
|  | LIST_HEAD(movable_folio_list); | 
|  | unsigned long collected; | 
|  |  | 
|  | collected = collect_longterm_unpinnable_folios(&movable_folio_list, | 
|  | pofs); | 
|  | if (!collected) | 
|  | return 0; | 
|  |  | 
|  | return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether all folios are *allowed* to be pinned indefinitely (long term). | 
|  | * Rather confusingly, all folios in the range are required to be pinned via | 
|  | * FOLL_PIN, before calling this routine. | 
|  | * | 
|  | * Return values: | 
|  | * | 
|  | * 0: if everything is OK and all folios in the range are allowed to be pinned, | 
|  | * then this routine leaves all folios pinned and returns zero for success. | 
|  | * | 
|  | * -EAGAIN: if any folios in the range are not allowed to be pinned, then this | 
|  | * routine will migrate those folios away, unpin all the folios in the range. If | 
|  | * migration of the entire set of folios succeeds, then -EAGAIN is returned. The | 
|  | * caller should re-pin the entire range with FOLL_PIN and then call this | 
|  | * routine again. | 
|  | * | 
|  | * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this | 
|  | * indicates a migration failure. The caller should give up, and propagate the | 
|  | * error back up the call stack. The caller does not need to unpin any folios in | 
|  | * that case, because this routine will do the unpinning. | 
|  | */ | 
|  | static long check_and_migrate_movable_folios(unsigned long nr_folios, | 
|  | struct folio **folios) | 
|  | { | 
|  | struct pages_or_folios pofs = { | 
|  | .folios = folios, | 
|  | .has_folios = true, | 
|  | .nr_entries = nr_folios, | 
|  | }; | 
|  |  | 
|  | return check_and_migrate_movable_pages_or_folios(&pofs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return values and behavior are the same as those for | 
|  | * check_and_migrate_movable_folios(). | 
|  | */ | 
|  | static long check_and_migrate_movable_pages(unsigned long nr_pages, | 
|  | struct page **pages) | 
|  | { | 
|  | struct pages_or_folios pofs = { | 
|  | .pages = pages, | 
|  | .has_folios = false, | 
|  | .nr_entries = nr_pages, | 
|  | }; | 
|  |  | 
|  | return check_and_migrate_movable_pages_or_folios(&pofs); | 
|  | } | 
|  | #else | 
|  | static long check_and_migrate_movable_pages(unsigned long nr_pages, | 
|  | struct page **pages) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long check_and_migrate_movable_folios(unsigned long nr_folios, | 
|  | struct folio **folios) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_MIGRATION */ | 
|  |  | 
|  | /* | 
|  | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which | 
|  | * allows us to process the FOLL_LONGTERM flag. | 
|  | */ | 
|  | static long __gup_longterm_locked(struct mm_struct *mm, | 
|  | unsigned long start, | 
|  | unsigned long nr_pages, | 
|  | struct page **pages, | 
|  | int *locked, | 
|  | unsigned int gup_flags) | 
|  | { | 
|  | unsigned int flags; | 
|  | long rc, nr_pinned_pages; | 
|  |  | 
|  | if (!(gup_flags & FOLL_LONGTERM)) | 
|  | return __get_user_pages_locked(mm, start, nr_pages, pages, | 
|  | locked, gup_flags); | 
|  |  | 
|  | flags = memalloc_pin_save(); | 
|  | do { | 
|  | nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, | 
|  | pages, locked, | 
|  | gup_flags); | 
|  | if (nr_pinned_pages <= 0) { | 
|  | rc = nr_pinned_pages; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* FOLL_LONGTERM implies FOLL_PIN */ | 
|  | rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); | 
|  | } while (rc == -EAGAIN); | 
|  | memalloc_pin_restore(flags); | 
|  | return rc ? rc : nr_pinned_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the given flags are valid for the exported gup/pup interface, and | 
|  | * update them with the required flags that the caller must have set. | 
|  | */ | 
|  | static bool is_valid_gup_args(struct page **pages, int *locked, | 
|  | unsigned int *gup_flags_p, unsigned int to_set) | 
|  | { | 
|  | unsigned int gup_flags = *gup_flags_p; | 
|  |  | 
|  | /* | 
|  | * These flags not allowed to be specified externally to the gup | 
|  | * interfaces: | 
|  | * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only | 
|  | * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() | 
|  | * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL | 
|  | */ | 
|  | if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) | 
|  | return false; | 
|  |  | 
|  | gup_flags |= to_set; | 
|  | if (locked) { | 
|  | /* At the external interface locked must be set */ | 
|  | if (WARN_ON_ONCE(*locked != 1)) | 
|  | return false; | 
|  |  | 
|  | gup_flags |= FOLL_UNLOCKABLE; | 
|  | } | 
|  |  | 
|  | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | 
|  | if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == | 
|  | (FOLL_PIN | FOLL_GET))) | 
|  | return false; | 
|  |  | 
|  | /* LONGTERM can only be specified when pinning */ | 
|  | if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) | 
|  | return false; | 
|  |  | 
|  | /* Pages input must be given if using GET/PIN */ | 
|  | if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) | 
|  | return false; | 
|  |  | 
|  | /* We want to allow the pgmap to be hot-unplugged at all times */ | 
|  | if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && | 
|  | (gup_flags & FOLL_PCI_P2PDMA))) | 
|  | return false; | 
|  |  | 
|  | *gup_flags_p = gup_flags; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /** | 
|  | * get_user_pages_remote() - pin user pages in memory | 
|  | * @mm:		mm_struct of target mm | 
|  | * @start:	starting user address | 
|  | * @nr_pages:	number of pages from start to pin | 
|  | * @gup_flags:	flags modifying lookup behaviour | 
|  | * @pages:	array that receives pointers to the pages pinned. | 
|  | *		Should be at least nr_pages long. Or NULL, if caller | 
|  | *		only intends to ensure the pages are faulted in. | 
|  | * @locked:	pointer to lock flag indicating whether lock is held and | 
|  | *		subsequently whether VM_FAULT_RETRY functionality can be | 
|  | *		utilised. Lock must initially be held. | 
|  | * | 
|  | * Returns either number of pages pinned (which may be less than the | 
|  | * number requested), or an error. Details about the return value: | 
|  | * | 
|  | * -- If nr_pages is 0, returns 0. | 
|  | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | 
|  | * -- If nr_pages is >0, and some pages were pinned, returns the number of | 
|  | *    pages pinned. Again, this may be less than nr_pages. | 
|  | * | 
|  | * The caller is responsible for releasing returned @pages, via put_page(). | 
|  | * | 
|  | * Must be called with mmap_lock held for read or write. | 
|  | * | 
|  | * get_user_pages_remote walks a process's page tables and takes a reference | 
|  | * to each struct page that each user address corresponds to at a given | 
|  | * instant. That is, it takes the page that would be accessed if a user | 
|  | * thread accesses the given user virtual address at that instant. | 
|  | * | 
|  | * This does not guarantee that the page exists in the user mappings when | 
|  | * get_user_pages_remote returns, and there may even be a completely different | 
|  | * page there in some cases (eg. if mmapped pagecache has been invalidated | 
|  | * and subsequently re-faulted). However it does guarantee that the page | 
|  | * won't be freed completely. And mostly callers simply care that the page | 
|  | * contains data that was valid *at some point in time*. Typically, an IO | 
|  | * or similar operation cannot guarantee anything stronger anyway because | 
|  | * locks can't be held over the syscall boundary. | 
|  | * | 
|  | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | 
|  | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | 
|  | * be called after the page is finished with, and before put_page is called. | 
|  | * | 
|  | * get_user_pages_remote is typically used for fewer-copy IO operations, | 
|  | * to get a handle on the memory by some means other than accesses | 
|  | * via the user virtual addresses. The pages may be submitted for | 
|  | * DMA to devices or accessed via their kernel linear mapping (via the | 
|  | * kmap APIs). Care should be taken to use the correct cache flushing APIs. | 
|  | * | 
|  | * See also get_user_pages_fast, for performance critical applications. | 
|  | * | 
|  | * get_user_pages_remote should be phased out in favor of | 
|  | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | 
|  | * should use get_user_pages_remote because it cannot pass | 
|  | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | 
|  | */ | 
|  | long get_user_pages_remote(struct mm_struct *mm, | 
|  | unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages, | 
|  | int *locked) | 
|  | { | 
|  | int local_locked = 1; | 
|  |  | 
|  | if (!is_valid_gup_args(pages, locked, &gup_flags, | 
|  | FOLL_TOUCH | FOLL_REMOTE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __get_user_pages_locked(mm, start, nr_pages, pages, | 
|  | locked ? locked : &local_locked, | 
|  | gup_flags); | 
|  | } | 
|  | EXPORT_SYMBOL(get_user_pages_remote); | 
|  |  | 
|  | #else /* CONFIG_MMU */ | 
|  | long get_user_pages_remote(struct mm_struct *mm, | 
|  | unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages, | 
|  | int *locked) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* !CONFIG_MMU */ | 
|  |  | 
|  | /** | 
|  | * get_user_pages() - pin user pages in memory | 
|  | * @start:      starting user address | 
|  | * @nr_pages:   number of pages from start to pin | 
|  | * @gup_flags:  flags modifying lookup behaviour | 
|  | * @pages:      array that receives pointers to the pages pinned. | 
|  | *              Should be at least nr_pages long. Or NULL, if caller | 
|  | *              only intends to ensure the pages are faulted in. | 
|  | * | 
|  | * This is the same as get_user_pages_remote(), just with a less-flexible | 
|  | * calling convention where we assume that the mm being operated on belongs to | 
|  | * the current task, and doesn't allow passing of a locked parameter.  We also | 
|  | * obviously don't pass FOLL_REMOTE in here. | 
|  | */ | 
|  | long get_user_pages(unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages) | 
|  | { | 
|  | int locked = 1; | 
|  |  | 
|  | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __get_user_pages_locked(current->mm, start, nr_pages, pages, | 
|  | &locked, gup_flags); | 
|  | } | 
|  | EXPORT_SYMBOL(get_user_pages); | 
|  |  | 
|  | /* | 
|  | * get_user_pages_unlocked() is suitable to replace the form: | 
|  | * | 
|  | *      mmap_read_lock(mm); | 
|  | *      get_user_pages(mm, ..., pages, NULL); | 
|  | *      mmap_read_unlock(mm); | 
|  | * | 
|  | *  with: | 
|  | * | 
|  | *      get_user_pages_unlocked(mm, ..., pages); | 
|  | * | 
|  | * It is functionally equivalent to get_user_pages_fast so | 
|  | * get_user_pages_fast should be used instead if specific gup_flags | 
|  | * (e.g. FOLL_FORCE) are not required. | 
|  | */ | 
|  | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | 
|  | struct page **pages, unsigned int gup_flags) | 
|  | { | 
|  | int locked = 0; | 
|  |  | 
|  | if (!is_valid_gup_args(pages, NULL, &gup_flags, | 
|  | FOLL_TOUCH | FOLL_UNLOCKABLE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __get_user_pages_locked(current->mm, start, nr_pages, pages, | 
|  | &locked, gup_flags); | 
|  | } | 
|  | EXPORT_SYMBOL(get_user_pages_unlocked); | 
|  |  | 
|  | /* | 
|  | * GUP-fast | 
|  | * | 
|  | * get_user_pages_fast attempts to pin user pages by walking the page | 
|  | * tables directly and avoids taking locks. Thus the walker needs to be | 
|  | * protected from page table pages being freed from under it, and should | 
|  | * block any THP splits. | 
|  | * | 
|  | * One way to achieve this is to have the walker disable interrupts, and | 
|  | * rely on IPIs from the TLB flushing code blocking before the page table | 
|  | * pages are freed. This is unsuitable for architectures that do not need | 
|  | * to broadcast an IPI when invalidating TLBs. | 
|  | * | 
|  | * Another way to achieve this is to batch up page table containing pages | 
|  | * belonging to more than one mm_user, then rcu_sched a callback to free those | 
|  | * pages. Disabling interrupts will allow the gup_fast() walker to both block | 
|  | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | 
|  | * (which is a relatively rare event). The code below adopts this strategy. | 
|  | * | 
|  | * Before activating this code, please be aware that the following assumptions | 
|  | * are currently made: | 
|  | * | 
|  | *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to | 
|  | *  free pages containing page tables or TLB flushing requires IPI broadcast. | 
|  | * | 
|  | *  *) ptes can be read atomically by the architecture. | 
|  | * | 
|  | *  *) valid user addesses are below TASK_MAX_SIZE | 
|  | * | 
|  | * The last two assumptions can be relaxed by the addition of helper functions. | 
|  | * | 
|  | * This code is based heavily on the PowerPC implementation by Nick Piggin. | 
|  | */ | 
|  | #ifdef CONFIG_HAVE_GUP_FAST | 
|  | /* | 
|  | * Used in the GUP-fast path to determine whether GUP is permitted to work on | 
|  | * a specific folio. | 
|  | * | 
|  | * This call assumes the caller has pinned the folio, that the lowest page table | 
|  | * level still points to this folio, and that interrupts have been disabled. | 
|  | * | 
|  | * GUP-fast must reject all secretmem folios. | 
|  | * | 
|  | * Writing to pinned file-backed dirty tracked folios is inherently problematic | 
|  | * (see comment describing the writable_file_mapping_allowed() function). We | 
|  | * therefore try to avoid the most egregious case of a long-term mapping doing | 
|  | * so. | 
|  | * | 
|  | * This function cannot be as thorough as that one as the VMA is not available | 
|  | * in the fast path, so instead we whitelist known good cases and if in doubt, | 
|  | * fall back to the slow path. | 
|  | */ | 
|  | static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) | 
|  | { | 
|  | bool reject_file_backed = false; | 
|  | struct address_space *mapping; | 
|  | bool check_secretmem = false; | 
|  | unsigned long mapping_flags; | 
|  |  | 
|  | /* | 
|  | * If we aren't pinning then no problematic write can occur. A long term | 
|  | * pin is the most egregious case so this is the one we disallow. | 
|  | */ | 
|  | if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == | 
|  | (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) | 
|  | reject_file_backed = true; | 
|  |  | 
|  | /* We hold a folio reference, so we can safely access folio fields. */ | 
|  |  | 
|  | /* secretmem folios are always order-0 folios. */ | 
|  | if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) | 
|  | check_secretmem = true; | 
|  |  | 
|  | if (!reject_file_backed && !check_secretmem) | 
|  | return true; | 
|  |  | 
|  | if (WARN_ON_ONCE(folio_test_slab(folio))) | 
|  | return false; | 
|  |  | 
|  | /* hugetlb neither requires dirty-tracking nor can be secretmem. */ | 
|  | if (folio_test_hugetlb(folio)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods | 
|  | * cannot proceed, which means no actions performed under RCU can | 
|  | * proceed either. | 
|  | * | 
|  | * inodes and thus their mappings are freed under RCU, which means the | 
|  | * mapping cannot be freed beneath us and thus we can safely dereference | 
|  | * it. | 
|  | */ | 
|  | lockdep_assert_irqs_disabled(); | 
|  |  | 
|  | /* | 
|  | * However, there may be operations which _alter_ the mapping, so ensure | 
|  | * we read it once and only once. | 
|  | */ | 
|  | mapping = READ_ONCE(folio->mapping); | 
|  |  | 
|  | /* | 
|  | * The mapping may have been truncated, in any case we cannot determine | 
|  | * if this mapping is safe - fall back to slow path to determine how to | 
|  | * proceed. | 
|  | */ | 
|  | if (!mapping) | 
|  | return false; | 
|  |  | 
|  | /* Anonymous folios pose no problem. */ | 
|  | mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS; | 
|  | if (mapping_flags) | 
|  | return mapping_flags & FOLIO_MAPPING_ANON; | 
|  |  | 
|  | /* | 
|  | * At this point, we know the mapping is non-null and points to an | 
|  | * address_space object. | 
|  | */ | 
|  | if (check_secretmem && secretmem_mapping(mapping)) | 
|  | return false; | 
|  | /* The only remaining allowed file system is shmem. */ | 
|  | return !reject_file_backed || shmem_mapping(mapping); | 
|  | } | 
|  |  | 
|  | static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, | 
|  | unsigned int flags, struct page **pages) | 
|  | { | 
|  | while ((*nr) - nr_start) { | 
|  | struct folio *folio = page_folio(pages[--(*nr)]); | 
|  |  | 
|  | folio_clear_referenced(folio); | 
|  | gup_put_folio(folio, 1, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL | 
|  | /* | 
|  | * GUP-fast relies on pte change detection to avoid concurrent pgtable | 
|  | * operations. | 
|  | * | 
|  | * To pin the page, GUP-fast needs to do below in order: | 
|  | * (1) pin the page (by prefetching pte), then (2) check pte not changed. | 
|  | * | 
|  | * For the rest of pgtable operations where pgtable updates can be racy | 
|  | * with GUP-fast, we need to do (1) clear pte, then (2) check whether page | 
|  | * is pinned. | 
|  | * | 
|  | * Above will work for all pte-level operations, including THP split. | 
|  | * | 
|  | * For THP collapse, it's a bit more complicated because GUP-fast may be | 
|  | * walking a pgtable page that is being freed (pte is still valid but pmd | 
|  | * can be cleared already).  To avoid race in such condition, we need to | 
|  | * also check pmd here to make sure pmd doesn't change (corresponds to | 
|  | * pmdp_collapse_flush() in the THP collapse code path). | 
|  | */ | 
|  | static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, | 
|  | unsigned long end, unsigned int flags, struct page **pages, | 
|  | int *nr) | 
|  | { | 
|  | struct dev_pagemap *pgmap = NULL; | 
|  | int ret = 0; | 
|  | pte_t *ptep, *ptem; | 
|  |  | 
|  | ptem = ptep = pte_offset_map(&pmd, addr); | 
|  | if (!ptep) | 
|  | return 0; | 
|  | do { | 
|  | pte_t pte = ptep_get_lockless(ptep); | 
|  | struct page *page; | 
|  | struct folio *folio; | 
|  |  | 
|  | /* | 
|  | * Always fallback to ordinary GUP on PROT_NONE-mapped pages: | 
|  | * pte_access_permitted() better should reject these pages | 
|  | * either way: otherwise, GUP-fast might succeed in | 
|  | * cases where ordinary GUP would fail due to VMA access | 
|  | * permissions. | 
|  | */ | 
|  | if (pte_protnone(pte)) | 
|  | goto pte_unmap; | 
|  |  | 
|  | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) | 
|  | goto pte_unmap; | 
|  |  | 
|  | if (pte_special(pte)) | 
|  | goto pte_unmap; | 
|  |  | 
|  | /* If it's not marked as special it must have a valid memmap. */ | 
|  | VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte))); | 
|  | page = pte_page(pte); | 
|  |  | 
|  | folio = try_grab_folio_fast(page, 1, flags); | 
|  | if (!folio) | 
|  | goto pte_unmap; | 
|  |  | 
|  | if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || | 
|  | unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { | 
|  | gup_put_folio(folio, 1, flags); | 
|  | goto pte_unmap; | 
|  | } | 
|  |  | 
|  | if (!gup_fast_folio_allowed(folio, flags)) { | 
|  | gup_put_folio(folio, 1, flags); | 
|  | goto pte_unmap; | 
|  | } | 
|  |  | 
|  | if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { | 
|  | gup_put_folio(folio, 1, flags); | 
|  | goto pte_unmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to make the page accessible if and only if we are | 
|  | * going to access its content (the FOLL_PIN case).  Please | 
|  | * see Documentation/core-api/pin_user_pages.rst for | 
|  | * details. | 
|  | */ | 
|  | if (flags & FOLL_PIN) { | 
|  | ret = arch_make_folio_accessible(folio); | 
|  | if (ret) { | 
|  | gup_put_folio(folio, 1, flags); | 
|  | goto pte_unmap; | 
|  | } | 
|  | } | 
|  | folio_set_referenced(folio); | 
|  | pages[*nr] = page; | 
|  | (*nr)++; | 
|  | } while (ptep++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | pte_unmap: | 
|  | if (pgmap) | 
|  | put_dev_pagemap(pgmap); | 
|  | pte_unmap(ptem); | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  |  | 
|  | /* | 
|  | * If we can't determine whether or not a pte is special, then fail immediately | 
|  | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | 
|  | * to be special. | 
|  | * | 
|  | * For a futex to be placed on a THP tail page, get_futex_key requires a | 
|  | * get_user_pages_fast_only implementation that can pin pages. Thus it's still | 
|  | * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. | 
|  | */ | 
|  | static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, | 
|  | unsigned long end, unsigned int flags, struct page **pages, | 
|  | int *nr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ | 
|  |  | 
|  | static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, | 
|  | unsigned long end, unsigned int flags, struct page **pages, | 
|  | int *nr) | 
|  | { | 
|  | struct page *page; | 
|  | struct folio *folio; | 
|  | int refs; | 
|  |  | 
|  | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) | 
|  | return 0; | 
|  |  | 
|  | if (pmd_special(orig)) | 
|  | return 0; | 
|  |  | 
|  | page = pmd_page(orig); | 
|  | refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); | 
|  |  | 
|  | folio = try_grab_folio_fast(page, refs, flags); | 
|  | if (!folio) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | 
|  | gup_put_folio(folio, refs, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!gup_fast_folio_allowed(folio, flags)) { | 
|  | gup_put_folio(folio, refs, flags); | 
|  | return 0; | 
|  | } | 
|  | if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { | 
|  | gup_put_folio(folio, refs, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *nr += refs; | 
|  | folio_set_referenced(folio); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, | 
|  | unsigned long end, unsigned int flags, struct page **pages, | 
|  | int *nr) | 
|  | { | 
|  | struct page *page; | 
|  | struct folio *folio; | 
|  | int refs; | 
|  |  | 
|  | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) | 
|  | return 0; | 
|  |  | 
|  | if (pud_special(orig)) | 
|  | return 0; | 
|  |  | 
|  | page = pud_page(orig); | 
|  | refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); | 
|  |  | 
|  | folio = try_grab_folio_fast(page, refs, flags); | 
|  | if (!folio) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | 
|  | gup_put_folio(folio, refs, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!gup_fast_folio_allowed(folio, flags)) { | 
|  | gup_put_folio(folio, refs, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { | 
|  | gup_put_folio(folio, refs, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *nr += refs; | 
|  | folio_set_referenced(folio); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, | 
|  | unsigned long end, unsigned int flags, struct page **pages, | 
|  | int *nr) | 
|  | { | 
|  | unsigned long next; | 
|  | pmd_t *pmdp; | 
|  |  | 
|  | pmdp = pmd_offset_lockless(pudp, pud, addr); | 
|  | do { | 
|  | pmd_t pmd = pmdp_get_lockless(pmdp); | 
|  |  | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (!pmd_present(pmd)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(pmd_leaf(pmd))) { | 
|  | /* See gup_fast_pte_range() */ | 
|  | if (pmd_protnone(pmd)) | 
|  | return 0; | 
|  |  | 
|  | if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, | 
|  | pages, nr)) | 
|  | return 0; | 
|  |  | 
|  | } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, | 
|  | pages, nr)) | 
|  | return 0; | 
|  | } while (pmdp++, addr = next, addr != end); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, | 
|  | unsigned long end, unsigned int flags, struct page **pages, | 
|  | int *nr) | 
|  | { | 
|  | unsigned long next; | 
|  | pud_t *pudp; | 
|  |  | 
|  | pudp = pud_offset_lockless(p4dp, p4d, addr); | 
|  | do { | 
|  | pud_t pud = READ_ONCE(*pudp); | 
|  |  | 
|  | next = pud_addr_end(addr, end); | 
|  | if (unlikely(!pud_present(pud))) | 
|  | return 0; | 
|  | if (unlikely(pud_leaf(pud))) { | 
|  | if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, | 
|  | pages, nr)) | 
|  | return 0; | 
|  | } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, | 
|  | pages, nr)) | 
|  | return 0; | 
|  | } while (pudp++, addr = next, addr != end); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, | 
|  | unsigned long end, unsigned int flags, struct page **pages, | 
|  | int *nr) | 
|  | { | 
|  | unsigned long next; | 
|  | p4d_t *p4dp; | 
|  |  | 
|  | p4dp = p4d_offset_lockless(pgdp, pgd, addr); | 
|  | do { | 
|  | p4d_t p4d = READ_ONCE(*p4dp); | 
|  |  | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (!p4d_present(p4d)) | 
|  | return 0; | 
|  | BUILD_BUG_ON(p4d_leaf(p4d)); | 
|  | if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, | 
|  | pages, nr)) | 
|  | return 0; | 
|  | } while (p4dp++, addr = next, addr != end); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void gup_fast_pgd_range(unsigned long addr, unsigned long end, | 
|  | unsigned int flags, struct page **pages, int *nr) | 
|  | { | 
|  | unsigned long next; | 
|  | pgd_t *pgdp; | 
|  |  | 
|  | pgdp = pgd_offset(current->mm, addr); | 
|  | do { | 
|  | pgd_t pgd = READ_ONCE(*pgdp); | 
|  |  | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none(pgd)) | 
|  | return; | 
|  | BUILD_BUG_ON(pgd_leaf(pgd)); | 
|  | if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, | 
|  | pages, nr)) | 
|  | return; | 
|  | } while (pgdp++, addr = next, addr != end); | 
|  | } | 
|  | #else | 
|  | static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, | 
|  | unsigned int flags, struct page **pages, int *nr) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_HAVE_GUP_FAST */ | 
|  |  | 
|  | #ifndef gup_fast_permitted | 
|  | /* | 
|  | * Check if it's allowed to use get_user_pages_fast_only() for the range, or | 
|  | * we need to fall back to the slow version: | 
|  | */ | 
|  | static bool gup_fast_permitted(unsigned long start, unsigned long end) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned long gup_fast(unsigned long start, unsigned long end, | 
|  | unsigned int gup_flags, struct page **pages) | 
|  | { | 
|  | unsigned long flags; | 
|  | int nr_pinned = 0; | 
|  | unsigned seq; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || | 
|  | !gup_fast_permitted(start, end)) | 
|  | return 0; | 
|  |  | 
|  | if (gup_flags & FOLL_PIN) { | 
|  | if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable interrupts. The nested form is used, in order to allow full, | 
|  | * general purpose use of this routine. | 
|  | * | 
|  | * With interrupts disabled, we block page table pages from being freed | 
|  | * from under us. See struct mmu_table_batch comments in | 
|  | * include/asm-generic/tlb.h for more details. | 
|  | * | 
|  | * We do not adopt an rcu_read_lock() here as we also want to block IPIs | 
|  | * that come from callers of tlb_remove_table_sync_one(). | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * When pinning pages for DMA there could be a concurrent write protect | 
|  | * from fork() via copy_page_range(), in this case always fail GUP-fast. | 
|  | */ | 
|  | if (gup_flags & FOLL_PIN) { | 
|  | if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { | 
|  | gup_fast_unpin_user_pages(pages, nr_pinned); | 
|  | return 0; | 
|  | } else { | 
|  | sanity_check_pinned_pages(pages, nr_pinned); | 
|  | } | 
|  | } | 
|  | return nr_pinned; | 
|  | } | 
|  |  | 
|  | static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages) | 
|  | { | 
|  | unsigned long len, end; | 
|  | unsigned long nr_pinned; | 
|  | int locked = 0; | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | | 
|  | FOLL_FORCE | FOLL_PIN | FOLL_GET | | 
|  | FOLL_FAST_ONLY | FOLL_NOFAULT | | 
|  | FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (gup_flags & FOLL_PIN) | 
|  | mm_set_has_pinned_flag(¤t->mm->flags); | 
|  |  | 
|  | if (!(gup_flags & FOLL_FAST_ONLY)) | 
|  | might_lock_read(¤t->mm->mmap_lock); | 
|  |  | 
|  | start = untagged_addr(start) & PAGE_MASK; | 
|  | len = nr_pages << PAGE_SHIFT; | 
|  | if (check_add_overflow(start, len, &end)) | 
|  | return -EOVERFLOW; | 
|  | if (end > TASK_SIZE_MAX) | 
|  | return -EFAULT; | 
|  |  | 
|  | nr_pinned = gup_fast(start, end, gup_flags, pages); | 
|  | if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) | 
|  | return nr_pinned; | 
|  |  | 
|  | /* Slow path: try to get the remaining pages with get_user_pages */ | 
|  | start += nr_pinned << PAGE_SHIFT; | 
|  | pages += nr_pinned; | 
|  | ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, | 
|  | pages, &locked, | 
|  | gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); | 
|  | if (ret < 0) { | 
|  | /* | 
|  | * The caller has to unpin the pages we already pinned so | 
|  | * returning -errno is not an option | 
|  | */ | 
|  | if (nr_pinned) | 
|  | return nr_pinned; | 
|  | return ret; | 
|  | } | 
|  | return ret + nr_pinned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_user_pages_fast_only() - pin user pages in memory | 
|  | * @start:      starting user address | 
|  | * @nr_pages:   number of pages from start to pin | 
|  | * @gup_flags:  flags modifying pin behaviour | 
|  | * @pages:      array that receives pointers to the pages pinned. | 
|  | *              Should be at least nr_pages long. | 
|  | * | 
|  | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | 
|  | * the regular GUP. | 
|  | * | 
|  | * If the architecture does not support this function, simply return with no | 
|  | * pages pinned. | 
|  | * | 
|  | * Careful, careful! COW breaking can go either way, so a non-write | 
|  | * access can get ambiguous page results. If you call this function without | 
|  | * 'write' set, you'd better be sure that you're ok with that ambiguity. | 
|  | */ | 
|  | int get_user_pages_fast_only(unsigned long start, int nr_pages, | 
|  | unsigned int gup_flags, struct page **pages) | 
|  | { | 
|  | /* | 
|  | * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, | 
|  | * because gup fast is always a "pin with a +1 page refcount" request. | 
|  | * | 
|  | * FOLL_FAST_ONLY is required in order to match the API description of | 
|  | * this routine: no fall back to regular ("slow") GUP. | 
|  | */ | 
|  | if (!is_valid_gup_args(pages, NULL, &gup_flags, | 
|  | FOLL_GET | FOLL_FAST_ONLY)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return gup_fast_fallback(start, nr_pages, gup_flags, pages); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_user_pages_fast_only); | 
|  |  | 
|  | /** | 
|  | * get_user_pages_fast() - pin user pages in memory | 
|  | * @start:      starting user address | 
|  | * @nr_pages:   number of pages from start to pin | 
|  | * @gup_flags:  flags modifying pin behaviour | 
|  | * @pages:      array that receives pointers to the pages pinned. | 
|  | *              Should be at least nr_pages long. | 
|  | * | 
|  | * Attempt to pin user pages in memory without taking mm->mmap_lock. | 
|  | * If not successful, it will fall back to taking the lock and | 
|  | * calling get_user_pages(). | 
|  | * | 
|  | * Returns number of pages pinned. This may be fewer than the number requested. | 
|  | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | 
|  | * -errno. | 
|  | */ | 
|  | int get_user_pages_fast(unsigned long start, int nr_pages, | 
|  | unsigned int gup_flags, struct page **pages) | 
|  | { | 
|  | /* | 
|  | * The caller may or may not have explicitly set FOLL_GET; either way is | 
|  | * OK. However, internally (within mm/gup.c), gup fast variants must set | 
|  | * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" | 
|  | * request. | 
|  | */ | 
|  | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) | 
|  | return -EINVAL; | 
|  | return gup_fast_fallback(start, nr_pages, gup_flags, pages); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_user_pages_fast); | 
|  |  | 
|  | /** | 
|  | * pin_user_pages_fast() - pin user pages in memory without taking locks | 
|  | * | 
|  | * @start:      starting user address | 
|  | * @nr_pages:   number of pages from start to pin | 
|  | * @gup_flags:  flags modifying pin behaviour | 
|  | * @pages:      array that receives pointers to the pages pinned. | 
|  | *              Should be at least nr_pages long. | 
|  | * | 
|  | * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See | 
|  | * get_user_pages_fast() for documentation on the function arguments, because | 
|  | * the arguments here are identical. | 
|  | * | 
|  | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | 
|  | * see Documentation/core-api/pin_user_pages.rst for further details. | 
|  | * | 
|  | * Note that if a zero_page is amongst the returned pages, it will not have | 
|  | * pins in it and unpin_user_page() will not remove pins from it. | 
|  | */ | 
|  | int pin_user_pages_fast(unsigned long start, int nr_pages, | 
|  | unsigned int gup_flags, struct page **pages) | 
|  | { | 
|  | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) | 
|  | return -EINVAL; | 
|  | return gup_fast_fallback(start, nr_pages, gup_flags, pages); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | 
|  |  | 
|  | /** | 
|  | * pin_user_pages_remote() - pin pages of a remote process | 
|  | * | 
|  | * @mm:		mm_struct of target mm | 
|  | * @start:	starting user address | 
|  | * @nr_pages:	number of pages from start to pin | 
|  | * @gup_flags:	flags modifying lookup behaviour | 
|  | * @pages:	array that receives pointers to the pages pinned. | 
|  | *		Should be at least nr_pages long. | 
|  | * @locked:	pointer to lock flag indicating whether lock is held and | 
|  | *		subsequently whether VM_FAULT_RETRY functionality can be | 
|  | *		utilised. Lock must initially be held. | 
|  | * | 
|  | * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See | 
|  | * get_user_pages_remote() for documentation on the function arguments, because | 
|  | * the arguments here are identical. | 
|  | * | 
|  | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | 
|  | * see Documentation/core-api/pin_user_pages.rst for details. | 
|  | * | 
|  | * Note that if a zero_page is amongst the returned pages, it will not have | 
|  | * pins in it and unpin_user_page*() will not remove pins from it. | 
|  | */ | 
|  | long pin_user_pages_remote(struct mm_struct *mm, | 
|  | unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages, | 
|  | int *locked) | 
|  | { | 
|  | int local_locked = 1; | 
|  |  | 
|  | if (!is_valid_gup_args(pages, locked, &gup_flags, | 
|  | FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) | 
|  | return 0; | 
|  | return __gup_longterm_locked(mm, start, nr_pages, pages, | 
|  | locked ? locked : &local_locked, | 
|  | gup_flags); | 
|  | } | 
|  | EXPORT_SYMBOL(pin_user_pages_remote); | 
|  |  | 
|  | /** | 
|  | * pin_user_pages() - pin user pages in memory for use by other devices | 
|  | * | 
|  | * @start:	starting user address | 
|  | * @nr_pages:	number of pages from start to pin | 
|  | * @gup_flags:	flags modifying lookup behaviour | 
|  | * @pages:	array that receives pointers to the pages pinned. | 
|  | *		Should be at least nr_pages long. | 
|  | * | 
|  | * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and | 
|  | * FOLL_PIN is set. | 
|  | * | 
|  | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | 
|  | * see Documentation/core-api/pin_user_pages.rst for details. | 
|  | * | 
|  | * Note that if a zero_page is amongst the returned pages, it will not have | 
|  | * pins in it and unpin_user_page*() will not remove pins from it. | 
|  | */ | 
|  | long pin_user_pages(unsigned long start, unsigned long nr_pages, | 
|  | unsigned int gup_flags, struct page **pages) | 
|  | { | 
|  | int locked = 1; | 
|  |  | 
|  | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) | 
|  | return 0; | 
|  | return __gup_longterm_locked(current->mm, start, nr_pages, | 
|  | pages, &locked, gup_flags); | 
|  | } | 
|  | EXPORT_SYMBOL(pin_user_pages); | 
|  |  | 
|  | /* | 
|  | * pin_user_pages_unlocked() is the FOLL_PIN variant of | 
|  | * get_user_pages_unlocked(). Behavior is the same, except that this one sets | 
|  | * FOLL_PIN and rejects FOLL_GET. | 
|  | * | 
|  | * Note that if a zero_page is amongst the returned pages, it will not have | 
|  | * pins in it and unpin_user_page*() will not remove pins from it. | 
|  | */ | 
|  | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | 
|  | struct page **pages, unsigned int gup_flags) | 
|  | { | 
|  | int locked = 0; | 
|  |  | 
|  | if (!is_valid_gup_args(pages, NULL, &gup_flags, | 
|  | FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) | 
|  | return 0; | 
|  |  | 
|  | return __gup_longterm_locked(current->mm, start, nr_pages, pages, | 
|  | &locked, gup_flags); | 
|  | } | 
|  | EXPORT_SYMBOL(pin_user_pages_unlocked); | 
|  |  | 
|  | /** | 
|  | * memfd_pin_folios() - pin folios associated with a memfd | 
|  | * @memfd:      the memfd whose folios are to be pinned | 
|  | * @start:      the first memfd offset | 
|  | * @end:        the last memfd offset (inclusive) | 
|  | * @folios:     array that receives pointers to the folios pinned | 
|  | * @max_folios: maximum number of entries in @folios | 
|  | * @offset:     the offset into the first folio | 
|  | * | 
|  | * Attempt to pin folios associated with a memfd in the contiguous range | 
|  | * [start, end]. Given that a memfd is either backed by shmem or hugetlb, | 
|  | * the folios can either be found in the page cache or need to be allocated | 
|  | * if necessary. Once the folios are located, they are all pinned via | 
|  | * FOLL_PIN and @offset is populatedwith the offset into the first folio. | 
|  | * And, eventually, these pinned folios must be released either using | 
|  | * unpin_folios() or unpin_folio(). | 
|  | * | 
|  | * It must be noted that the folios may be pinned for an indefinite amount | 
|  | * of time. And, in most cases, the duration of time they may stay pinned | 
|  | * would be controlled by the userspace. This behavior is effectively the | 
|  | * same as using FOLL_LONGTERM with other GUP APIs. | 
|  | * | 
|  | * Returns number of folios pinned, which could be less than @max_folios | 
|  | * as it depends on the folio sizes that cover the range [start, end]. | 
|  | * If no folios were pinned, it returns -errno. | 
|  | */ | 
|  | long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, | 
|  | struct folio **folios, unsigned int max_folios, | 
|  | pgoff_t *offset) | 
|  | { | 
|  | unsigned int flags, nr_folios, nr_found; | 
|  | unsigned int i, pgshift = PAGE_SHIFT; | 
|  | pgoff_t start_idx, end_idx; | 
|  | struct folio *folio = NULL; | 
|  | struct folio_batch fbatch; | 
|  | struct hstate *h; | 
|  | long ret = -EINVAL; | 
|  |  | 
|  | if (start < 0 || start > end || !max_folios) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!memfd) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!shmem_file(memfd) && !is_file_hugepages(memfd)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (end >= i_size_read(file_inode(memfd))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (is_file_hugepages(memfd)) { | 
|  | h = hstate_file(memfd); | 
|  | pgshift = huge_page_shift(h); | 
|  | } | 
|  |  | 
|  | flags = memalloc_pin_save(); | 
|  | do { | 
|  | nr_folios = 0; | 
|  | start_idx = start >> pgshift; | 
|  | end_idx = end >> pgshift; | 
|  | if (is_file_hugepages(memfd)) { | 
|  | start_idx <<= huge_page_order(h); | 
|  | end_idx <<= huge_page_order(h); | 
|  | } | 
|  |  | 
|  | folio_batch_init(&fbatch); | 
|  | while (start_idx <= end_idx && nr_folios < max_folios) { | 
|  | /* | 
|  | * In most cases, we should be able to find the folios | 
|  | * in the page cache. If we cannot find them for some | 
|  | * reason, we try to allocate them and add them to the | 
|  | * page cache. | 
|  | */ | 
|  | nr_found = filemap_get_folios_contig(memfd->f_mapping, | 
|  | &start_idx, | 
|  | end_idx, | 
|  | &fbatch); | 
|  | if (folio) { | 
|  | folio_put(folio); | 
|  | folio = NULL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | folio = fbatch.folios[i]; | 
|  |  | 
|  | if (try_grab_folio(folio, 1, FOLL_PIN)) { | 
|  | folio_batch_release(&fbatch); | 
|  | ret = -EINVAL; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (nr_folios == 0) | 
|  | *offset = offset_in_folio(folio, start); | 
|  |  | 
|  | folios[nr_folios] = folio; | 
|  | if (++nr_folios == max_folios) | 
|  | break; | 
|  | } | 
|  |  | 
|  | folio = NULL; | 
|  | folio_batch_release(&fbatch); | 
|  | if (!nr_found) { | 
|  | folio = memfd_alloc_folio(memfd, start_idx); | 
|  | if (IS_ERR(folio)) { | 
|  | ret = PTR_ERR(folio); | 
|  | if (ret != -EEXIST) | 
|  | goto err; | 
|  | folio = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = check_and_migrate_movable_folios(nr_folios, folios); | 
|  | } while (ret == -EAGAIN); | 
|  |  | 
|  | memalloc_pin_restore(flags); | 
|  | return ret ? ret : nr_folios; | 
|  | err: | 
|  | memalloc_pin_restore(flags); | 
|  | unpin_folios(folios, nr_folios); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(memfd_pin_folios); | 
|  |  | 
|  | /** | 
|  | * folio_add_pins() - add pins to an already-pinned folio | 
|  | * @folio: the folio to add more pins to | 
|  | * @pins: number of pins to add | 
|  | * | 
|  | * Try to add more pins to an already-pinned folio. The semantics | 
|  | * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot | 
|  | * be changed. | 
|  | * | 
|  | * This function is helpful when having obtained a pin on a large folio | 
|  | * using memfd_pin_folios(), but wanting to logically unpin parts | 
|  | * (e.g., individual pages) of the folio later, for example, using | 
|  | * unpin_user_page_range_dirty_lock(). | 
|  | * | 
|  | * This is not the right interface to initially pin a folio. | 
|  | */ | 
|  | int folio_add_pins(struct folio *folio, unsigned int pins) | 
|  | { | 
|  | VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio)); | 
|  |  | 
|  | return try_grab_folio(folio, pins, FOLL_PIN); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(folio_add_pins); |