| // SPDX-License-Identifier: GPL-2.0 | 
 | // Copyright(c) 2018 Intel Corporation. All rights reserved. | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/random.h> | 
 | #include <linux/moduleparam.h> | 
 | #include "internal.h" | 
 | #include "shuffle.h" | 
 |  | 
 | DEFINE_STATIC_KEY_FALSE(page_alloc_shuffle_key); | 
 |  | 
 | static bool shuffle_param; | 
 |  | 
 | static __meminit int shuffle_param_set(const char *val, | 
 | 		const struct kernel_param *kp) | 
 | { | 
 | 	if (param_set_bool(val, kp)) | 
 | 		return -EINVAL; | 
 | 	if (*(bool *)kp->arg) | 
 | 		static_branch_enable(&page_alloc_shuffle_key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct kernel_param_ops shuffle_param_ops = { | 
 | 	.set = shuffle_param_set, | 
 | 	.get = param_get_bool, | 
 | }; | 
 | module_param_cb(shuffle, &shuffle_param_ops, &shuffle_param, 0400); | 
 |  | 
 | /* | 
 |  * For two pages to be swapped in the shuffle, they must be free (on a | 
 |  * 'free_area' lru), have the same order, and have the same migratetype. | 
 |  */ | 
 | static struct page * __meminit shuffle_valid_page(struct zone *zone, | 
 | 						  unsigned long pfn, int order) | 
 | { | 
 | 	struct page *page = pfn_to_online_page(pfn); | 
 |  | 
 | 	/* | 
 | 	 * Given we're dealing with randomly selected pfns in a zone we | 
 | 	 * need to ask questions like... | 
 | 	 */ | 
 |  | 
 | 	/* ... is the page managed by the buddy? */ | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	/* ... is the page assigned to the same zone? */ | 
 | 	if (page_zone(page) != zone) | 
 | 		return NULL; | 
 |  | 
 | 	/* ...is the page free and currently on a free_area list? */ | 
 | 	if (!PageBuddy(page)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * ...is the page on the same list as the page we will | 
 | 	 * shuffle it with? | 
 | 	 */ | 
 | 	if (buddy_order(page) != order) | 
 | 		return NULL; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Fisher-Yates shuffle the freelist which prescribes iterating through an | 
 |  * array, pfns in this case, and randomly swapping each entry with another in | 
 |  * the span, end_pfn - start_pfn. | 
 |  * | 
 |  * To keep the implementation simple it does not attempt to correct for sources | 
 |  * of bias in the distribution, like modulo bias or pseudo-random number | 
 |  * generator bias. I.e. the expectation is that this shuffling raises the bar | 
 |  * for attacks that exploit the predictability of page allocations, but need not | 
 |  * be a perfect shuffle. | 
 |  */ | 
 | #define SHUFFLE_RETRY 10 | 
 | void __meminit __shuffle_zone(struct zone *z) | 
 | { | 
 | 	unsigned long i, flags; | 
 | 	unsigned long start_pfn = z->zone_start_pfn; | 
 | 	unsigned long end_pfn = zone_end_pfn(z); | 
 | 	const int order = SHUFFLE_ORDER; | 
 | 	const int order_pages = 1 << order; | 
 |  | 
 | 	spin_lock_irqsave(&z->lock, flags); | 
 | 	start_pfn = ALIGN(start_pfn, order_pages); | 
 | 	for (i = start_pfn; i < end_pfn; i += order_pages) { | 
 | 		unsigned long j; | 
 | 		int migratetype, retry; | 
 | 		struct page *page_i, *page_j; | 
 |  | 
 | 		/* | 
 | 		 * We expect page_i, in the sub-range of a zone being added | 
 | 		 * (@start_pfn to @end_pfn), to more likely be valid compared to | 
 | 		 * page_j randomly selected in the span @zone_start_pfn to | 
 | 		 * @spanned_pages. | 
 | 		 */ | 
 | 		page_i = shuffle_valid_page(z, i, order); | 
 | 		if (!page_i) | 
 | 			continue; | 
 |  | 
 | 		for (retry = 0; retry < SHUFFLE_RETRY; retry++) { | 
 | 			/* | 
 | 			 * Pick a random order aligned page in the zone span as | 
 | 			 * a swap target. If the selected pfn is a hole, retry | 
 | 			 * up to SHUFFLE_RETRY attempts find a random valid pfn | 
 | 			 * in the zone. | 
 | 			 */ | 
 | 			j = z->zone_start_pfn + | 
 | 				ALIGN_DOWN(get_random_long() % z->spanned_pages, | 
 | 						order_pages); | 
 | 			page_j = shuffle_valid_page(z, j, order); | 
 | 			if (page_j && page_j != page_i) | 
 | 				break; | 
 | 		} | 
 | 		if (retry >= SHUFFLE_RETRY) { | 
 | 			pr_debug("%s: failed to swap %#lx\n", __func__, i); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Each migratetype corresponds to its own list, make sure the | 
 | 		 * types match otherwise we're moving pages to lists where they | 
 | 		 * do not belong. | 
 | 		 */ | 
 | 		migratetype = get_pageblock_migratetype(page_i); | 
 | 		if (get_pageblock_migratetype(page_j) != migratetype) { | 
 | 			pr_debug("%s: migratetype mismatch %#lx\n", __func__, i); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		list_swap(&page_i->lru, &page_j->lru); | 
 |  | 
 | 		pr_debug("%s: swap: %#lx -> %#lx\n", __func__, i, j); | 
 |  | 
 | 		/* take it easy on the zone lock */ | 
 | 		if ((i % (100 * order_pages)) == 0) { | 
 | 			spin_unlock_irqrestore(&z->lock, flags); | 
 | 			cond_resched(); | 
 | 			spin_lock_irqsave(&z->lock, flags); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&z->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * __shuffle_free_memory - reduce the predictability of the page allocator | 
 |  * @pgdat: node page data | 
 |  */ | 
 | void __meminit __shuffle_free_memory(pg_data_t *pgdat) | 
 | { | 
 | 	struct zone *z; | 
 |  | 
 | 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) | 
 | 		shuffle_zone(z); | 
 | } | 
 |  | 
 | bool shuffle_pick_tail(void) | 
 | { | 
 | 	static u64 rand; | 
 | 	static u8 rand_bits; | 
 | 	bool ret; | 
 |  | 
 | 	/* | 
 | 	 * The lack of locking is deliberate. If 2 threads race to | 
 | 	 * update the rand state it just adds to the entropy. | 
 | 	 */ | 
 | 	if (rand_bits == 0) { | 
 | 		rand_bits = 64; | 
 | 		rand = get_random_u64(); | 
 | 	} | 
 |  | 
 | 	ret = rand & 1; | 
 |  | 
 | 	rand_bits--; | 
 | 	rand >>= 1; | 
 |  | 
 | 	return ret; | 
 | } |