|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2011-2012 Red Hat UK. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include "dm-thin-metadata.h" | 
|  | #include "dm-bio-prison-v1.h" | 
|  | #include "dm.h" | 
|  |  | 
|  | #include <linux/device-mapper.h> | 
|  | #include <linux/dm-io.h> | 
|  | #include <linux/dm-kcopyd.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/rbtree.h> | 
|  |  | 
|  | #define	DM_MSG_PREFIX	"thin" | 
|  |  | 
|  | /* | 
|  | * Tunable constants | 
|  | */ | 
|  | #define ENDIO_HOOK_POOL_SIZE 1024 | 
|  | #define MAPPING_POOL_SIZE 1024 | 
|  | #define COMMIT_PERIOD HZ | 
|  | #define NO_SPACE_TIMEOUT_SECS 60 | 
|  |  | 
|  | static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; | 
|  |  | 
|  | DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, | 
|  | "A percentage of time allocated for copy on write"); | 
|  |  | 
|  | /* | 
|  | * The block size of the device holding pool data must be | 
|  | * between 64KB and 1GB. | 
|  | */ | 
|  | #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) | 
|  | #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Device id is restricted to 24 bits. | 
|  | */ | 
|  | #define MAX_DEV_ID ((1 << 24) - 1) | 
|  |  | 
|  | /* | 
|  | * How do we handle breaking sharing of data blocks? | 
|  | * ================================================= | 
|  | * | 
|  | * We use a standard copy-on-write btree to store the mappings for the | 
|  | * devices (note I'm talking about copy-on-write of the metadata here, not | 
|  | * the data).  When you take an internal snapshot you clone the root node | 
|  | * of the origin btree.  After this there is no concept of an origin or a | 
|  | * snapshot.  They are just two device trees that happen to point to the | 
|  | * same data blocks. | 
|  | * | 
|  | * When we get a write in we decide if it's to a shared data block using | 
|  | * some timestamp magic.  If it is, we have to break sharing. | 
|  | * | 
|  | * Let's say we write to a shared block in what was the origin.  The | 
|  | * steps are: | 
|  | * | 
|  | * i) plug io further to this physical block. (see bio_prison code). | 
|  | * | 
|  | * ii) quiesce any read io to that shared data block.  Obviously | 
|  | * including all devices that share this block.  (see dm_deferred_set code) | 
|  | * | 
|  | * iii) copy the data block to a newly allocate block.  This step can be | 
|  | * missed out if the io covers the block. (schedule_copy). | 
|  | * | 
|  | * iv) insert the new mapping into the origin's btree | 
|  | * (process_prepared_mapping).  This act of inserting breaks some | 
|  | * sharing of btree nodes between the two devices.  Breaking sharing only | 
|  | * effects the btree of that specific device.  Btrees for the other | 
|  | * devices that share the block never change.  The btree for the origin | 
|  | * device as it was after the last commit is untouched, ie. we're using | 
|  | * persistent data structures in the functional programming sense. | 
|  | * | 
|  | * v) unplug io to this physical block, including the io that triggered | 
|  | * the breaking of sharing. | 
|  | * | 
|  | * Steps (ii) and (iii) occur in parallel. | 
|  | * | 
|  | * The metadata _doesn't_ need to be committed before the io continues.  We | 
|  | * get away with this because the io is always written to a _new_ block. | 
|  | * If there's a crash, then: | 
|  | * | 
|  | * - The origin mapping will point to the old origin block (the shared | 
|  | * one).  This will contain the data as it was before the io that triggered | 
|  | * the breaking of sharing came in. | 
|  | * | 
|  | * - The snap mapping still points to the old block.  As it would after | 
|  | * the commit. | 
|  | * | 
|  | * The downside of this scheme is the timestamp magic isn't perfect, and | 
|  | * will continue to think that data block in the snapshot device is shared | 
|  | * even after the write to the origin has broken sharing.  I suspect data | 
|  | * blocks will typically be shared by many different devices, so we're | 
|  | * breaking sharing n + 1 times, rather than n, where n is the number of | 
|  | * devices that reference this data block.  At the moment I think the | 
|  | * benefits far, far outweigh the disadvantages. | 
|  | */ | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Key building. | 
|  | */ | 
|  | enum lock_space { | 
|  | VIRTUAL, | 
|  | PHYSICAL | 
|  | }; | 
|  |  | 
|  | static bool build_key(struct dm_thin_device *td, enum lock_space ls, | 
|  | dm_block_t b, dm_block_t e, struct dm_cell_key *key) | 
|  | { | 
|  | key->virtual = (ls == VIRTUAL); | 
|  | key->dev = dm_thin_dev_id(td); | 
|  | key->block_begin = b; | 
|  | key->block_end = e; | 
|  |  | 
|  | return dm_cell_key_has_valid_range(key); | 
|  | } | 
|  |  | 
|  | static void build_data_key(struct dm_thin_device *td, dm_block_t b, | 
|  | struct dm_cell_key *key) | 
|  | { | 
|  | (void) build_key(td, PHYSICAL, b, b + 1llu, key); | 
|  | } | 
|  |  | 
|  | static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, | 
|  | struct dm_cell_key *key) | 
|  | { | 
|  | (void) build_key(td, VIRTUAL, b, b + 1llu, key); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | #define THROTTLE_THRESHOLD (1 * HZ) | 
|  |  | 
|  | struct throttle { | 
|  | struct rw_semaphore lock; | 
|  | unsigned long threshold; | 
|  | bool throttle_applied; | 
|  | }; | 
|  |  | 
|  | static void throttle_init(struct throttle *t) | 
|  | { | 
|  | init_rwsem(&t->lock); | 
|  | t->throttle_applied = false; | 
|  | } | 
|  |  | 
|  | static void throttle_work_start(struct throttle *t) | 
|  | { | 
|  | t->threshold = jiffies + THROTTLE_THRESHOLD; | 
|  | } | 
|  |  | 
|  | static void throttle_work_update(struct throttle *t) | 
|  | { | 
|  | if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { | 
|  | down_write(&t->lock); | 
|  | t->throttle_applied = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void throttle_work_complete(struct throttle *t) | 
|  | { | 
|  | if (t->throttle_applied) { | 
|  | t->throttle_applied = false; | 
|  | up_write(&t->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void throttle_lock(struct throttle *t) | 
|  | { | 
|  | down_read(&t->lock); | 
|  | } | 
|  |  | 
|  | static void throttle_unlock(struct throttle *t) | 
|  | { | 
|  | up_read(&t->lock); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * A pool device ties together a metadata device and a data device.  It | 
|  | * also provides the interface for creating and destroying internal | 
|  | * devices. | 
|  | */ | 
|  | struct dm_thin_new_mapping; | 
|  |  | 
|  | /* | 
|  | * The pool runs in various modes.  Ordered in degraded order for comparisons. | 
|  | */ | 
|  | enum pool_mode { | 
|  | PM_WRITE,		/* metadata may be changed */ | 
|  | PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */ | 
|  |  | 
|  | /* | 
|  | * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. | 
|  | */ | 
|  | PM_OUT_OF_METADATA_SPACE, | 
|  | PM_READ_ONLY,		/* metadata may not be changed */ | 
|  |  | 
|  | PM_FAIL,		/* all I/O fails */ | 
|  | }; | 
|  |  | 
|  | struct pool_features { | 
|  | enum pool_mode mode; | 
|  |  | 
|  | bool zero_new_blocks:1; | 
|  | bool discard_enabled:1; | 
|  | bool discard_passdown:1; | 
|  | bool error_if_no_space:1; | 
|  | }; | 
|  |  | 
|  | struct thin_c; | 
|  | typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); | 
|  | typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); | 
|  | typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); | 
|  |  | 
|  | #define CELL_SORT_ARRAY_SIZE 8192 | 
|  |  | 
|  | struct pool { | 
|  | struct list_head list; | 
|  | struct dm_target *ti;	/* Only set if a pool target is bound */ | 
|  |  | 
|  | struct mapped_device *pool_md; | 
|  | struct block_device *data_dev; | 
|  | struct block_device *md_dev; | 
|  | struct dm_pool_metadata *pmd; | 
|  |  | 
|  | dm_block_t low_water_blocks; | 
|  | uint32_t sectors_per_block; | 
|  | int sectors_per_block_shift; | 
|  |  | 
|  | struct pool_features pf; | 
|  | bool low_water_triggered:1;	/* A dm event has been sent */ | 
|  | bool suspended:1; | 
|  | bool out_of_data_space:1; | 
|  |  | 
|  | struct dm_bio_prison *prison; | 
|  | struct dm_kcopyd_client *copier; | 
|  |  | 
|  | struct work_struct worker; | 
|  | struct workqueue_struct *wq; | 
|  | struct throttle throttle; | 
|  | struct delayed_work waker; | 
|  | struct delayed_work no_space_timeout; | 
|  |  | 
|  | unsigned long last_commit_jiffies; | 
|  | unsigned int ref_count; | 
|  |  | 
|  | spinlock_t lock; | 
|  | struct bio_list deferred_flush_bios; | 
|  | struct bio_list deferred_flush_completions; | 
|  | struct list_head prepared_mappings; | 
|  | struct list_head prepared_discards; | 
|  | struct list_head prepared_discards_pt2; | 
|  | struct list_head active_thins; | 
|  |  | 
|  | struct dm_deferred_set *shared_read_ds; | 
|  | struct dm_deferred_set *all_io_ds; | 
|  |  | 
|  | struct dm_thin_new_mapping *next_mapping; | 
|  |  | 
|  | process_bio_fn process_bio; | 
|  | process_bio_fn process_discard; | 
|  |  | 
|  | process_cell_fn process_cell; | 
|  | process_cell_fn process_discard_cell; | 
|  |  | 
|  | process_mapping_fn process_prepared_mapping; | 
|  | process_mapping_fn process_prepared_discard; | 
|  | process_mapping_fn process_prepared_discard_pt2; | 
|  |  | 
|  | struct dm_bio_prison_cell **cell_sort_array; | 
|  |  | 
|  | mempool_t mapping_pool; | 
|  | }; | 
|  |  | 
|  | static void metadata_operation_failed(struct pool *pool, const char *op, int r); | 
|  |  | 
|  | static enum pool_mode get_pool_mode(struct pool *pool) | 
|  | { | 
|  | return pool->pf.mode; | 
|  | } | 
|  |  | 
|  | static void notify_of_pool_mode_change(struct pool *pool) | 
|  | { | 
|  | static const char *descs[] = { | 
|  | "write", | 
|  | "out-of-data-space", | 
|  | "read-only", | 
|  | "read-only", | 
|  | "fail" | 
|  | }; | 
|  | const char *extra_desc = NULL; | 
|  | enum pool_mode mode = get_pool_mode(pool); | 
|  |  | 
|  | if (mode == PM_OUT_OF_DATA_SPACE) { | 
|  | if (!pool->pf.error_if_no_space) | 
|  | extra_desc = " (queue IO)"; | 
|  | else | 
|  | extra_desc = " (error IO)"; | 
|  | } | 
|  |  | 
|  | dm_table_event(pool->ti->table); | 
|  | DMINFO("%s: switching pool to %s%s mode", | 
|  | dm_device_name(pool->pool_md), | 
|  | descs[(int)mode], extra_desc ? : ""); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Target context for a pool. | 
|  | */ | 
|  | struct pool_c { | 
|  | struct dm_target *ti; | 
|  | struct pool *pool; | 
|  | struct dm_dev *data_dev; | 
|  | struct dm_dev *metadata_dev; | 
|  |  | 
|  | dm_block_t low_water_blocks; | 
|  | struct pool_features requested_pf; /* Features requested during table load */ | 
|  | struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Target context for a thin. | 
|  | */ | 
|  | struct thin_c { | 
|  | struct list_head list; | 
|  | struct dm_dev *pool_dev; | 
|  | struct dm_dev *origin_dev; | 
|  | sector_t origin_size; | 
|  | dm_thin_id dev_id; | 
|  |  | 
|  | struct pool *pool; | 
|  | struct dm_thin_device *td; | 
|  | struct mapped_device *thin_md; | 
|  |  | 
|  | bool requeue_mode:1; | 
|  | spinlock_t lock; | 
|  | struct list_head deferred_cells; | 
|  | struct bio_list deferred_bio_list; | 
|  | struct bio_list retry_on_resume_list; | 
|  | struct rb_root sort_bio_list; /* sorted list of deferred bios */ | 
|  |  | 
|  | /* | 
|  | * Ensures the thin is not destroyed until the worker has finished | 
|  | * iterating the active_thins list. | 
|  | */ | 
|  | refcount_t refcount; | 
|  | struct completion can_destroy; | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static bool block_size_is_power_of_two(struct pool *pool) | 
|  | { | 
|  | return pool->sectors_per_block_shift >= 0; | 
|  | } | 
|  |  | 
|  | static sector_t block_to_sectors(struct pool *pool, dm_block_t b) | 
|  | { | 
|  | return block_size_is_power_of_two(pool) ? | 
|  | (b << pool->sectors_per_block_shift) : | 
|  | (b * pool->sectors_per_block); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct discard_op { | 
|  | struct thin_c *tc; | 
|  | struct blk_plug plug; | 
|  | struct bio *parent_bio; | 
|  | struct bio *bio; | 
|  | }; | 
|  |  | 
|  | static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) | 
|  | { | 
|  | BUG_ON(!parent); | 
|  |  | 
|  | op->tc = tc; | 
|  | blk_start_plug(&op->plug); | 
|  | op->parent_bio = parent; | 
|  | op->bio = NULL; | 
|  | } | 
|  |  | 
|  | static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) | 
|  | { | 
|  | struct thin_c *tc = op->tc; | 
|  | sector_t s = block_to_sectors(tc->pool, data_b); | 
|  | sector_t len = block_to_sectors(tc->pool, data_e - data_b); | 
|  |  | 
|  | return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio); | 
|  | } | 
|  |  | 
|  | static void end_discard(struct discard_op *op, int r) | 
|  | { | 
|  | if (op->bio) { | 
|  | /* | 
|  | * Even if one of the calls to issue_discard failed, we | 
|  | * need to wait for the chain to complete. | 
|  | */ | 
|  | bio_chain(op->bio, op->parent_bio); | 
|  | op->bio->bi_opf = REQ_OP_DISCARD; | 
|  | submit_bio(op->bio); | 
|  | } | 
|  |  | 
|  | blk_finish_plug(&op->plug); | 
|  |  | 
|  | /* | 
|  | * Even if r is set, there could be sub discards in flight that we | 
|  | * need to wait for. | 
|  | */ | 
|  | if (r && !op->parent_bio->bi_status) | 
|  | op->parent_bio->bi_status = errno_to_blk_status(r); | 
|  | bio_endio(op->parent_bio); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * wake_worker() is used when new work is queued and when pool_resume is | 
|  | * ready to continue deferred IO processing. | 
|  | */ | 
|  | static void wake_worker(struct pool *pool) | 
|  | { | 
|  | queue_work(pool->wq, &pool->worker); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, | 
|  | struct dm_bio_prison_cell **cell_result) | 
|  | { | 
|  | int r; | 
|  | struct dm_bio_prison_cell *cell_prealloc; | 
|  |  | 
|  | /* | 
|  | * Allocate a cell from the prison's mempool. | 
|  | * This might block but it can't fail. | 
|  | */ | 
|  | cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); | 
|  |  | 
|  | r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); | 
|  | if (r) { | 
|  | /* | 
|  | * We reused an old cell; we can get rid of | 
|  | * the new one. | 
|  | */ | 
|  | dm_bio_prison_free_cell(pool->prison, cell_prealloc); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void cell_release(struct pool *pool, | 
|  | struct dm_bio_prison_cell *cell, | 
|  | struct bio_list *bios) | 
|  | { | 
|  | dm_cell_release(pool->prison, cell, bios); | 
|  | dm_bio_prison_free_cell(pool->prison, cell); | 
|  | } | 
|  |  | 
|  | static void cell_visit_release(struct pool *pool, | 
|  | void (*fn)(void *, struct dm_bio_prison_cell *), | 
|  | void *context, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | dm_cell_visit_release(pool->prison, fn, context, cell); | 
|  | dm_bio_prison_free_cell(pool->prison, cell); | 
|  | } | 
|  |  | 
|  | static void cell_release_no_holder(struct pool *pool, | 
|  | struct dm_bio_prison_cell *cell, | 
|  | struct bio_list *bios) | 
|  | { | 
|  | dm_cell_release_no_holder(pool->prison, cell, bios); | 
|  | dm_bio_prison_free_cell(pool->prison, cell); | 
|  | } | 
|  |  | 
|  | static void cell_error_with_code(struct pool *pool, | 
|  | struct dm_bio_prison_cell *cell, blk_status_t error_code) | 
|  | { | 
|  | dm_cell_error(pool->prison, cell, error_code); | 
|  | dm_bio_prison_free_cell(pool->prison, cell); | 
|  | } | 
|  |  | 
|  | static blk_status_t get_pool_io_error_code(struct pool *pool) | 
|  | { | 
|  | return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; | 
|  | } | 
|  |  | 
|  | static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); | 
|  | } | 
|  |  | 
|  | static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | cell_error_with_code(pool, cell, 0); | 
|  | } | 
|  |  | 
|  | static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * A global list of pools that uses a struct mapped_device as a key. | 
|  | */ | 
|  | static struct dm_thin_pool_table { | 
|  | struct mutex mutex; | 
|  | struct list_head pools; | 
|  | } dm_thin_pool_table; | 
|  |  | 
|  | static void pool_table_init(void) | 
|  | { | 
|  | mutex_init(&dm_thin_pool_table.mutex); | 
|  | INIT_LIST_HEAD(&dm_thin_pool_table.pools); | 
|  | } | 
|  |  | 
|  | static void pool_table_exit(void) | 
|  | { | 
|  | mutex_destroy(&dm_thin_pool_table.mutex); | 
|  | } | 
|  |  | 
|  | static void __pool_table_insert(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | list_add(&pool->list, &dm_thin_pool_table.pools); | 
|  | } | 
|  |  | 
|  | static void __pool_table_remove(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | list_del(&pool->list); | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_table_lookup(struct mapped_device *md) | 
|  | { | 
|  | struct pool *pool = NULL, *tmp; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  |  | 
|  | list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
|  | if (tmp->pool_md == md) { | 
|  | pool = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) | 
|  | { | 
|  | struct pool *pool = NULL, *tmp; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  |  | 
|  | list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
|  | if (tmp->md_dev == md_dev) { | 
|  | pool = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct dm_thin_endio_hook { | 
|  | struct thin_c *tc; | 
|  | struct dm_deferred_entry *shared_read_entry; | 
|  | struct dm_deferred_entry *all_io_entry; | 
|  | struct dm_thin_new_mapping *overwrite_mapping; | 
|  | struct rb_node rb_node; | 
|  | struct dm_bio_prison_cell *cell; | 
|  | }; | 
|  |  | 
|  | static void error_bio_list(struct bio_list *bios, blk_status_t error) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | while ((bio = bio_list_pop(bios))) { | 
|  | bio->bi_status = error; | 
|  | bio_endio(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, | 
|  | blk_status_t error) | 
|  | { | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  |  | 
|  | spin_lock_irq(&tc->lock); | 
|  | bio_list_merge_init(&bios, master); | 
|  | spin_unlock_irq(&tc->lock); | 
|  |  | 
|  | error_bio_list(&bios, error); | 
|  | } | 
|  |  | 
|  | static void requeue_deferred_cells(struct thin_c *tc) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct list_head cells; | 
|  | struct dm_bio_prison_cell *cell, *tmp; | 
|  |  | 
|  | INIT_LIST_HEAD(&cells); | 
|  |  | 
|  | spin_lock_irq(&tc->lock); | 
|  | list_splice_init(&tc->deferred_cells, &cells); | 
|  | spin_unlock_irq(&tc->lock); | 
|  |  | 
|  | list_for_each_entry_safe(cell, tmp, &cells, user_list) | 
|  | cell_requeue(pool, cell); | 
|  | } | 
|  |  | 
|  | static void requeue_io(struct thin_c *tc) | 
|  | { | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  |  | 
|  | spin_lock_irq(&tc->lock); | 
|  | bio_list_merge_init(&bios, &tc->deferred_bio_list); | 
|  | bio_list_merge_init(&bios, &tc->retry_on_resume_list); | 
|  | spin_unlock_irq(&tc->lock); | 
|  |  | 
|  | error_bio_list(&bios, BLK_STS_DM_REQUEUE); | 
|  | requeue_deferred_cells(tc); | 
|  | } | 
|  |  | 
|  | static void error_retry_list_with_code(struct pool *pool, blk_status_t error) | 
|  | { | 
|  | struct thin_c *tc; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(tc, &pool->active_thins, list) | 
|  | error_thin_bio_list(tc, &tc->retry_on_resume_list, error); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void error_retry_list(struct pool *pool) | 
|  | { | 
|  | error_retry_list_with_code(pool, get_pool_io_error_code(pool)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This section of code contains the logic for processing a thin device's IO. | 
|  | * Much of the code depends on pool object resources (lists, workqueues, etc) | 
|  | * but most is exclusively called from the thin target rather than the thin-pool | 
|  | * target. | 
|  | */ | 
|  |  | 
|  | static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | sector_t block_nr = bio->bi_iter.bi_sector; | 
|  |  | 
|  | if (block_size_is_power_of_two(pool)) | 
|  | block_nr >>= pool->sectors_per_block_shift; | 
|  | else | 
|  | (void) sector_div(block_nr, pool->sectors_per_block); | 
|  |  | 
|  | return block_nr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the _complete_ blocks that this bio covers. | 
|  | */ | 
|  | static void get_bio_block_range(struct thin_c *tc, struct bio *bio, | 
|  | dm_block_t *begin, dm_block_t *end) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | sector_t b = bio->bi_iter.bi_sector; | 
|  | sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); | 
|  |  | 
|  | b += pool->sectors_per_block - 1ull; /* so we round up */ | 
|  |  | 
|  | if (block_size_is_power_of_two(pool)) { | 
|  | b >>= pool->sectors_per_block_shift; | 
|  | e >>= pool->sectors_per_block_shift; | 
|  | } else { | 
|  | (void) sector_div(b, pool->sectors_per_block); | 
|  | (void) sector_div(e, pool->sectors_per_block); | 
|  | } | 
|  |  | 
|  | if (e < b) { | 
|  | /* Can happen if the bio is within a single block. */ | 
|  | e = b; | 
|  | } | 
|  |  | 
|  | *begin = b; | 
|  | *end = e; | 
|  | } | 
|  |  | 
|  | static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | sector_t bi_sector = bio->bi_iter.bi_sector; | 
|  |  | 
|  | bio_set_dev(bio, tc->pool_dev->bdev); | 
|  | if (block_size_is_power_of_two(pool)) { | 
|  | bio->bi_iter.bi_sector = | 
|  | (block << pool->sectors_per_block_shift) | | 
|  | (bi_sector & (pool->sectors_per_block - 1)); | 
|  | } else { | 
|  | bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + | 
|  | sector_div(bi_sector, pool->sectors_per_block); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void remap_to_origin(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | bio_set_dev(bio, tc->origin_dev->bdev); | 
|  | } | 
|  |  | 
|  | static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | return op_is_flush(bio->bi_opf) && | 
|  | dm_thin_changed_this_transaction(tc->td); | 
|  | } | 
|  |  | 
|  | static void inc_all_io_entry(struct pool *pool, struct bio *bio) | 
|  | { | 
|  | struct dm_thin_endio_hook *h; | 
|  |  | 
|  | if (bio_op(bio) == REQ_OP_DISCARD) | 
|  | return; | 
|  |  | 
|  | h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); | 
|  | } | 
|  |  | 
|  | static void issue(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | if (!bio_triggers_commit(tc, bio)) { | 
|  | dm_submit_bio_remap(bio, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete bio with an error if earlier I/O caused changes to | 
|  | * the metadata that can't be committed e.g, due to I/O errors | 
|  | * on the metadata device. | 
|  | */ | 
|  | if (dm_thin_aborted_changes(tc->td)) { | 
|  | bio_io_error(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Batch together any bios that trigger commits and then issue a | 
|  | * single commit for them in process_deferred_bios(). | 
|  | */ | 
|  | spin_lock_irq(&pool->lock); | 
|  | bio_list_add(&pool->deferred_flush_bios, bio); | 
|  | spin_unlock_irq(&pool->lock); | 
|  | } | 
|  |  | 
|  | static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | remap_to_origin(tc, bio); | 
|  | issue(tc, bio); | 
|  | } | 
|  |  | 
|  | static void remap_and_issue(struct thin_c *tc, struct bio *bio, | 
|  | dm_block_t block) | 
|  | { | 
|  | remap(tc, bio, block); | 
|  | issue(tc, bio); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Bio endio functions. | 
|  | */ | 
|  | struct dm_thin_new_mapping { | 
|  | struct list_head list; | 
|  |  | 
|  | bool pass_discard:1; | 
|  | bool maybe_shared:1; | 
|  |  | 
|  | /* | 
|  | * Track quiescing, copying and zeroing preparation actions.  When this | 
|  | * counter hits zero the block is prepared and can be inserted into the | 
|  | * btree. | 
|  | */ | 
|  | atomic_t prepare_actions; | 
|  |  | 
|  | blk_status_t status; | 
|  | struct thin_c *tc; | 
|  | dm_block_t virt_begin, virt_end; | 
|  | dm_block_t data_block; | 
|  | struct dm_bio_prison_cell *cell; | 
|  |  | 
|  | /* | 
|  | * If the bio covers the whole area of a block then we can avoid | 
|  | * zeroing or copying.  Instead this bio is hooked.  The bio will | 
|  | * still be in the cell, so care has to be taken to avoid issuing | 
|  | * the bio twice. | 
|  | */ | 
|  | struct bio *bio; | 
|  | bio_end_io_t *saved_bi_end_io; | 
|  | }; | 
|  |  | 
|  | static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | if (atomic_dec_and_test(&m->prepare_actions)) { | 
|  | list_add_tail(&m->list, &pool->prepared_mappings); | 
|  | wake_worker(pool); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void complete_mapping_preparation(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | __complete_mapping_preparation(m); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | static void copy_complete(int read_err, unsigned long write_err, void *context) | 
|  | { | 
|  | struct dm_thin_new_mapping *m = context; | 
|  |  | 
|  | m->status = read_err || write_err ? BLK_STS_IOERR : 0; | 
|  | complete_mapping_preparation(m); | 
|  | } | 
|  |  | 
|  | static void overwrite_endio(struct bio *bio) | 
|  | { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | struct dm_thin_new_mapping *m = h->overwrite_mapping; | 
|  |  | 
|  | bio->bi_end_io = m->saved_bi_end_io; | 
|  |  | 
|  | m->status = bio->bi_status; | 
|  | complete_mapping_preparation(m); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Workqueue. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Prepared mapping jobs. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This sends the bios in the cell, except the original holder, back | 
|  | * to the deferred_bios list. | 
|  | */ | 
|  | static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  | cell_release_no_holder(pool, cell, &bios); | 
|  |  | 
|  | if (!bio_list_empty(&bios)) { | 
|  | spin_lock_irqsave(&tc->lock, flags); | 
|  | bio_list_merge(&tc->deferred_bio_list, &bios); | 
|  | spin_unlock_irqrestore(&tc->lock, flags); | 
|  | wake_worker(pool); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void thin_defer_bio(struct thin_c *tc, struct bio *bio); | 
|  |  | 
|  | struct remap_info { | 
|  | struct thin_c *tc; | 
|  | struct bio_list defer_bios; | 
|  | struct bio_list issue_bios; | 
|  | }; | 
|  |  | 
|  | static void __inc_remap_and_issue_cell(void *context, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct remap_info *info = context; | 
|  | struct bio *bio; | 
|  |  | 
|  | while ((bio = bio_list_pop(&cell->bios))) { | 
|  | if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) | 
|  | bio_list_add(&info->defer_bios, bio); | 
|  | else { | 
|  | inc_all_io_entry(info->tc->pool, bio); | 
|  |  | 
|  | /* | 
|  | * We can't issue the bios with the bio prison lock | 
|  | * held, so we add them to a list to issue on | 
|  | * return from this function. | 
|  | */ | 
|  | bio_list_add(&info->issue_bios, bio); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void inc_remap_and_issue_cell(struct thin_c *tc, | 
|  | struct dm_bio_prison_cell *cell, | 
|  | dm_block_t block) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct remap_info info; | 
|  |  | 
|  | info.tc = tc; | 
|  | bio_list_init(&info.defer_bios); | 
|  | bio_list_init(&info.issue_bios); | 
|  |  | 
|  | /* | 
|  | * We have to be careful to inc any bios we're about to issue | 
|  | * before the cell is released, and avoid a race with new bios | 
|  | * being added to the cell. | 
|  | */ | 
|  | cell_visit_release(tc->pool, __inc_remap_and_issue_cell, | 
|  | &info, cell); | 
|  |  | 
|  | while ((bio = bio_list_pop(&info.defer_bios))) | 
|  | thin_defer_bio(tc, bio); | 
|  |  | 
|  | while ((bio = bio_list_pop(&info.issue_bios))) | 
|  | remap_and_issue(info.tc, bio, block); | 
|  | } | 
|  |  | 
|  | static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | cell_error(m->tc->pool, m->cell); | 
|  | list_del(&m->list); | 
|  | mempool_free(m, &m->tc->pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | /* | 
|  | * If the bio has the REQ_FUA flag set we must commit the metadata | 
|  | * before signaling its completion. | 
|  | */ | 
|  | if (!bio_triggers_commit(tc, bio)) { | 
|  | bio_endio(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete bio with an error if earlier I/O caused changes to the | 
|  | * metadata that can't be committed, e.g, due to I/O errors on the | 
|  | * metadata device. | 
|  | */ | 
|  | if (dm_thin_aborted_changes(tc->td)) { | 
|  | bio_io_error(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Batch together any bios that trigger commits and then issue a | 
|  | * single commit for them in process_deferred_bios(). | 
|  | */ | 
|  | spin_lock_irq(&pool->lock); | 
|  | bio_list_add(&pool->deferred_flush_completions, bio); | 
|  | spin_unlock_irq(&pool->lock); | 
|  | } | 
|  |  | 
|  | static void process_prepared_mapping(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | struct thin_c *tc = m->tc; | 
|  | struct pool *pool = tc->pool; | 
|  | struct bio *bio = m->bio; | 
|  | int r; | 
|  |  | 
|  | if (m->status) { | 
|  | cell_error(pool, m->cell); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit the prepared block into the mapping btree. | 
|  | * Any I/O for this block arriving after this point will get | 
|  | * remapped to it directly. | 
|  | */ | 
|  | r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_thin_insert_block", r); | 
|  | cell_error(pool, m->cell); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release any bios held while the block was being provisioned. | 
|  | * If we are processing a write bio that completely covers the block, | 
|  | * we already processed it so can ignore it now when processing | 
|  | * the bios in the cell. | 
|  | */ | 
|  | if (bio) { | 
|  | inc_remap_and_issue_cell(tc, m->cell, m->data_block); | 
|  | complete_overwrite_bio(tc, bio); | 
|  | } else { | 
|  | inc_all_io_entry(tc->pool, m->cell->holder); | 
|  | remap_and_issue(tc, m->cell->holder, m->data_block); | 
|  | inc_remap_and_issue_cell(tc, m->cell, m->data_block); | 
|  | } | 
|  |  | 
|  | out: | 
|  | list_del(&m->list); | 
|  | mempool_free(m, &pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static void free_discard_mapping(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | struct thin_c *tc = m->tc; | 
|  |  | 
|  | if (m->cell) | 
|  | cell_defer_no_holder(tc, m->cell); | 
|  | mempool_free(m, &tc->pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | bio_io_error(m->bio); | 
|  | free_discard_mapping(m); | 
|  | } | 
|  |  | 
|  | static void process_prepared_discard_success(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | bio_endio(m->bio); | 
|  | free_discard_mapping(m); | 
|  | } | 
|  |  | 
|  | static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc = m->tc; | 
|  |  | 
|  | r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); | 
|  | if (r) { | 
|  | metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); | 
|  | bio_io_error(m->bio); | 
|  | } else | 
|  | bio_endio(m->bio); | 
|  |  | 
|  | cell_defer_no_holder(tc, m->cell); | 
|  | mempool_free(m, &tc->pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, | 
|  | struct bio *discard_parent) | 
|  | { | 
|  | /* | 
|  | * We've already unmapped this range of blocks, but before we | 
|  | * passdown we have to check that these blocks are now unused. | 
|  | */ | 
|  | int r = 0; | 
|  | bool shared = true; | 
|  | struct thin_c *tc = m->tc; | 
|  | struct pool *pool = tc->pool; | 
|  | dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; | 
|  | struct discard_op op; | 
|  |  | 
|  | begin_discard(&op, tc, discard_parent); | 
|  | while (b != end) { | 
|  | /* find start of unmapped run */ | 
|  | for (; b < end; b++) { | 
|  | r = dm_pool_block_is_shared(pool->pmd, b, &shared); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | if (!shared) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (b == end) | 
|  | break; | 
|  |  | 
|  | /* find end of run */ | 
|  | for (e = b + 1; e != end; e++) { | 
|  | r = dm_pool_block_is_shared(pool->pmd, e, &shared); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | if (shared) | 
|  | break; | 
|  | } | 
|  |  | 
|  | r = issue_discard(&op, b, e); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | b = e; | 
|  | } | 
|  | out: | 
|  | end_discard(&op, r); | 
|  | } | 
|  |  | 
|  | static void queue_passdown_pt2(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_add_tail(&m->list, &pool->prepared_discards_pt2); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | static void passdown_endio(struct bio *bio) | 
|  | { | 
|  | /* | 
|  | * It doesn't matter if the passdown discard failed, we still want | 
|  | * to unmap (we ignore err). | 
|  | */ | 
|  | queue_passdown_pt2(bio->bi_private); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc = m->tc; | 
|  | struct pool *pool = tc->pool; | 
|  | struct bio *discard_parent; | 
|  | dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); | 
|  |  | 
|  | /* | 
|  | * Only this thread allocates blocks, so we can be sure that the | 
|  | * newly unmapped blocks will not be allocated before the end of | 
|  | * the function. | 
|  | */ | 
|  | r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_thin_remove_range", r); | 
|  | bio_io_error(m->bio); | 
|  | cell_defer_no_holder(tc, m->cell); | 
|  | mempool_free(m, &pool->mapping_pool); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increment the unmapped blocks.  This prevents a race between the | 
|  | * passdown io and reallocation of freed blocks. | 
|  | */ | 
|  | r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_pool_inc_data_range", r); | 
|  | bio_io_error(m->bio); | 
|  | cell_defer_no_holder(tc, m->cell); | 
|  | mempool_free(m, &pool->mapping_pool); | 
|  | return; | 
|  | } | 
|  |  | 
|  | discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); | 
|  | discard_parent->bi_end_io = passdown_endio; | 
|  | discard_parent->bi_private = m; | 
|  | if (m->maybe_shared) | 
|  | passdown_double_checking_shared_status(m, discard_parent); | 
|  | else { | 
|  | struct discard_op op; | 
|  |  | 
|  | begin_discard(&op, tc, discard_parent); | 
|  | r = issue_discard(&op, m->data_block, data_end); | 
|  | end_discard(&op, r); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc = m->tc; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | /* | 
|  | * The passdown has completed, so now we can decrement all those | 
|  | * unmapped blocks. | 
|  | */ | 
|  | r = dm_pool_dec_data_range(pool->pmd, m->data_block, | 
|  | m->data_block + (m->virt_end - m->virt_begin)); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_pool_dec_data_range", r); | 
|  | bio_io_error(m->bio); | 
|  | } else | 
|  | bio_endio(m->bio); | 
|  |  | 
|  | cell_defer_no_holder(tc, m->cell); | 
|  | mempool_free(m, &pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared(struct pool *pool, struct list_head *head, | 
|  | process_mapping_fn *fn) | 
|  | { | 
|  | struct list_head maps; | 
|  | struct dm_thin_new_mapping *m, *tmp; | 
|  |  | 
|  | INIT_LIST_HEAD(&maps); | 
|  | spin_lock_irq(&pool->lock); | 
|  | list_splice_init(head, &maps); | 
|  | spin_unlock_irq(&pool->lock); | 
|  |  | 
|  | list_for_each_entry_safe(m, tmp, &maps, list) | 
|  | (*fn)(m); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deferred bio jobs. | 
|  | */ | 
|  | static int io_overlaps_block(struct pool *pool, struct bio *bio) | 
|  | { | 
|  | return bio->bi_iter.bi_size == | 
|  | (pool->sectors_per_block << SECTOR_SHIFT); | 
|  | } | 
|  |  | 
|  | static int io_overwrites_block(struct pool *pool, struct bio *bio) | 
|  | { | 
|  | return (bio_data_dir(bio) == WRITE) && | 
|  | io_overlaps_block(pool, bio); | 
|  | } | 
|  |  | 
|  | static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, | 
|  | bio_end_io_t *fn) | 
|  | { | 
|  | *save = bio->bi_end_io; | 
|  | bio->bi_end_io = fn; | 
|  | } | 
|  |  | 
|  | static int ensure_next_mapping(struct pool *pool) | 
|  | { | 
|  | if (pool->next_mapping) | 
|  | return 0; | 
|  |  | 
|  | pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); | 
|  |  | 
|  | return pool->next_mapping ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) | 
|  | { | 
|  | struct dm_thin_new_mapping *m = pool->next_mapping; | 
|  |  | 
|  | BUG_ON(!pool->next_mapping); | 
|  |  | 
|  | memset(m, 0, sizeof(struct dm_thin_new_mapping)); | 
|  | INIT_LIST_HEAD(&m->list); | 
|  | m->bio = NULL; | 
|  |  | 
|  | pool->next_mapping = NULL; | 
|  |  | 
|  | return m; | 
|  | } | 
|  |  | 
|  | static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, | 
|  | sector_t begin, sector_t end) | 
|  | { | 
|  | struct dm_io_region to; | 
|  |  | 
|  | to.bdev = tc->pool_dev->bdev; | 
|  | to.sector = begin; | 
|  | to.count = end - begin; | 
|  |  | 
|  | dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); | 
|  | } | 
|  |  | 
|  | static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, | 
|  | dm_block_t data_begin, | 
|  | struct dm_thin_new_mapping *m) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | h->overwrite_mapping = m; | 
|  | m->bio = bio; | 
|  | save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | 
|  | inc_all_io_entry(pool, bio); | 
|  | remap_and_issue(tc, bio, data_begin); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A partial copy also needs to zero the uncopied region. | 
|  | */ | 
|  | static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, | 
|  | struct dm_dev *origin, dm_block_t data_origin, | 
|  | dm_block_t data_dest, | 
|  | struct dm_bio_prison_cell *cell, struct bio *bio, | 
|  | sector_t len) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_thin_new_mapping *m = get_next_mapping(pool); | 
|  |  | 
|  | m->tc = tc; | 
|  | m->virt_begin = virt_block; | 
|  | m->virt_end = virt_block + 1u; | 
|  | m->data_block = data_dest; | 
|  | m->cell = cell; | 
|  |  | 
|  | /* | 
|  | * quiesce action + copy action + an extra reference held for the | 
|  | * duration of this function (we may need to inc later for a | 
|  | * partial zero). | 
|  | */ | 
|  | atomic_set(&m->prepare_actions, 3); | 
|  |  | 
|  | if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) | 
|  | complete_mapping_preparation(m); /* already quiesced */ | 
|  |  | 
|  | /* | 
|  | * IO to pool_dev remaps to the pool target's data_dev. | 
|  | * | 
|  | * If the whole block of data is being overwritten, we can issue the | 
|  | * bio immediately. Otherwise we use kcopyd to clone the data first. | 
|  | */ | 
|  | if (io_overwrites_block(pool, bio)) | 
|  | remap_and_issue_overwrite(tc, bio, data_dest, m); | 
|  | else { | 
|  | struct dm_io_region from, to; | 
|  |  | 
|  | from.bdev = origin->bdev; | 
|  | from.sector = data_origin * pool->sectors_per_block; | 
|  | from.count = len; | 
|  |  | 
|  | to.bdev = tc->pool_dev->bdev; | 
|  | to.sector = data_dest * pool->sectors_per_block; | 
|  | to.count = len; | 
|  |  | 
|  | dm_kcopyd_copy(pool->copier, &from, 1, &to, | 
|  | 0, copy_complete, m); | 
|  |  | 
|  | /* | 
|  | * Do we need to zero a tail region? | 
|  | */ | 
|  | if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { | 
|  | atomic_inc(&m->prepare_actions); | 
|  | ll_zero(tc, m, | 
|  | data_dest * pool->sectors_per_block + len, | 
|  | (data_dest + 1) * pool->sectors_per_block); | 
|  | } | 
|  | } | 
|  |  | 
|  | complete_mapping_preparation(m); /* drop our ref */ | 
|  | } | 
|  |  | 
|  | static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, | 
|  | dm_block_t data_origin, dm_block_t data_dest, | 
|  | struct dm_bio_prison_cell *cell, struct bio *bio) | 
|  | { | 
|  | schedule_copy(tc, virt_block, tc->pool_dev, | 
|  | data_origin, data_dest, cell, bio, | 
|  | tc->pool->sectors_per_block); | 
|  | } | 
|  |  | 
|  | static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, | 
|  | dm_block_t data_block, struct dm_bio_prison_cell *cell, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_thin_new_mapping *m = get_next_mapping(pool); | 
|  |  | 
|  | atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ | 
|  | m->tc = tc; | 
|  | m->virt_begin = virt_block; | 
|  | m->virt_end = virt_block + 1u; | 
|  | m->data_block = data_block; | 
|  | m->cell = cell; | 
|  |  | 
|  | /* | 
|  | * If the whole block of data is being overwritten or we are not | 
|  | * zeroing pre-existing data, we can issue the bio immediately. | 
|  | * Otherwise we use kcopyd to zero the data first. | 
|  | */ | 
|  | if (pool->pf.zero_new_blocks) { | 
|  | if (io_overwrites_block(pool, bio)) | 
|  | remap_and_issue_overwrite(tc, bio, data_block, m); | 
|  | else { | 
|  | ll_zero(tc, m, data_block * pool->sectors_per_block, | 
|  | (data_block + 1) * pool->sectors_per_block); | 
|  | } | 
|  | } else | 
|  | process_prepared_mapping(m); | 
|  | } | 
|  |  | 
|  | static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, | 
|  | dm_block_t data_dest, | 
|  | struct dm_bio_prison_cell *cell, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | sector_t virt_block_begin = virt_block * pool->sectors_per_block; | 
|  | sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; | 
|  |  | 
|  | if (virt_block_end <= tc->origin_size) { | 
|  | schedule_copy(tc, virt_block, tc->origin_dev, | 
|  | virt_block, data_dest, cell, bio, | 
|  | pool->sectors_per_block); | 
|  |  | 
|  | } else if (virt_block_begin < tc->origin_size) { | 
|  | schedule_copy(tc, virt_block, tc->origin_dev, | 
|  | virt_block, data_dest, cell, bio, | 
|  | tc->origin_size - virt_block_begin); | 
|  |  | 
|  | } else | 
|  | schedule_zero(tc, virt_block, data_dest, cell, bio); | 
|  | } | 
|  |  | 
|  | static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); | 
|  |  | 
|  | static void requeue_bios(struct pool *pool); | 
|  |  | 
|  | static bool is_read_only_pool_mode(enum pool_mode mode) | 
|  | { | 
|  | return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); | 
|  | } | 
|  |  | 
|  | static bool is_read_only(struct pool *pool) | 
|  | { | 
|  | return is_read_only_pool_mode(get_pool_mode(pool)); | 
|  | } | 
|  |  | 
|  | static void check_for_metadata_space(struct pool *pool) | 
|  | { | 
|  | int r; | 
|  | const char *ooms_reason = NULL; | 
|  | dm_block_t nr_free; | 
|  |  | 
|  | r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); | 
|  | if (r) | 
|  | ooms_reason = "Could not get free metadata blocks"; | 
|  | else if (!nr_free) | 
|  | ooms_reason = "No free metadata blocks"; | 
|  |  | 
|  | if (ooms_reason && !is_read_only(pool)) { | 
|  | DMERR("%s", ooms_reason); | 
|  | set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_for_data_space(struct pool *pool) | 
|  | { | 
|  | int r; | 
|  | dm_block_t nr_free; | 
|  |  | 
|  | if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) | 
|  | return; | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &nr_free); | 
|  | if (r) | 
|  | return; | 
|  |  | 
|  | if (nr_free) { | 
|  | set_pool_mode(pool, PM_WRITE); | 
|  | requeue_bios(pool); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A non-zero return indicates read_only or fail_io mode. | 
|  | * Many callers don't care about the return value. | 
|  | */ | 
|  | static int commit(struct pool *pool) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) | 
|  | return -EINVAL; | 
|  |  | 
|  | r = dm_pool_commit_metadata(pool->pmd); | 
|  | if (r) | 
|  | metadata_operation_failed(pool, "dm_pool_commit_metadata", r); | 
|  | else { | 
|  | check_for_metadata_space(pool); | 
|  | check_for_data_space(pool); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) | 
|  | { | 
|  | if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { | 
|  | DMWARN("%s: reached low water mark for data device: sending event.", | 
|  | dm_device_name(pool->pool_md)); | 
|  | spin_lock_irq(&pool->lock); | 
|  | pool->low_water_triggered = true; | 
|  | spin_unlock_irq(&pool->lock); | 
|  | dm_table_event(pool->ti->table); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int alloc_data_block(struct thin_c *tc, dm_block_t *result) | 
|  | { | 
|  | int r; | 
|  | dm_block_t free_blocks; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | check_low_water_mark(pool, free_blocks); | 
|  |  | 
|  | if (!free_blocks) { | 
|  | /* | 
|  | * Try to commit to see if that will free up some | 
|  | * more space. | 
|  | */ | 
|  | r = commit(pool); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (!free_blocks) { | 
|  | set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); | 
|  | return -ENOSPC; | 
|  | } | 
|  | } | 
|  |  | 
|  | r = dm_pool_alloc_data_block(pool->pmd, result); | 
|  | if (r) { | 
|  | if (r == -ENOSPC) | 
|  | set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); | 
|  | else | 
|  | metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (!free_blocks) { | 
|  | /* Let's commit before we use up the metadata reserve. */ | 
|  | r = commit(pool); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have run out of space, queue bios until the device is | 
|  | * resumed, presumably after having been reloaded with more space. | 
|  | */ | 
|  | static void retry_on_resume(struct bio *bio) | 
|  | { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | struct thin_c *tc = h->tc; | 
|  |  | 
|  | spin_lock_irq(&tc->lock); | 
|  | bio_list_add(&tc->retry_on_resume_list, bio); | 
|  | spin_unlock_irq(&tc->lock); | 
|  | } | 
|  |  | 
|  | static blk_status_t should_error_unserviceable_bio(struct pool *pool) | 
|  | { | 
|  | enum pool_mode m = get_pool_mode(pool); | 
|  |  | 
|  | switch (m) { | 
|  | case PM_WRITE: | 
|  | /* Shouldn't get here */ | 
|  | DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); | 
|  | return BLK_STS_IOERR; | 
|  |  | 
|  | case PM_OUT_OF_DATA_SPACE: | 
|  | return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; | 
|  |  | 
|  | case PM_OUT_OF_METADATA_SPACE: | 
|  | case PM_READ_ONLY: | 
|  | case PM_FAIL: | 
|  | return BLK_STS_IOERR; | 
|  | default: | 
|  | /* Shouldn't get here */ | 
|  | DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); | 
|  | return BLK_STS_IOERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) | 
|  | { | 
|  | blk_status_t error = should_error_unserviceable_bio(pool); | 
|  |  | 
|  | if (error) { | 
|  | bio->bi_status = error; | 
|  | bio_endio(bio); | 
|  | } else | 
|  | retry_on_resume(bio); | 
|  | } | 
|  |  | 
|  | static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  | blk_status_t error; | 
|  |  | 
|  | error = should_error_unserviceable_bio(pool); | 
|  | if (error) { | 
|  | cell_error_with_code(pool, cell, error); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bio_list_init(&bios); | 
|  | cell_release(pool, cell, &bios); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | retry_on_resume(bio); | 
|  | } | 
|  |  | 
|  | static void process_discard_cell_no_passdown(struct thin_c *tc, | 
|  | struct dm_bio_prison_cell *virt_cell) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_thin_new_mapping *m = get_next_mapping(pool); | 
|  |  | 
|  | /* | 
|  | * We don't need to lock the data blocks, since there's no | 
|  | * passdown.  We only lock data blocks for allocation and breaking sharing. | 
|  | */ | 
|  | m->tc = tc; | 
|  | m->virt_begin = virt_cell->key.block_begin; | 
|  | m->virt_end = virt_cell->key.block_end; | 
|  | m->cell = virt_cell; | 
|  | m->bio = virt_cell->holder; | 
|  |  | 
|  | if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) | 
|  | pool->process_prepared_discard(m); | 
|  | } | 
|  |  | 
|  | static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | int r; | 
|  | bool maybe_shared; | 
|  | struct dm_cell_key data_key; | 
|  | struct dm_bio_prison_cell *data_cell; | 
|  | struct dm_thin_new_mapping *m; | 
|  | dm_block_t virt_begin, virt_end, data_begin, data_end; | 
|  | dm_block_t len, next_boundary; | 
|  |  | 
|  | while (begin != end) { | 
|  | r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, | 
|  | &data_begin, &maybe_shared); | 
|  | if (r) { | 
|  | /* | 
|  | * Silently fail, letting any mappings we've | 
|  | * created complete. | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | data_end = data_begin + (virt_end - virt_begin); | 
|  |  | 
|  | /* | 
|  | * Make sure the data region obeys the bio prison restrictions. | 
|  | */ | 
|  | while (data_begin < data_end) { | 
|  | r = ensure_next_mapping(pool); | 
|  | if (r) | 
|  | return; /* we did our best */ | 
|  |  | 
|  | next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1) | 
|  | << BIO_PRISON_MAX_RANGE_SHIFT; | 
|  | len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin); | 
|  |  | 
|  | /* This key is certainly within range given the above splitting */ | 
|  | (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key); | 
|  | if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { | 
|  | /* contention, we'll give up with this range */ | 
|  | data_begin += len; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IO may still be going to the destination block.  We must | 
|  | * quiesce before we can do the removal. | 
|  | */ | 
|  | m = get_next_mapping(pool); | 
|  | m->tc = tc; | 
|  | m->maybe_shared = maybe_shared; | 
|  | m->virt_begin = virt_begin; | 
|  | m->virt_end = virt_begin + len; | 
|  | m->data_block = data_begin; | 
|  | m->cell = data_cell; | 
|  | m->bio = bio; | 
|  |  | 
|  | /* | 
|  | * The parent bio must not complete before sub discard bios are | 
|  | * chained to it (see end_discard's bio_chain)! | 
|  | * | 
|  | * This per-mapping bi_remaining increment is paired with | 
|  | * the implicit decrement that occurs via bio_endio() in | 
|  | * end_discard(). | 
|  | */ | 
|  | bio_inc_remaining(bio); | 
|  | if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) | 
|  | pool->process_prepared_discard(m); | 
|  |  | 
|  | virt_begin += len; | 
|  | data_begin += len; | 
|  | } | 
|  |  | 
|  | begin = virt_end; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) | 
|  | { | 
|  | struct bio *bio = virt_cell->holder; | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | /* | 
|  | * The virt_cell will only get freed once the origin bio completes. | 
|  | * This means it will remain locked while all the individual | 
|  | * passdown bios are in flight. | 
|  | */ | 
|  | h->cell = virt_cell; | 
|  | break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); | 
|  |  | 
|  | /* | 
|  | * We complete the bio now, knowing that the bi_remaining field | 
|  | * will prevent completion until the sub range discards have | 
|  | * completed. | 
|  | */ | 
|  | bio_endio(bio); | 
|  | } | 
|  |  | 
|  | static void process_discard_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | dm_block_t begin, end; | 
|  | struct dm_cell_key virt_key; | 
|  | struct dm_bio_prison_cell *virt_cell; | 
|  |  | 
|  | get_bio_block_range(tc, bio, &begin, &end); | 
|  | if (begin == end) { | 
|  | /* | 
|  | * The discard covers less than a block. | 
|  | */ | 
|  | bio_endio(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) { | 
|  | DMERR_LIMIT("Discard doesn't respect bio prison limits"); | 
|  | bio_endio(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) { | 
|  | /* | 
|  | * Potential starvation issue: We're relying on the | 
|  | * fs/application being well behaved, and not trying to | 
|  | * send IO to a region at the same time as discarding it. | 
|  | * If they do this persistently then it's possible this | 
|  | * cell will never be granted. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | tc->pool->process_discard_cell(tc, virt_cell); | 
|  | } | 
|  |  | 
|  | static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
|  | struct dm_cell_key *key, | 
|  | struct dm_thin_lookup_result *lookup_result, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | int r; | 
|  | dm_block_t data_block; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | r = alloc_data_block(tc, &data_block); | 
|  | switch (r) { | 
|  | case 0: | 
|  | schedule_internal_copy(tc, block, lookup_result->block, | 
|  | data_block, cell, bio); | 
|  | break; | 
|  |  | 
|  | case -ENOSPC: | 
|  | retry_bios_on_resume(pool, cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", | 
|  | __func__, r); | 
|  | cell_error(pool, cell); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __remap_and_issue_shared_cell(void *context, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct remap_info *info = context; | 
|  | struct bio *bio; | 
|  |  | 
|  | while ((bio = bio_list_pop(&cell->bios))) { | 
|  | if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || | 
|  | bio_op(bio) == REQ_OP_DISCARD) | 
|  | bio_list_add(&info->defer_bios, bio); | 
|  | else { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); | 
|  | inc_all_io_entry(info->tc->pool, bio); | 
|  | bio_list_add(&info->issue_bios, bio); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void remap_and_issue_shared_cell(struct thin_c *tc, | 
|  | struct dm_bio_prison_cell *cell, | 
|  | dm_block_t block) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct remap_info info; | 
|  |  | 
|  | info.tc = tc; | 
|  | bio_list_init(&info.defer_bios); | 
|  | bio_list_init(&info.issue_bios); | 
|  |  | 
|  | cell_visit_release(tc->pool, __remap_and_issue_shared_cell, | 
|  | &info, cell); | 
|  |  | 
|  | while ((bio = bio_list_pop(&info.defer_bios))) | 
|  | thin_defer_bio(tc, bio); | 
|  |  | 
|  | while ((bio = bio_list_pop(&info.issue_bios))) | 
|  | remap_and_issue(tc, bio, block); | 
|  | } | 
|  |  | 
|  | static void process_shared_bio(struct thin_c *tc, struct bio *bio, | 
|  | dm_block_t block, | 
|  | struct dm_thin_lookup_result *lookup_result, | 
|  | struct dm_bio_prison_cell *virt_cell) | 
|  | { | 
|  | struct dm_bio_prison_cell *data_cell; | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_cell_key key; | 
|  |  | 
|  | /* | 
|  | * If cell is already occupied, then sharing is already in the process | 
|  | * of being broken so we have nothing further to do here. | 
|  | */ | 
|  | build_data_key(tc->td, lookup_result->block, &key); | 
|  | if (bio_detain(pool, &key, bio, &data_cell)) { | 
|  | cell_defer_no_holder(tc, virt_cell); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { | 
|  | break_sharing(tc, bio, block, &key, lookup_result, data_cell); | 
|  | cell_defer_no_holder(tc, virt_cell); | 
|  | } else { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); | 
|  | inc_all_io_entry(pool, bio); | 
|  | remap_and_issue(tc, bio, lookup_result->block); | 
|  |  | 
|  | remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); | 
|  | remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | int r; | 
|  | dm_block_t data_block; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | /* | 
|  | * Remap empty bios (flushes) immediately, without provisioning. | 
|  | */ | 
|  | if (!bio->bi_iter.bi_size) { | 
|  | inc_all_io_entry(pool, bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  |  | 
|  | remap_and_issue(tc, bio, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill read bios with zeroes and complete them immediately. | 
|  | */ | 
|  | if (bio_data_dir(bio) == READ) { | 
|  | zero_fill_bio(bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  | bio_endio(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | r = alloc_data_block(tc, &data_block); | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (tc->origin_dev) | 
|  | schedule_external_copy(tc, block, data_block, cell, bio); | 
|  | else | 
|  | schedule_zero(tc, block, data_block, cell, bio); | 
|  | break; | 
|  |  | 
|  | case -ENOSPC: | 
|  | retry_bios_on_resume(pool, cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", | 
|  | __func__, r); | 
|  | cell_error(pool, cell); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | int r; | 
|  | struct pool *pool = tc->pool; | 
|  | struct bio *bio = cell->holder; | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_thin_lookup_result lookup_result; | 
|  |  | 
|  | if (tc->requeue_mode) { | 
|  | cell_requeue(pool, cell); | 
|  | return; | 
|  | } | 
|  |  | 
|  | r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (lookup_result.shared) | 
|  | process_shared_bio(tc, bio, block, &lookup_result, cell); | 
|  | else { | 
|  | inc_all_io_entry(pool, bio); | 
|  | remap_and_issue(tc, bio, lookup_result.block); | 
|  | inc_remap_and_issue_cell(tc, cell, lookup_result.block); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case -ENODATA: | 
|  | if (bio_data_dir(bio) == READ && tc->origin_dev) { | 
|  | inc_all_io_entry(pool, bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  |  | 
|  | if (bio_end_sector(bio) <= tc->origin_size) | 
|  | remap_to_origin_and_issue(tc, bio); | 
|  |  | 
|  | else if (bio->bi_iter.bi_sector < tc->origin_size) { | 
|  | zero_fill_bio(bio); | 
|  | bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; | 
|  | remap_to_origin_and_issue(tc, bio); | 
|  |  | 
|  | } else { | 
|  | zero_fill_bio(bio); | 
|  | bio_endio(bio); | 
|  | } | 
|  | } else | 
|  | provision_block(tc, bio, block, cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", | 
|  | __func__, r); | 
|  | cell_defer_no_holder(tc, cell); | 
|  | bio_io_error(bio); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_bio_prison_cell *cell; | 
|  | struct dm_cell_key key; | 
|  |  | 
|  | /* | 
|  | * If cell is already occupied, then the block is already | 
|  | * being provisioned so we have nothing further to do here. | 
|  | */ | 
|  | build_virtual_key(tc->td, block, &key); | 
|  | if (bio_detain(pool, &key, bio, &cell)) | 
|  | return; | 
|  |  | 
|  | process_cell(tc, cell); | 
|  | } | 
|  |  | 
|  | static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | int r; | 
|  | int rw = bio_data_dir(bio); | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_thin_lookup_result lookup_result; | 
|  |  | 
|  | r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { | 
|  | handle_unserviceable_bio(tc->pool, bio); | 
|  | if (cell) | 
|  | cell_defer_no_holder(tc, cell); | 
|  | } else { | 
|  | inc_all_io_entry(tc->pool, bio); | 
|  | remap_and_issue(tc, bio, lookup_result.block); | 
|  | if (cell) | 
|  | inc_remap_and_issue_cell(tc, cell, lookup_result.block); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case -ENODATA: | 
|  | if (cell) | 
|  | cell_defer_no_holder(tc, cell); | 
|  | if (rw != READ) { | 
|  | handle_unserviceable_bio(tc->pool, bio); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (tc->origin_dev) { | 
|  | inc_all_io_entry(tc->pool, bio); | 
|  | remap_to_origin_and_issue(tc, bio); | 
|  | break; | 
|  | } | 
|  |  | 
|  | zero_fill_bio(bio); | 
|  | bio_endio(bio); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", | 
|  | __func__, r); | 
|  | if (cell) | 
|  | cell_defer_no_holder(tc, cell); | 
|  | bio_io_error(bio); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_bio_read_only(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | __process_bio_read_only(tc, bio, NULL); | 
|  | } | 
|  |  | 
|  | static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | __process_bio_read_only(tc, cell->holder, cell); | 
|  | } | 
|  |  | 
|  | static void process_bio_success(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | bio_endio(bio); | 
|  | } | 
|  |  | 
|  | static void process_bio_fail(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | bio_io_error(bio); | 
|  | } | 
|  |  | 
|  | static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | cell_success(tc->pool, cell); | 
|  | } | 
|  |  | 
|  | static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | cell_error(tc->pool, cell); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIXME: should we also commit due to size of transaction, measured in | 
|  | * metadata blocks? | 
|  | */ | 
|  | static int need_commit_due_to_time(struct pool *pool) | 
|  | { | 
|  | return !time_in_range(jiffies, pool->last_commit_jiffies, | 
|  | pool->last_commit_jiffies + COMMIT_PERIOD); | 
|  | } | 
|  |  | 
|  | #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) | 
|  | #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) | 
|  |  | 
|  | static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct rb_node **rbp, *parent; | 
|  | struct dm_thin_endio_hook *pbd; | 
|  | sector_t bi_sector = bio->bi_iter.bi_sector; | 
|  |  | 
|  | rbp = &tc->sort_bio_list.rb_node; | 
|  | parent = NULL; | 
|  | while (*rbp) { | 
|  | parent = *rbp; | 
|  | pbd = thin_pbd(parent); | 
|  |  | 
|  | if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) | 
|  | rbp = &(*rbp)->rb_left; | 
|  | else | 
|  | rbp = &(*rbp)->rb_right; | 
|  | } | 
|  |  | 
|  | pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | rb_link_node(&pbd->rb_node, parent, rbp); | 
|  | rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); | 
|  | } | 
|  |  | 
|  | static void __extract_sorted_bios(struct thin_c *tc) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct dm_thin_endio_hook *pbd; | 
|  | struct bio *bio; | 
|  |  | 
|  | for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { | 
|  | pbd = thin_pbd(node); | 
|  | bio = thin_bio(pbd); | 
|  |  | 
|  | bio_list_add(&tc->deferred_bio_list, bio); | 
|  | rb_erase(&pbd->rb_node, &tc->sort_bio_list); | 
|  | } | 
|  |  | 
|  | WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); | 
|  | } | 
|  |  | 
|  | static void __sort_thin_deferred_bios(struct thin_c *tc) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  | bio_list_merge(&bios, &tc->deferred_bio_list); | 
|  | bio_list_init(&tc->deferred_bio_list); | 
|  |  | 
|  | /* Sort deferred_bio_list using rb-tree */ | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | __thin_bio_rb_add(tc, bio); | 
|  |  | 
|  | /* | 
|  | * Transfer the sorted bios in sort_bio_list back to | 
|  | * deferred_bio_list to allow lockless submission of | 
|  | * all bios. | 
|  | */ | 
|  | __extract_sorted_bios(tc); | 
|  | } | 
|  |  | 
|  | static void process_thin_deferred_bios(struct thin_c *tc) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  | struct blk_plug plug; | 
|  | unsigned int count = 0; | 
|  |  | 
|  | if (tc->requeue_mode) { | 
|  | error_thin_bio_list(tc, &tc->deferred_bio_list, | 
|  | BLK_STS_DM_REQUEUE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bio_list_init(&bios); | 
|  |  | 
|  | spin_lock_irq(&tc->lock); | 
|  |  | 
|  | if (bio_list_empty(&tc->deferred_bio_list)) { | 
|  | spin_unlock_irq(&tc->lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | __sort_thin_deferred_bios(tc); | 
|  |  | 
|  | bio_list_merge(&bios, &tc->deferred_bio_list); | 
|  | bio_list_init(&tc->deferred_bio_list); | 
|  |  | 
|  | spin_unlock_irq(&tc->lock); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | while ((bio = bio_list_pop(&bios))) { | 
|  | /* | 
|  | * If we've got no free new_mapping structs, and processing | 
|  | * this bio might require one, we pause until there are some | 
|  | * prepared mappings to process. | 
|  | */ | 
|  | if (ensure_next_mapping(pool)) { | 
|  | spin_lock_irq(&tc->lock); | 
|  | bio_list_add(&tc->deferred_bio_list, bio); | 
|  | bio_list_merge(&tc->deferred_bio_list, &bios); | 
|  | spin_unlock_irq(&tc->lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bio_op(bio) == REQ_OP_DISCARD) | 
|  | pool->process_discard(tc, bio); | 
|  | else | 
|  | pool->process_bio(tc, bio); | 
|  |  | 
|  | if ((count++ & 127) == 0) { | 
|  | throttle_work_update(&pool->throttle); | 
|  | dm_pool_issue_prefetches(pool->pmd); | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  |  | 
|  | static int cmp_cells(const void *lhs, const void *rhs) | 
|  | { | 
|  | struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); | 
|  | struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); | 
|  |  | 
|  | BUG_ON(!lhs_cell->holder); | 
|  | BUG_ON(!rhs_cell->holder); | 
|  |  | 
|  | if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) | 
|  | return -1; | 
|  |  | 
|  | if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int sort_cells(struct pool *pool, struct list_head *cells) | 
|  | { | 
|  | unsigned int count = 0; | 
|  | struct dm_bio_prison_cell *cell, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(cell, tmp, cells, user_list) { | 
|  | if (count >= CELL_SORT_ARRAY_SIZE) | 
|  | break; | 
|  |  | 
|  | pool->cell_sort_array[count++] = cell; | 
|  | list_del(&cell->user_list); | 
|  | } | 
|  |  | 
|  | sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void process_thin_deferred_cells(struct thin_c *tc) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct list_head cells; | 
|  | struct dm_bio_prison_cell *cell; | 
|  | unsigned int i, j, count; | 
|  |  | 
|  | INIT_LIST_HEAD(&cells); | 
|  |  | 
|  | spin_lock_irq(&tc->lock); | 
|  | list_splice_init(&tc->deferred_cells, &cells); | 
|  | spin_unlock_irq(&tc->lock); | 
|  |  | 
|  | if (list_empty(&cells)) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | count = sort_cells(tc->pool, &cells); | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | cell = pool->cell_sort_array[i]; | 
|  | BUG_ON(!cell->holder); | 
|  |  | 
|  | /* | 
|  | * If we've got no free new_mapping structs, and processing | 
|  | * this bio might require one, we pause until there are some | 
|  | * prepared mappings to process. | 
|  | */ | 
|  | if (ensure_next_mapping(pool)) { | 
|  | for (j = i; j < count; j++) | 
|  | list_add(&pool->cell_sort_array[j]->user_list, &cells); | 
|  |  | 
|  | spin_lock_irq(&tc->lock); | 
|  | list_splice(&cells, &tc->deferred_cells); | 
|  | spin_unlock_irq(&tc->lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (bio_op(cell->holder) == REQ_OP_DISCARD) | 
|  | pool->process_discard_cell(tc, cell); | 
|  | else | 
|  | pool->process_cell(tc, cell); | 
|  | } | 
|  | cond_resched(); | 
|  | } while (!list_empty(&cells)); | 
|  | } | 
|  |  | 
|  | static void thin_get(struct thin_c *tc); | 
|  | static void thin_put(struct thin_c *tc); | 
|  |  | 
|  | /* | 
|  | * We can't hold rcu_read_lock() around code that can block.  So we | 
|  | * find a thin with the rcu lock held; bump a refcount; then drop | 
|  | * the lock. | 
|  | */ | 
|  | static struct thin_c *get_first_thin(struct pool *pool) | 
|  | { | 
|  | struct thin_c *tc = NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list); | 
|  | if (tc) | 
|  | thin_get(tc); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return tc; | 
|  | } | 
|  |  | 
|  | static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) | 
|  | { | 
|  | struct thin_c *old_tc = tc; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { | 
|  | thin_get(tc); | 
|  | thin_put(old_tc); | 
|  | rcu_read_unlock(); | 
|  | return tc; | 
|  | } | 
|  | thin_put(old_tc); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void process_deferred_bios(struct pool *pool) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_list bios, bio_completions; | 
|  | struct thin_c *tc; | 
|  |  | 
|  | tc = get_first_thin(pool); | 
|  | while (tc) { | 
|  | process_thin_deferred_cells(tc); | 
|  | process_thin_deferred_bios(tc); | 
|  | tc = get_next_thin(pool, tc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are any deferred flush bios, we must commit the metadata | 
|  | * before issuing them or signaling their completion. | 
|  | */ | 
|  | bio_list_init(&bios); | 
|  | bio_list_init(&bio_completions); | 
|  |  | 
|  | spin_lock_irq(&pool->lock); | 
|  | bio_list_merge(&bios, &pool->deferred_flush_bios); | 
|  | bio_list_init(&pool->deferred_flush_bios); | 
|  |  | 
|  | bio_list_merge(&bio_completions, &pool->deferred_flush_completions); | 
|  | bio_list_init(&pool->deferred_flush_completions); | 
|  | spin_unlock_irq(&pool->lock); | 
|  |  | 
|  | if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && | 
|  | !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) | 
|  | return; | 
|  |  | 
|  | if (commit(pool)) { | 
|  | bio_list_merge(&bios, &bio_completions); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | bio_io_error(bio); | 
|  | return; | 
|  | } | 
|  | pool->last_commit_jiffies = jiffies; | 
|  |  | 
|  | while ((bio = bio_list_pop(&bio_completions))) | 
|  | bio_endio(bio); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) { | 
|  | /* | 
|  | * The data device was flushed as part of metadata commit, | 
|  | * so complete redundant flushes immediately. | 
|  | */ | 
|  | if (bio->bi_opf & REQ_PREFLUSH) | 
|  | bio_endio(bio); | 
|  | else | 
|  | dm_submit_bio_remap(bio, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_worker(struct work_struct *ws) | 
|  | { | 
|  | struct pool *pool = container_of(ws, struct pool, worker); | 
|  |  | 
|  | throttle_work_start(&pool->throttle); | 
|  | dm_pool_issue_prefetches(pool->pmd); | 
|  | throttle_work_update(&pool->throttle); | 
|  | process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); | 
|  | throttle_work_update(&pool->throttle); | 
|  | process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); | 
|  | throttle_work_update(&pool->throttle); | 
|  | process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); | 
|  | throttle_work_update(&pool->throttle); | 
|  | process_deferred_bios(pool); | 
|  | throttle_work_complete(&pool->throttle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to commit periodically so that not too much | 
|  | * unwritten data builds up. | 
|  | */ | 
|  | static void do_waker(struct work_struct *ws) | 
|  | { | 
|  | struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); | 
|  |  | 
|  | wake_worker(pool); | 
|  | queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're holding onto IO to allow userland time to react.  After the | 
|  | * timeout either the pool will have been resized (and thus back in | 
|  | * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. | 
|  | */ | 
|  | static void do_no_space_timeout(struct work_struct *ws) | 
|  | { | 
|  | struct pool *pool = container_of(to_delayed_work(ws), struct pool, | 
|  | no_space_timeout); | 
|  |  | 
|  | if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { | 
|  | pool->pf.error_if_no_space = true; | 
|  | notify_of_pool_mode_change(pool); | 
|  | error_retry_list_with_code(pool, BLK_STS_NOSPC); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct pool_work { | 
|  | struct work_struct worker; | 
|  | struct completion complete; | 
|  | }; | 
|  |  | 
|  | static struct pool_work *to_pool_work(struct work_struct *ws) | 
|  | { | 
|  | return container_of(ws, struct pool_work, worker); | 
|  | } | 
|  |  | 
|  | static void pool_work_complete(struct pool_work *pw) | 
|  | { | 
|  | complete(&pw->complete); | 
|  | } | 
|  |  | 
|  | static void pool_work_wait(struct pool_work *pw, struct pool *pool, | 
|  | void (*fn)(struct work_struct *)) | 
|  | { | 
|  | INIT_WORK_ONSTACK(&pw->worker, fn); | 
|  | init_completion(&pw->complete); | 
|  | queue_work(pool->wq, &pw->worker); | 
|  | wait_for_completion(&pw->complete); | 
|  | destroy_work_on_stack(&pw->worker); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct noflush_work { | 
|  | struct pool_work pw; | 
|  | struct thin_c *tc; | 
|  | }; | 
|  |  | 
|  | static struct noflush_work *to_noflush(struct work_struct *ws) | 
|  | { | 
|  | return container_of(to_pool_work(ws), struct noflush_work, pw); | 
|  | } | 
|  |  | 
|  | static void do_noflush_start(struct work_struct *ws) | 
|  | { | 
|  | struct noflush_work *w = to_noflush(ws); | 
|  |  | 
|  | w->tc->requeue_mode = true; | 
|  | requeue_io(w->tc); | 
|  | pool_work_complete(&w->pw); | 
|  | } | 
|  |  | 
|  | static void do_noflush_stop(struct work_struct *ws) | 
|  | { | 
|  | struct noflush_work *w = to_noflush(ws); | 
|  |  | 
|  | w->tc->requeue_mode = false; | 
|  | pool_work_complete(&w->pw); | 
|  | } | 
|  |  | 
|  | static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) | 
|  | { | 
|  | struct noflush_work w; | 
|  |  | 
|  | w.tc = tc; | 
|  | pool_work_wait(&w.pw, tc->pool, fn); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static void set_discard_callbacks(struct pool *pool) | 
|  | { | 
|  | struct pool_c *pt = pool->ti->private; | 
|  |  | 
|  | if (pt->adjusted_pf.discard_passdown) { | 
|  | pool->process_discard_cell = process_discard_cell_passdown; | 
|  | pool->process_prepared_discard = process_prepared_discard_passdown_pt1; | 
|  | pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; | 
|  | } else { | 
|  | pool->process_discard_cell = process_discard_cell_no_passdown; | 
|  | pool->process_prepared_discard = process_prepared_discard_no_passdown; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) | 
|  | { | 
|  | struct pool_c *pt = pool->ti->private; | 
|  | bool needs_check = dm_pool_metadata_needs_check(pool->pmd); | 
|  | enum pool_mode old_mode = get_pool_mode(pool); | 
|  | unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; | 
|  |  | 
|  | /* | 
|  | * Never allow the pool to transition to PM_WRITE mode if user | 
|  | * intervention is required to verify metadata and data consistency. | 
|  | */ | 
|  | if (new_mode == PM_WRITE && needs_check) { | 
|  | DMERR("%s: unable to switch pool to write mode until repaired.", | 
|  | dm_device_name(pool->pool_md)); | 
|  | if (old_mode != new_mode) | 
|  | new_mode = old_mode; | 
|  | else | 
|  | new_mode = PM_READ_ONLY; | 
|  | } | 
|  | /* | 
|  | * If we were in PM_FAIL mode, rollback of metadata failed.  We're | 
|  | * not going to recover without a thin_repair.	So we never let the | 
|  | * pool move out of the old mode. | 
|  | */ | 
|  | if (old_mode == PM_FAIL) | 
|  | new_mode = old_mode; | 
|  |  | 
|  | switch (new_mode) { | 
|  | case PM_FAIL: | 
|  | dm_pool_metadata_read_only(pool->pmd); | 
|  | pool->process_bio = process_bio_fail; | 
|  | pool->process_discard = process_bio_fail; | 
|  | pool->process_cell = process_cell_fail; | 
|  | pool->process_discard_cell = process_cell_fail; | 
|  | pool->process_prepared_mapping = process_prepared_mapping_fail; | 
|  | pool->process_prepared_discard = process_prepared_discard_fail; | 
|  |  | 
|  | error_retry_list(pool); | 
|  | break; | 
|  |  | 
|  | case PM_OUT_OF_METADATA_SPACE: | 
|  | case PM_READ_ONLY: | 
|  | dm_pool_metadata_read_only(pool->pmd); | 
|  | pool->process_bio = process_bio_read_only; | 
|  | pool->process_discard = process_bio_success; | 
|  | pool->process_cell = process_cell_read_only; | 
|  | pool->process_discard_cell = process_cell_success; | 
|  | pool->process_prepared_mapping = process_prepared_mapping_fail; | 
|  | pool->process_prepared_discard = process_prepared_discard_success; | 
|  |  | 
|  | error_retry_list(pool); | 
|  | break; | 
|  |  | 
|  | case PM_OUT_OF_DATA_SPACE: | 
|  | /* | 
|  | * Ideally we'd never hit this state; the low water mark | 
|  | * would trigger userland to extend the pool before we | 
|  | * completely run out of data space.  However, many small | 
|  | * IOs to unprovisioned space can consume data space at an | 
|  | * alarming rate.  Adjust your low water mark if you're | 
|  | * frequently seeing this mode. | 
|  | */ | 
|  | pool->out_of_data_space = true; | 
|  | pool->process_bio = process_bio_read_only; | 
|  | pool->process_discard = process_discard_bio; | 
|  | pool->process_cell = process_cell_read_only; | 
|  | pool->process_prepared_mapping = process_prepared_mapping; | 
|  | set_discard_callbacks(pool); | 
|  |  | 
|  | if (!pool->pf.error_if_no_space && no_space_timeout) | 
|  | queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); | 
|  | break; | 
|  |  | 
|  | case PM_WRITE: | 
|  | if (old_mode == PM_OUT_OF_DATA_SPACE) | 
|  | cancel_delayed_work_sync(&pool->no_space_timeout); | 
|  | pool->out_of_data_space = false; | 
|  | pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; | 
|  | dm_pool_metadata_read_write(pool->pmd); | 
|  | pool->process_bio = process_bio; | 
|  | pool->process_discard = process_discard_bio; | 
|  | pool->process_cell = process_cell; | 
|  | pool->process_prepared_mapping = process_prepared_mapping; | 
|  | set_discard_callbacks(pool); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pool->pf.mode = new_mode; | 
|  | /* | 
|  | * The pool mode may have changed, sync it so bind_control_target() | 
|  | * doesn't cause an unexpected mode transition on resume. | 
|  | */ | 
|  | pt->adjusted_pf.mode = new_mode; | 
|  |  | 
|  | if (old_mode != new_mode) | 
|  | notify_of_pool_mode_change(pool); | 
|  | } | 
|  |  | 
|  | static void abort_transaction(struct pool *pool) | 
|  | { | 
|  | const char *dev_name = dm_device_name(pool->pool_md); | 
|  |  | 
|  | DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); | 
|  | if (dm_pool_abort_metadata(pool->pmd)) { | 
|  | DMERR("%s: failed to abort metadata transaction", dev_name); | 
|  | set_pool_mode(pool, PM_FAIL); | 
|  | } | 
|  |  | 
|  | if (dm_pool_metadata_set_needs_check(pool->pmd)) { | 
|  | DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); | 
|  | set_pool_mode(pool, PM_FAIL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void metadata_operation_failed(struct pool *pool, const char *op, int r) | 
|  | { | 
|  | DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", | 
|  | dm_device_name(pool->pool_md), op, r); | 
|  |  | 
|  | abort_transaction(pool); | 
|  | set_pool_mode(pool, PM_READ_ONLY); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Mapping functions. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Called only while mapping a thin bio to hand it over to the workqueue. | 
|  | */ | 
|  | static void thin_defer_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | spin_lock_irq(&tc->lock); | 
|  | bio_list_add(&tc->deferred_bio_list, bio); | 
|  | spin_unlock_irq(&tc->lock); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | throttle_lock(&pool->throttle); | 
|  | thin_defer_bio(tc, bio); | 
|  | throttle_unlock(&pool->throttle); | 
|  | } | 
|  |  | 
|  | static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | throttle_lock(&pool->throttle); | 
|  | spin_lock_irq(&tc->lock); | 
|  | list_add_tail(&cell->user_list, &tc->deferred_cells); | 
|  | spin_unlock_irq(&tc->lock); | 
|  | throttle_unlock(&pool->throttle); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | static void thin_hook_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | h->tc = tc; | 
|  | h->shared_read_entry = NULL; | 
|  | h->all_io_entry = NULL; | 
|  | h->overwrite_mapping = NULL; | 
|  | h->cell = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-blocking function called from the thin target's map function. | 
|  | */ | 
|  | static int thin_bio_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc = ti->private; | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_thin_device *td = tc->td; | 
|  | struct dm_thin_lookup_result result; | 
|  | struct dm_bio_prison_cell *virt_cell, *data_cell; | 
|  | struct dm_cell_key key; | 
|  |  | 
|  | thin_hook_bio(tc, bio); | 
|  |  | 
|  | if (tc->requeue_mode) { | 
|  | bio->bi_status = BLK_STS_DM_REQUEUE; | 
|  | bio_endio(bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | if (get_pool_mode(tc->pool) == PM_FAIL) { | 
|  | bio_io_error(bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { | 
|  | thin_defer_bio_with_throttle(tc, bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must hold the virtual cell before doing the lookup, otherwise | 
|  | * there's a race with discard. | 
|  | */ | 
|  | build_virtual_key(tc->td, block, &key); | 
|  | if (bio_detain(tc->pool, &key, bio, &virt_cell)) | 
|  | return DM_MAPIO_SUBMITTED; | 
|  |  | 
|  | r = dm_thin_find_block(td, block, 0, &result); | 
|  |  | 
|  | /* | 
|  | * Note that we defer readahead too. | 
|  | */ | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (unlikely(result.shared)) { | 
|  | /* | 
|  | * We have a race condition here between the | 
|  | * result.shared value returned by the lookup and | 
|  | * snapshot creation, which may cause new | 
|  | * sharing. | 
|  | * | 
|  | * To avoid this always quiesce the origin before | 
|  | * taking the snap.  You want to do this anyway to | 
|  | * ensure a consistent application view | 
|  | * (i.e. lockfs). | 
|  | * | 
|  | * More distant ancestors are irrelevant. The | 
|  | * shared flag will be set in their case. | 
|  | */ | 
|  | thin_defer_cell(tc, virt_cell); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | build_data_key(tc->td, result.block, &key); | 
|  | if (bio_detain(tc->pool, &key, bio, &data_cell)) { | 
|  | cell_defer_no_holder(tc, virt_cell); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | inc_all_io_entry(tc->pool, bio); | 
|  | cell_defer_no_holder(tc, data_cell); | 
|  | cell_defer_no_holder(tc, virt_cell); | 
|  |  | 
|  | remap(tc, bio, result.block); | 
|  | return DM_MAPIO_REMAPPED; | 
|  |  | 
|  | case -ENODATA: | 
|  | case -EWOULDBLOCK: | 
|  | thin_defer_cell(tc, virt_cell); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  |  | 
|  | default: | 
|  | /* | 
|  | * Must always call bio_io_error on failure. | 
|  | * dm_thin_find_block can fail with -EINVAL if the | 
|  | * pool is switched to fail-io mode. | 
|  | */ | 
|  | bio_io_error(bio); | 
|  | cell_defer_no_holder(tc, virt_cell); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void requeue_bios(struct pool *pool) | 
|  | { | 
|  | struct thin_c *tc; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(tc, &pool->active_thins, list) { | 
|  | spin_lock_irq(&tc->lock); | 
|  | bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); | 
|  | bio_list_init(&tc->retry_on_resume_list); | 
|  | spin_unlock_irq(&tc->lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *-------------------------------------------------------------- | 
|  | * Binding of control targets to a pool object | 
|  | *-------------------------------------------------------------- | 
|  | */ | 
|  | static bool is_factor(sector_t block_size, uint32_t n) | 
|  | { | 
|  | return !sector_div(block_size, n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If discard_passdown was enabled verify that the data device | 
|  | * supports discards.  Disable discard_passdown if not. | 
|  | */ | 
|  | static void disable_discard_passdown_if_not_supported(struct pool_c *pt) | 
|  | { | 
|  | struct pool *pool = pt->pool; | 
|  | struct block_device *data_bdev = pt->data_dev->bdev; | 
|  | struct queue_limits *data_limits = bdev_limits(data_bdev); | 
|  | const char *reason = NULL; | 
|  |  | 
|  | if (!pt->adjusted_pf.discard_passdown) | 
|  | return; | 
|  |  | 
|  | if (!bdev_max_discard_sectors(pt->data_dev->bdev)) | 
|  | reason = "discard unsupported"; | 
|  |  | 
|  | else if (data_limits->max_discard_sectors < pool->sectors_per_block) | 
|  | reason = "max discard sectors smaller than a block"; | 
|  |  | 
|  | if (reason) { | 
|  | DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); | 
|  | pt->adjusted_pf.discard_passdown = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bind_control_target(struct pool *pool, struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | /* | 
|  | * We want to make sure that a pool in PM_FAIL mode is never upgraded. | 
|  | */ | 
|  | enum pool_mode old_mode = get_pool_mode(pool); | 
|  | enum pool_mode new_mode = pt->adjusted_pf.mode; | 
|  |  | 
|  | /* | 
|  | * Don't change the pool's mode until set_pool_mode() below. | 
|  | * Otherwise the pool's process_* function pointers may | 
|  | * not match the desired pool mode. | 
|  | */ | 
|  | pt->adjusted_pf.mode = old_mode; | 
|  |  | 
|  | pool->ti = ti; | 
|  | pool->pf = pt->adjusted_pf; | 
|  | pool->low_water_blocks = pt->low_water_blocks; | 
|  |  | 
|  | set_pool_mode(pool, new_mode); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void unbind_control_target(struct pool *pool, struct dm_target *ti) | 
|  | { | 
|  | if (pool->ti == ti) | 
|  | pool->ti = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *-------------------------------------------------------------- | 
|  | * Pool creation | 
|  | *-------------------------------------------------------------- | 
|  | */ | 
|  | /* Initialize pool features. */ | 
|  | static void pool_features_init(struct pool_features *pf) | 
|  | { | 
|  | pf->mode = PM_WRITE; | 
|  | pf->zero_new_blocks = true; | 
|  | pf->discard_enabled = true; | 
|  | pf->discard_passdown = true; | 
|  | pf->error_if_no_space = false; | 
|  | } | 
|  |  | 
|  | static void __pool_destroy(struct pool *pool) | 
|  | { | 
|  | __pool_table_remove(pool); | 
|  |  | 
|  | vfree(pool->cell_sort_array); | 
|  | if (dm_pool_metadata_close(pool->pmd) < 0) | 
|  | DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
|  |  | 
|  | dm_bio_prison_destroy(pool->prison); | 
|  | dm_kcopyd_client_destroy(pool->copier); | 
|  |  | 
|  | cancel_delayed_work_sync(&pool->waker); | 
|  | cancel_delayed_work_sync(&pool->no_space_timeout); | 
|  | if (pool->wq) | 
|  | destroy_workqueue(pool->wq); | 
|  |  | 
|  | if (pool->next_mapping) | 
|  | mempool_free(pool->next_mapping, &pool->mapping_pool); | 
|  | mempool_exit(&pool->mapping_pool); | 
|  | dm_deferred_set_destroy(pool->shared_read_ds); | 
|  | dm_deferred_set_destroy(pool->all_io_ds); | 
|  | kfree(pool); | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *_new_mapping_cache; | 
|  |  | 
|  | static struct pool *pool_create(struct mapped_device *pool_md, | 
|  | struct block_device *metadata_dev, | 
|  | struct block_device *data_dev, | 
|  | unsigned long block_size, | 
|  | int read_only, char **error) | 
|  | { | 
|  | int r; | 
|  | void *err_p; | 
|  | struct pool *pool; | 
|  | struct dm_pool_metadata *pmd; | 
|  | bool format_device = read_only ? false : true; | 
|  |  | 
|  | pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); | 
|  | if (IS_ERR(pmd)) { | 
|  | *error = "Error creating metadata object"; | 
|  | return ERR_CAST(pmd); | 
|  | } | 
|  |  | 
|  | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) { | 
|  | *error = "Error allocating memory for pool"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_pool; | 
|  | } | 
|  |  | 
|  | pool->pmd = pmd; | 
|  | pool->sectors_per_block = block_size; | 
|  | if (block_size & (block_size - 1)) | 
|  | pool->sectors_per_block_shift = -1; | 
|  | else | 
|  | pool->sectors_per_block_shift = __ffs(block_size); | 
|  | pool->low_water_blocks = 0; | 
|  | pool_features_init(&pool->pf); | 
|  | pool->prison = dm_bio_prison_create(); | 
|  | if (!pool->prison) { | 
|  | *error = "Error creating pool's bio prison"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_prison; | 
|  | } | 
|  |  | 
|  | pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); | 
|  | if (IS_ERR(pool->copier)) { | 
|  | r = PTR_ERR(pool->copier); | 
|  | *error = "Error creating pool's kcopyd client"; | 
|  | err_p = ERR_PTR(r); | 
|  | goto bad_kcopyd_client; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create singlethreaded workqueue that will service all devices | 
|  | * that use this metadata. | 
|  | */ | 
|  | pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); | 
|  | if (!pool->wq) { | 
|  | *error = "Error creating pool's workqueue"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_wq; | 
|  | } | 
|  |  | 
|  | throttle_init(&pool->throttle); | 
|  | INIT_WORK(&pool->worker, do_worker); | 
|  | INIT_DELAYED_WORK(&pool->waker, do_waker); | 
|  | INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); | 
|  | spin_lock_init(&pool->lock); | 
|  | bio_list_init(&pool->deferred_flush_bios); | 
|  | bio_list_init(&pool->deferred_flush_completions); | 
|  | INIT_LIST_HEAD(&pool->prepared_mappings); | 
|  | INIT_LIST_HEAD(&pool->prepared_discards); | 
|  | INIT_LIST_HEAD(&pool->prepared_discards_pt2); | 
|  | INIT_LIST_HEAD(&pool->active_thins); | 
|  | pool->low_water_triggered = false; | 
|  | pool->suspended = true; | 
|  | pool->out_of_data_space = false; | 
|  |  | 
|  | pool->shared_read_ds = dm_deferred_set_create(); | 
|  | if (!pool->shared_read_ds) { | 
|  | *error = "Error creating pool's shared read deferred set"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_shared_read_ds; | 
|  | } | 
|  |  | 
|  | pool->all_io_ds = dm_deferred_set_create(); | 
|  | if (!pool->all_io_ds) { | 
|  | *error = "Error creating pool's all io deferred set"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_all_io_ds; | 
|  | } | 
|  |  | 
|  | pool->next_mapping = NULL; | 
|  | r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, | 
|  | _new_mapping_cache); | 
|  | if (r) { | 
|  | *error = "Error creating pool's mapping mempool"; | 
|  | err_p = ERR_PTR(r); | 
|  | goto bad_mapping_pool; | 
|  | } | 
|  |  | 
|  | pool->cell_sort_array = | 
|  | vmalloc(array_size(CELL_SORT_ARRAY_SIZE, | 
|  | sizeof(*pool->cell_sort_array))); | 
|  | if (!pool->cell_sort_array) { | 
|  | *error = "Error allocating cell sort array"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_sort_array; | 
|  | } | 
|  |  | 
|  | pool->ref_count = 1; | 
|  | pool->last_commit_jiffies = jiffies; | 
|  | pool->pool_md = pool_md; | 
|  | pool->md_dev = metadata_dev; | 
|  | pool->data_dev = data_dev; | 
|  | __pool_table_insert(pool); | 
|  |  | 
|  | return pool; | 
|  |  | 
|  | bad_sort_array: | 
|  | mempool_exit(&pool->mapping_pool); | 
|  | bad_mapping_pool: | 
|  | dm_deferred_set_destroy(pool->all_io_ds); | 
|  | bad_all_io_ds: | 
|  | dm_deferred_set_destroy(pool->shared_read_ds); | 
|  | bad_shared_read_ds: | 
|  | destroy_workqueue(pool->wq); | 
|  | bad_wq: | 
|  | dm_kcopyd_client_destroy(pool->copier); | 
|  | bad_kcopyd_client: | 
|  | dm_bio_prison_destroy(pool->prison); | 
|  | bad_prison: | 
|  | kfree(pool); | 
|  | bad_pool: | 
|  | if (dm_pool_metadata_close(pmd)) | 
|  | DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
|  |  | 
|  | return err_p; | 
|  | } | 
|  |  | 
|  | static void __pool_inc(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | pool->ref_count++; | 
|  | } | 
|  |  | 
|  | static void __pool_dec(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | BUG_ON(!pool->ref_count); | 
|  | if (!--pool->ref_count) | 
|  | __pool_destroy(pool); | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_find(struct mapped_device *pool_md, | 
|  | struct block_device *metadata_dev, | 
|  | struct block_device *data_dev, | 
|  | unsigned long block_size, int read_only, | 
|  | char **error, int *created) | 
|  | { | 
|  | struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); | 
|  |  | 
|  | if (pool) { | 
|  | if (pool->pool_md != pool_md) { | 
|  | *error = "metadata device already in use by a pool"; | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  | if (pool->data_dev != data_dev) { | 
|  | *error = "data device already in use by a pool"; | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  | __pool_inc(pool); | 
|  |  | 
|  | } else { | 
|  | pool = __pool_table_lookup(pool_md); | 
|  | if (pool) { | 
|  | if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { | 
|  | *error = "different pool cannot replace a pool"; | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | __pool_inc(pool); | 
|  |  | 
|  | } else { | 
|  | pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); | 
|  | *created = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *-------------------------------------------------------------- | 
|  | * Pool target methods | 
|  | *-------------------------------------------------------------- | 
|  | */ | 
|  | static void pool_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | unbind_control_target(pt->pool, ti); | 
|  | __pool_dec(pt->pool); | 
|  | dm_put_device(ti, pt->metadata_dev); | 
|  | dm_put_device(ti, pt->data_dev); | 
|  | kfree(pt); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  | } | 
|  |  | 
|  | static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, | 
|  | struct dm_target *ti) | 
|  | { | 
|  | int r; | 
|  | unsigned int argc; | 
|  | const char *arg_name; | 
|  |  | 
|  | static const struct dm_arg _args[] = { | 
|  | {0, 4, "Invalid number of pool feature arguments"}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * No feature arguments supplied. | 
|  | */ | 
|  | if (!as->argc) | 
|  | return 0; | 
|  |  | 
|  | r = dm_read_arg_group(_args, as, &argc, &ti->error); | 
|  | if (r) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (argc && !r) { | 
|  | arg_name = dm_shift_arg(as); | 
|  | argc--; | 
|  |  | 
|  | if (!strcasecmp(arg_name, "skip_block_zeroing")) | 
|  | pf->zero_new_blocks = false; | 
|  |  | 
|  | else if (!strcasecmp(arg_name, "ignore_discard")) | 
|  | pf->discard_enabled = false; | 
|  |  | 
|  | else if (!strcasecmp(arg_name, "no_discard_passdown")) | 
|  | pf->discard_passdown = false; | 
|  |  | 
|  | else if (!strcasecmp(arg_name, "read_only")) | 
|  | pf->mode = PM_READ_ONLY; | 
|  |  | 
|  | else if (!strcasecmp(arg_name, "error_if_no_space")) | 
|  | pf->error_if_no_space = true; | 
|  |  | 
|  | else { | 
|  | ti->error = "Unrecognised pool feature requested"; | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void metadata_low_callback(void *context) | 
|  | { | 
|  | struct pool *pool = context; | 
|  |  | 
|  | DMWARN("%s: reached low water mark for metadata device: sending event.", | 
|  | dm_device_name(pool->pool_md)); | 
|  |  | 
|  | dm_table_event(pool->ti->table); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to flush the data device **before** committing the metadata. | 
|  | * | 
|  | * This ensures that the data blocks of any newly inserted mappings are | 
|  | * properly written to non-volatile storage and won't be lost in case of a | 
|  | * crash. | 
|  | * | 
|  | * Failure to do so can result in data corruption in the case of internal or | 
|  | * external snapshots and in the case of newly provisioned blocks, when block | 
|  | * zeroing is enabled. | 
|  | */ | 
|  | static int metadata_pre_commit_callback(void *context) | 
|  | { | 
|  | struct pool *pool = context; | 
|  |  | 
|  | return blkdev_issue_flush(pool->data_dev); | 
|  | } | 
|  |  | 
|  | static sector_t get_dev_size(struct block_device *bdev) | 
|  | { | 
|  | return bdev_nr_sectors(bdev); | 
|  | } | 
|  |  | 
|  | static void warn_if_metadata_device_too_big(struct block_device *bdev) | 
|  | { | 
|  | sector_t metadata_dev_size = get_dev_size(bdev); | 
|  |  | 
|  | if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) | 
|  | DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", | 
|  | bdev, THIN_METADATA_MAX_SECTORS); | 
|  | } | 
|  |  | 
|  | static sector_t get_metadata_dev_size(struct block_device *bdev) | 
|  | { | 
|  | sector_t metadata_dev_size = get_dev_size(bdev); | 
|  |  | 
|  | if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) | 
|  | metadata_dev_size = THIN_METADATA_MAX_SECTORS; | 
|  |  | 
|  | return metadata_dev_size; | 
|  | } | 
|  |  | 
|  | static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) | 
|  | { | 
|  | sector_t metadata_dev_size = get_metadata_dev_size(bdev); | 
|  |  | 
|  | sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); | 
|  |  | 
|  | return metadata_dev_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a metadata threshold is crossed a dm event is triggered, and | 
|  | * userland should respond by growing the metadata device.  We could let | 
|  | * userland set the threshold, like we do with the data threshold, but I'm | 
|  | * not sure they know enough to do this well. | 
|  | */ | 
|  | static dm_block_t calc_metadata_threshold(struct pool_c *pt) | 
|  | { | 
|  | /* | 
|  | * 4M is ample for all ops with the possible exception of thin | 
|  | * device deletion which is harmless if it fails (just retry the | 
|  | * delete after you've grown the device). | 
|  | */ | 
|  | dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; | 
|  |  | 
|  | return min((dm_block_t)1024ULL /* 4M */, quarter); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * thin-pool <metadata dev> <data dev> | 
|  | *	     <data block size (sectors)> | 
|  | *	     <low water mark (blocks)> | 
|  | *	     [<#feature args> [<arg>]*] | 
|  | * | 
|  | * Optional feature arguments are: | 
|  | *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks. | 
|  | *	     ignore_discard: disable discard | 
|  | *	     no_discard_passdown: don't pass discards down to the data device | 
|  | *	     read_only: Don't allow any changes to be made to the pool metadata. | 
|  | *	     error_if_no_space: error IOs, instead of queueing, if no space. | 
|  | */ | 
|  | static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
|  | { | 
|  | int r, pool_created = 0; | 
|  | struct pool_c *pt; | 
|  | struct pool *pool; | 
|  | struct pool_features pf; | 
|  | struct dm_arg_set as; | 
|  | struct dm_dev *data_dev; | 
|  | unsigned long block_size; | 
|  | dm_block_t low_water_blocks; | 
|  | struct dm_dev *metadata_dev; | 
|  | blk_mode_t metadata_mode; | 
|  |  | 
|  | /* | 
|  | * FIXME Remove validation from scope of lock. | 
|  | */ | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | if (argc < 4) { | 
|  | ti->error = "Invalid argument count"; | 
|  | r = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | as.argc = argc; | 
|  | as.argv = argv; | 
|  |  | 
|  | /* make sure metadata and data are different devices */ | 
|  | if (!strcmp(argv[0], argv[1])) { | 
|  | ti->error = "Error setting metadata or data device"; | 
|  | r = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set default pool features. | 
|  | */ | 
|  | pool_features_init(&pf); | 
|  |  | 
|  | dm_consume_args(&as, 4); | 
|  | r = parse_pool_features(&as, &pf, ti); | 
|  | if (r) | 
|  | goto out_unlock; | 
|  |  | 
|  | metadata_mode = BLK_OPEN_READ | | 
|  | ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE); | 
|  | r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); | 
|  | if (r) { | 
|  | ti->error = "Error opening metadata block device"; | 
|  | goto out_unlock; | 
|  | } | 
|  | warn_if_metadata_device_too_big(metadata_dev->bdev); | 
|  |  | 
|  | r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev); | 
|  | if (r) { | 
|  | ti->error = "Error getting data device"; | 
|  | goto out_metadata; | 
|  | } | 
|  |  | 
|  | if (kstrtoul(argv[2], 10, &block_size) || !block_size || | 
|  | block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || | 
|  | block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || | 
|  | block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { | 
|  | ti->error = "Invalid block size"; | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { | 
|  | ti->error = "Invalid low water mark"; | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pt = kzalloc(sizeof(*pt), GFP_KERNEL); | 
|  | if (!pt) { | 
|  | r = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, | 
|  | block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); | 
|  | if (IS_ERR(pool)) { | 
|  | r = PTR_ERR(pool); | 
|  | goto out_free_pt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'pool_created' reflects whether this is the first table load. | 
|  | * Top level discard support is not allowed to be changed after | 
|  | * initial load.  This would require a pool reload to trigger thin | 
|  | * device changes. | 
|  | */ | 
|  | if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { | 
|  | ti->error = "Discard support cannot be disabled once enabled"; | 
|  | r = -EINVAL; | 
|  | goto out_flags_changed; | 
|  | } | 
|  |  | 
|  | pt->pool = pool; | 
|  | pt->ti = ti; | 
|  | pt->metadata_dev = metadata_dev; | 
|  | pt->data_dev = data_dev; | 
|  | pt->low_water_blocks = low_water_blocks; | 
|  | pt->adjusted_pf = pt->requested_pf = pf; | 
|  | ti->num_flush_bios = 1; | 
|  | ti->limit_swap_bios = true; | 
|  |  | 
|  | /* | 
|  | * Only need to enable discards if the pool should pass | 
|  | * them down to the data device.  The thin device's discard | 
|  | * processing will cause mappings to be removed from the btree. | 
|  | */ | 
|  | if (pf.discard_enabled && pf.discard_passdown) { | 
|  | ti->num_discard_bios = 1; | 
|  | /* | 
|  | * Setting 'discards_supported' circumvents the normal | 
|  | * stacking of discard limits (this keeps the pool and | 
|  | * thin devices' discard limits consistent). | 
|  | */ | 
|  | ti->discards_supported = true; | 
|  | ti->max_discard_granularity = true; | 
|  | } | 
|  | ti->private = pt; | 
|  |  | 
|  | r = dm_pool_register_metadata_threshold(pt->pool->pmd, | 
|  | calc_metadata_threshold(pt), | 
|  | metadata_low_callback, | 
|  | pool); | 
|  | if (r) { | 
|  | ti->error = "Error registering metadata threshold"; | 
|  | goto out_flags_changed; | 
|  | } | 
|  |  | 
|  | dm_pool_register_pre_commit_callback(pool->pmd, | 
|  | metadata_pre_commit_callback, pool); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_flags_changed: | 
|  | __pool_dec(pool); | 
|  | out_free_pt: | 
|  | kfree(pt); | 
|  | out: | 
|  | dm_put_device(ti, data_dev); | 
|  | out_metadata: | 
|  | dm_put_device(ti, metadata_dev); | 
|  | out_unlock: | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int pool_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | /* | 
|  | * As this is a singleton target, ti->begin is always zero. | 
|  | */ | 
|  | spin_lock_irq(&pool->lock); | 
|  | bio_set_dev(bio, pt->data_dev->bdev); | 
|  | spin_unlock_irq(&pool->lock); | 
|  |  | 
|  | return DM_MAPIO_REMAPPED; | 
|  | } | 
|  |  | 
|  | static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | sector_t data_size = ti->len; | 
|  | dm_block_t sb_data_size; | 
|  |  | 
|  | *need_commit = false; | 
|  |  | 
|  | (void) sector_div(data_size, pool->sectors_per_block); | 
|  |  | 
|  | r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); | 
|  | if (r) { | 
|  | DMERR("%s: failed to retrieve data device size", | 
|  | dm_device_name(pool->pool_md)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (data_size < sb_data_size) { | 
|  | DMERR("%s: pool target (%llu blocks) too small: expected %llu", | 
|  | dm_device_name(pool->pool_md), | 
|  | (unsigned long long)data_size, sb_data_size); | 
|  | return -EINVAL; | 
|  |  | 
|  | } else if (data_size > sb_data_size) { | 
|  | if (dm_pool_metadata_needs_check(pool->pmd)) { | 
|  | DMERR("%s: unable to grow the data device until repaired.", | 
|  | dm_device_name(pool->pool_md)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sb_data_size) | 
|  | DMINFO("%s: growing the data device from %llu to %llu blocks", | 
|  | dm_device_name(pool->pool_md), | 
|  | sb_data_size, (unsigned long long)data_size); | 
|  | r = dm_pool_resize_data_dev(pool->pmd, data_size); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | *need_commit = true; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | dm_block_t metadata_dev_size, sb_metadata_dev_size; | 
|  |  | 
|  | *need_commit = false; | 
|  |  | 
|  | metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); | 
|  |  | 
|  | r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); | 
|  | if (r) { | 
|  | DMERR("%s: failed to retrieve metadata device size", | 
|  | dm_device_name(pool->pool_md)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (metadata_dev_size < sb_metadata_dev_size) { | 
|  | DMERR("%s: metadata device (%llu blocks) too small: expected %llu", | 
|  | dm_device_name(pool->pool_md), | 
|  | metadata_dev_size, sb_metadata_dev_size); | 
|  | return -EINVAL; | 
|  |  | 
|  | } else if (metadata_dev_size > sb_metadata_dev_size) { | 
|  | if (dm_pool_metadata_needs_check(pool->pmd)) { | 
|  | DMERR("%s: unable to grow the metadata device until repaired.", | 
|  | dm_device_name(pool->pool_md)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | warn_if_metadata_device_too_big(pool->md_dev); | 
|  | DMINFO("%s: growing the metadata device from %llu to %llu blocks", | 
|  | dm_device_name(pool->pool_md), | 
|  | sb_metadata_dev_size, metadata_dev_size); | 
|  |  | 
|  | if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) | 
|  | set_pool_mode(pool, PM_WRITE); | 
|  |  | 
|  | r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); | 
|  | if (r) { | 
|  | metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | *need_commit = true; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieves the number of blocks of the data device from | 
|  | * the superblock and compares it to the actual device size, | 
|  | * thus resizing the data device in case it has grown. | 
|  | * | 
|  | * This both copes with opening preallocated data devices in the ctr | 
|  | * being followed by a resume | 
|  | * -and- | 
|  | * calling the resume method individually after userspace has | 
|  | * grown the data device in reaction to a table event. | 
|  | */ | 
|  | static int pool_preresume(struct dm_target *ti) | 
|  | { | 
|  | int r; | 
|  | bool need_commit1, need_commit2; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | /* | 
|  | * Take control of the pool object. | 
|  | */ | 
|  | r = bind_control_target(pool, ti); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | r = maybe_resize_data_dev(ti, &need_commit1); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | r = maybe_resize_metadata_dev(ti, &need_commit2); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | if (need_commit1 || need_commit2) | 
|  | (void) commit(pool); | 
|  | out: | 
|  | /* | 
|  | * When a thin-pool is PM_FAIL, it cannot be rebuilt if | 
|  | * bio is in deferred list. Therefore need to return 0 | 
|  | * to allow pool_resume() to flush IO. | 
|  | */ | 
|  | if (r && get_pool_mode(pool) == PM_FAIL) | 
|  | r = 0; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void pool_suspend_active_thins(struct pool *pool) | 
|  | { | 
|  | struct thin_c *tc; | 
|  |  | 
|  | /* Suspend all active thin devices */ | 
|  | tc = get_first_thin(pool); | 
|  | while (tc) { | 
|  | dm_internal_suspend_noflush(tc->thin_md); | 
|  | tc = get_next_thin(pool, tc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pool_resume_active_thins(struct pool *pool) | 
|  | { | 
|  | struct thin_c *tc; | 
|  |  | 
|  | /* Resume all active thin devices */ | 
|  | tc = get_first_thin(pool); | 
|  | while (tc) { | 
|  | dm_internal_resume(tc->thin_md); | 
|  | tc = get_next_thin(pool, tc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pool_resume(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | /* | 
|  | * Must requeue active_thins' bios and then resume | 
|  | * active_thins _before_ clearing 'suspend' flag. | 
|  | */ | 
|  | requeue_bios(pool); | 
|  | pool_resume_active_thins(pool); | 
|  |  | 
|  | spin_lock_irq(&pool->lock); | 
|  | pool->low_water_triggered = false; | 
|  | pool->suspended = false; | 
|  | spin_unlock_irq(&pool->lock); | 
|  |  | 
|  | do_waker(&pool->waker.work); | 
|  | } | 
|  |  | 
|  | static void pool_presuspend(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | spin_lock_irq(&pool->lock); | 
|  | pool->suspended = true; | 
|  | spin_unlock_irq(&pool->lock); | 
|  |  | 
|  | pool_suspend_active_thins(pool); | 
|  | } | 
|  |  | 
|  | static void pool_presuspend_undo(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | pool_resume_active_thins(pool); | 
|  |  | 
|  | spin_lock_irq(&pool->lock); | 
|  | pool->suspended = false; | 
|  | spin_unlock_irq(&pool->lock); | 
|  | } | 
|  |  | 
|  | static void pool_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | cancel_delayed_work_sync(&pool->waker); | 
|  | cancel_delayed_work_sync(&pool->no_space_timeout); | 
|  | flush_workqueue(pool->wq); | 
|  | (void) commit(pool); | 
|  | } | 
|  |  | 
|  | static int check_arg_count(unsigned int argc, unsigned int args_required) | 
|  | { | 
|  | if (argc != args_required) { | 
|  | DMWARN("Message received with %u arguments instead of %u.", | 
|  | argc, args_required); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) | 
|  | { | 
|  | if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && | 
|  | *dev_id <= MAX_DEV_ID) | 
|  | return 0; | 
|  |  | 
|  | if (warning) | 
|  | DMWARN("Message received with invalid device id: %s", arg); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 2); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_create_thin(pool->pmd, dev_id); | 
|  | if (r) { | 
|  | DMWARN("Creation of new thinly-provisioned device with id %s failed.", | 
|  | argv[1]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | dm_thin_id origin_dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 3); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[2], &origin_dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); | 
|  | if (r) { | 
|  | DMWARN("Creation of new snapshot %s of device %s failed.", | 
|  | argv[1], argv[2]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 2); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_delete_thin_device(pool->pmd, dev_id); | 
|  | if (r) | 
|  | DMWARN("Deletion of thin device %s failed.", argv[1]); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id old_id, new_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 3); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { | 
|  | DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { | 
|  | DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); | 
|  | if (r) { | 
|  | DMWARN("Failed to change transaction id from %s to %s.", | 
|  | argv[1], argv[2]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | (void) commit(pool); | 
|  |  | 
|  | r = dm_pool_reserve_metadata_snap(pool->pmd); | 
|  | if (r) | 
|  | DMWARN("reserve_metadata_snap message failed."); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_release_metadata_snap(pool->pmd); | 
|  | if (r) | 
|  | DMWARN("release_metadata_snap message failed."); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Messages supported: | 
|  | *   create_thin	<dev_id> | 
|  | *   create_snap	<dev_id> <origin_id> | 
|  | *   delete		<dev_id> | 
|  | *   set_transaction_id <current_trans_id> <new_trans_id> | 
|  | *   reserve_metadata_snap | 
|  | *   release_metadata_snap | 
|  | */ | 
|  | static int pool_message(struct dm_target *ti, unsigned int argc, char **argv, | 
|  | char *result, unsigned int maxlen) | 
|  | { | 
|  | int r = -EINVAL; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { | 
|  | DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", | 
|  | dm_device_name(pool->pool_md)); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!strcasecmp(argv[0], "create_thin")) | 
|  | r = process_create_thin_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "create_snap")) | 
|  | r = process_create_snap_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "delete")) | 
|  | r = process_delete_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "set_transaction_id")) | 
|  | r = process_set_transaction_id_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "reserve_metadata_snap")) | 
|  | r = process_reserve_metadata_snap_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "release_metadata_snap")) | 
|  | r = process_release_metadata_snap_mesg(argc, argv, pool); | 
|  |  | 
|  | else | 
|  | DMWARN("Unrecognised thin pool target message received: %s", argv[0]); | 
|  |  | 
|  | if (!r) | 
|  | (void) commit(pool); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void emit_flags(struct pool_features *pf, char *result, | 
|  | unsigned int sz, unsigned int maxlen) | 
|  | { | 
|  | unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled + | 
|  | !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + | 
|  | pf->error_if_no_space; | 
|  | DMEMIT("%u ", count); | 
|  |  | 
|  | if (!pf->zero_new_blocks) | 
|  | DMEMIT("skip_block_zeroing "); | 
|  |  | 
|  | if (!pf->discard_enabled) | 
|  | DMEMIT("ignore_discard "); | 
|  |  | 
|  | if (!pf->discard_passdown) | 
|  | DMEMIT("no_discard_passdown "); | 
|  |  | 
|  | if (pf->mode == PM_READ_ONLY) | 
|  | DMEMIT("read_only "); | 
|  |  | 
|  | if (pf->error_if_no_space) | 
|  | DMEMIT("error_if_no_space "); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Status line is: | 
|  | *    <transaction id> <used metadata sectors>/<total metadata sectors> | 
|  | *    <used data sectors>/<total data sectors> <held metadata root> | 
|  | *    <pool mode> <discard config> <no space config> <needs_check> | 
|  | */ | 
|  | static void pool_status(struct dm_target *ti, status_type_t type, | 
|  | unsigned int status_flags, char *result, unsigned int maxlen) | 
|  | { | 
|  | int r; | 
|  | unsigned int sz = 0; | 
|  | uint64_t transaction_id; | 
|  | dm_block_t nr_free_blocks_data; | 
|  | dm_block_t nr_free_blocks_metadata; | 
|  | dm_block_t nr_blocks_data; | 
|  | dm_block_t nr_blocks_metadata; | 
|  | dm_block_t held_root; | 
|  | enum pool_mode mode; | 
|  | char buf[BDEVNAME_SIZE]; | 
|  | char buf2[BDEVNAME_SIZE]; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | if (get_pool_mode(pool) == PM_FAIL) { | 
|  | DMEMIT("Fail"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Commit to ensure statistics aren't out-of-date */ | 
|  | if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) | 
|  | (void) commit(pool); | 
|  |  | 
|  | r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_metadata_dev_size returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_free_block_count returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_data_dev_size returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_metadata_snap(pool->pmd, &held_root); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_metadata_snap returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | DMEMIT("%llu %llu/%llu %llu/%llu ", | 
|  | (unsigned long long)transaction_id, | 
|  | (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), | 
|  | (unsigned long long)nr_blocks_metadata, | 
|  | (unsigned long long)(nr_blocks_data - nr_free_blocks_data), | 
|  | (unsigned long long)nr_blocks_data); | 
|  |  | 
|  | if (held_root) | 
|  | DMEMIT("%llu ", held_root); | 
|  | else | 
|  | DMEMIT("- "); | 
|  |  | 
|  | mode = get_pool_mode(pool); | 
|  | if (mode == PM_OUT_OF_DATA_SPACE) | 
|  | DMEMIT("out_of_data_space "); | 
|  | else if (is_read_only_pool_mode(mode)) | 
|  | DMEMIT("ro "); | 
|  | else | 
|  | DMEMIT("rw "); | 
|  |  | 
|  | if (!pool->pf.discard_enabled) | 
|  | DMEMIT("ignore_discard "); | 
|  | else if (pool->pf.discard_passdown) | 
|  | DMEMIT("discard_passdown "); | 
|  | else | 
|  | DMEMIT("no_discard_passdown "); | 
|  |  | 
|  | if (pool->pf.error_if_no_space) | 
|  | DMEMIT("error_if_no_space "); | 
|  | else | 
|  | DMEMIT("queue_if_no_space "); | 
|  |  | 
|  | if (dm_pool_metadata_needs_check(pool->pmd)) | 
|  | DMEMIT("needs_check "); | 
|  | else | 
|  | DMEMIT("- "); | 
|  |  | 
|  | DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | DMEMIT("%s %s %lu %llu ", | 
|  | format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), | 
|  | format_dev_t(buf2, pt->data_dev->bdev->bd_dev), | 
|  | (unsigned long)pool->sectors_per_block, | 
|  | (unsigned long long)pt->low_water_blocks); | 
|  | emit_flags(&pt->requested_pf, result, sz, maxlen); | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_IMA: | 
|  | *result = '\0'; | 
|  | break; | 
|  | } | 
|  | return; | 
|  |  | 
|  | err: | 
|  | DMEMIT("Error"); | 
|  | } | 
|  |  | 
|  | static int pool_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | return fn(ti, pt->data_dev, 0, ti->len, data); | 
|  | } | 
|  |  | 
|  | static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; | 
|  |  | 
|  | /* | 
|  | * If max_sectors is smaller than pool->sectors_per_block adjust it | 
|  | * to the highest possible power-of-2 factor of pool->sectors_per_block. | 
|  | * This is especially beneficial when the pool's data device is a RAID | 
|  | * device that has a full stripe width that matches pool->sectors_per_block | 
|  | * -- because even though partial RAID stripe-sized IOs will be issued to a | 
|  | *    single RAID stripe; when aggregated they will end on a full RAID stripe | 
|  | *    boundary.. which avoids additional partial RAID stripe writes cascading | 
|  | */ | 
|  | if (limits->max_sectors < pool->sectors_per_block) { | 
|  | while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { | 
|  | if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) | 
|  | limits->max_sectors--; | 
|  | limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the system-determined stacked limits are compatible with the | 
|  | * pool's blocksize (io_opt is a factor) do not override them. | 
|  | */ | 
|  | if (io_opt_sectors < pool->sectors_per_block || | 
|  | !is_factor(io_opt_sectors, pool->sectors_per_block)) { | 
|  | if (is_factor(pool->sectors_per_block, limits->max_sectors)) | 
|  | limits->io_min = limits->max_sectors << SECTOR_SHIFT; | 
|  | else | 
|  | limits->io_min = pool->sectors_per_block << SECTOR_SHIFT; | 
|  | limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pt->adjusted_pf is a staging area for the actual features to use. | 
|  | * They get transferred to the live pool in bind_control_target() | 
|  | * called from pool_preresume(). | 
|  | */ | 
|  |  | 
|  | if (pt->adjusted_pf.discard_enabled) { | 
|  | disable_discard_passdown_if_not_supported(pt); | 
|  | if (!pt->adjusted_pf.discard_passdown) | 
|  | limits->max_hw_discard_sectors = 0; | 
|  | /* | 
|  | * The pool uses the same discard limits as the underlying data | 
|  | * device.  DM core has already set this up. | 
|  | */ | 
|  | } else { | 
|  | /* | 
|  | * Must explicitly disallow stacking discard limits otherwise the | 
|  | * block layer will stack them if pool's data device has support. | 
|  | */ | 
|  | limits->discard_granularity = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct target_type pool_target = { | 
|  | .name = "thin-pool", | 
|  | .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | | 
|  | DM_TARGET_IMMUTABLE | DM_TARGET_PASSES_CRYPTO, | 
|  | .version = {1, 24, 0}, | 
|  | .module = THIS_MODULE, | 
|  | .ctr = pool_ctr, | 
|  | .dtr = pool_dtr, | 
|  | .map = pool_map, | 
|  | .presuspend = pool_presuspend, | 
|  | .presuspend_undo = pool_presuspend_undo, | 
|  | .postsuspend = pool_postsuspend, | 
|  | .preresume = pool_preresume, | 
|  | .resume = pool_resume, | 
|  | .message = pool_message, | 
|  | .status = pool_status, | 
|  | .iterate_devices = pool_iterate_devices, | 
|  | .io_hints = pool_io_hints, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *-------------------------------------------------------------- | 
|  | * Thin target methods | 
|  | *-------------------------------------------------------------- | 
|  | */ | 
|  | static void thin_get(struct thin_c *tc) | 
|  | { | 
|  | refcount_inc(&tc->refcount); | 
|  | } | 
|  |  | 
|  | static void thin_put(struct thin_c *tc) | 
|  | { | 
|  | if (refcount_dec_and_test(&tc->refcount)) | 
|  | complete(&tc->can_destroy); | 
|  | } | 
|  |  | 
|  | static void thin_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | spin_lock_irq(&tc->pool->lock); | 
|  | list_del_rcu(&tc->list); | 
|  | spin_unlock_irq(&tc->pool->lock); | 
|  | synchronize_rcu(); | 
|  |  | 
|  | thin_put(tc); | 
|  | wait_for_completion(&tc->can_destroy); | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | __pool_dec(tc->pool); | 
|  | dm_pool_close_thin_device(tc->td); | 
|  | dm_put_device(ti, tc->pool_dev); | 
|  | if (tc->origin_dev) | 
|  | dm_put_device(ti, tc->origin_dev); | 
|  | kfree(tc); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Thin target parameters: | 
|  | * | 
|  | * <pool_dev> <dev_id> [origin_dev] | 
|  | * | 
|  | * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) | 
|  | * dev_id: the internal device identifier | 
|  | * origin_dev: a device external to the pool that should act as the origin | 
|  | * | 
|  | * If the pool device has discards disabled, they get disabled for the thin | 
|  | * device as well. | 
|  | */ | 
|  | static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc; | 
|  | struct dm_dev *pool_dev, *origin_dev; | 
|  | struct mapped_device *pool_md; | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | if (argc != 2 && argc != 3) { | 
|  | ti->error = "Invalid argument count"; | 
|  | r = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); | 
|  | if (!tc) { | 
|  | ti->error = "Out of memory"; | 
|  | r = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  | tc->thin_md = dm_table_get_md(ti->table); | 
|  | spin_lock_init(&tc->lock); | 
|  | INIT_LIST_HEAD(&tc->deferred_cells); | 
|  | bio_list_init(&tc->deferred_bio_list); | 
|  | bio_list_init(&tc->retry_on_resume_list); | 
|  | tc->sort_bio_list = RB_ROOT; | 
|  |  | 
|  | if (argc == 3) { | 
|  | if (!strcmp(argv[0], argv[2])) { | 
|  | ti->error = "Error setting origin device"; | 
|  | r = -EINVAL; | 
|  | goto bad_origin_dev; | 
|  | } | 
|  |  | 
|  | r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev); | 
|  | if (r) { | 
|  | ti->error = "Error opening origin device"; | 
|  | goto bad_origin_dev; | 
|  | } | 
|  | tc->origin_dev = origin_dev; | 
|  | } | 
|  |  | 
|  | r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); | 
|  | if (r) { | 
|  | ti->error = "Error opening pool device"; | 
|  | goto bad_pool_dev; | 
|  | } | 
|  | tc->pool_dev = pool_dev; | 
|  |  | 
|  | if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { | 
|  | ti->error = "Invalid device id"; | 
|  | r = -EINVAL; | 
|  | goto bad_common; | 
|  | } | 
|  |  | 
|  | pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); | 
|  | if (!pool_md) { | 
|  | ti->error = "Couldn't get pool mapped device"; | 
|  | r = -EINVAL; | 
|  | goto bad_common; | 
|  | } | 
|  |  | 
|  | tc->pool = __pool_table_lookup(pool_md); | 
|  | if (!tc->pool) { | 
|  | ti->error = "Couldn't find pool object"; | 
|  | r = -EINVAL; | 
|  | goto bad_pool_lookup; | 
|  | } | 
|  | __pool_inc(tc->pool); | 
|  |  | 
|  | if (get_pool_mode(tc->pool) == PM_FAIL) { | 
|  | ti->error = "Couldn't open thin device, Pool is in fail mode"; | 
|  | r = -EINVAL; | 
|  | goto bad_pool; | 
|  | } | 
|  |  | 
|  | r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); | 
|  | if (r) { | 
|  | ti->error = "Couldn't open thin internal device"; | 
|  | goto bad_pool; | 
|  | } | 
|  |  | 
|  | r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); | 
|  | if (r) | 
|  | goto bad; | 
|  |  | 
|  | ti->num_flush_bios = 1; | 
|  | ti->limit_swap_bios = true; | 
|  | ti->flush_supported = true; | 
|  | ti->accounts_remapped_io = true; | 
|  | ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); | 
|  |  | 
|  | /* In case the pool supports discards, pass them on. */ | 
|  | if (tc->pool->pf.discard_enabled) { | 
|  | ti->discards_supported = true; | 
|  | ti->num_discard_bios = 1; | 
|  | ti->max_discard_granularity = true; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | spin_lock_irq(&tc->pool->lock); | 
|  | if (tc->pool->suspended) { | 
|  | spin_unlock_irq(&tc->pool->lock); | 
|  | mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ | 
|  | ti->error = "Unable to activate thin device while pool is suspended"; | 
|  | r = -EINVAL; | 
|  | goto bad; | 
|  | } | 
|  | refcount_set(&tc->refcount, 1); | 
|  | init_completion(&tc->can_destroy); | 
|  | list_add_tail_rcu(&tc->list, &tc->pool->active_thins); | 
|  | spin_unlock_irq(&tc->pool->lock); | 
|  | /* | 
|  | * This synchronize_rcu() call is needed here otherwise we risk a | 
|  | * wake_worker() call finding no bios to process (because the newly | 
|  | * added tc isn't yet visible).  So this reduces latency since we | 
|  | * aren't then dependent on the periodic commit to wake_worker(). | 
|  | */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | dm_put(pool_md); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | dm_pool_close_thin_device(tc->td); | 
|  | bad_pool: | 
|  | __pool_dec(tc->pool); | 
|  | bad_pool_lookup: | 
|  | dm_put(pool_md); | 
|  | bad_common: | 
|  | dm_put_device(ti, tc->pool_dev); | 
|  | bad_pool_dev: | 
|  | if (tc->origin_dev) | 
|  | dm_put_device(ti, tc->origin_dev); | 
|  | bad_origin_dev: | 
|  | kfree(tc); | 
|  | out_unlock: | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int thin_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); | 
|  |  | 
|  | return thin_bio_map(ti, bio); | 
|  | } | 
|  |  | 
|  | static int thin_endio(struct dm_target *ti, struct bio *bio, | 
|  | blk_status_t *err) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | struct list_head work; | 
|  | struct dm_thin_new_mapping *m, *tmp; | 
|  | struct pool *pool = h->tc->pool; | 
|  |  | 
|  | if (h->shared_read_entry) { | 
|  | INIT_LIST_HEAD(&work); | 
|  | dm_deferred_entry_dec(h->shared_read_entry, &work); | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_for_each_entry_safe(m, tmp, &work, list) { | 
|  | list_del(&m->list); | 
|  | __complete_mapping_preparation(m); | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | if (h->all_io_entry) { | 
|  | INIT_LIST_HEAD(&work); | 
|  | dm_deferred_entry_dec(h->all_io_entry, &work); | 
|  | if (!list_empty(&work)) { | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_for_each_entry_safe(m, tmp, &work, list) | 
|  | list_add_tail(&m->list, &pool->prepared_discards); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | wake_worker(pool); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (h->cell) | 
|  | cell_defer_no_holder(h->tc, h->cell); | 
|  |  | 
|  | return DM_ENDIO_DONE; | 
|  | } | 
|  |  | 
|  | static void thin_presuspend(struct dm_target *ti) | 
|  | { | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | if (dm_noflush_suspending(ti)) | 
|  | noflush_work(tc, do_noflush_start); | 
|  | } | 
|  |  | 
|  | static void thin_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | /* | 
|  | * The dm_noflush_suspending flag has been cleared by now, so | 
|  | * unfortunately we must always run this. | 
|  | */ | 
|  | noflush_work(tc, do_noflush_stop); | 
|  | } | 
|  |  | 
|  | static int thin_preresume(struct dm_target *ti) | 
|  | { | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | if (tc->origin_dev) | 
|  | tc->origin_size = get_dev_size(tc->origin_dev->bdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * <nr mapped sectors> <highest mapped sector> | 
|  | */ | 
|  | static void thin_status(struct dm_target *ti, status_type_t type, | 
|  | unsigned int status_flags, char *result, unsigned int maxlen) | 
|  | { | 
|  | int r; | 
|  | ssize_t sz = 0; | 
|  | dm_block_t mapped, highest; | 
|  | char buf[BDEVNAME_SIZE]; | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | if (get_pool_mode(tc->pool) == PM_FAIL) { | 
|  | DMEMIT("Fail"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!tc->td) | 
|  | DMEMIT("-"); | 
|  | else { | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | r = dm_thin_get_mapped_count(tc->td, &mapped); | 
|  | if (r) { | 
|  | DMERR("dm_thin_get_mapped_count returned %d", r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_thin_get_highest_mapped_block(tc->td, &highest); | 
|  | if (r < 0) { | 
|  | DMERR("dm_thin_get_highest_mapped_block returned %d", r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); | 
|  | if (r) | 
|  | DMEMIT("%llu", ((highest + 1) * | 
|  | tc->pool->sectors_per_block) - 1); | 
|  | else | 
|  | DMEMIT("-"); | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | DMEMIT("%s %lu", | 
|  | format_dev_t(buf, tc->pool_dev->bdev->bd_dev), | 
|  | (unsigned long) tc->dev_id); | 
|  | if (tc->origin_dev) | 
|  | DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_IMA: | 
|  | *result = '\0'; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | err: | 
|  | DMEMIT("Error"); | 
|  | } | 
|  |  | 
|  | static int thin_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | sector_t blocks; | 
|  | struct thin_c *tc = ti->private; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | /* | 
|  | * We can't call dm_pool_get_data_dev_size() since that blocks.  So | 
|  | * we follow a more convoluted path through to the pool's target. | 
|  | */ | 
|  | if (!pool->ti) | 
|  | return 0;	/* nothing is bound */ | 
|  |  | 
|  | blocks = pool->ti->len; | 
|  | (void) sector_div(blocks, pool->sectors_per_block); | 
|  | if (blocks) | 
|  | return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | { | 
|  | struct thin_c *tc = ti->private; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | if (pool->pf.discard_enabled) { | 
|  | limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; | 
|  | limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct target_type thin_target = { | 
|  | .name = "thin", | 
|  | .features = DM_TARGET_PASSES_CRYPTO, | 
|  | .version = {1, 24, 0}, | 
|  | .module	= THIS_MODULE, | 
|  | .ctr = thin_ctr, | 
|  | .dtr = thin_dtr, | 
|  | .map = thin_map, | 
|  | .end_io = thin_endio, | 
|  | .preresume = thin_preresume, | 
|  | .presuspend = thin_presuspend, | 
|  | .postsuspend = thin_postsuspend, | 
|  | .status = thin_status, | 
|  | .iterate_devices = thin_iterate_devices, | 
|  | .io_hints = thin_io_hints, | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int __init dm_thin_init(void) | 
|  | { | 
|  | int r = -ENOMEM; | 
|  |  | 
|  | pool_table_init(); | 
|  |  | 
|  | _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); | 
|  | if (!_new_mapping_cache) | 
|  | return r; | 
|  |  | 
|  | r = dm_register_target(&thin_target); | 
|  | if (r) | 
|  | goto bad_new_mapping_cache; | 
|  |  | 
|  | r = dm_register_target(&pool_target); | 
|  | if (r) | 
|  | goto bad_thin_target; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad_thin_target: | 
|  | dm_unregister_target(&thin_target); | 
|  | bad_new_mapping_cache: | 
|  | kmem_cache_destroy(_new_mapping_cache); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void dm_thin_exit(void) | 
|  | { | 
|  | dm_unregister_target(&thin_target); | 
|  | dm_unregister_target(&pool_target); | 
|  |  | 
|  | kmem_cache_destroy(_new_mapping_cache); | 
|  |  | 
|  | pool_table_exit(); | 
|  | } | 
|  |  | 
|  | module_init(dm_thin_init); | 
|  | module_exit(dm_thin_exit); | 
|  |  | 
|  | module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644); | 
|  | MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); | 
|  |  | 
|  | MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); | 
|  | MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); | 
|  | MODULE_LICENSE("GPL"); |