|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * This file contains common routines for dealing with free of page tables | 
|  | * Along with common page table handling code | 
|  | * | 
|  | *  Derived from arch/powerpc/mm/tlb_64.c: | 
|  | *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) | 
|  | *  and Cort Dougan (PReP) (cort@cs.nmt.edu) | 
|  | *    Copyright (C) 1996 Paul Mackerras | 
|  | * | 
|  | *  Derived from "arch/i386/mm/init.c" | 
|  | *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  Dave Engebretsen <engebret@us.ibm.com> | 
|  | *      Rework for PPC64 port. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/hugetlb.h> | 
|  | #include <asm/pte-walk.h> | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | #define PGD_ALIGN (sizeof(pgd_t) * MAX_PTRS_PER_PGD) | 
|  | #else | 
|  | #define PGD_ALIGN PAGE_SIZE | 
|  | #endif | 
|  |  | 
|  | pgd_t swapper_pg_dir[MAX_PTRS_PER_PGD] __section(".bss..page_aligned") __aligned(PGD_ALIGN); | 
|  |  | 
|  | static inline int is_exec_fault(void) | 
|  | { | 
|  | return current->thread.regs && TRAP(current->thread.regs) == 0x400; | 
|  | } | 
|  |  | 
|  | /* We only try to do i/d cache coherency on stuff that looks like | 
|  | * reasonably "normal" PTEs. We currently require a PTE to be present | 
|  | * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that | 
|  | * on userspace PTEs | 
|  | */ | 
|  | static inline int pte_looks_normal(pte_t pte, unsigned long addr) | 
|  | { | 
|  |  | 
|  | if (pte_present(pte) && !pte_special(pte)) { | 
|  | if (pte_ci(pte)) | 
|  | return 0; | 
|  | if (!is_kernel_addr(addr)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct folio *maybe_pte_to_folio(pte_t pte) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(pte); | 
|  | struct page *page; | 
|  |  | 
|  | if (unlikely(!pfn_valid(pfn))) | 
|  | return NULL; | 
|  | page = pfn_to_page(pfn); | 
|  | if (PageReserved(page)) | 
|  | return NULL; | 
|  | return page_folio(page); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S | 
|  |  | 
|  | /* Server-style MMU handles coherency when hashing if HW exec permission | 
|  | * is supposed per page (currently 64-bit only). If not, then, we always | 
|  | * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec | 
|  | * support falls into the same category. | 
|  | */ | 
|  |  | 
|  | static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr) | 
|  | { | 
|  | pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); | 
|  | if (pte_looks_normal(pte, addr) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) || | 
|  | cpu_has_feature(CPU_FTR_NOEXECUTE))) { | 
|  | struct folio *folio = maybe_pte_to_folio(pte); | 
|  | if (!folio) | 
|  | return pte; | 
|  | if (!test_bit(PG_dcache_clean, &folio->flags)) { | 
|  | flush_dcache_icache_folio(folio); | 
|  | set_bit(PG_dcache_clean, &folio->flags); | 
|  | } | 
|  | } | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_PPC_BOOK3S */ | 
|  |  | 
|  | static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr) { return pte; } | 
|  |  | 
|  | #endif /* CONFIG_PPC_BOOK3S */ | 
|  |  | 
|  | /* Embedded type MMU with HW exec support. This is a bit more complicated | 
|  | * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so | 
|  | * instead we "filter out" the exec permission for non clean pages. | 
|  | * | 
|  | * This is also called once for the folio. So only work with folio->flags here. | 
|  | */ | 
|  | static inline pte_t set_pte_filter(pte_t pte, unsigned long addr) | 
|  | { | 
|  | struct folio *folio; | 
|  |  | 
|  | if (radix_enabled()) | 
|  | return pte; | 
|  |  | 
|  | if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) | 
|  | return set_pte_filter_hash(pte, addr); | 
|  |  | 
|  | /* No exec permission in the first place, move on */ | 
|  | if (!pte_exec(pte) || !pte_looks_normal(pte, addr)) | 
|  | return pte; | 
|  |  | 
|  | /* If you set _PAGE_EXEC on weird pages you're on your own */ | 
|  | folio = maybe_pte_to_folio(pte); | 
|  | if (unlikely(!folio)) | 
|  | return pte; | 
|  |  | 
|  | /* If the page clean, we move on */ | 
|  | if (test_bit(PG_dcache_clean, &folio->flags)) | 
|  | return pte; | 
|  |  | 
|  | /* If it's an exec fault, we flush the cache and make it clean */ | 
|  | if (is_exec_fault()) { | 
|  | flush_dcache_icache_folio(folio); | 
|  | set_bit(PG_dcache_clean, &folio->flags); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* Else, we filter out _PAGE_EXEC */ | 
|  | return pte_exprotect(pte); | 
|  | } | 
|  |  | 
|  | static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, | 
|  | int dirty) | 
|  | { | 
|  | struct folio *folio; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PPC_BOOK3S_64)) | 
|  | return pte; | 
|  |  | 
|  | if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) | 
|  | return pte; | 
|  |  | 
|  | /* So here, we only care about exec faults, as we use them | 
|  | * to recover lost _PAGE_EXEC and perform I$/D$ coherency | 
|  | * if necessary. Also if _PAGE_EXEC is already set, same deal, | 
|  | * we just bail out | 
|  | */ | 
|  | if (dirty || pte_exec(pte) || !is_exec_fault()) | 
|  | return pte; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | /* So this is an exec fault, _PAGE_EXEC is not set. If it was | 
|  | * an error we would have bailed out earlier in do_page_fault() | 
|  | * but let's make sure of it | 
|  | */ | 
|  | if (WARN_ON(!(vma->vm_flags & VM_EXEC))) | 
|  | return pte; | 
|  | #endif /* CONFIG_DEBUG_VM */ | 
|  |  | 
|  | /* If you set _PAGE_EXEC on weird pages you're on your own */ | 
|  | folio = maybe_pte_to_folio(pte); | 
|  | if (unlikely(!folio)) | 
|  | goto bail; | 
|  |  | 
|  | /* If the page is already clean, we move on */ | 
|  | if (test_bit(PG_dcache_clean, &folio->flags)) | 
|  | goto bail; | 
|  |  | 
|  | /* Clean the page and set PG_dcache_clean */ | 
|  | flush_dcache_icache_folio(folio); | 
|  | set_bit(PG_dcache_clean, &folio->flags); | 
|  |  | 
|  | bail: | 
|  | return pte_mkexec(pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set_pte stores a linux PTE into the linux page table. | 
|  | */ | 
|  | void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, | 
|  | pte_t pte, unsigned int nr) | 
|  | { | 
|  |  | 
|  | /* Note: mm->context.id might not yet have been assigned as | 
|  | * this context might not have been activated yet when this | 
|  | * is called. Filter the pte value and use the filtered value | 
|  | * to setup all the ptes in the range. | 
|  | */ | 
|  | pte = set_pte_filter(pte, addr); | 
|  |  | 
|  | /* | 
|  | * We don't need to call arch_enter/leave_lazy_mmu_mode() | 
|  | * because we expect set_ptes to be only be used on not present | 
|  | * and not hw_valid ptes. Hence there is no translation cache flush | 
|  | * involved that need to be batched. | 
|  | */ | 
|  | for (;;) { | 
|  |  | 
|  | /* | 
|  | * Make sure hardware valid bit is not set. We don't do | 
|  | * tlb flush for this update. | 
|  | */ | 
|  | VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep)); | 
|  |  | 
|  | /* Perform the setting of the PTE */ | 
|  | __set_pte_at(mm, addr, ptep, pte, 0); | 
|  | if (--nr == 0) | 
|  | break; | 
|  | ptep++; | 
|  | addr += PAGE_SIZE; | 
|  | pte = pte_next_pfn(pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | void unmap_kernel_page(unsigned long va) | 
|  | { | 
|  | pmd_t *pmdp = pmd_off_k(va); | 
|  | pte_t *ptep = pte_offset_kernel(pmdp, va); | 
|  |  | 
|  | pte_clear(&init_mm, va, ptep); | 
|  | flush_tlb_kernel_range(va, va + PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when relaxing access to a PTE. It's also called in the page | 
|  | * fault path when we don't hit any of the major fault cases, ie, a minor | 
|  | * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have | 
|  | * handled those two for us, we additionally deal with missing execute | 
|  | * permission here on some processors | 
|  | */ | 
|  | int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, | 
|  | pte_t *ptep, pte_t entry, int dirty) | 
|  | { | 
|  | int changed; | 
|  | entry = set_access_flags_filter(entry, vma, dirty); | 
|  | changed = !pte_same(*(ptep), entry); | 
|  | if (changed) { | 
|  | assert_pte_locked(vma->vm_mm, address); | 
|  | __ptep_set_access_flags(vma, ptep, entry, | 
|  | address, mmu_virtual_psize); | 
|  | } | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | int huge_ptep_set_access_flags(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *ptep, | 
|  | pte_t pte, int dirty) | 
|  | { | 
|  | #ifdef HUGETLB_NEED_PRELOAD | 
|  | /* | 
|  | * The "return 1" forces a call of update_mmu_cache, which will write a | 
|  | * TLB entry.  Without this, platforms that don't do a write of the TLB | 
|  | * entry in the TLB miss handler asm will fault ad infinitum. | 
|  | */ | 
|  | ptep_set_access_flags(vma, addr, ptep, pte, dirty); | 
|  | return 1; | 
|  | #else | 
|  | int changed, psize; | 
|  |  | 
|  | pte = set_access_flags_filter(pte, vma, dirty); | 
|  | changed = !pte_same(*(ptep), pte); | 
|  | if (changed) { | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | struct hstate *h = hstate_vma(vma); | 
|  |  | 
|  | psize = hstate_get_psize(h); | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep)); | 
|  | #endif | 
|  |  | 
|  | #else | 
|  | /* | 
|  | * Not used on non book3s64 platforms. | 
|  | * 8xx compares it with mmu_virtual_psize to | 
|  | * know if it is a huge page or not. | 
|  | */ | 
|  | psize = MMU_PAGE_COUNT; | 
|  | #endif | 
|  | __ptep_set_access_flags(vma, ptep, pte, addr, psize); | 
|  | } | 
|  | return changed; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_PPC_8xx) | 
|  |  | 
|  | #if defined(CONFIG_SPLIT_PTE_PTLOCKS) || defined(CONFIG_SPLIT_PMD_PTLOCKS) | 
|  | /* We need the same lock to protect the PMD table and the two PTE tables. */ | 
|  | #error "8M hugetlb folios are incompatible with split page table locks" | 
|  | #endif | 
|  |  | 
|  | static void __set_huge_pte_at(pmd_t *pmd, pte_t *ptep, pte_basic_t val) | 
|  | { | 
|  | pte_basic_t *entry = (pte_basic_t *)ptep; | 
|  | int num, i; | 
|  |  | 
|  | /* | 
|  | * Make sure hardware valid bit is not set. We don't do | 
|  | * tlb flush for this update. | 
|  | */ | 
|  | VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep)); | 
|  |  | 
|  | num = number_of_cells_per_pte(pmd, val, 1); | 
|  |  | 
|  | for (i = 0; i < num; i++, entry++, val += SZ_4K) | 
|  | *entry = val; | 
|  | } | 
|  |  | 
|  | void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, | 
|  | pte_t pte, unsigned long sz) | 
|  | { | 
|  | pmd_t *pmdp = pmd_off(mm, addr); | 
|  |  | 
|  | pte = set_pte_filter(pte, addr); | 
|  |  | 
|  | if (sz == SZ_8M) { /* Flag both PMD entries as 8M and fill both page tables */ | 
|  | *pmdp = __pmd(pmd_val(*pmdp) | _PMD_PAGE_8M); | 
|  | *(pmdp + 1) = __pmd(pmd_val(*(pmdp + 1)) | _PMD_PAGE_8M); | 
|  |  | 
|  | __set_huge_pte_at(pmdp, pte_offset_kernel(pmdp, 0), pte_val(pte)); | 
|  | __set_huge_pte_at(pmdp, pte_offset_kernel(pmdp + 1, 0), pte_val(pte) + SZ_4M); | 
|  | } else { | 
|  | __set_huge_pte_at(pmdp, ptep, pte_val(pte)); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, | 
|  | pte_t pte, unsigned long sz) | 
|  | { | 
|  | unsigned long pdsize; | 
|  | int i; | 
|  |  | 
|  | pte = set_pte_filter(pte, addr); | 
|  |  | 
|  | /* | 
|  | * Make sure hardware valid bit is not set. We don't do | 
|  | * tlb flush for this update. | 
|  | */ | 
|  | VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep)); | 
|  |  | 
|  | if (sz < PMD_SIZE) | 
|  | pdsize = PAGE_SIZE; | 
|  | else if (sz < PUD_SIZE) | 
|  | pdsize = PMD_SIZE; | 
|  | else if (sz < P4D_SIZE) | 
|  | pdsize = PUD_SIZE; | 
|  | else if (sz < PGDIR_SIZE) | 
|  | pdsize = P4D_SIZE; | 
|  | else | 
|  | pdsize = PGDIR_SIZE; | 
|  |  | 
|  | for (i = 0; i < sz / pdsize; i++, ptep++, addr += pdsize) { | 
|  | __set_pte_at(mm, addr, ptep, pte, 0); | 
|  | pte = __pte(pte_val(pte) + ((unsigned long long)pdsize / PAGE_SIZE << PFN_PTE_SHIFT)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | void assert_pte_locked(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (mm == &init_mm) | 
|  | return; | 
|  | pgd = mm->pgd + pgd_index(addr); | 
|  | BUG_ON(pgd_none(*pgd)); | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | BUG_ON(p4d_none(*p4d)); | 
|  | pud = pud_offset(p4d, addr); | 
|  | BUG_ON(pud_none(*pud)); | 
|  | pmd = pmd_offset(pud, addr); | 
|  | /* | 
|  | * khugepaged to collapse normal pages to hugepage, first set | 
|  | * pmd to none to force page fault/gup to take mmap_lock. After | 
|  | * pmd is set to none, we do a pte_clear which does this assertion | 
|  | * so if we find pmd none, return. | 
|  | */ | 
|  | if (pmd_none(*pmd)) | 
|  | return; | 
|  | pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl); | 
|  | BUG_ON(!pte); | 
|  | assert_spin_locked(ptl); | 
|  | pte_unmap(pte); | 
|  | } | 
|  | #endif /* CONFIG_DEBUG_VM */ | 
|  |  | 
|  | unsigned long vmalloc_to_phys(void *va) | 
|  | { | 
|  | unsigned long pfn = vmalloc_to_pfn(va); | 
|  |  | 
|  | BUG_ON(!pfn); | 
|  | return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vmalloc_to_phys); | 
|  |  | 
|  | /* | 
|  | * We have 3 cases for pgds and pmds: | 
|  | * (1) invalid (all zeroes) | 
|  | * (2) pointer to next table, as normal; bottom 6 bits == 0 | 
|  | * (3) leaf pte for huge page _PAGE_PTE set | 
|  | * | 
|  | * So long as we atomically load page table pointers we are safe against teardown, | 
|  | * we can follow the address down to the page and take a ref on it. | 
|  | * This function need to be called with interrupts disabled. We use this variant | 
|  | * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED | 
|  | */ | 
|  | pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, | 
|  | bool *is_thp, unsigned *hpage_shift) | 
|  | { | 
|  | pgd_t *pgdp; | 
|  | #ifdef CONFIG_PPC64 | 
|  | p4d_t p4d, *p4dp; | 
|  | pud_t pud, *pudp; | 
|  | #endif | 
|  | pmd_t pmd, *pmdp; | 
|  | pte_t *ret_pte; | 
|  | unsigned pdshift; | 
|  |  | 
|  | if (hpage_shift) | 
|  | *hpage_shift = 0; | 
|  |  | 
|  | if (is_thp) | 
|  | *is_thp = false; | 
|  |  | 
|  | /* | 
|  | * Always operate on the local stack value. This make sure the | 
|  | * value don't get updated by a parallel THP split/collapse, | 
|  | * page fault or a page unmap. The return pte_t * is still not | 
|  | * stable. So should be checked there for above conditions. | 
|  | * Top level is an exception because it is folded into p4d. | 
|  | * | 
|  | * On PPC32, P4D/PUD/PMD are folded into PGD so go straight to | 
|  | * PMD level. | 
|  | */ | 
|  | pgdp = pgdir + pgd_index(ea); | 
|  | #ifdef CONFIG_PPC64 | 
|  | p4dp = p4d_offset(pgdp, ea); | 
|  | p4d  = READ_ONCE(*p4dp); | 
|  | pdshift = P4D_SHIFT; | 
|  |  | 
|  | if (p4d_none(p4d)) | 
|  | return NULL; | 
|  |  | 
|  | if (p4d_leaf(p4d)) { | 
|  | ret_pte = (pte_t *)p4dp; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even if we end up with an unmap, the pgtable will not | 
|  | * be freed, because we do an rcu free and here we are | 
|  | * irq disabled | 
|  | */ | 
|  | pdshift = PUD_SHIFT; | 
|  | pudp = pud_offset(&p4d, ea); | 
|  | pud  = READ_ONCE(*pudp); | 
|  |  | 
|  | if (pud_none(pud)) | 
|  | return NULL; | 
|  |  | 
|  | if (pud_leaf(pud)) { | 
|  | ret_pte = (pte_t *)pudp; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pmdp = pmd_offset(&pud, ea); | 
|  | #else | 
|  | pmdp = pmd_offset(pud_offset(p4d_offset(pgdp, ea), ea), ea); | 
|  | #endif | 
|  | pdshift = PMD_SHIFT; | 
|  | pmd  = READ_ONCE(*pmdp); | 
|  |  | 
|  | /* | 
|  | * A hugepage collapse is captured by this condition, see | 
|  | * pmdp_collapse_flush. | 
|  | */ | 
|  | if (pmd_none(pmd)) | 
|  | return NULL; | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | /* | 
|  | * A hugepage split is captured by this condition, see | 
|  | * pmdp_invalidate. | 
|  | * | 
|  | * Huge page modification can be caught here too. | 
|  | */ | 
|  | if (pmd_is_serializing(pmd)) | 
|  | return NULL; | 
|  | #endif | 
|  |  | 
|  | if (pmd_trans_huge(pmd)) { | 
|  | if (is_thp) | 
|  | *is_thp = true; | 
|  | ret_pte = (pte_t *)pmdp; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (pmd_leaf(pmd)) { | 
|  | ret_pte = (pte_t *)pmdp; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return pte_offset_kernel(&pmd, ea); | 
|  |  | 
|  | out: | 
|  | if (hpage_shift) | 
|  | *hpage_shift = pdshift; | 
|  | return ret_pte; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__find_linux_pte); | 
|  |  | 
|  | /* Note due to the way vm flags are laid out, the bits are XWR */ | 
|  | const pgprot_t protection_map[16] = { | 
|  | [VM_NONE]					= PAGE_NONE, | 
|  | [VM_READ]					= PAGE_READONLY, | 
|  | [VM_WRITE]					= PAGE_COPY, | 
|  | [VM_WRITE | VM_READ]				= PAGE_COPY, | 
|  | [VM_EXEC]					= PAGE_EXECONLY_X, | 
|  | [VM_EXEC | VM_READ]				= PAGE_READONLY_X, | 
|  | [VM_EXEC | VM_WRITE]				= PAGE_COPY_X, | 
|  | [VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_X, | 
|  | [VM_SHARED]					= PAGE_NONE, | 
|  | [VM_SHARED | VM_READ]				= PAGE_READONLY, | 
|  | [VM_SHARED | VM_WRITE]				= PAGE_SHARED, | 
|  | [VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED, | 
|  | [VM_SHARED | VM_EXEC]				= PAGE_EXECONLY_X, | 
|  | [VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READONLY_X, | 
|  | [VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_X, | 
|  | [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_X | 
|  | }; | 
|  |  | 
|  | #ifndef CONFIG_PPC_BOOK3S_64 | 
|  | DECLARE_VM_GET_PAGE_PROT | 
|  | #endif |